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ABSTRACT
Heating of virialized gas by streaming cosmic rays (CRs) may be energetically important
in galaxy haloes, groups, and clusters. We present a linear thermal stability analysis of
plasmas heated by streaming CRs. We separately treat equilibria with and without background
gradients, and with and without gravity. We include both CR streaming and diffusion along the
magnetic-field direction. Thermal stability depends strongly on the ratio of CR pressure to gas
pressure, which determines whether modes are isobaric or isochoric. Modes with k · B �= 0
are strongly affected by CR diffusion. When the streaming time is shorter than the CR diffusion
time, thermally unstable modes (with k · B �= 0) are waves propagating at a speed ∝ the Alfvén
speed. Halo gas in photoionization equilibrium is thermally stable independent of CR pressure,
while gas in collisional ionization equilibrium is unstable for physically realistic parameters.
In gravitationally stratified plasmas, the oscillation frequency of thermally overstable modes
can be higher in the presence of CR streaming than the buoyancy/free-fall frequency. This
may modify the critical tcool/tff at which multiphase gas is present. The criterion for convective
instability of a stratified, CR-heated medium can be written in the familiar Schwarzschild form
dseff/dz < 0, where seff is an effective entropy involving the gas and CR pressures. We discuss
the implications of our results for the thermal evolution and multiphase structure of galaxy
haloes, groups, and clusters.
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1 INTRODUCTION

The short radiative cooling times of virialized gas in galaxies and
clusters suggest that these systems should contain significantly
more cool gas at their centres than is observed (Peterson & Fabian
2006). This implies that the hot gas surrounding galaxy haloes
is also heated, which is thought to come from feedback by star
formation and central active galactic nuclei (AGN; e.g. Guo, Oh &
Ruszkowski 2008). An appreciable fraction of the energy released
by AGNs and supernova explosions comes in the form of relativistic
cosmic ray particles (McNamara & Nulsen 2007; Ackermann et al.
2013), which may be important for the dynamics and gas heating
in galaxies, haloes, and clusters (e.g. Breitschwerdt, McKenzie &
Voelk 1991; Loewenstein, G. Zweibel & C. Begelman 1991; Everett
et al. 2008; Guo & Oh 2008; Socrates, Davis & Ramirez-Ruiz 2008;
Zweibel 2013; Ruszkowski, Yang & Zweibel 2017; Zweibel 2017;
Ehlert et al. 2018).

Cosmic rays are confined in galaxies for times much longer
than would be expected from their propagation speed (≈speed of
light), due to scattering off small-scale electromagnetic fluctuations.
These fluctuations can be either due to external turbulence, or
Alfvén waves generated by the cosmic rays themselves. In the
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self-excitation scenario, wave growth is driven by the cosmic ray
streaming instability (Kulsrud & Pearce 1969): as cosmic rays
collectively drift down their pressure gradient, the free energy
associated with their velocity anisotropy can excite Alfvén waves.
Pitch-angle scattering isotropizes the cosmic rays in the frame
comoving with the waves, which, in the absence of strong wave
damping, limits the CR drift speed to the local Alfvén speed (by
contrast, the cosmic ray drift speed can be significantly larger
than the Alfvén speed in the strong-damping limit; Skilling 1971;
Wiener, Oh & Guo 2013a). In a steady state, the streaming-induced
wave growth is balanced by wave damping, so that the energy of the
cosmic rays is essentially being transferred to the thermal plasma.
This couples the background plasma to the cosmic rays, which heat
the gas at a rate −vA · ∇pc, where vA is the local Alfvén speed and
pc is the CR pressure (Wentzel 1971).

Guo & Oh (2008) and Jacob & Pfrommer (2017a, 2017b)
showed that this cosmic ray heating can suppress the cooling
catastrophe in clusters for CR pressures that are consistent with
observational bounds. Indeed, they found that the required CR
pressure (gradient) is small compared to the gas pressure (gradient),
as is also found observationally (e.g. Huber et al. 2013). Whether
the same is true in galaxy haloes is still unclear (e.g. Hopkins
et al. 2019).

While heating suppresses cooling globally (i.e. on sufficiently
long time and length-scales) and maintains the hot virialized
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gas in massive haloes in approximate hydrostatic and thermal
balance,1 there is strong observational evidence for cold gas in the
haloes of galaxies. Cool gas is present both in the circumgalactic
medium (CGM) of massive and Milky Way-like galaxies, and in the
intracluster medium (ICM). In the ICM, detailed spatially resolved
observations (that use both atomic and molecular transitions, e.g.
Salomé et al. 2006, Cavagnolo et al. 2009) indicate the presence
of cold-gas filaments embedded within the otherwise hot, virialized
gas, which constitutes most of the intracluster gas mass. In the
CGM, the cool-gas morphology is less certain (i.e. it could be
filamentary or volume-filling), and the cold gas mass may comprise
a significant fraction of the total halo gas mass. Indeed, observations
of the CGM using Ly α emission and quasar absorption lines (Stocke
et al. 2013; Werk et al. 2013; Cantalupo et al. 2014; Hennawi et al.
2015; Bowen et al. 2016; Cai et al. 2017) suggest the presence of
multiphase gas along most lines of sight (suggesting that the cold
phase may permeate the CGM, instead of forming a filamentary
structure).

The origin of the cold gas remains uncertain. It could be gas
elevated into the halo by galactic winds. However, how the cold gas
in high-velocity galactic winds is produced and entrained remains
uncertain (Scannapieco & Brüggen 2015; Thompson et al. 2016;
Zhang et al. 2017). Alternatively (or, in addition), the cold phase
may be produced in situ via thermal instability. Thermal instability
is commonly linked to the existence of multiphase gas in the
interstellar medium (Field 1965) and has been studied in the context
of galaxy haloes and clusters using a number of simulations and
models (Nulsen 1986; Binney, Nipoti & Fraternali 2009; McCourt
et al. 2012; Sharma et al. 2012; Meece, O’Shea & Voit 2015;
Voit et al. 2015; Voit et al. 2017; Voit 2018). These simulations
suggest that the condensation of cold gas via thermal instability
can occur if the ratio of the cooling time to the free-fall time is
sufficiently small. Typically they find that tcool/tff � 10, however,
this value may depend on the size of the initial perturbations
(Pizzolato & Soker 2005; Singh & Sharma 2015; Choudhury,
Sharma & Quataert 2019) and whether magnetic fields are included
(Ji, Oh & McCourt 2018). The connection between tcool/tff � 10
and the existence of multiphase structure has been partly borne out
by the cluster observations of McDonald et al. (2010), but in a
more recent sample of 56 clusters observed by the Chandra X-ray
Observatory, cold gas is present even when tcool/tff � 10 (Hogan
et al. 2017).

The purpose of this paper is to understand the thermal stability
of systems heated by streaming cosmic rays, which may be an
important heating mechanism in galaxy haloes. We first present
order-of-magnitude estimates showing that heating due to streaming
CRs may be important for a wide range of halo masses. We then
perform a linear stability analysis, in which we take into account
both CR streaming and diffusion, and we look at equilibria with
and without gravity. While we find that explicitly including gravity
is not very important for thermal instability growth rates, it can
transform thermal instability into a convective instability driven by
buoyancy.2

1While the hot virialized gas in clusters has a sufficiently high temperature
to be seen directly in emission, the emission from virialized gas in the
CGM is too faint for current telescopes. Nevertheless, hot virialized gas is
expected to be present in haloes of mass � 1011.5 M� (Birnboim & Dekel
2003; Dekel et al. 2009).
2This is a rather unsurprising side result of our analysis, because thermal
and convective stability are closely linked (Balbus 1995).

The thermal stability of systems with heating by streaming
CRs was first considered heuristically in the context of a cooling
flow by Loewenstein et al. (1991). Pfrommer (2013) and Wiener,
Zweibel & Oh (2013b) then studied thermal instability with CR
heating by assuming that the CR pressure (pc) and gas density (ρ)
follow the adiabatic relation pc ∝ ργc . In this work, we instead
explicitly include the evolution equation for the CR pressure, which
is in general not consistent with adiabaticity. Cosmic rays are
adiabatic only for modes propagating perpendicular to the magnetic
field (see Section 4.3), but even then we show that correctly
perturbing the CR heating produces results that are different from
the heuristic calculation in Pfrommer (2013). We also extend
previous work by studying the impact of CR diffusion on thermal
instability, and we study the instability in different background
equilibria.

The remainder of this paper is organized as follows. We introduce
the gas–CR equations in Section 2. In Section 3, we argue that
cosmic ray heating may be important in galactic haloes. The linear
thermal stability of CR heating is derived in Sections 4–6. We solve
the perturbed linearized equations in a uniform medium without
gravity in Section 4. We introduce gas and CR background gradients
in Section 5 and consider gravitationally stratified equilibria in
Section 6. In the latter case, we also obtain a criterion for convective
instability. We summarize our results and discuss their implications
for the multiphase structure of galaxy haloes in Section 7.

We derive estimates for the (global) ratio of CR to thermal
pressure in galaxy haloes in Appendix A. A heuristic description
of the impact of CR diffusion on thermal instability is provided in
Appendix B. We show the linearized perturbed equations of a CR-
heated background in Appendix C. In Appendix D, we explain
why a one-dimensional calculation (see Section 5.2) gives the
correct eigenfrequency of the gas entropy mode in a CR-heated
background. Finally, we derive an approximate growth rate for
the convective instability in a gravitationally stratified medium in
Appendix E.

2 EQUATIONS AND TIME-SCALES

2.1 Gas–CR equations

We consider a thermal plasma interacting with a population of
relativistic cosmic rays. We model the system by including CR
heating and the CR pressure force in the equations of ideal MHD.
This results in the following coupled differential equations

∂ρ

∂t
+ ∇ · (ρv) = 0, (1)

ρ
dv

dt
= −∇

(
pg + pc + B2

8π

)
+ B · ∇B

4π
+ ρg, (2)

∂B
∂t

= ∇×(v × B), (3)

ρT
ds

dt
= H − vA · ∇pc − ρ2�(T ), (4)

dpc

dt
= −4

3
pc∇·(v + vA) − vA · ∇pc + ∇·

(
κ b̂b̂·∇pc

)
, (5)

where v is the gas velocity, ρ is the gas density, pg and pc are
the gas and CR pressures, respectively, B is the magnetic field
(with unit vector along b̂), g is the acceleration due to gravity,
s = kBln (p/ργ )/(γ − 1)mH is the gas entropy per unit mass,
�(T) is the temperature-dependent cooling function, and H is an
unspecified heating rate (which we set to 0 except in Section 4).
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d/dt ≡ ∂/∂t + v · ∇ denotes a total (Lagrangian) time derivative.
We assume that cosmic rays stream down their pressure gradient
at the Alfvén velocity vA = B/

√
4πρ, and we also include CR

diffusion along the magnetic field, for which we assume a constant
diffusion coefficient κ . We note that formally CRs stream with
velocity vst = −sgn(b̂ · ∇pc)vA. This ensures that cosmic rays
stream along the magnetic field down their pressure gradient
and makes the CR heating term −vst · ∇pc positive definite. In
our linear stability analysis cosmic rays stream at vA, as we
consider background equilibria which satisfy −vA · ∇pc > 0 (see
footnote 3 in Section 4.1 for how this is achieved in a uniform
background).

2.2 CR transport: streaming versus diffusion

The interplay between cosmic ray streaming and diffusion calls
for some further discussion. In the self-confinement picture, the
importance of streaming versus diffusion is intimately tied to the
saturation of the streaming instability (Kulsrud & Cesarsky 1971;
Skilling 1971; Wiener et al. 2013a). In the limit of weak damping,
the excited Alfvén waves can grow to large amplitudes (compared
to when significant damping is present, see next paragraph) until
the resultant rapid pitch-angle scattering isotropizes the CRs in
the frame of the waves. In this scenario, the cosmic rays are
advected down their pressure gradient at the Alfvén speed relative
to the thermal plasma, with no diffusive contribution (we neglect
diffusion due to external turbulence). This is tantamount to setting
κ = 0 in the above equations. Note that the term −vA · ∇pc in
equation (4) is then positive definite, because in the limit of self-
excited Alfvén waves only (no background turbulence) energy flows
from the CRs to the gas (mediated by Alfvén waves), but not
vice versa.

In the opposite limit of significant wave damping, the waves
generated by the streaming instability saturate at lower amplitudes.
As a result, the CR pitch-angle scattering rate is reduced, and the
cosmic ray momenta do not become fully isotropic in the Alfvén-
comoving frame. In this case, the cosmic ray bulk motion deviates
from pure streaming at vA and κ will generally be non-zero. The
diffusion coefficient will depend on how the waves are damped.
Quite notably, for many of the known damping mechanisms (e.g.
turbulent, ambipolar, and linear Landau damping), the diffusion
term ends up not being diffusive at all (Skilling 1971; Wiener
et al. 2013a; Wiener, Zweibel & Oh 2018). Instead, it has the form
of an advective flux (streaming) and the cosmic rays essentially
stream down their pressure gradient at super-Alfvénic speeds. This,
however, is not always true (e.g. when non-linear Landau damping
is dominant and/or if there are external sources of cosmic ray
scattering distinct from self-excited Alfvén waves). For this reason,
we keep the diffusion term in our equations (with constant κ for
simplicity). We do not consider super-Alfvénic streaming in this
work, as the dependence of super-Alfvénic streaming velocities on
other fluid quantities is uncertain.

2.3 Dimensionless parameters and characteristic frequencies

We define the ratio of CR pressure to gas pressure,

η ≡ pc

pg
, (6)

and the ratio of thermal to magnetic pressure,

β ≡ 8πpg

B2
. (7)

We also write the logarithmic slope of the cooling function as

�T ≡ ∂ ln �

∂ ln T
. (8)

There are a number of time-scales that characterize the problem.
We define the cooling frequency,

ωc ≡ ρ2�

pg
; (9)

the wavenumber (k) dependent sound frequency (with cs being the
adiabatic sound speed),

ωs ≡ kcs; (10)

the Alfvén and CR-heating frequency,

ωa ≡ k · vA; (11)

the cosmic ray diffusion frequency,

ωd ≡ κ (b̂ · k)2; (12)

and the free-fall frequency,

ωff ≡ g

cs
. (13)

We stress that ωa characterizes both the perturbed magnetic tension
(its usual meaning) and the perturbed CR heating −vA · ∇pc.
Throughout our linear stability calculation in Sections 4–6, we
focus on local perturbations (kH 
 1, H being a characteristic
background length-scale), which for our application considered in
Section 3 corresponds to

ωs 
 ωc, ωff, (14)

and

ωa 
 ωc (15)

(unless k · B = 0, in which case equation 15 need not be satisfied).
In the CR-heated background, kH � 1 corresponds to ωa � ωcη

−1

(Section 5.1). We find that thermal instability growth rates do not
depend significantly on wavenumber k, provided that ωa > ωc (ωa

� ωcη
−1) in the uniform (CR-heated) background.

As our fiducial set of parameters, we choose ωa = 103ωc (which
corresponds to fairly high k, but such high k is necessary for the
CR-heated background if we want to consider η > 0.01), β =
100 and, when we include gravity in Section 6, ωff = 20ωc. ωff

� 10ωc is motivated by observations of hot gas in groups and
clusters (McDonald et al. 2010; Hogan et al. 2017), which largely
satisfy this constraint. We stress that this choice of ωff � 10ωc is
motivated by halo gas specifically, but need not be true in other
applications. We show how smaller β and ωa affect our results in
Fig. 2.

3 HEATING BY COSMIC RAYS IN GALAXY
HALOES

Before we look at the thermal stability of CR heating, we check
under what conditions thermal balance between CR heating and
radiative cooling,

− vA · ∇pc = ρ2�(T ), (16)

may occur in galaxy haloes. Our estimates presented in this section
suggest that heating by cosmic rays can be important for a broad
range of values of η and β (see Fig. 1).

MNRAS 493, 1801–1817 (2020)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/493/2/1801/5734511 by Eliot Q
uataert on 21 N

ovem
ber 2021



1804 P. Kempski and E. Quataert

Figure 1. Top:CR heating versus cooling as a function of η (equation 6) and
β (equation 7).R is the ratio of CR heating to radiative cooling (equation 18;
here we use ωff = 20ωc and Hc = 3H), and increases with increasing CR
pressure fraction η and with decreasing β. The white dashed line indicates
the approximate region where cosmic ray heating is comparable to cooling
(R ∼ 1). Bottom: Order-of-magnitude estimate of the CR pressure fraction
as a function of halo mass (see Appendix A). We separately consider cosmic
rays injected into the halo by Type II SNe and central SMBHs. We include
this plot to motivate that significant cosmic ray pressures are plausible for
a wide range of halo masses, especially in M ≈ 1012 M� haloes (large CR
pressures, η � 1, have also been found in cosmological simulations, see
e.g. Hopkins et al. 2019). Together, the two panels suggest that there may
be significant cosmic ray heating in galaxy haloes for a wide range of halo
masses.

We quantify the importance of cosmic ray heating by defining

R ≡ |vA · ∇pc|
ρ2�

∼ vApc/Hc

ωcpcη−1
, (17)

where we used our definition of the cooling frequency (9). Hc is the
CR pressure scale height. Using definition (13) and β ≈ (cs/vA)2,
we obtain

R ∼ η√
β

H

Hc

ωff

ωc
, (18)

where H = c2
s /g. When gas pressure dominates,H is approximately

equal to the gas pressure scale height Hg.
Our estimate for R as a function of η and β is plotted in the

top panel of Fig. 1 for ωff/ωc = 20. We choose a fairly extended
CR profile, with Hc/H = 3. The dashed white line indicates the
approximate region where heating by cosmic rays is comparable to
cooling, i.e. R ∼ 1.

The top panel of Fig. 1 suggests that heating by cosmic rays may
be important for a wide range of η and β. There is some evidence,
from both observations and theory/simulations, suggesting that

galaxy haloes may often reside above/around the white dashed line
(where CR heating is important). While significant CR pressures
were measured in the Milky Way (Boulares & Cox 1990) and nearby
starburst galaxies (Paglione & Abrahams 2012), observations of
cosmic rays and magnetic fields in galaxy haloes are challenging
and sparse. Nevertheless, there are some constraints that come from
synchrotron emission and Faraday rotation measurements along
quasar sightlines. Synchrotron emission measurements suggest that
cosmic rays and magnetic fields have significantly larger scale
heights than the thermal gas (Beck 2015). There is also evidence
for strong magnetic fields (1–10μG) that may extend far out (tens
of kpc) into the halo (Bernet, Miniati & Lilly 2013; Mora & Krause
2013). As a result, it is plausible that there are regions in the halo
where η is large (e.g. ∼1) and/or β is relatively small (e.g. �10).
Under such conditions, equation (18) and the top panel of Fig. 1
suggest that there may be significant CR heating.

Recent cosmological zoom-in simulations with cosmic rays
strengthen the claim that CR pressure can be important (even
dominant) in galaxy haloes (Hopkins et al. 2019). This is broadly
consistent with our estimate for the CR pressure fraction η, which
we show as a function of halo mass in the bottom panel of Fig. 1 (the
calculation can be found in Appendix A). We separately consider
the injection of cosmic rays by Type II supernovae and central
supermassive black holes (SMBHs), and we estimate the total
energy of cosmic rays out to the virial radius. We assume the (broken
power law) stellar mass–halo mass relation from Moster, Naab &
White (2013) and the SMBH mass–total stellar mass relation (for
ellipticals) from Reines & Volonteri (2015). Comparing the CR
energy to the total thermal energy within the virial radius yields the
lower panel of Fig. 1. We find that CR pressure should be significant
for a broad range of halo masses and most important in haloes of
mass ≈ 1012 M�, consistent with Hopkins et al. (2019).

4 COSMIC RAY THERMAL INSTABILITY IN A
UNIFORM MEDIUM

Before we analyse equilibria in which CR heating balances cooling
(due to a finite background CR pressure gradient), we look at the
simpler case of a uniform background. This setup is particularly
relevant for cases where CR heating is not the dominant heating pro-
cess, but can nevertheless affect the evolution of entropy perturba-
tions [photoionization equillibrium (PIE) is one such example]. The
uniform-medium calculation does not capture (slight) modifications
to the thermal instability that come from a background CR pressure
gradient, but in many ways it produces results that are very similar
to the non-uniform medium calculation. For example, the thermal
instability growth rates have an almost identical dependence on η

and CR diffusion. As a result, many of the conclusions drawn here
will still be valid in the calculation with background CR heating.

We perform a linear stability calculation of the equations de-
scribed in Section 2. All perturbed quantities are assumed to vary
as δQ(r, t) ∝ exp [ik · r − iωt]. Throughout this (and the next)
section, we also ignore gravity, i.e. we set g = 0 (we include gravity
in Section 6).

4.1 Equilibrium

We consider an equilibrium with

H = ρ2�(T ), (19)

where H is an unspecified heating rate, which is set to bal-
ance cooling (i.e. H 
 −vA · ∇pc). Equilibrium CR heating is

MNRAS 493, 1801–1817 (2020)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/493/2/1801/5734511 by Eliot Q
uataert on 21 N

ovem
ber 2021



Cosmic ray thermal instability 1805

Figure 2. Thermal instability growth rates as a function of η. Im(ω) > 0 corresponds to growing modes. Unless explicitly stated otherwise in the plots, the
presented growth rates are for our fiducial parameters (ωa = 103ωc and β = 100). We consider smaller ωa in the left-hand panels (with β = 100 fixed) and
smaller β in the middle panels (with ωa = 103ωc fixed). Top panels: Thermal instability in uniform medium. Left: growth/damping rate for different cooling
curve slopes. Middle:�T = −1 growth rate for different β. For β � 3, the high-β result is a very good approximation. Right: impact of diffusion on modes with
k · B �= 0. Bottom panels: same as top panels, but for a background with cosmic ray heating balancing cooling, but no gravity. The small-η limit is different
for perpendicular modes with ωa = 0 (dotted green line in left-hand panel; see Section 5.3). For ωa = 10ωc in the left-hand panel (dash–dotted green line),
we only plot the growth rate for η > 0.1, where our WKB analysis is applicable. In the right plot, the plateau at small η depends on whether diffusion is more
important than streaming (i.e. whether ωd > ωa or ωa > ωd).

considered negligible, and the CR heating term only enters in the
perturbed equations. All background fluid variables are assumed
to be spatially constant. Without loss of generality, we consider a
vertical magnetic field, B = B ẑ. This equilibrium has the advantage
that there are no background gradients in our linear stability
analysis.3 Moreover, treating κ as a constant (and not a function of
B, pc and other fluid variables) is exact to linear order in a uniform
background.

4.2 Linearized equations

We ignore perturbations of H, i.e. we set δH = 0 (generalization to
finite δH is straightforward). We do, however, perturb the cosmic
ray heating term. The linearized perturbed versions of equations (1)–
(5) are

δρ

ρ
= −ik · ξ , (20)

3For ∇pc to have a well-defined sign in our linear stability analysis, so
that −vA · ∇pc is positive definite, pc cannot be completely uniform. We
therefore need a small background CR pressure gradient and to this end, we
write −vA · ∇pc = ερ2�. In our linear calculation we can then still drop
any background gradients if we adopt the ordering 1 
 ε 
 δQ/Q for any
quantity Q. Under this ordering, we can essentially treat the equlibrium ρ,
pg, and pc as uniform. We note, however, that this approach breaks down
when δpc/pc > (kHc)−1, as the perturbations are large enough to flatten out
the CR pressure distribution and decouple the cosmic rays from the gas. In
the small-background-gradient limit that is the assumption in our uniform
medium calculation, this can in practice happen at small δpc/pc.

− ρω2ξ = −ik
(

δpc + δpg + B · δB
4π

)
+ i

(B · k)δB
4π

, (21)

δB = i(B · k)ξ − iB(k · ξ ), (22)

δpg

pg

(
ω

γ − 1
+ iωc�T

)
− ωa

δpc

pg

= δρ

ρ

(
ω

γ

γ − 1
− iωc(2 − �T )

)
, (23)

δpc

pg
(ω − ωa + iωd) = δρ

ρ
η

(
4

3
ω − 2

3
ωa

)
. (24)

4.3 Dispersion relation

We find the exact solutions to (20)–(24) by numerically solving
for the matrix eigenvalues using MATLAB (because the complete
dispersion relation is long and not very enlightening, we do not write
it down explicitly). We filter out Alfvén waves, which decouple and
do not affect thermal instability, by restricting ξ , δB, and k to
lie in the xz-plane. The exact gas entropy eigenmode that can be
derived from (20)–(24) is necessary for studying thermal instability
at low β. However, we find that our results depend only mildly on
β for β � 3 (see middle panels of Fig. 2). In the high-β regime the
equations simplify considerably, as the CR and gas pressures satisfy
the approximate pressure balance δpc ≈ −δpg. Equations (23) and
(24) then decouple from the rest (cf. thermal instability is associated
with the entropy mode in standard hydrodynamics/MHD) and we

MNRAS 493, 1801–1817 (2020)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/493/2/1801/5734511 by Eliot Q
uataert on 21 N

ovem
ber 2021



1806 P. Kempski and E. Quataert

end up with a quadratic dispersion relation:

0 = η

(
4

3
ω − 2

3
ωa

)(
3

2
ω + ωa + iωc�T

)

+ (ω − ωa + iωd)

(
5

2
ω − iωc(2 − �T )

)
. (25)

Note that ωa here is due to the perturbed CR heating, and not due
to the magnetic tension or pressure forces; the latter are 0 in the
approximation used here. We show the calculated growth rate as
a function of η in the top panels of Fig. 2, focusing mainly on
our fiducial parameters, ωa = 103ωc and β = 100. The solution of
equation (25) is not explicitly plotted, as it agrees almost perfectly
with the exact solution at β = 100 and would not be visible (the
second solution to equation 25, associated with the CR entropy
mode, is not shown as it is stable for all η). The left plot shows
the growth rate for different cooling curve slopes �T. For �T =
−1, we also show how our results change for ωa = 10ωc (green
dashed line; no visible change), ωa = ωc (green dash–dotted line)
and ωa = 0 (i.e. k · B = 0; green dotted line). The middle panel
shows how the β = 100 growth rate (≈β → ∞ growth rate; blue
line, �T = −1) compares to growth rates at smaller β. We see that
the agreement with, e.g. the β = 3 calculation is still remarkably
good. The right-hand panel shows the effects of diffusion (again for
�T = −1) for modes with ωd = 0 (blue), ωa 
 ωd 
 ωc (orange)
and ωd 
 ωa (green). For more discussion of the effects of diffusion,
see Section 4.6 and Appendix B.

In the case ωa = 0 (due to k · B = 0; green dotted line in left-
hand panel) and ωd = 0 (no diffusion), equation (24) reduces to
an adiabatic relation between δpc and δρ, with adiabatic index
4/3. Our perpendicular-modes calculation is therefore the closest
to the calculation in Pfrommer (2013), who assumed an adiabatic
relation between CR pressure and gas density. However, our results
are different, as the heuristic calculation in Pfrommer (2013)
is not accurate: in particular, their perturbed CR heating is not
correct.4

4.3.1 Effect of CR streaming on entropy modes

Before discussing the thermally unstable modes driven by cooling
in more detail, we first consider the effect of CR streaming on the
entropy modes, which becomes clear if we ignore cooling and CR
diffusion in (25), i.e. consider ωc = ωd = 0. The dispersion relation
then becomes:

η

(
4

3
ω − 2

3
ωa

)(
3

2
ω + ωa

)
+ 5

2
ω (ω − ωa) = 0. (26)

This dispersion relation is in fact a statement of pressure balance
and can be obtained by setting δpc + δpg = 0 (without cooling and
CR diffusion). When CR pressure is negligible (η → 0), we see that
the two solutions are the ordinary MHD gas entropy mode, with

4For perpendicular modes (ωa = 0), the perturbed CR heating is δvA · ∇Pc,
which is 0 in a uniform background. In the adiabatic calculation in Pfrommer
(2013), the CR heating is incorrectly assumed to scale as HCR ∝ ργc+1/3−1/2

and contributes to thermal instability as long as there are density per-
turbations. This heating term is dominated by an assumed dependence
HCR ∝ δpc ∝ ργc ; in fact, because CRs are adiabatic only for perpendicular
modes with ωa = 0, there is no contribution to HCR from δpc. Moreover,
for modes with k · B �= 0, perturbations to HCR ∝ vA · ∇δpc ∝ ωaδpc

primarily contribute to an oscillatory response, not a change to the growth
rate. This is also not captured in the heuristic calculation in Pfrommer (2013).

ω = 0 (as CR heating is negligible), and the CR entropy mode,
which due to the perturbed work done by the CRs (−vA · ∇δpc)5

has a frequency ω = ωa.
When CR pressure dominates (η 
 1), the CR entropy mode fre-

quency is ω = ωa/2, as can also be seen directly from equation (24)
(with ωd = 0). This comes directly from the CR compressibility term
−(4/3)pc∇·(v + δvA), which at large CR pressures is more impor-
tant for the CR entropy mode evolution than the work done by the
CRs on the gas (which is related to the term −vA · ∇δpc). The gas
entropy mode at large η is isochoric (|δpc/pg| ≈ |δpg/pg| 
 |δρ/ρ|;
see Section 4.4). CR heating then dominates the evolution of gas-
pressure oscillations (LHS of equation 23) and the oscillations occur
at a frequency ω = −(2/3)ωa.

Thus, CR streaming always gives rise to an oscillatory frequency
O(ωa) in the CR entropy mode, while in the gas entropy mode
CR heating introduces oscillations as long as η is finite, and the
oscillation frequency approaches O(ωa) once η ∼ 1. Note that while
in the classic calculations of thermal instability (e.g. Field 1965) the
entropy mode is overstable just due to gravity (rather than purely
growing when there is no gravity), thermal instability modes are
overstable even without gravity when there is a finite CR pressure.
In particular, in the presence of CR heating thermally unstable
modes are waves propagating at a speed ∝ vA.

4.4 Density versus temperature perturbations

Equation (24) (and δpc ≈ −δpg) offers insight into the relative
importance of δpg and δρ for driving thermal instability. This turns
out to depend primarily on the CR pressure fraction η, due to
the coupling of δpc and δρ via equation (24). Typically, we have
that:6

|δpg/pg| ≈ |δpc/pg| ∼ η|δρ/ρ|, (27)

so that perturbations are essentially isobaric for η � 1 and isochoric
when η 
 1 (large CR pressure stiffens the gas). For large ωd, CR
pressure perturbations are suppressed because they are smoothed
out by diffusion, and perturbations are isobaric up to larger η.

4.5 Asymptotic limits

We now look back at the dispersion relation in (25). How the
solutions of (25) depend on η is particularly transparent. We can
read off the solutions in the limits η → 0 and η → ∞.7 As η → 0,
the unstable gas entropy mode is just the standard isobaric thermal
instability result, with a small oscillatory part due to the perturbed

5Due to the ‘-’, −vA · ∇pc is actually positive definite, possibly suggesting
that the CRs gain energy according to equation (5). However, when the CR
energy equation is rewritten in the conservative form,

∂pc

∂t
+ 4

3
∇· ((v + vA)pc) = 1

3
(v + vA)·∇pc,

it becomes clear that this term is in fact associated with the work done by
the CRs on the Alfvén waves (and hence the gas). Note that the CR energy
is Ec = 3pc.
6The exceptions to this are if ωd 
 ωa (so that diffusion wipes out the CR
pressure perturbation), or ω = ωa − iωd or ω = ωa/2, which are the CR
entropy modes at small and large η, respectively, see Section 4.3.1.
7Note that in our notation the limits η → 0 (η → ∞) mean that η is much
smaller (larger) than any other dimensionless parameter in the problem, e.g.
ωd/ωa, ωa/ωc etc.
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Cosmic ray thermal instability 1807

Figure 3. Effect of CR diffusion on thermal instability. We show thermal stability/instability boundaries of modes with k · B �= 0 in the (η, ωd/ωa) plane, for
ωa = 103ωc and β → ∞ (the fiducial β = 100 case looks the same). Im(ω) > 0 (growing modes) are shown in red, Im(ω) < 0 (decaying modes) are shown
in blue. Top panels: Stability/instability boundaries in uniform medium. Left: �T = −1. Right: �T = 1/2. The dark blue shows the region where thermal
instability is suppressed by CR diffusion. The light blue shows thermal stability due to �T > 0 (equation 39). The approximate boundaries (dashed lines)
of the diffusion-affected region are derived in Appendix B. Bottom panels: same as top panels, but in a background with CR heating balancing cooling (but
no gravity). Note that the growth rate at small η (dark versus light red) now depends on whether ωa > ωd or ωd > ωa (Im(ω) = (2/5)ωc (11/6 − �T) and
Im(ω) = (2/5)ωc (5/2 − �T), respectively).

CR heating:8

ω = − 4

15
ηωa + 2

5
i (2 − �T ) ωc, (28)

which comes from the isobarically perturbed cooling function,
δ(− ρ2�) = −ωcpg (2 − �T)δρ/ρ (at small η we have that
δpg/pg � δρ/ρ, as discussed in Section 4.4). As η → ∞, we get an
overstable solution:

ω = −2

3
ωa − 2

3
i�T ωc. (29)

Note that the −(2/3)ωa comes from the perturbed CR heating, as
discussed in 4.3.1, while the −(2/3)�Tωc growth rate comes from
the isochorically perturbed cooling function (recall that in the limit
η → ∞, δpg/pg 
 δρ/ρ, so that unstable modes are isochoric). CR
heating does not directly affect the growth rate. Equations (28) and
(29) are consistent with the low- and high-η limits in Fig. 2 (upper
panels).

8The real (oscillatory) part of the solution in equation (28) also assumes ωa

> ωd (for ωd > ωa the real part vanishes as δpc is suppressed by diffusion).

4.6 Effect of CR diffusion

CR diffusion does not suppress the overall excitation of thermal
instability. It nevertheless suppresses the growth of some modes
which would otherwise be thermally unstable (see e.g. top right
panel of Fig. 2).

We can study the effects of CR diffusion on modes with k · B �= 0
by looking at thermal stability maps in the (η, ωd/ωa) plane. We
show this in Fig. 3. The results of the uniform medium calculation
are shown in the top panels, for �T < 0 (left-hand panel, �T =
−1) and for 2 > �T > 0 (right-hand panel, �T = 1/2). The blue
colour corresponds to stable solutions, red denotes growing (i.e.
thermally unstable) solutions. We provide approximate boundaries
for the region of parameter space where cosmic ray diffusion can
suppress thermal instability (dashed lines). A heuristic derivation
of these boundaries can be found in Appendix B.

Here, we summarize the main results from Appendix B. For
modes with ωd < ωa, diffusion suppresses thermal instability if η

satisfies:

|2 − �T |ωc

ωd
� η � |�T |−1 ωd

ωc
. (30)
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1808 P. Kempski and E. Quataert

If η is too small for the above condition to be satisfied, the
instability is isobaric, with Im(ω) = (2/5)ωc (2 − �T ). If η >

|�T|−1ωd/ωc, the growth rate approaches the asymptotic limit
Im(ω) = −(2/3)�Tωc from equation (29).

For modes with ωd > ωa, diffusion suppresses thermal instability
if η satisfies:

|2 − �T |ωdωc

ω2
a

� η � |�T |−1 ωd

ωc
. (31)

If η < |2 − �T |ωdωc/ω
2
a = |2 − �T |κωc/v

2
A, the instability is

again isobaric, with Im(ω) = (2/5) (2 − �T ) ωc. When η is large,
the growth rate again approaches the asymptotic limit Im(ω) =
−(2/3)�Tωc. Note that in the limit κ → ∞, the instability is isobaric
for arbitrary η because CR diffusion suppresses δpc (recall that in
the high-β limit we have that δpc ≈ −δpg, so δpg ≈ 0 if δpc is
suppressed by CR diffusion).

4.6.1 Cosmic ray Field length

In Appendix B, we show that CR diffusion can suppress thermal
instability because it affects the thermal gas in a way akin to
thermal conduction (mediated by the perturbed CR heating term, see
Appendix B2). This suggests that there is a CR-diffusion analogue
of the Field length for thermal conduction (Field 1965), below which
thermal instability is suppressed.

In Appendix B4, we show that the dimensionless ratio κωc/(ηv2
A),

the ratio of the cooling rate to the CR-heating rate at high-k,
determines whether there is a Field length associated with CR
diffusion. If κωc/(ηv2

A) � 1 then CR diffusion does not suppress
thermal instability of high-k modes (ωd 
 ωa), as the cooling
rate exceeds the CR heating rate. There is no ‘CR Field length’
below which thermal instability is completely suppressed. Instead,
the instability of high-k modes is isobaric with growth rates
Im(ω) = (2/5) (2 − �T ) ωc (as δpg ≈ −δpc is suppressed by CR
diffusion). On the other hand, if κ � ηv2

A/ωc, there is a maximum
b̂ · k at which thermal instability occurs (Fig. B1). The CR Field
length is (Appendix B4)

λCRF ∼
⎧⎨
⎩

2π |b̂ · k̂|
√

ηκ

ωc
η < 1

2π |b̂ · k̂|
√

κ
ηωc

η > 1.
(32)

Note that the CR Field length is very similar to the classic Field
length with the thermal diffusion coefficient replaced by the CR
diffusion coefficient. We can estimate κωc/ηv2

A for CGMs of Milky
Way-like galaxies:

κωc

ηv2
A

∼ 1
κ

1028 cm2 s−1

ωc

10−15 s−1

(η

1

)−1
(

vA

3 × 106 cm s−1

)−2

.

(33)

We chose κ = 1028 cm2 s−1 motivated by diffusion-only models
of CR observations in the Milky Way, which infer κ ∼ 1028–
1029 cm2 s−1 depending on the size of the CR halo (e.g. Linden,
Profumo & Anderson 2010). It is plausible that κωc/ηv2

A > 1, so
that CR diffusion does not suppress thermal instability at small
scales. However, if instead κωc/ηv2

A < 1 (e.g. if streaming is the
dominant transport process κ may be �1028 cm2 s−1), thermal
instability of modes with wavelengths smaller than the CR Field
length,

λCRF ∼ 7 kpc |b̂ · k̂|
( κ

1028 cm2 s−1

)1/2 ( ωc

10−15 s−1

)−1/2
, (34)

is suppressed by CR diffusion (here we assumed η ∼ 1).

Figure 4. �T, c versus η ≡ pc/pg, where �T, c is the ∂ln �/∂lnT that defines
the boundary between overall thermal stability and instability. For a given
η, thermal instability occurs if �T < �T, c. Top: �T, c in a uniform medium.
Bottom: �T, c in a medium with background CR heating. We use β =
100 and we include modes that satisfy ωa > 10ωc (ωa > 10ωc and ωa >

10ωcη
−1) in the uniform (CR-heated) background. �T, c does not change

significantly for β � 3, and for ωa � ωc (ωa � ωcη
−1) in the uniform (CR-

heated) background absent diffusion (i.e. growth rates are approximately
constant for local perturbations satisfying kH � 1; in Fig. 2, we show how
growth rates depend on ωa and β). The solid black line is for κ = 0 (no
CR diffusion) and the dotted magenta line is a simple broken power-law
fit. The horizontal dashed line is the stability/instability boundary when CR
diffusion is present and κ 
 ηv2

A/ωc, while the green dashed line shows
the boundary for κ = v2

A/ωc. The dotted lines are the thermal instability
boundaries for perpendicular modes only (i.e. ωa = ωd = 0).

4.7 Thermal stability versus instability

In addition to the slope of the cooling function, �T, thermal stability
clearly also depends on the CR pressure fraction, η (which sets
whether perturbations are isobaric or isochoric, see Section 4.4).
We show the ‘critical’ cooling function logarithmic slope, �T, c,
demarcating the boundary between thermal stability and instability
to any local perturbation (satisfying ωa 
 ωc), in the top panel
of Fig. 4. The solid black line shows the boundary without CR
diffusion, i.e. κ = 0, and the magenta dotted line is a simple broken
power-law fit of the form

�T ,c = 2[1 + η/η∗]q , (35)

where η∗ = 1.62 and q = −1.19 are the best-fitting parameters. For
a given η, the system is thermally unstable if �T < �T, c. The dotted
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Cosmic ray thermal instability 1809

line is the thermal stability boundary for perpendicular modes only,
i.e. for ωa = 0, for which pc and ρ follow an adiabatic relation
with index 4/3 (note that our thermal stability criterion is not the
same as in Pfrommer 2013; see last paragraph of Section 4.3). It
is notable that the ωa = 0 and ωa 
 ωc values of �T, c in Fig. 4
are very similar. This again highlights that perturbed CR heating
does not significantly affect the growth rates of thermal instability.
Instead, it turns a purely growing mode into an overstability (see
Section 4.3.1).

The dashed horizontal line �T, c = 2 is the thermal stabil-
ity/instability boundary if CR diffusion is present and κ 
 ηv2

A/ωc.
�T, c = 2 due to the fact that for κ 
 ηv2

A/ωc high-k perturbations
are isobaric, and so high-k modes (with k · B �= 0) always have
a growth rate Im(ω) = (2/5)ωc (2 − �T ) (see discussion in Sec-
tion 4.6.1). For κ � ηv2

A/ωc, high-k perturbations are suppressed
by CR diffusion. Only modes with wavelengths longer than the
CR Field length can be thermally unstable. For κ = v2

A/ωc (green
dashed line) and η > 1, the CR Field length is at lower k than
the modes used for the stability boundary calculation (ωa > 10ωc)
and so CR diffusion suppresses thermal instability of these modes.
Note that for κ = v2

A/ωc and η � 1 �T, c = 2, as high-k modes
are isobaric at low η. We stress again that perpendicular modes
(k · B = 0, dotted line) are not affected by CR diffusion.

4.8 Photoionization equilibrium

We can easily extend our CR thermal instability analysis to a
background in PIE, with no background CR heating, but where
CR heating is still present in the perturbed equations. We can then
treat PIE analogously to our uniform background, by absorbing
photoionization heating and cooling into an effective cooling
function �. In PIE, this effective cooling function satisfies �T >

2 (e.g. Wiersma, Schaye & Smith 2009), and so such systems are
thermally stable for any CR pressure fraction η.

5 EQUILIBRIUM WITH COSMIC RAY
HEATING BALANCING COOLING

5.1 Equilibrium

In this section, we look at equilibria in which cooling is completely
balanced by cosmic ray heating,

− vA · ∇pc = ρ2�(T ) = ωcpg. (36)

We still ignore gravity, i.e. we set g = 0. Hydrostatic equilibrium
implies that the CR pressure gradient is balanced by the gas pressure
gradient:

∇pc = −∇pg. (37)

Without loss of generality, we assume that the variation is purely in
the vertical direction, i.e. ∇pc = (∂pc/∂z) ẑ. We assume a uniform
magnetic field, B = B sin θB x̂ + B cos θB ẑ.

We choose the background pressures such that they have a linear
profile, i.e. ∂pc/∂z = const, so that CR diffusion does not enter in
the equilibrium setup. The cosmic ray pressure equation (5) then
implies that pc ∝ ρ2/3 and ∇ · vA = (3/4)ωcη

−1.

5.2 Linear perturbations in one dimension

The background gradients give rise to extra terms in linear per-
turbation theory, which modify equations (20)–(24). We show the
linearized equations in a medium with background CR heating in

Appendix C, which we again solve using MATLAB (there is again
little physical insight gained from explicitly writing down the sixth-
order dispersion relation).

In addition to explicitly solving equations (C1)–(C5), we consider
the simpler one-dimensional problem in which B, k, ξ (as well as
the background gradients) are all along ẑ. This is motivated by
the fact that we find that 1D thermal instability growth rates agree
essentially perfectly with the more general calculation with B, k,
and ẑ not aligned (unless k · B = 0, which we treat separately in
Section 5.3). We explain why the 1D calculation correctly predicts
the gas entropy mode eigenfrequency in Appendix D. In the high-β
limit, the 1D dispersion relation simplifies to a quadratic:

0 =
(

4

3
ηω − 2

3
ηωa + iωc − ωωc

(
3

2
ωcη

−1 − iωa

)−1
)

×
(

3

2
ω + ωa + iωc�T

)
+ (

ω − ωa + iωd + iωcη
−1
)

×
(

5

2
ω − iωc

(
5

2
− �T

)
− 3

2
ωωc

×
(

1 + 5

2
η−1

)(
3

2
ωcη

−1 − iωa

)−1
)

. (38)

Note that ωa again shows up due to the perturbed CR heating, and
not as a result of the perturbed magnetic field (indeed, δB = 0 in
1D).

Thermal instability growth rates as a function of η in a medium
with background CR heating are shown in the bottom panels of
Fig. 2. Unless explicitly stated otherwise, the growth rates are for
our fiducial parameters, ωa = 103ωc and β = 100. The β → ∞
growth rates calculated from (38) overlap almost perfectly with the
β = 100 calculation (and are therefore not explicitly plotted). The
bottom left panel shows the growth rates for different cooling curve
slopes �T. We also show how �T = −1 growth rates change for
smaller ωa: ωa = 102ωc, ωa = 10ωc and ωa = 0 (k · B = 0, see
Section 5.3). The middle panel shows how the β = 100 growth rate
(≈β → ∞ growth rate) compares to the growth rate at smaller β and
the same �T. The right-hand panel shows the effects of diffusion
(again for �T = −1.0), in the limits ωd = 0 (blue), ωa 
 ωd 
 ωc

(orange) and ωd 
ωa (green). Note that unlike the uniform-medium
calculation, the growth rate at small η now depends on whether the
mode is diffusion dominated (i.e. whether ωd > ωa, see 5.2.1).

5.2.1 Asymptotic limits

We now consider the asymptotic limits in the presence of cooling,
CR streaming, and diffusion. The η → ∞ limit is again simple and
can be read off directly from (38). The solution is overstable,

ω = −2

3
ωa − 2

3
i�T ωc, (39)

and is identical to the uniform-medium large-η result. The −(2/3)ωa

oscillation frequency again comes from the perturbed CR heating
(see Section 4.3.1), which turns thermally unstable modes into
propagating waves.

The small-η limit (ωa 
 ωcη
−1 
 ωc)9 depends on whether

the mode is streaming or diffusion dominated. In the streaming-

9Recall that in our local analysis we only consider ωa > ωcη
−1. This

corresponds to perturbations that satisfy kH � 1, H being a characteristic
background length-scale
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1810 P. Kempski and E. Quataert

dominated case (i.e. modes with ωd � ωa), the isobaric growth
rate, (2/5)ωc(2 − �T), which comes from isobaric perturbations to
the cooling function, δ(− ρ2�) = −ωcpg (2 − �T)δρ/ρ, is modified
by CR streaming and background heating,10

ω = − 4

15
ηωa + i

2

5
ωc

(
11

6
− �T

)
. (40)

For modes with ωd 
 ωa, one can show that

ω = i
2

5
ωc

(
5

2
− �T

)
. (41)

In this strong-diffusion limit, the 5/2 (instead of 2) arises from
the perturbed CR heating term, −δvA · ∇pc = −(1/2)ωcpgδρ/ρ.
Note that diffusion suppresses CR pressure perturbations, so that
−vA · ∇δpc is suppressed and does not give rise to gas-entropy
oscillations (i.e. the mode is purely growing, unlike equation 40).

These results differ modestly from the uniform medium calcu-
lation (see Section 4.5 or compare the top and bottom panels of
Fig. 2), as now the background CR pressure gradient modifies the
growth rate.

5.3 Perpendicular modes

5.3.1 Dispersion relation

The 1D calculation does not apply to modes propagating perpen-
dicular to the magnetic field direction, such that k · B = 0. In this
case, we can obtain an approximate quadratic dispersion relation by
taking the high-β limit and dropping advective (ξ · ∇) background-
gradient terms

(
ω + iωcη

−1
)(5

2
ω − i

(
3

2
− �T

)
ωc

)

+
(

4

3
ηω + iωc

)(
3

2
ω + iωc�T

)
= 0. (42)

Note that ωa = ωd = 0 for modes with k · B = 0, and so do not
show up in the above dispersion relation.

5.3.2 Asymptotic limits

The η → ∞ growth rate does not change, and the solution is now a
purely growing mode (as ωa = 0):

ω = −2

3
i�T ωc. (43)

For η → 0, the mode is also purely growing, with

ω = 2

5
i

(
3

2
− �T

)
ωc. (44)

This differs from the corresponding limit in Section 5.2.1, as for
perpendicular modes the perturbed CR heating is −δvA · ∇pc ≈
(1/2)ωcpgδρ/ρ, while the isobarically perturbed cooling function
is still −ωcpg (2 − �T)δρ/ρ. Note that because k · B = 0, there are
no entropy oscillations driven by CR heating. The growth rate of
perpendicular modes as a function of η (for �T = −1) is plotted as
a dotted green line in the lower left panel of Fig. 2.

10This can be shown by solving equation (38) perturbatively using the
ordering ωa 
 ωcη

−1 
 ωc.

5.4 Effect of CR diffusion

The bottom panels of Fig. 3 show stability maps of modes with
k · B �= 0 in the (η, ωd/ωa) plane in a medium with background
CR heating. Once again, blue denotes stable solutions, while red
denotes growing solutions. The left-hand panel is for �T = −1
and the right-hand panel is for �T = 1/2. We again provide
approximate boundaries for the region of parameter space where
CR diffusion suppresses thermal instability (dashed lines). Note
that these order-of-magnitude boundaries are essentially the same
as in the uniform medium case (see equations 30 and 31, and
Appendix B for a heuristic derivation). Equations (30) and (31)
are only slightly modified to emphasize the extra contribution
coming from terms related to background CR heating, and are
now:∣∣∣∣5

2
− �T

∣∣∣∣ ωc

ωd
� η � |�T |−1 ωd

ωc
(ωd < ωa) (45)

and∣∣∣∣5

2
− �T

∣∣∣∣ ωdωc

ω2
a

� η � |�T |−1 ωd

ωc
(ωd > ωa), (46)

respectively. If η satisfies the above, thermal instability of
modes with the corresponding ωd and ωa is suppressed by CR
diffusion.

As in Section 4.6.1, conditions 45 and 46 can be used to derive
a CR Field length below which thermal instability is suppressed
by CR diffusion. Like in the uniform medium, if κωc/(ηv2

A) � 1
then CR diffusion does not suppress thermal instability of high-
k modes and there is no associated CR Field length. If on the
other hand κωc/(ηv2

A) � 1, the CR Field length below which CR
diffusion suppresses thermal instability is approximately given by
(32) (ignoring factors of order unity, e.g. ∝ �T). See Appendix B4
for more discussion.

5.5 Thermal stability versus instability

We show �T, c (the �T that is the boundary between overall
thermal stability and instability, to any local perturbation satisfying
ωa 
 ωcη

−1) as a function of η in the bottom panel of Fig. 4.
The solid black line again shows the boundary for κ = 0, and the
magenta dotted line is a broken power-law fit of the form

�T ,c = 11

6
[1 + η/η∗]q , (47)

with η∗ = 1.19 and q = −1.13 being the best-fitting parameters.
For a given η, the system is thermally unstable if �T < �T, c. The
dotted line shows the thermal stability boundary for perpendicular
modes only, with ωa = ωd = 0 (note the lower plateau at small η,
see equation 44).

The dashed horizontal line �T, c = 5/2 is the thermal stabil-
ity/instability boundary if CR diffusion is present and κ 
 ηv2

A/ωc.
For κ 
 ηv2

A/ωc high-k perturbations are isobaric and have a
growth rate Im(ω) = (2/5)ωc (5/2 − �T ) (Section 4.6.1). For κ �
ηv2

A/ωc, high-k perturbations are suppressed by CR diffusion.
Only long-wavelength modes above the CR Field length can be
thermally unstable. For κ = v2

A/ωc (green dashed line) and η >

1, the CR Field length is at lower k than the modes used for
the stability boundary calculation (ωa > 10ωcη

−1, 10ωc) and
so CR diffusion suppresses thermal instability of these modes.
Perpendicular modes (k · B = 0, dotted line) are not affected by CR
diffusion.
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Cosmic ray thermal instability 1811

Figure 5. Thermal and convective instability of gravitationally stratified
plasmas with ωff = 20ωc, β = 10, and ωa = 0 (blue and orange lines).
Buoyancy-driven instability occurs when η satisfies equation (51) (vertical
dashed line). The dashed curve shows the approximate growth rate from
equation (E6). At smaller η (and ωa < ωff), gravity reduces the thermal
instability growth rate by a factor of ∼2. When ωa > ωff (ωa = 103ωc;
green line), perturbations are not adiabatic and we recover the same thermal
instability growth rate as without gravity.

6 CR HEATING IN GRAVITATIONAL FIELD

6.1 Equilibrium

As in Section 5, we consider equilibria in which cooling is com-
pletely balanced by cosmic ray heating (equation 16). Throughout
this section, we neglect the effects of diffusion. Gravity, g = −g ẑ,
changes the background gas pressure gradient to:

dpg

dz
= dpc

dz

(
γ

ωff

ωc

vA,z

cs
− 1

)
, (48)

where vA, z is the z-component of the Alfvén velocity. We again
assume a uniform magnetic field, B = B sin θB x̂ + B cos θB ẑ.

6.2 Thermal instability

We find numerically (by solving equations C1–C5 in MATLAB) that
gravity does not significantly change thermal overstability growth
rates for most modes (and it only slightly changes the entropy-
mode oscillation frequency, which is dominated by the perturbed
CR heating, i.e. ωa, unless ωa < ωff). In particular, for ωa 
 ωff

we recover the same growth rates as in Section 5 and the growth
rates obtained from equation (38) generally agree well with the
exact calculation (which includes gravity). The green line in Fig. 5
shows this for �T = −1.0, ωff = 20ωc, and ωa 
 ωff (ωa =
103ωc): the growth rate is again (2/5)ωc (11/6 − �T ) at small η

and −(2/3)�Tωc at large η.
Gravity is more important when ωa < ωff (e.g. modes with

k · B = 0). This is shown by the blue and orange curves in Fig. 5
(with ωa = 0 and ωff = 20ωc). At small η, gravity reduces the
thermal instability growth rate by a factor of ∼2 and the real part of
the overstable entropy mode is dominated by the free-fall frequency,
as has been found in previous work (Field 1965).11

11For η � 1, gravity reduces the thermal instability growth rate to
(1/5)ωc (5/2 − �T ), where the 5/2 (instead of 2) arises from the perturbed
CR heating term, −δvA · ∇pc ≈ −(1/2)ωcpgδρ/ρ.

6.3 Convective instability

Fig. 5 also shows that there is a new form of instability occurring at
larger η. We will show below that buoyancy is responsible for the
increased growth rate. The buoyancy instability occurs only when
ωa � ωff, which corresponds to approximate adiabaticity. We note
that convective behaviour in the presence of cosmic rays has been
studied before by Chandran & Dennis (2006), Dennis & Chandran
(2009), and Heintz & Zweibel (2018). However, the set-up we
consider here, i.e. gravitationally stratified media with background
CR heating, was not part of their calculations. Chandran & Dennis
(2006) and Dennis & Chandran (2009) did not include CR heating
and focused on the effects of CR diffusion and thermal conduction
(which tend to smooth out CR pressure and gas temperature
along field lines, so their calculation differs substantially from our
Schwarzschild-like calculation below). Heintz & Zweibel (2018)
looked at the effect of CR heating on the Parker instability. However,
they did not consider background CR heating, which is central to
our buoyancy-instability calculation. As a result, their instability
calculation was different from the set-up we consider here.

6.3.1 Convective instability condition via Schwarzschild criterion

We can derive a convective stability criterion using the standard
picture of a rising blob, which maintains pressure balance with its
surroundings and is (approximately) adiabatic. For the latter, we
require that ωc < ωff (typically satisfied in galactic and cluster
haloes) and that ωa < ωff. The latter inequality is always satisfied
for modes propagating perpendicular to the magnetic field, i.e. k · B
= 0. If both conditions are satisfied, then δln (pc/ρ4/3) ≈ 0 (from the
CR pressure equation) and δln (pg/ρ5/3) ≈ 0 (from the gas entropy
equation). In the high-β limit, pressure balance and adiabaticity
imply that:

δpg + δpc = 5

3
pg

δρ

ρ
+ 4

3
pc

δρ

ρ
= ξ · ∇pg + ξ · ∇pc. (49)

The displaced fluid element will be buoyantly unstable if δρ <

ξ · ∇ρ, so the condition for instability is

ξ · ∇pg + ξ · ∇pc <
5

3

pg

ρ
ξ · ∇ρ + 4

3

pc

ρ
ξ · ∇ρ. (50)

Using (48) and that the background density and CR pressure satisfy
ρ ∝ p3/2

c , this can be rewritten as:

η

(
γ

ωff

ωc

vA,z

cs
− 2

)
>

3

2
γ, (51)

where γ = 5/3 is the gas adiabatic index. We derive the same
criterion directly from the linearized equations in Appendix E
(also assuming adiabaticity). The above condition turns out to be
equivalent to

dseff

dz
∝ d

dz

(
ln

pg

ρ5/3
+ η ln

pc

ρ4/3

)
< 0. (52)

If the above is satisfied, the system is convectively unstable.
Condition (51) is shown in Fig. 5 as the dashed vertical line.

Using hydrostatic equilibrium (48), we can further rephrase the
instability criterion in terms of the CR and gas pressure scale heights
(H−1

c ≡ d ln pc/dz, H−1
g ≡ d ln pg/dz),

Hc

Hg
− η >

3

2
γ. (53)

Therefore, a necessary condition for convection is that Hc/Hg > 5/2.
We show the convective (in)stability in the (η, β) plane in Fig. 6.
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Figure 6. Convective stability/instability boundary in the (β, η) plane for
two choices of ωffcos θB/ωc, where θB is the angle between the z-axis
(direction of gravity and pressure gradients) and the magnetic field. For a
given choice of ωffcos θB/ωc, there is a maximum β for which convection
can occur, as determined by equation (51).

The system becomes convectively unstable for a larger range of η

and β when ωffcos θB/ωc is increased.
We derive an approximate growth rate for the convective instabil-

ity in the limit ωff 
 ωc, ωa in Appendix E. The approximate growth
rate (equation E6, which is derived by dropping any dependence on
�T) is shown in Fig. 5 as the dashed line and agrees well with the
exact solution.

7 DISCUSSION

In this paper, we have studied the linear thermal stability of systems
heated by streaming cosmic rays. Streaming cosmic rays can be an
important heating mechanism in cluster haloes (Guo & Oh 2008;
Jacob & Pfrommer 2017a,b). Our order-of-magnitude estimates
suggest that CR heating may also be important in galactic haloes,
particularly for Milky Way mass systems (see Section 3 and Fig. 1).
Thermal instability is a viable mechanism for creating the cold gas
that is found in these systems.

We calculated thermal instability growth rates in the presence
of CR heating for a wide range of η ≡ pc/pg, in three background
equilibria: in a uniform background (where cooling is balanced by
an unspecified volumetric heating, but CR heating is present in the
perturbed equations; Section 4), in a background with CR heating
balancing cooling (Section 5), and in a gravitationally stratified
background heated by CRs (Section 6). Gas in PIE in galactic
haloes is a special case of our uniform background calculation
(Section 4.8), which is always thermally stable, independent of CR
pressure.

The key time-scales/frequencies in this problem are summarized
in equations (9)–(13) and include the cooling, sound, Alfvén
(CR heating), CR diffusion, and free-fall frequencies. The Alfvén
frequency enters the thermal instability calculation primarily via
the perturbed CR heating, as the entropy mode is not sensitive
to magnetic tension and pressure. We focused on local WKB
perturbations, satisfying equations (14) and (15), in the high-β
limit. Our fiducial parameter set was ωa = 103ωc, β = 100, and
ωff = 20ωc when we included gravity (this is well motivated in
galactic and cluster haloes, where typically ωff � 10ωc, but we
stress that it need not be true in general astrophysical systems).
Our results depend weakly on β for β � 3. Thermal instability

growth rates also do not depend strongly on wavenumber k for
ωa � ωc (ωa � ωcη

−1) in the uniform (CR-heated) background,
which corresponds to WKB perturbations satisfying kH � 1. Fig. 2
shows this weak dependence for ωa ≤ 103ωc (left-hand panels) and
3 ≤ β ≤ 100 (middle panels).

We have focused on cosmic rays that stream down their pressure
gradient at the Alfvén velocity, while also including CR diffusion
along the magnetic field. We find that CR diffusion can suppress
thermal instability of a subset of modes (right-hand panels of
Figs 2 and 3) and modify the overall thermal stability to arbitrary
perturbations (Fig. 4). However, the dominant CR transport process
in galactic haloes remains unclear and it is uncertain whether
CR streaming and diffusion are generally simultaneously relevant.
Indeed, a variety of work suggests that if CR scattering is mostly
due to self-excited Alfvén waves, then even cosmic rays that are
imperfectly coupled to the thermal plasma (where the imperfect
coupling is what gives rise to a possibly diffusive behaviour) are
not truly diffusive (Skilling 1971; Wiener et al. 2013a; Wiener
et al. 2018), and instead stream at super-Alvénic speeds. Super-
Alfvénic streaming does not, however, increase the rate at which
CRs heat the gas (i.e. the CRs still heat the gas at a rate −vA · ∇pc).
Moreover, how super-Alfvénic streaming speeds depend on other
fluid quantities is not well known. As a result, we did not include
super-Alfvénic streaming in our calculation.

The different background equilibria we have considered allowed
us to disentangle how CR physics affects thermal instability.
Independent of background, thermal instability growth rates de-
pend strongly on η, which determines whether the instability is
isobaric (small η) or isochoric (large η); see equation (27) and
associated discussion. The perturbed CR heating also introduces
high-frequency oscillations (order ωa for η ∼ 1, independent of
background) in the gas entropy mode (see Section 4.3.1), so that
thermal instability is formally an overstability with an oscillation
frequency comparable to or larger than its growth rate. This is true
even in a uniform medium, where thermal instability is normally
a purely growing mode. CR heating does not, however, modify
isobaric (small η) or isochoric (large η) thermal instability growth
rates, (2/5)ωc(2 − �T) and −(2/3)�Tωc, respectively, in a uniform
background (Section 4.5 and top panels of Fig. 2). Background CR
heating does slightly change isobaric thermal instability growth
rates at small η (Sections 5.2 and 5.3, and bottom panels of
Fig. 2). Incorporating gravity in our analysis (Section 6) did not
significantly affect thermal instability growth rates, but it allowed
us to determine under what conditions a gravitationally stratified,
CR-heated medium is buoyantly unstable.

Thermal instability growth rates as a function of η are plotted
in Fig. 2 for different cooling curve slopes �T (left-hand panels),
plasma-β (middle panels) and for different CR-diffusion frequen-
cies ωd (right-hand panels; there is no CR diffusion present in the
left-hand and middle panels). The top panels show the uniform-
background (Section 4) calculation results, the bottom panels show
the corresponding results in a background in which cosmic ray
heating balances cooling (Section 5). As already mentioned in the
previous paragraph, thermal instability growth rates depend strongly
on η. Growth rates do not depend strongly on β for β � 3, as is
expected in galaxy haloes, groups, and clusters.

Fig. 4 shows the boundary between thermal stability and insta-
bility to arbitrary (WKB and high-β) perturbations in a uniform
background (top) and the CR-heated background (bottom). We
formulate this in terms of the critical cooling curve slope �T, c =
∂ln �/∂lnT above which all perturbations are thermally stable.
When there is no CR diffusion present, the ‘critical’ cooling curve
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slope �T, c as a function of η is well described by a broken power law.
If CR diffusion is present and κωc/ηv2

A 
 1, the stability/instability
boundary is simple and independent of η: CR diffusion renders high-
k (large ωd, k · B �= 0) perturbations isobaric, so that �T, c = 2 in a
uniform background (equation 28) and �T, c = 5/2 in the CR-heated
background (equation 41). If κωc/ηv2

A � 1, CR diffusion introduces
a Field length below which thermal instability is suppressed (equa-
tion 32). This affects the thermal stability/instability boundary in
Fig. 4 (e.g. green dashed line for κ = v2

A/ωc). We stress, however,
that unlike thermal conduction, there is only an effective CR Field
length for particular CR diffusion coefficients, namely κ � ηv2

A/ωc.
For κ → ∞ CRs have no effect on thermal instability because the
CR pressure is essentially uniform.

Modes with ωff > ωa (i.e. nearly adiabatic modes) can further be
convectively unstable (driven by buoyancy). Convective instability
occurs if equation (51) is satisfied (see also Fig. 6). By defining
seff ∝ ln pg/ρ5/3 + ηln pc/ρ4/3, the criterion for convective instability
can be written in the form dseff/dz < 0. In our setup, this turns
out to be satisfied if the ratio of the CR pressure scale height to
the gas pressure scale height is sufficiently large (equation 53).
We also derive an approximate expression for the growth rate
of the convective instability for perpendicular modes (see equa-
tion E6 and the dashed curve in Fig. 5). Our calculation differs
from previous work that considered buoyancy instabilities in the
presence of cosmic rays, which did not consider background CR
heating (Chandran & Dennis 2006; Dennis & Chandran 2009;
Heintz & Zweibel 2018). Background CR heating is essential in our
calculation, as it is the background gas-pressure gradient, set by hy-
drostatic equilibrium and ∇pc (which is set by cooling), that drives
convection.

Our calculations show that systems heated by cosmic rays are
likely thermally unstable for temperature ranges relevant to galactic
haloes (105 � T � 107 K, where �T � 0; Draine 2011). In haloes
that are in PIE, however, �T is large (>2) and the gas is thermally
stable for any η. In cluster haloes, where the temperature can exceed
≈ 107 K and thermal bremsstrahlung is the dominant radiative
cooling process (with �T = 0.5), CR heating could lead to thermal
stability if CR pressure dominates (i.e. η � 1) and CR stream-
ing dominates over diffusion. If CR diffusion is important (and
κ 
 ηv2

A/ωc), however, it eliminates CR pressure perturbations and
cooling by bremsstrahlung would be thermally unstable. Moreover,
η � 1 in cluster haloes is disfavoured observationally (e.g. Huber
et al. 2013). It is thus likely that all halo gas in CIE is thermally
unstable in the presence of CR heating.

It remains to be seen how CR heating affects the non-linear
evolution of the thermal instability and the resulting multiphase
structure of halo gas. In particular, are there significant differences
introduced by the O(ωa) entropy oscillations introduced by the
CR heating term? This heating frequency can be larger than the
free-fall frequency, and it is plausible that this may change the
effect of buoyant oscillations on the saturation of thermal instability.
However, we note the caveat that long-wavelength modes tend to
dominate the non-linear saturation of thermal instability, for which
ωa > ωff is not necessarily satisfied. A sufficiently small ratio of the
cooling time to the free-fall time, tcool/tff � 10, has been identified as
crucial for the development of multiphase gas in hydro simulations
(e.g. Sharma et al. 2012). Ji et al. (2018) showed that magnetic fields
enhance thermal instability by suppressing buoyant oscillations
via magnetic tension. Future simulations will address how entropy
oscillations driven by CR heating (which also occur at ∼ the Alfvén
frequency) affect this evolution and the creation of multiphase gas.
In particular, it seems plausible that the dimensionless ratios tcool/tA

(with tA ≡H/vA) and η = pc/pg, which are related to the propagation
speed of thermally unstable modes, may be important for the non-
linear evolution of thermal instability.
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APPENDIX A: COSMIC RAY PRESSURE
FRACTION

In this section, we derive order-of-magnitude estimates of the CR
pressure fraction, η, which we used to create the bottom panel
of Fig. 1. We consider the injection of cosmic rays by Type II
supernovae (Section A2) and AGNs (Section A3). This enables
us to estimate the (global) cosmic ray energy budget, which is
related to a spatially averaged CR pressure fraction η. We find that
both mechanisms can in principle produce a significant cosmic ray
pressure, with the caveat that we treat the system in a globally
averaged sense.

A1 Gas thermal energy

We want to compare the total cosmic ray energy to the total thermal
energy of the gas within the halo. In what follows, we estimate
the thermal energy of the gas filling the galaxy out to the virial
radius Rvir. We define Rvir as the radius within which the mean
matter density is 200 times the cosmic critical density, i.e. 〈ρm〉Rvir =
200ρc. We can approximate the total thermal energy within the virial
radius as

Eth ∼ 3

2

∫ Rvir

0

ρgkBT

mH
4πr2dr, (A1)

where ρg is the thermal gas density. We assume an isothermal profile
with virialized kBT = GM200mH/(3Rvir):

Eth ∼ 2πR3
vir

〈ρg〉RvirkBT

mH
∼ 〈ρg〉Rvir

〈ρm〉Rvir

GM2
200

2Rvir
, (A2)

where M200 = (4π/3)〈ρm〉R3
vir. For 〈ρg〉Rvir = (x�B/�M)〈ρm〉vir,

where x accounts for missing baryonic mass relative to the cosmic
mean, we obtain

Eth ∼ x�B

�M

GM2
200

2Rvir
∼ 3.6 × 1058 erg

( x

1.0

)(
M200

1012 M�

)5/3

.

(A3)

A2 Energy of cosmic rays: injection by Type II SNe

We first consider cosmic rays injected by Type II supernovae. We
assume that there is a core-collapse Supernova for every 100 M� of
stars formed, so that NII = M∗/100 M� is the total number of Type
II SNe in a galaxy with stellar mass M∗. We define χ as the ratio
of the number of cosmic rays still present in the halo (out to the
virial radius) to the total number produced throughout the galaxy’s
lifetime. The total cosmic ray energy in the halo is then

Ec = χfIIEIINII. (A4)

In the above expression, fIIEII is the typical CR energy injected by
a single type II Supernova (fII is the fraction of supernova energy
released as cosmic rays). As is commonly assumed, we take fII ≈ 0.1
(Zweibel 2017), so that for a typical non-neutrino energy of 1051

erg released by Type II supernovae, fIIEII ≈ 1050 erg. This implies
that

Ec ∼ 1059 erg
( χ

1.0

)(
M∗

1011 M�

)
, (A5)

where our choice of χ = 1.0 reflects the possibility that in massive
galaxies with large Rvir, the escape time of cosmic rays may be of
the order of galaxy age. Comparing (A5) to (A3) gives

η ∼ Ec

2Eth
∼ 1.4

( χ

1.0

) ( x

1.0

)−1
(

M∗
1011 M�

)(
M200

1012 M�

)−5/3

.

(A6)

A3 Energy of cosmic rays: injection by SMBHs

We now consider cosmic rays that are created by SMBHs. We can
estimate the CR energy content by assuming that a fraction fBH of
the SMBH luminosity goes into cosmic rays, i.e. the SMBH injects
cosmic ray energy at a rate εfBHṀc2, where ε is the black hole’s
radiative efficiency and Ṁ is its mass accretion rate. This gives:

Ec ∼ χεfBHMBHc2, (A7)

where χ is again defined as the ratio of the number of cosmic rays
still present in the halo to the total number produced throughout the
galaxy’s lifetime. The total CR energy is approximately

Ec ∼ 18 × 1059 erg
( χ

1.0

) (
εfBH

10−3

)(
MBH

109 M�

)
. (A8)

Comparing this to the total thermal energy in equation (A3), we
find that

η ∼ Ec

2Eth
∼ 25

( χ

1.0

) (
εfBH

10−3

) ( x

1.0

)−1

×
(

MBH

109 M�

)(
M200

1012 M�

)−5/3

. (A9)
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APPENDIX B: COSMIC-RAY DIFFUSION
VERSUS THERMAL INSTABILITY

We now provide a short, heuristic derivation for conditions (30)
and (31). For simplicity, here we consider the case of a uniform
background (Section 4). An analogous calculation for the CR-
heated background gives the very similar conditions (45) and (46)
(see also Fig. 3). In B4, we show that CR diffusion can introduce a
Field length, below which thermal instability is suppressed.

B1 Modes with ωd � ωc

In the limit where ωd = 0 or ωd � ωc, diffusion is negligible for
any η and the η → 0, η → ∞ limits are connected smoothly at
intermediate η (as in Fig. 2).

B2 Modes with ωc � ωd � ωa

In this limit, (24) gives an approximate leading-order relation
between δpc and δρ:

δpc

pg
∼ η

δρ

ρ

(
1 + i

ωd

ωa

)
. (B1)

Inserting this approximate relation into equation (23) gives

δpg

pg

(
ω

γ − 1
+ iωc�T

)
− δρ

ρ

(
γω

γ − 1
− iωc(2 − �T )

)

∼ δρ

ρ
η(ωa + iωd). (B2)

For η � 1, i.e. δpg/pg ≈ −δpc/pg � δρ/ρ, the CR-diffusion term
introduced by the perturbed CR heating essentially acts like a
thermal-conduction term with a thermal diffusion coefficient ∼ηκ .
The diffusive term ∝ iηωdδρ/ρ acts to oppose the perturbed cooling
term ∝ iωc(2 − �T)δρ/ρ which drives thermal instability. Diffusion
suppresses thermal instability if:

ηωd � |2 − �T | ωc, (B3)

which gives the lower bound in (30).
This suppression of thermal instability by CR diffusion is not

present at large η, when the second term on the LHS of (B2), ∝ δρ/ρ,
is negligible (thermal instability is isochoric). Using δpg ≈−δpc and
(B1) in equation (B2) one can show that CR diffusion is unimportant
when

η � ωd

ωc
|�T |−1, (B4)

at which point we recover the η → ∞ (isochoric) asymptotic growth
rate (equation 39).

B3 Modes with ωd � ωa

In this limit, (24) gives:

δpc

pg
∼ δρ

ρ
iη

ωa

ωd
. (B5)

Inserting this into equation (23) gives

δpg

pg

(
ω

γ − 1
+ iωc�T

)
− δρ

ρ

(
γω

γ − 1
− iωc(2 − �T )

)

∼ δρ

ρ
iη

ω2
a

ωd
. (B6)

Figure B1. Thermal instability growth rates as a function of wavenumber k
for �T =−1, β = 100, and η = 1 in a uniform medium. θ is the angle between
k and the background magnetic field. We show growth rates for different CR
diffusion coefficients κ . For κ 
 ηv2

A/ωc (solid line) CR diffusion does not
affect thermal instability growth rates at high k. For κ � ηv2

A/ωc (dotted
line) diffusion introduces a CR Field length below which thermal instability
is suppressed. In all cases, growth/damping rates are constant at high-k, as
the perturbed CR heating is scale independent for ωd 
 ωa.

Note that the CR heating term ∝ ηω2
a/ωd = ηv2

A/κ is scale inde-
pendent. CR diffusion again acts to oppose the perturbed cooling
term ∝ iωc(2 − �T)δρ/ρ which drives thermal instability. For
δpg/pg � δρ/ρ (for η � ωd/ωa) CR diffusion suppresses thermal
instability if

η
ω2

a

ωd
∼ ηv2

A

κ
� |2 − �T |ωc. (B7)

This is the lower bound in (31). Note that there is no scale
dependence. As a result, if κωc/(ηv2

A) 
 1 then short-wavelength
modes with ωd 
 ωa are not suppressed by CR diffusion. If,
however, κωc/(ηv2

A) � 1, CR diffusion instead leads to the decay
of high-k gas-entropy modes (see Fig. B1).

As described before in B2, when η is sufficiently large for the
second term on the LHS to be negligible (thermal instability is
isochoric), CR diffusion does not affect the TI growth rate. CR
diffusion is unimportant when:

η � ωd

ωc
|�T |−1. (B8)

This is the upper bound in (31).

B4 CR-diffusion Field length

We can rephrase conditions (30) (equations B3 and B4) and (31)
(equations B7 and B8) in terms of length-scales at which CR diffu-
sion suppresses thermal instability. In particular, in Appendix B2,
we demonstrate that CR diffusion can play a role similar to thermal
conduction. This suggests that there is a CR-diffusion analogue
of the Field length for thermal conduction (Field 1965) below
which thermal instability is suppressed. Thermal instability of long-
wavelength modes with b̂ · k < vA/κ (ωd < ωa) is suppressed by
CR diffusion if

(b̂ · k)2 � max

(
ωc

ηκ
|2 − �T |, ηωc

κ
|�T |

)
. (B9)

The above is derived from and equivalent to equation (30). Thermal
instability of short-wavelength modes with rapid CR diffusion,
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b̂ · k > vA/κ (ωd > ωa), is suppressed by CR diffusion if

κωc

ηv2
A

|2 − �T | � 1 and (b̂ · k)2 � ηωc

κ
|�T |. (B10)

The above is equivalent to equation (31).
Note that if κ � ηv2

A/ωc (ωd � ηω2
a/ωc) then CR diffusion does

not suppress thermal instability of high-k modes (ωd 
 ωa), even
though ωd is large. There is therefore no ‘CR Field length’ below
which thermal instability is completely suppressed. Instead, the
instability of high-k modes is isobaric with growth rates Im(ω) =
(2/5) (2 − �T ) ωc. Cosmic rays have no effect on thermal instability
as the rate at which they heat the gas at high-k is less than the cooling
rate (κωc/ηv2

A is the ratio of the cooling rate to the CR heating rate
at high-k, see equation B6).

Conversely, if κ � ηv2
A/ωc, the cosmic ray heating rate at high-k

exceeds the gas cooling rate. CR diffusion then suppresses thermal
instability of high-k gas-entropy modes. In other words, when
κ � ηv2

A/ωc there is a maximum b̂ · k at which thermal instability
occurs. Using (B9) and (B10) and dropping order unity ∼�T factors
one can show that the CR Field length is given by

λCRF ∼
⎧⎨
⎩

2π |b̂ · k̂|
√

ηκ

ωc
η < 1

2π |b̂ · k̂|
√

κ
ηωc

η > 1.
(B11)

This is the CR-diffusion analogue of the Field length (Field 1965).
We stress again that this CR Field length exists only if κ � ηv2

A/ωc.
Fig. B1 shows how the value of κ determines the stability/instability
of high-k modes.

APPENDIX C: LINEARIZED EQUATIONS
WITH BACKGROUND COSMIC RAY HEATING

When there is background cosmic ray heating (balancing cooling),
the linearized equations are

δρ

ρ
− 3

2
η−1ωc

ξz

vA,z

= −ik · ξ , (C1)

− ρω2ξ = −ik
(

δpc + δpg + B · δB
4π

)

+i
(B · k)δB

4π
− ωffcsδρ ẑ (C2)

δB = i(B · k)ξ − iB(k · ξ ), (C3)

δpg

pg

(
ω

γ − 1
+ iωc�T

)
+ ωωcξz

(γ − 1)vA,z

(
1 − γ

ωff

ωc

vA,z

cs

)

= ωa
δpc

pg
− ωaωc

ξz

vA,z

− iωc
δρ

ρ

(
5

2
− �T

)

−
(

γ

γ − 1
ω + iωc

)
ik · ξ , (C4)

δpc

pg
(ω − ωa + iωd + iωcη

−1) − ωωc
ξz

vA,z

= δρ

ρ

(
−2

3
ηωa + iωc

)

−4

3
iηωk · ξ + iκ b̂ · k(δ b̂ · ∇pc) + iκk · δ b̂(b̂ · ∇pc), (C5)

where δ b̂ = δB/B − δB/B b̂. For the calculations in Section 5,
where we ignore gravity, we set ωff = 0 in the above equations.

APPENDIX D: VALIDITY OF THE 1D
THERMAL INSTABILITY CALCULATION

For a high-β uniform medium, the dispersion relation of the
thermally unstable entropy mode can be derived simply by imposing
pressure balance δpc � −δpg and combining the CR and gas
energy equations. This leads directly to equation (25). The same
approach does not work in the presence of background cosmic
ray heating and/or gravity because then the cosmic ray and gas
energy equations have terms proportional to the fluid displacement
ξ (see Appendix C) and so imposing δpc � −δpg is not sufficient to
uniquely determine the entropy mode properties. In this Appendix,
we discuss the approximations that successfully reproduce the
entropy mode in this limit. In particular, we explain why the 1D
calculation in Section 5.2, which assumes ξ ‖ B, is a reasonable
approximation for the thermal instability eigenfrequency.

We note from the start that the usual Boussinesq approximation,
k · ξ = 0, often utilized to impose pressure balanced fluctuations,
is not appropriate for this problem. Instead, for ωa 
 ωc, pressure
balance, δpc + δpg ≈ 0 (ω � kcs implies that δpc + δpg � δρc2

s ),
simply determines the leading-order gas entropy frequency (equa-
tion 26), which satisfies ω < ωa for all η. For η � 1, ω � ωa and
the induction equation implies that δB/B � δρ/ρ. Moreover, one
can show that

ξ⊥
ξ‖

= k⊥k‖ω2

ω2k2
‖ − ω2

ak
2

∼ ω2

ω2
a

, (D1)

where ξ⊥ and ξ � are the fluid displacements perpendicular and
parallel to the magnetic field, respectively. So, for η � 1, where
ω � ωa, we can restrict our analysis to field-aligned perturbations
ξ ‖ B, for which δB = 0 (just like in the 1D calculation). It
turns out that ξ ‖ B yields the same dispersion relation as the 1D
calculation (38), independent of propagation direction (for a fixed
ωa).

For η 
 1 thermal instability becomes isochoric. As a result,
the 1D dispersion relation still gives the correct thermal-instability
eigenfrequency, even though ξ ‖ B is not strictly true (ξ � still
exceeds ξ⊥ by a factor of a few). When δpc/pg 
 δρ/ρ, ξ is not
important for thermal instability, as it is tied to density perturbations.

The 1D calculation also works well in the limit of strong diffusion,
ωd 
 ωa. In this case, the ω of the gas entropy mode also never
exceeds ωa. This, again, is determined by δpc + δpg ≈ 0, which to
leading order gives the quadratic:

η

(
4

3
ω − 2

3
ωa

)(
3

2
ω + ωa

)
+ 5

2
ω (ω − ωa + iωd) = 0. (D2)

Small deviations (primarily in the real part) between the 1D thermal
instability eigenfrequency and the exact solution occur only where
thermal instability is most strongly damped by diffusion. The CR-
diffusion induced damping rate is O(ωa), while δpc/pg ∼ δρ/ρ,
and so the assumption that ξ ‖ B is only approximately well
motivated. We stress, however, that the deviations (which mainly
affect the oscillation frequency) occur only in the case where
thermal instability is very rapidly damped.

APPENDIX E: CONVECTIVE INSTABILITY:
GROWTH-RATE DERIVATION FROM
LINEARIZED EQUATIONS

In this section, we derive an approximate growth rate for the CR
convective instability in the limit ωff 
 ωc, ωa. The growth rate is
not exact, as we drop any dependence that is O(ωc) � ωff, ω. We
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consider the simplest case of a purely vertical magnetic field and
horizontal propagation: B = B ẑ and k = k x̂, for which ωa = 0.

In this limit, one can derive the approximate dispersion relation

ω4 + bω2 + c = 0, (E1)

where

b = −
(

ω2
s + 4

3γ
ηω2

s + 3

2
η−1ωcωff

cs

vA,z

)
, (E2)

c = −ω2
s ωcωff

2γ η

cs

vA,z

[
2η

(
γ

ωffvA,z

ωccs
− 2

)
− 3γ

]
. (E3)

This has solutions of the form:

ω2 = −b ± √
b2 − 4c

2
(E4)

which will have an unstable branch if c < 0, i.e.

2η

(
γ

ωff

ωc

vA,z

cs
− 2

)
> 3γ, (E5)

which is the same condition as obtained in the main text using the
Schwarzschild criterion (equation 51). Equations (E2)–(E4) can be
combined to give an expression for the growth rate. In the common
limit b2 
 c (large ωs limit), the growth rate simplifies to

ω ≈ i

√
c

b
≈ i

√
ωcωff

cs

vA,z

⎡
⎣ 1

γ

(
γ

ωffvA,z

ωccs
− 2

)
− 3

2 η−1

1 + 4η/(3γ )

⎤
⎦

1/2

(E6)

Note that as η → ∞, the growth rate goes to 0. The dashed curve
in Fig. 5 shows the approximate growth rate from equation (E6),
which agrees well with the exact calculation.

This paper has been typeset from a TEX/LATEX file prepared by the author.
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