
425

Discovering and Validating AI Errors With Crowdsourced
Failure Reports

ÁNGEL ALEXANDER CABRERA, Carnegie Mellon University, USA
ABRAHAM J. DRUCK, Carnegie Mellon University, USA
JASON I. HONG, Carnegie Mellon University, USA
ADAM PERER, Carnegie Mellon University, USA

AI systems can fail to learn important behaviors, leading to real-world issues like safety concerns and biases.
Discovering these systematic failures often requires signifcant developer attention, from hypothesizing
potential edge cases to collecting evidence and validating patterns. To scale and streamline this process, we
introduce crowdsourced failure reports, end-user descriptions of how or why a model failed, and show how
developers can use them to detect AI errors. We also design and implement Deblinder , a visual analytics
system for synthesizing failure reports that developers can use to discover and validate systematic failures. In
semi-structured interviews and think-aloud studies with 10 AI practitioners, we explore the afordances of the
Deblinder system and the applicability of failure reports in real-world settings. Lastly, we show how collecting
additional data from the groups identifed by developers can improve model performance.

CCS Concepts: • Human-centered computing → Visual analytics; Social tagging; • Computing method-
ologies → Machine learning.

Additional Key Words and Phrases: machine learning; crowdsourcing; debugging; blind spots; visual analytics

ACM Reference Format:
Ángel Alexander Cabrera, Abraham J. Druck, Jason I. Hong, and Adam Perer. 2021. Discovering and Validating
AI Errors With Crowdsourced Failure Reports. Proc. ACM Hum.-Comput. Interact. 5, CSCW2, Article 425
(October 2021), 22 pages. https://doi.org/10.1145/3479569

1 INTRODUCTION
AI systems deployed in the real world can have signifcant consequences when they fail, including
safety issues like self-driving cars harming pedestrians [62], and fairness concerns like inadvertently
racist image labels [58]. Developers need to be able to efciently detect, validate, and fx systematic
failures to improve the safety, equity, and overall performance of their systems [48].
Unfortunately, discovering what systematic errors AI systems make presents developers with

various challenges [2, 25, 31]. First, developers often have to sift through thousands of failure cases,
many of which are random, one-of errors, to identify systematic failures. This manual task can be
prohibitively labor-intensive for individuals or small teams. Second, once a developer discovers
a pattern of failure, they have to validate their hypothesis by fnding more evidence of the same

Authors’ addresses: Ángel Alexander Cabrera, cabrera@cmu.edu, Carnegie Mellon University, 5000 Forbes Ave, Pittsburgh,
Pennsylvania, USA, 15213; Abraham J. Druck, adruck@andrew.cmu.edu, Carnegie Mellon University, 5000 Forbes Ave,
Pittsburgh, Pennsylvania, USA, 15213; Jason I. Hong, jasonh@cs.cmu.edu, Carnegie Mellon University, 5000 Forbes Ave,
Pittsburgh, Pennsylvania, USA, 15213; Adam Perer, adamperer@cmu.edu, Carnegie Mellon University, 5000 Forbes Ave,
Pittsburgh, Pennsylvania, USA, 15213.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for proft or commercial advantage and that copies bear this notice and
the full citation on the frst page. Copyrights for components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specifc permission and/or a fee. Request permissions from permissions@acm.org.
© 2021 Association for Computing Machinery.
2573-0142/2021/10-ART425
https://doi.org/10.1145/3479569

Proc. ACM Hum.-Comput. Interact., Vol. 5, No. CSCW2, Article 425. Publication date: October 2021.

https://doi.org/10.1145/3479569
https://doi.org/10.1145/3479569
mailto:permissions@acm.org
mailto:adamperer@cmu.edu
mailto:jasonh@cs.cmu.edu
mailto:adruck@andrew.cmu.edu
mailto:cabrera@cmu.edu

425:2 Ángel Alexander Cabrera et al.

Fig. 1. The Deblinder system looking at failure reports for a classification model that detects if a person is
wearing eyeglasses. The descriptions of why each instance was misclassified are textual reports generated by
crowdworkers. In the Failure Report Embedding (A), a developer can explore high-level concepts extracted
from the failure reports. They can then search for or look through specific reports using the Failure Report
Drawer (B). Finally, the developer can create hypotheses for blind spots in the Hypothesis Panel (C) and test
them by modifying instances or collecting additional data.

behavior. In common domains like images, there are few tools for fnding similar instances, making
it hard to fnd more evidence. Lastly, data scientists have to repeat this process to track and mitigate
the various systematic failures a model may have.

To tackle these challenges, we defne and formalize crowdsourced failure reports, text descriptions
from end-users detailing how or why they think an AI system failed. Failure reports can, for example,
describe a face recognition model that didn’t detect a person who was outside, or a smartwatch
that miscounted steps when a user was running on a treadmill. When collected at scale in a crowd
auditing process, failure reports can be used to discover AI errors developers were unaware of and
provide evidence to validate their hypotheses. Failure reports are inspired by the well-established
concept of bug reports in software engineering [8], but are diferent in a few signifcant ways.
Primarily, since AI systems are often stochastic, black-box models, failure reports have to be
aggregated and further validated to uncover AI failures. In this work, we discuss the similarities
and diferences between failure reports and bug reports and the design of methods for collecting
useful reports. We also tested diferent collection methods and techniques and implemented an
example report collection system using Amazon’s Mechanical Turk platform.
Failure reports can describe AI failures, but collecting hundreds or thousands of free-text sen-

tences leads us back to one of data scientists’ original challenges: they still have to sift through
countless failure reports to fnd and validate patterns. To address this issue, we designed and
implemented a visual analytics system, Deblinder, that lets users explore hundreds or thousands
of failure reports to discover and test systematic failures. The system’s main interface is a visu-
alization that aggregates failure reports to let developers fnd patterns of error. Developers can
then create hypotheses for failures they fnd in the report visualization. Deblinder also provides

Proc. ACM Hum.-Comput. Interact., Vol. 5, No. CSCW2, Article 425. Publication date: October 2021.

Crowdsourced Failure Reports 425:3

two complementary features for validating failure hypotheses and assessing if they generalize -
similar instance search and instance manipulation. While Deblinder is focused on image models, it
is designed to be adapted to other domains like text and video data.

We explored the applications of failure reports and the Deblinder system through semi-structured
interviews and think-aloud studies with 10 AI practitioners. We found that the process of creating
and testing hypotheses for systematic failures mirrors developers’ debugging process and that
they found consistent failures with supporting evidence when using Deblinder. The study also
scoped the best uses of failure reports, including their limitation to domains where end-users can
understand the input data and see the model output directly. Lastly, we experimentally showed that
a model retrained with failures discovered by study participants can improve model performance.
Failure reports add a useful strategy to developers’ AI debugging toolbox. They complement

existing algorithmic, visual, and crowd debugging systems by detecting and describing complex
failures in deployment, like those developers may not have considered due to their own blind
spots and biases [6, 25, 49, 56]. Visualizing crowdsourced failure reports continues the emerging
theme of distributed or crowd sensemaking [20, 21, 23, 32, 33], which has been used to improve
clustering [3, 13], summarize bug reports [27], and learn model features [17].
In summary, our contributions are the following:
• Failure reports, end-user descriptions of how or why an AI system failed. We for-
malize a crowd auditing process for discovering AI failures based on failure reports, text
descriptions of model errors from end-users. We explore the parallels between failure re-
ports and software bug reports, design methods for efectively collecting them, and implement
an example collection method using Amazon Mechanical Turk.

• Deblinder, a visual analytics system for making sense of failure reports. We designed
and implemented a visual analytics system for synthesizing failure reports developers can
use to discover and validate AI failures. The system uses an interactive word-embedding
visualization to aggregate and spatially organize the text reports. Developers can then create,
track, and test hypotheses using Deblinder , which provides two validation methods.

• Evaluation of failure reports and the Deblinder system. In semi-structured interviews
and think-aloud studies with 10 AI practitioners, we explored the real-world applications
and limitations of failure reports. We found that developers discovered consistent, evidence-
backed failures using Deblinder, and showed experimentally that collecting data from the
discovered failures improved model performance.

2 BACKGROUND AND RELATED WORK

Bug reports in software engineering. Bug reports are an essential stage of the software engi-
neering process. A bug report generally consists of a description of the issue, steps to reproduce
the problem, and supporting information like a stack trace [8, 66], which software engineers can
use to fnd and fx the failing code. While at a high level failure reports are similar to bug reports,
debugging AI systems present various new challenges. Primarily, while a single bug report can
be used to identify and fx a bug, various examples of the same issue are required to discover a
systematic failure in an AI system. Additionally, there is no ground-truth evidence like a stack
trace [55] from faulty code in black-box AI systems - the only supporting evidence comes from
failure reports and instances themselves. Therefore, developers need numerous failure reports for
the same issue and additional evidence to detect and validate AI failures.
While failure reports difer signifcantly from bug reports, we build on existing software engi-

neering research on improving bug reporting. Bug summaries can be helpful for quickly triaging
bugs and fnding similar issues [28, 50]. For example, one method for improving reports showed

Proc. ACM Hum.-Comput. Interact., Vol. 5, No. CSCW2, Article 425. Publication date: October 2021.

425:4 Ángel Alexander Cabrera et al.

how using crowd-elicited attributes could improve bug summaries [27]. Visualizations, like the
topic modeling approach by Yeasmin et al. [65], have also been used to improve bug reporting by
summarizing bug repositories. Lastly, fnding duplicate bugs is also an active area of interest for
reducing bug reports and fnding more evidence for an issue [9, 59, 60]. While we do not summarize
or remove duplicate failure reports, we extract keywords and combine similar reports to provide a
high-level view of the issues end-users describe.
Error analysis for AI systems. We use the term systematic failures to describe a group of instances
sharing semantic features for which an AI produces the wrong output signifcantly more often than
for the overall dataset. Since there is no standard term in the literature for systematic failures, we use
it interchangeably with terms from existing work like blind spots [49] or unknown unknowns [5, 36].
There are various algorithmic techniques for discovering and characterizing systematic fail-

ures, ranging from fully automated to human-driven, crowdsourced techniques. Fully algorithmic
strategies aim to automatically slice data to discover areas of error, for example Lakkaraju et al.’s
exploration-exploitation technique for clustering and discovering model blind spots [36] and Slice
Finder, which splits data according to tabular features and uses the model’s loss to rank their
severity [18]. These techniques require data that can be easily clustered or sliced, both of which
are rarely available for data like images and videos. By using human-generated failure reports,
developers can fnd more nuanced and complex failures that are not defned by pre-existing features.
In addition to algorithmic methods, many visualization tools exist for helping data scientists

develop and debug AI systems. These tools provide support across the entire ML development
pipeline, from model tuning to error characterization. For example, Squares [53] and MLCube [29]
are visualizations for tracking models’ performance across diferent dimensions, including class
confusion and various performance metrics. Visualization tools can also help developers debug
models for specifc types of error, for example, the What-If Tool [61], FairSight [1], and FairVis
[11] are visual analytics systems for auditing the fairness of AI systems. These techniques, like
the algorithmic methods, are limited to errors described using input features or model outputs. By
using text reports, our method can describe any human-defned failure.

There are also visual systems specifcally for exploring and characterizing model errors. Errudite
is one such system specifc for natural language processing (NLP) models [64]. It uses a regex-based
querying language for searching and replacing parts of text to discover and correct error hypotheses.
This technique works well for text data but requires users to already have hypotheses and does not
generalize to domains like images. AnchorViz is a polar-coordinates visualization that lets users
create semantic anchors to visualize data instances across diferent concepts [15]. This method
requires users to manually label sentences with ‘anchors’ or concepts, which does not scale easily.
Failure reports can surface initial hypotheses and supporting evidence for systematic failures.
Lastly, while not specifcally designed for error analysis, data programming can be a powerful

tool for discovering slices, or subgroups, of a dataset [24, 51]. Data programming is a method of
combining noisy labeling functions to train a classifer. Developers can create labeling functions
to quickly slice their data and discover systematic failures, similar to how MLCube [29] and Slice
Finder [18] help developers do subgroup analysis. Data programming can be a helpful validation
tool for discovering more evidence for errors detected using failure reports.
Crowd auditing. Using crowdsourced human input has shown promise for discovering and
characterizing AI models’ systematic failures. The frst study to show that humans could efectively
fnd AI failures was Beat the Machine, a fully human-driven technique that asked users to fnd
examples for which an AI system failed, specifcally for hate speech detection [4]. They found that
humans could quickly fnd websites that the AI misclassifed with very high probability. However,

Proc. ACM Hum.-Comput. Interact., Vol. 5, No. CSCW2, Article 425. Publication date: October 2021.

Crowdsourced Failure Reports 425:5

the authors did not take on the subsequent problem of aggregating the individually reported errors
to describe and validate a model’s systematic failures.
Crowds can also be used to establish the boundaries of AI behavior and prevent models from

making harmful decisions. Mandel et al. [39] explored how to use the crowd to defne acceptable AI
behavior, created a rule-based interface to generate AI system constraints, and showed its efcacy
in a real-world education domain. Deblinder and failure reports can help identify the edge cases
that would inform this type of crowd deliberation.
Recent work has explored how crowd input can be combined with algorithmic techniques to

characterize AI failures. Nushi et al. [42] developed Pandora, a system that uses human and machine
described clusters of data to derive a decision tree visualization of model errors. Pandora is an
efective method for fnding features that correlate with or predict failure, visualized with a usable
decision tree. Like the clustering method by Lakkaraju et al. [36], Pandora is dependent on the
clustering algorithm to fnd meaningful groups of failures. By using free text input, failure reports
can describe nuanced failures that may not be found with clustering.
Liu et al. [37] introduced another method for detecting systematic failures, Patterned Beat the

Machine (P-BTM), that extends BTM by using crowd workers to fnd more examples of unknown
unknowns. They ask crowd workers to provide initial labels for unknown unknowns, which are
then used to train an expansion classifer to fnd more examples in an unlabeled dataset. Like
clustering methods, P-BTM requires a classifcation model for any semantic concept, which they
note is often challenging. It also requires labeling initial unknown unknowns using a mechanism
like BTM. Crowd auditing with failure reports uses the human labels to discover the initial failure
instances and, with a system like Deblinder , surface similar instances that may be difcult for the
expansion classifer to fnd.
Pandora and P-BTM are efective methods for detecting systematic failures that complement

failure reports and Deblinder well. Failure reports are better suited for fnding semantic failures
not present in a training or test set. Since failure reports are text sentences, they can describe
failures that involve actions or arbitrary semantic features, including those that are challenging to
detect with a clustering or classifcation algorithm. When collected for deployed systems, failure
reports can also detect real-world failures that are not present in a test set and labeled as an
unknown unknown. Pandora and P-BTM, on the other hand, can be more efcient and require less
manual analysis since they partially automate the discovery and validation of systematic failures.
Developers can collect failure reports and fnd initial systematic failures with Deblinder that can be
further validated using these hybrid, algorithmic methods.

3 CROWD AUDITING WITH FAILURE REPORTS
3.1 Motivating Scenario
To motivate the use of failure reports for detecting systematic failures and describe the process, we
walk through an example scenario.

Kristen, an ML developer, has created an eyeglass detection system for use in airport customs.
For security reasons, people should not wear glasses when taking their picture at passport control.
Given a picture of someone’s face, the system provides a binary output of whether or not the person
is wearing glasses. While the system has a high test set accuracy, Kristen wants to know if her
model performs well in practice.

At each photo kiosk, Kristen adds a text prompt that lets people write a report if the model fails
to detect if they’re wearing glasses or not. After a month, she has collected thousands of failure
reports, and uses Deblinder to explore the reports and discover any systematic issues. With this
information, she collects additional data representative of those blind spots and retrains her model.

Proc. ACM Hum.-Comput. Interact., Vol. 5, No. CSCW2, Article 425. Publication date: October 2021.

425:6 Ángel Alexander Cabrera et al.

Fig. 2. The iterative process of using failure reports to discover and mitigate AI models’ systematic failures. (1)
In the Failure Report Collection stage, end users observe and report model failures back to the developer.
(2) Next, in the Failure Report Analysis stage, developers analyze the failure reports to discover, describe,
and validate hypotheses of potential failures. In this work, Deblinder is used as the primary interface for this
sensemaking process. (3) In the final Model Improvement stage, developers can use the discovered failures
to collect additional data, tweak their models, and analyze the real-world impact of their systems.

The retrained model performs better on the test set, and she deploys the updated system. She
continues collecting reports to see if the blind spots persist or new issues arise over time.

We collect failure reports for the domain in this example, eyeglass detection, and use the results
in our user study in Section 6. Specifcally, we trained a convolutional neural network (CNN) using
PyTorch to classify headshots of people, with an overall accuracy of over 99%. We trained the model
using images from the CelebA dataset, which has over 160,000 headshots of celebrities with labels
for eyeglasses [38]. Additionally, we collected reports and applied Deblinder to the domain of image
captioning (see Section 9.1) to show how the process and system generalize to other domains.

3.2 Process Overview
The crowd auditing process with failure reports consists of three major stages, as can be seen
in Figure 2. It is an iterative and ongoing process, as end-users report newly discovered failures
and developers update their model. The three main stages are the following: (1) Failure Report
Collection, (2) Failure Report Analysis, and (3) Model Improvement.

In the frst stage, Failure Report Collection, end-users of an AI system describe why or how a
model failed for a given instance. This stage can either be done during development to proactively
fnd potential blind spots or be conducted in deployment to discover real-world problems. The
second stage is Failure Report Analysis, where developers have to make sense of the numerous
text failure reports. In the last stage, Model Improvement, developers can use their validated
insights to mitigate the real-world efects of model errors and improve their systems.
Using failure reports to discover model blind spots provides unique advantages over standard

manual and algorithmic methods. Primarily, aggregated failure reports can be a more cost and
time-efcient option for fnding systematic failures by surfacing commonly represented errors,
a task that often requires signifcant manual labor. By including a more diverse set of users, this
crowd auditing method can also detect and describe failures that developers had not considered

Proc. ACM Hum.-Comput. Interact., Vol. 5, No. CSCW2, Article 425. Publication date: October 2021.

Crowdsourced Failure Reports 425:7

due to their own blind spots and biases [25]. Additionally, if the process is applied to real-world
domains instead of using crowd workers, the process can identify failures that are not present in
the test set or that arise due to issues like dataset shift [41, 52]. In the rest of this paper, we explore
the challenges for collecting and analyzing failure reports, and describe the design choices and
technical solutions we took to address them.

4 FAILURE REPORT COLLECTION
We defne failure reports as text submissions from end-users of AI systems describing a model’s
failure for a certain instance. While failure reports are conceptually similar to bug reports for
software systems, their content difers substantially. ML systems do not provide any additional
insight into why an error occurred, like stack traces and logs in software systems [67]. A failure
report and data instance is the only information reported back to the developer, and thus a report’s
entire value comes from the text. Given the open-ended structure of failure reports, developers can
make various design choices when collecting reports, including the question they pose to end-users
and the response format. Here, we describe these design options and the specifc choices we made
for this work.

4.1 What is a Failure Report?
Failure reports are free-text responses from end-users describing certain features of an instance.
While we tested other types of reports, specifcally short ‘tags’ describing an error, we found that
descriptive sentences were necessary to capture nuance like actions and complex image features.
Free-text sentences are also a low barrier of entry for end-users that do not require any additional
training, instruction, or domain knowledge. Beyond being a short sentence, there is considerable
freedom in what developers can ask end-users to describe in their failure report. Through testing
in diferent domains and results from our user study, we found that the type of report a developer
should collect depends on a model’s domain.

In complex tasks with ambiguous ground truth or performance measures, it is often most useful
to collect responses of how a model is failing. For example, in a system that automatically generates
captions for an image, collecting descriptions of how the captions are wrong (e.g., the dog is holding
a frisbee although the caption says it is a tennis ball) can provide model developers with a mental
map of the kinds of mistakes the model is making.

In more well-defned domains like classifcation, collecting responses of why a model is failing is
often more useful since the type of error is apparent (the wrong class). For a system that detects if
someone is wearing glasses, for example, it is often clear what the problem is (e.g., the glasses were
not detected) but not why it happened (e.g., the glasses had thin frames, or the person was looking
to the side). Descriptions of what aspects of an instance end-users think caused the algorithm to
fail can provide the context needed to help developers fnd systematic errors.

In this work, we used diferent techniques for the two image domains we analyzed. In the eyeglass
detection example, we collected why descriptions since the model failures are clear, and for image
captioning we collected how descriptions to discover the ways in which captions were wrong.

4.2 Methods for Collecting Reports
In addition to what developers ask end-users to describe, developers also have to decide how they
will collect reports. We defne two primary methods for collecting failure reports: from end-users
in a deployed setting or workers on a crowdsourcing platform. For a deployed AI system, failure
reports can be collected in the same way software bug reports are - when users see that a model’s
output is wrong, they can submit free-response text reports through a reporting interface. This
can be implemented as a dedicated error reporting UI, or integrated into the existing support

Proc. ACM Hum.-Comput. Interact., Vol. 5, No. CSCW2, Article 425. Publication date: October 2021.

425:8 Ángel Alexander Cabrera et al.

Fig. 3. The web-based interface used to collect failure reports. We provided Amazon Mechanical Turk (AMT)
workers with a series of 3 images that a model had failed for. In this example, the AMT worker was given a
false negative error from the eyeglass detection model which they atributed the error to the person’s glasses
being rimless and reflective. These reports were used in Deblinder for our user study and evaluation.

and feedback features of a product. Crowdsourcing platforms are a viable alternative that can be
used to gather failure reports if end-users do not typically see a system’s outputs or developers
want immediate results. The primary diference between the two methods is that crowdsourcing
platforms require the developer to have a set of labeled failure instances to show crowdworkers,
while in deployed systems end-users discover the model failures themselves.

To run controlled experiments and reproduce our results, we used the crowdsourcing strategy
in this work and created a web-based interface for end-users to describe how or why a model
failed for an instance. We used Amazon Mechanical Turk (AMT) to collect failure reports using a
web interface we created seen in Figure 3. We showed each worker three instances, and for each
instance asked the worker for a description of either how or why, depending on the domain, the
model had failed. The task took an average of 5 minutes, and we paid participants $1, the equivalent
of $12 per hour. We used the system to collect failure reports for both the eyeglass detection and
image captioning models, collecting 163 and 55 failure reports for each domain respectively. This
report collection interface is a proof of concept for this work - real-world systems would implement
their own report collection platforms and processes specifc to their product.
Since AMT is generally representative of US internet users (with some small, consistent varia-

tion [26]), it provides a good approximation of the type and quality of reports that would be gathered
in public-facing AI applications. To control AMT responses’ quality, we limited participants to
those who had an approval rating of over 98% with over 500 completed tasks. We found the re-
sponses to be of high quality generally, corroborated both by direct comments by study participants
(AI developers) and the consistency and impact of the failures they discovered (Section 6). One
developer commented that “there’s no way this is Turker data” due to the reports’ high quality, and
all developers found consistent, evidenced blind spots from the AMT failure reports. Future work
could explore methods for incentivizing good reports and study the diferences between failures
discovered by the general public and data scientists.

5 FAILURE REPORT ANALYSIS
Failure reports provide the core insights into model errors, but to discover valid systematic failures
developers have to extract aggregate patterns and supporting evidence from hundreds or thousands
of text reports. To support this process, we present the design and implementation of a visual

Proc. ACM Hum.-Comput. Interact., Vol. 5, No. CSCW2, Article 425. Publication date: October 2021.

Crowdsourced Failure Reports 425:9

analytics system, Deblinder, that aggregates failure reports in a word embedding visualization and
lets developers create and test their blind spot hypotheses.
There is a rich literature of visual analytics approaches for exploring large corpora of text [34].

This text analysis is often described as sensemaking, the process by which people organize large
datasets to understand and validate patterns [44, 45, 63] The sensemaking framework specifc to
data analysis by Pirolli and Card [45] has been used to derive the design requirements for many
visual analytics systems. One such system is Jigsaw, a visualization system for exploring large
text datasets [22]. The authors used algorithmic methods to summarize, aggregate, and organize
documents in a visual interface. Other systems using the sensemaking framework include the Aruvi
system for analytical reasoning [57] and Apolo for exploring large networks [14].
Like these existing visual systems, we derive design challenges for Deblinder using the estab-

lished sensemaking framework by Pirolli and Card [45]. Sensemaking consists of two processes -
information foraging, where an analyst fnds evidence and forms initial ideas, and synthesis, where
the analyst creates and tests formal hypotheses. The three primary design challenges we defne
come directly from the central stages of the sensemaking process, the [R1] evidence fle, [R2]
schema, and [R3] hypotheses. We tailor the challenges specifcally for text analysis and AI failures.

5.1 Design Requirements
A visual analytics system should address the following challenges for analyzing failure reports :
R1. Extract, flter, and search for high-level concepts.

Text-based failure reports should be summarized in a way that scales to thousands of reports.
Developers should be able to quickly see an overview of high-level concepts derived from
raw reports. Developers should also be able to apply their own domain knowledge of possible
failures by fltering and searching for specifc concepts and reports.

R2. Meaningfully organize concepts and failure reports.
To develop and validate hypotheses, it is useful to know what concepts and reports are most
similar to each other. This context allows users to brainstorm hypotheses that include a
variety of similar concepts and fnd reports that may ft into their existing hypotheses.

R3. Create, manage, and validate multiple hypotheses.
Developers should be able to create, track, and test formal hypotheses of systematic errors.
They should be able to create and name hypotheses with supporting evidence, failure reports,
and testing instances. When a developer has a hypothesis of a certain systematic failure, they
should have methods for validating their hypothesis.

5.2 System Design
The Deblinder interface, seen in Figure 1, is primarily composed of two views, the Failure Report
Embedding (Figure 1A) and the Hypothesis Panel (Figure 1C). The Failure Report Embedding is
the frst point of entry and provides an interactive, aggregated visualization of failure reports.
Developers explore and select reports from this view to generate hypotheses in the Hypothesis
Panel. In the Hypothesis Panel, they then create and collect evidence for hypothesized systematic
failures. Developers can then use two diferent strategies to validate their hypotheses: modify
instances to see the model’s new output, or collect additional instances to see if the systematic
failure generalizes to similar instances.

5.2.1 Making Sense of Failure Reports. The Failure Report Embedding is the primary interface
with failure reports. The collected reports are free-response sentences semantically describing
either how or why an end-user believes the AI system failed for a given instance. To give users
a high-level view of which types of errors are happening most often, we extract concepts from

Proc. ACM Hum.-Comput. Interact., Vol. 5, No. CSCW2, Article 425. Publication date: October 2021.

425:10 Ángel Alexander Cabrera et al.

Fig. 4. The Failure Report Embedding view used to explore and derive insights from reports, shown with
reports for the image captioning model. Concepts are extracted from reports and displayed using word
embeddings. When a user hovers over a concept, it shows a few example reports and instances. Clicking on a
concept expands all the reports in the reports panel, allowing users to add them to their hypothesis. Hovering
over any instance in the interface shows the full instance in the upper lef corner with the model’s prediction.

the reports [R1], key phrases from the reports representing commonly mentioned terms. These
concepts are aggregated, counted, and displayed in the Failure Report Embedding visualization, an
example of which can be seen in Figure 4 for the domain of eyeglass detection.
To extract concepts from the reports, we use RAKE (Rapid Automatic Keyword Extraction), a

domain-agnostic keyphrase extraction algorithm [54]. The extracted high-level concepts are then
shown in a two-dimensional word embedding visualization. To create the visual embedding, we use
word vectors and dimensionality reduction. For each extracted concept, we calculate its embedding
vector using the GloVe (Global Vectors for Word Representation) algorithm [43], which gives us a
quantitative measure of how similar each concept is to each other. To project the 300-dimensional
GloVe vectors of each concept into a two-dimensional plot, we use the UMAP dimensionality
reduction algorithm, which maintains the locality of points in the reduced space [40].
We decided to use a visual embedding instead of a table or word cloud to fulfll the proposed

design requirements. A central requirement for the failure reports visualization is showing the
semantic similarity between reports [R2]. This is helpful because it can help users fnd similar
concepts that may not share the same text. For example, in the eyeglass detection model, the
concepts frames and rims are closely related and often interchangeable. A visual embedding groups
similar concepts like these in space - in the same eyeglass domain, the concepts for glasses, frames,
and lenses are located close to each other. In contrast, the concepts for helmet and hat are tightly
coupled in another area of the embedding. This locality allows users to quickly see the relationship
between concepts and explore reports that are similar in meaning. The visual embedding medium
is also interactive and allows developers to quickly go from concepts to individual reports, which
would not be easily accomplished with a table.

To improve the usability of the Failure Report Embedding we use empirical fndings from
visualization research. For each extracted concept, we calculate how many times it is mentioned
across all failure reports, and set the size and opacity of its text accordingly. This both gives

Proc. ACM Hum.-Comput. Interact., Vol. 5, No. CSCW2, Article 425. Publication date: October 2021.

Crowdsourced Failure Reports 425:11

Fig. 5. Example areas of the Failure Report Embedding for the eyeglass detection and image captioning
domains. In the eyeglass detection embedding, reports for thin, transparent, and rims are close to glasses,
priming the hypothesis for clear or thin glasses frames. For image captioning we see the concepts for frisbee
and running, hinting at the common error of captions mentioning a nonexistent frisbee for standing dogs.

developers an idea of what the most common reports are [R2] and helps deal with the scalability
issue of too many reports crowding the embedding and reducing legibility. Additionally, research
has found that keyword discovery, a task similar to exploring concepts, is best aided by changes
to the spatial layout and font of the text [19]. The fnal usability feature we include is a form of
semantic zooming [7]. As users zoom into sections of the Failure Report Embedding, we rescale the
font size and opacity, spreading out the phrases and making smaller concepts easier to see.

After exploring high-level concepts, users next have to look at specifc reports and instances to
support their hypotheses. When a user hovers over a concept, a preview box appears around the
phrase. It includes a few example instances, the number of reports with that concept, and excerpts
from a few reports giving context to how end-users are using the concept. When the user clicks on
the concept, it pins the phrase and expands all the related reports in the reports panel (Figure 1B).
The reports panel shows all the instances and full failure reports for the selected concept and allows
users to add the reports to their hypotheses.
Lastly, it is often the case that a developer has domain knowledge about the model they might

want to apply. Towards this end, we include several utility features in Deblinder [R1]. We let users
add new keywords to the Failure Report Embedding, which are placed with the appropriate scale
and coloring where they semantically belong. There is also a fltering feature that dynamically
highlights in the embedding any concept the developer writes. Users may also want to fnd key
phrases or words in the failure reports themselves, which we enable with the search functionality in
the reports panel. With these utility features, developers can correlate their intuitions and fndings
with the failure reports they gather.

5.2.2 Creating and Tracking Hypotheses. Once developers have generated initial hypotheses using
the Failure Report Embedding, they can use the Hypothesis Panel (see Figure 1C) to create, track,
and further test systematic failures. Developers can name and track multiple hypotheses consisting
of representative failure reports, and use two validation methods to test their initial ideas.
The frst step developers take is creating and adding evidence to a hypothesis, which is done

in the Hypothesis Panel. At the top of the Hypothesis Panel developers can name the current
hypothesis according to a specifc type of error. Using the dropdown menu, they can switch
between diferent hypotheses or create a new hypothesis [R3]. An example of the Hypothesis
Panel can be seen in Figure 6 for the domain of eyeglass detection.

Proc. ACM Hum.-Comput. Interact., Vol. 5, No. CSCW2, Article 425. Publication date: October 2021.

425:12 Ángel Alexander Cabrera et al.

When a hypothesis is selected, the frst section of the panel shows the failure reports the developer
has added to the hypothesis. These reports are instances end-users reported due to the failure
reason described by the hypothesis. When developers hover on each failure report , the concept’s
related reports are highlighted in the Failure Report Embedding, allowing the user to fnd potential
new concepts to explore and expand their hypotheses [R3].

5.2.3 Validating Hypotheses. While failure reports provide strong evidence of a model’s systematic
failures, they are not sufcient evidence to conclude that the issue generalizes. Failure reports are
an incomplete source of evidence for two primary reasons. The frst is that failure reports only show
us instances for which the model is wrong. In practice, it may be the case that the model is correct
for most instances described by a hypothesis. In the eyeglass detection domain, it may be that
most people with clear glasses are correctly classifed at a similar rate as people with dark-rimmed
glasses, despite various failure reports mentioning clear glasses. The second way in which failure
reports are insufcient evidence is in testing how plausible end-user reasons for model failure are.
The reasons for failure reported by end-users are subjective and may not be real causes of a model’s
failure. Using the same example as above, it could be the case that the images of people with clear
glasses were incorrectly classifed because they were all worn low on the face, confounding the
provided reason of clear glasses.
To address these issues, we introduce two methods in Deblinder that allow users to test their

hypotheses and validate how viable each one is: additional instance search and image manipulation.
The frst testing method available in Deblinder is running the model on additional instances described
by a hypothesis. By looking at the model’s performance on additional instances, developers get a
better approximation of how their model performs on a given blind spot compared to the overall
dataset. While the most straightforward way to fnd additional examples would be to search through
the training and testing sets, this method presents a couple of signifcant difculties. First, fnding
images that match an arbitrary human-defned feature, for example, ‘a person with clear glasses
looking sideways’, is a challenging and generally unsolved problem. Second, if the types of model
failures reported by end-users are not present in the original dataset, additional instances of the
reported issues would not be found with this strategy.

Due to these difculties, we include a diferent method for discovering new instances inspired by
Beat the Machine [4]: we allow developers to fnd additional data in the wild [R3]. Search engines
are often able to fnd data for arbitrary descriptions, so Deblinder embeds a search feature for
fnding images using the Flickr API, which developers can use directly from the interface to fnd and
upload images for a given search term. Deblinder also allows developers to upload new instances
developers fnd using other means. The AI system is then run on the new instances to get the
model’s output, and developers can indicate whether the model is correct or incorrect. A percentage
bar tracks the model’s accuracy on the new instances, giving developers an approximation for how
well their hypotheses generalize.

This technique can also be used for the last stage of the process, Model Improvement, by collecting
additional training data. As we show in Section 8, the additional images collected as evidence can
be added to the training set to improve the model’s performance. To be model and framework
agnostic, Deblinder does not have a feature for directly retraining the AI system but lets users
export the discovered images to be included in future training sets.
The second validation technique available in Deblinder lets developers directly test their hy-

potheses by modifying an instance and looking at the model’s changed output. For a reported or
additional instance, a developer can download the instance, modify it, and re-upload it [R3]. Devel-
opers can use any tool or system they are comfortable with to modify the instance, ranging from
photo manipulation software to algorithmic manipulations. This technique takes inspiration from

Proc. ACM Hum.-Comput. Interact., Vol. 5, No. CSCW2, Article 425. Publication date: October 2021.

Crowdsourced Failure Reports 425:13

Fig. 6. The Hypothesis Panel developers use to create, track, and test hypotheses. Developers can name
hypotheses according to the features describing a systematic failure. For each hypothesis, developers add
reports that match the hypothesis reason. They can then test the hypotheses with the modified instance
and additional example strategies. Lastly, users can import and export hypotheses files for collaboration and
integration into existing ML development tools.

Cabrera et al. [12]’s web-based interface that allows users to remove features of an image and see
the model’s new output. However, we decided not to include any predefned image manipulations
to allow developers to use techniques they are familiar with to modify the image in any way. For
the example hypothesis above of clear glasses, the developer may download an image of someone
with clear glasses and darken the glasses frames. They can then upload the edited image and see the
model’s output. The model output for both the original and modifed instance are presented to the
developer, who indicates whether the model’s output changed as expected. As with the additional
image validation, a percentage bar tracks how many of the modifed instances changed as expected,
giving the user a heuristic for how valid their hypothesis is.

5.3 Implementation
Deblinder is a web-based system built using Svelte1 and D32 for the front-end, and Flask3 for
the server, both of which can be run locally. The Flask server hosts the machine learning model,
which is used to get the model output for additional examples and modifed images. The resulting
hypotheses and evidence can be saved, exported, and shared. Deblinder will be open source and
can be adapted to new domains by updating the instance preview.

6 USER STUDY METHODOLOGY
The goal of the user study was twofold: to understand the real-world applications and limitations
of failure reports, and to evaluate Deblinder’s usability for discovering systematic failures. To
derive these insights, we conducted semi-structured interviews and think-aloud studies with 10

1https://svelte.dev/
2https://d3js.org/
3https://fask.palletsprojects.com/en/1.1.x/

Proc. ACM Hum.-Comput. Interact., Vol. 5, No. CSCW2, Article 425. Publication date: October 2021.

https://svelte.dev/
https://d3js.org/
https://flask.palletsprojects.com/en/1.1.x/

425:14 Ángel Alexander Cabrera et al.

participants. The 10 participants were recruited through university and company email lists. They
all had at least three years of ML experience and either published an ML research project or
deployed a production AI system. 8 were Ph.D. candidates in a computer science-related discipline
(machine learning, human-computer interaction, or computer science), and 2 were developers at
diferent software companies who work with deployed models. The study lasted up to one hour,
and participants were compensated with a $20 Amazon gift card.

All studies were done remotely over video conferencing and consisted of three primary sections.
The frst part of the study was a semi-structured interview to understand the types of AI systems
participants work with and their current process for discovering and fxing systematic failures.
The second part of the study aimed to evaluate the usability and workfow of Deblinder by having
participants use the system to create and validate hypotheses. After a ten-minute introduction and
walk-through of the system’s major features, we tasked participants with thinking aloud while
creating and testing two or three failure hypotheses. We then provided them with additional images
to upload into Deblinder and try one of the hypothesis testing strategies. In the fnal section, we
discussed with participants the potential applications and limitations of using failure reports in
their own models and systems.

Participants used a web-hosted version of Deblinder loaded with the reports collected for the do-
main of eyeglass detection described in Sections 3.1 and 4.2. We focused on eyeglass detection since
facial recognition systems are widespread and have received attention for real-world issues [10].

7 USER STUDY RESULTS
Two researchers independently analyzed the results of the user study using thematic analysis and
afnity diagramming. Additionally, the hypotheses participants generated using Deblinder were
aggregated in Table 1. We found that with 10 participants the themes for the applications of failure
reports, usability of Deblinder, and failures participants discovered (Table 1) converged signifcantly.

7.1 Deblinder and the Sensemaking Process

The crowd auditing workfow. All participants found the workfow of Deblinder to follow their
mental process for discovering and testing systematic errors. One participant who conducts ed-
ucation research described their model debugging process specifcally in terms of sensemaking:
“... we’re going to get together and talk and say like, what are our hypotheses about what’s really
going on here? [...] And then we test the hypothesis by saying: Okay. Here’s what we think might
be going on. Can we test whether that seems to be true? If we look at thousands of students rather
than just this one instance.”
Other participants described similar debugging processes in their own work and identifed

benefts specifc to a crowd auditing process with failure reports. One participant who works at a
self-driving car company stated that “This is basically the exact workfow at some level that we
kind of do, but it’s more of a manual process and it’s usually after the fact instead of before the
fact.” Another participant stated that they “become the crowd and try to simulate the test set” when
validating their models and concluded that our process “is great for democratizing AI.”
Exploring failure reports with the report embedding. Eight of the developers came up with
their hypotheses from looking at the Failure Report Embedding, while two had preexisting ideas of
potential errors they either looked for in the embedding or used the search functionality to discover.
While some participants noticed that the embedding contained extraneous concepts, for example,
glasses, they generally found the embedding useful, with one participant mentioning it was “very
good at fnding patterns.”

Proc. ACM Hum.-Comput. Interact., Vol. 5, No. CSCW2, Article 425. Publication date: October 2021.

Crowdsourced Failure Reports 425:15

Table 1. Participant Hypotheses. The hypotheses participants generated in the study using Deblinder. We
joined similar hypotheses together and show how many participants reported each one.

Hypothesis # of Participants
Thin, clear, or no rims
Dark or tinted lenses
Eyes occluded
Bad image quality
Looking sideways
Eyebrows confused with frames
Shadow over eyes
Oddly positioned glasses

7
5
4
2
2
1
1
1

While all participants eventually found the failure reports useful and understood what they
represented, it took two participants a few interactions to fully understand them. These participants
were initially confused about both where the reports came from and what they represented. One
participant thought that the reports were hypotheses that other developers had created, while
another did not know the reports were only for wrongly classifed images. We do not believe this
is a severe faw in the Deblinder system or crowd auditing process since, in a deployed setting, the
developer would be more involved in defning and collecting the failure reports. The developer
would then have a clear mental model of what the raw data being visualized is.
Creating and validating failure hypotheses. All participants found the Hypothesis Panel inter-
face useful for tracking and testing hypotheses. There was also signifcant overlap in the systematic
failures participants described, as seen in Table 1, suggesting that Deblinder can surface the most
prevalent patterns present in a set of failure reports.
An interesting dynamic we discovered during the studies was three participants’ uncertainty

with how specifc to make their hypotheses. One participant was unsure whether to create a
hypothesis for “face is obstructed”, or the more specifc hypothesis of “hair is covering their face”.
Another participant overcame this uncertainty by beginning with a more general hypothesis and
then refning it if, through testing, the general hypothesis was not confrmed. We intentionally
let the developer choose the granularity of hypotheses since, depending on the domain, certain
description levels may be more helpful for fxing the discovered issues.
Another interaction four participants wished for was richer interactions between hypotheses.

In Deblinder each hypothesis has its own isolated sets of reports and instances. Participants at times
wished they could drag and drop additional instances into other hypotheses or reuse some of their
collected reports. Richer interactions between hypotheses could create a more seamless experience.
All participants found the additional instance validation useful for testing their hypotheses.

The modifed instance interaction also refected participants’ expectations. For example, before
being introduced to the system, one participant mentioned that “counterfactuals seem like a logical
choice” for testing their model.

7.2 Applications and Limitations of Failure Reports

Suitable domains. Through conversations with our participants, we found a pattern for which AI
systems would be best suited for crowd auditing using failure reports. Our participants worked with
various models, data types, and domains in both industry and research. We found that the primary

Proc. ACM Hum.-Comput. Interact., Vol. 5, No. CSCW2, Article 425. Publication date: October 2021.

425:16 Ángel Alexander Cabrera et al.

Fig. 7. Retraining the eyeglass detection model with data from the blind spots identified with Deblinder shows
significant improvement in performance over retraining with randomly selected additional data.

factor dictating the usefulness of Deblinder was how human-understandable the model’s input and
output are. For an end-user to generate a probable explanation, they have to understand what the
data and output represent. For example, fnancial data or signal processing will generally not work
well, as it is often difcult for humans to spot potential issues or edge cases. This is not the case for
domains like pedestrian detection and image captioning, where it is often evident to humans when
a model is wrong and what the problem is. Many AI systems focus on these human-understandable
domains for which end-users can provide viable reports, and over half of our participants worked
with such systems. Failure reports can even be used in more complex domains if domain experts are
seeing the model output and can describe potential failures, for example, radiologists and x-rays.
Model errors in practice. Nine participants had encountered situations in which their models
had systematic errors in practice. For example, one participant developed a system for tracking
hands using a video feed and found that the model tended to fail when a hand was at the edge of
the screen. After some investigation, they attributed this issue to a “center bias” in the data, which
was mostly made up of hands in the middle of the video or picture frame. Following this example,
most participants attributed their system’s systematic failures to the data rather than the model.

One of our participants works on a production AI system with multiple chained models. In this
case, it is hard to pinpoint the exact source of the problem, i.e., which model is at fault for the
failure, using the testing mechanisms in Deblinder. Despite this, failure reports can still be used to
characterize failures the overall system is making.

8 EXPERIMENTAL VALIDITY OF FAILURE REPORTS
While the user study showed that developers can fnd and validate various types of systematic
failures using Deblinder, there is an open question if these insights can be used to improve model
performance. To directly test the fnal stage of our crowd auditing process, Model Improvement, we
gathered additional data from the hypotheses participants identifed in the user study and retrained
the glasses detection model. We hypothesized that adding data specifcally from systematic failure
groups will improve a model more than adding the same type of data. If this hypothesis holds, it
suggests images from the blind spots developers found were underrepresented in the data, leading
to the failures crowd auditing was able to detect with failure reports and Deblinder.
We collected additional data by using a script to scrape Google Images, limited to permissibly

licensed images. To fnd particular images, we used search terms like ‘person wearing glasses’ and
‘person with covered face’. We then downloaded the images for each search term and removed

Proc. ACM Hum.-Comput. Interact., Vol. 5, No. CSCW2, Article 425. Publication date: October 2021.

Crowdsourced Failure Reports 425:17

those that did not ft the description. This data gathering process can also be done using the similar
image search functionality in Deblinder
To isolate the impact of blind spot images on model performance, we used three diferent

conditions. The baseline condition was a random subset of the original CelebA training data,
which has 160,000 headshots of celebrities [38]. The control condition consisted of the images from
the baseline condition plus 644 additional images: 354 images of people with glasses and 290 of
people without glasses. The fnal experimental condition also consisted of the baseline images
plus a diferent set of 673 additional images: 361 images of people with glasses (145 with clear
glasses and 215 with covered or occluded faces and glasses) and 312 images of people without
glasses and covered or occluded faces. These additional images represent the most common blind
spots discovered by participants in the user study, as seen in Table 1. For both the control and
experimental condition, we originally collected 750 images each but removed the images that did
not ft the search terms.

To measure the impact of additional images on model performance, we retrained every model at
diferent-sized subsets of baseline training images. When training the baseline model, 600 random
images from the training set were added to control for the additional data in the other conditions.
The results can be seen in Figure 7, with the F1 score used to measure performance on the test set
since it gives a more accurate view of performance for imbalanced data. We fnd that at almost
every training size, the experimental condition performs better than both the control and baseline
conditions, confrming our hypothesis that collecting data from blind spots can better improve
model performance.

There are several additional results from this experiment. First, the control condition performed
consistently better than the baseline condition. We believe that this is likely due to the new images
difering from the training data in dimensions like image quality and face positioning that help the
model generalize, a phenomenon that has been shown in ImageNet models [52]. Second, we fnd that
the impact of additional images on performance diminishes as the training set size increases. This
is likely due to the number of additional images (~600) being two orders of magnitude smaller than
the original training set (40,000-70,000), minimizing the impact of additional images on training.

9 DISCUSSION
9.1 Generalization of Failure Reports and Deblinder
Our implementation of Deblinder represents one example design of how to make failure reports
useful for discovering systematic failures. Notably, Deblinder is focused on the setting of one analyst
looking at various failure reports in the domain of images. Future work could explore methods for
using crowdsourcing to synthesize and make sense of reports, further scaling the manual process
enabled by Deblinder, or developing algorithmic techniques for extracting insights. This work
also focused on text-based failure reports as the primary medium of reporting. More advanced
techniques like data tagging could lead to better methods for clustering similar instances and
extracting systematic failures.

The current version of Deblinder generalizes to image domains beyond binary classifcation. We
show this by collecting and visualizing failure reports for an image captioning model on pictures
of animals. We used a pre-trained PyTorch captioning model4 and a subset of images from the
Flickr30K dataset [46]. In this case, how the model failed is not obvious to end-users, as it might fail
to recognize the objects in the image correctly or fail to generate syntactical text. For this reason,
we collected failure reports for how the model failed instead of why in contrast to the eyeglass

4https://github.com/yunjey/pytorch-tutorial/tree/master/tutorials/03-advanced/image_captioning

Proc. ACM Hum.-Comput. Interact., Vol. 5, No. CSCW2, Article 425. Publication date: October 2021.

https://github.com/yunjey/pytorch-tutorial/tree/master/tutorials/03-advanced/image_captioning

425:18 Ángel Alexander Cabrera et al.

detection example. We used the same interface and Amazon Mechanical Turk process as described
in Section 4.2.
The resulting Failure Report Embedding for image captioning can be seen in Figure 5B, and

demonstrates some interesting insights. These include frisbee being a common concept; as it turns
out, the captioning model describes many standing dogs as holding a frisbee regardless of whether
they are holding one or not. Running is also prevalent, as the model describes animals as ‘running’
if they are just standing or upright. While Deblinder was designed to work with any image domain,
it is also extensible to include other domains like video, text, and tabular data.

9.2 Limitations and Future Work
Failure reports provide a valuable snapshot into AI systems’ real-world systematic errors, but model
blind spots are complex with various dimensions. Extensions to Deblinder and future work could
further developers’ ability to understand and improve their model’s real-world performance.
Fixing systematic failures. Deblinder’s similar image search can be used to collect more training
data and improve model performance, but it is not a complete solution. Future work could explore
more efective methods for fxing the detected failures. Algorithmic techniques like clustering and
classifcation could supplement similar image search and be used to label more training data [30, 37].
For natural images, this includes pre-trained models for image classifcation and object detection
like those for OpenImages [35]. Even without more data, recent data programming methods like
slice-based learning can be used to improve model performance in areas of high error [16].
Better testing and tracking. While developers appreciated the hypothesis testing techniques,
they require nontrivial developer efort and only provide approximations to the ground truth
validity of hypotheses. To scale the testing of hypotheses, crowd-based systems similar to Beat
the Machine could be used to task crowd workers with editing or discovering new images [4].
Research into scalable and novel testing techniques could also help improve hypothesis evaluation.
These include more advanced algorithmic methods for fnding additional instances or solutions
like Generative Adversarial Nets (GANs) that could create synthetic examples to test a blind spot
hypothesis [47]. Additional validation methods would also help counter confrmation bias that
might come from confounders or biases in individual sources of evidence.

As developers begin to change and improve AI systems, it is important to track their performance
over time. Is the model doing better for some regions of error? Is it regressing for others? Are there
new blind spots? Tracking an AI system’s performance Deblinder could be extended to visualize the
evolution of failures over time, tracking whether data and model changes have their desired efect.
Complex hypotheses and domain knowledge. The Deblinder system and the overall process
generally matched developers’ model debugging processes, but we discovered some limitations and
opportunities for improvement in our user study. Deblinder was designed to work with discrete,
separable blind spots, but we found that they are often much more ambiguously defned. Some
participants wanted to be able to nest and group hypotheses, like, for example, putting the ‘hat
covering face’ hypothesis in the more general hypothesis for ‘face is obstructed’. This ambiguity
could impact later stages of the process like what type of data is collected. Future work could
explore more complex methods for visualizing and organizing hypotheses and supporting evidence.
Another interaction that participants desired was a more direct way to include their domain

knowledge and insights into the Failure Report Embedding and system. Richer interactions with the
embedding, such as allowing developers to add their own tags and descriptions to failure reports,
could deepen the insights developers can get from the reports.
Better understanding failure reports. We have shown for two distinct domains that end-users
provide probable failure reports, and experimentally showed for one of the domains that those

Proc. ACM Hum.-Comput. Interact., Vol. 5, No. CSCW2, Article 425. Publication date: October 2021.

Crowdsourced Failure Reports 425:19

fndings can be used to improve model performance. While developers can verify blind spots
in Deblinder, future work could explore human descriptions of model errors further, for example,
understanding the types of failures people are more likely to detect. A more complex understanding
of the human side of crowd auditing could help developers decide when to deploy the process and
guide the development of techniques and systems for encouraging better reporting.

10 CONCLUSION
AI systems are being deployed to a growing number of societally impactful domains. To improve
their performance and understand their potential impacts, developers must know what types of
errors their models are making. We introduce crowdsourced failure reports, descriptions of how
or why a model failed, and show how they can be used to detect and validate systematic failures
in AI systems. To synthesize hundreds or thousands of text reports, we design and implement a
visual analytics system, Deblinder, for aggregating, visualizing, and validating insights from failure
reports. Tightening the loop between model development and real-world evaluation is essential for
developing safe and responsible AI systems, and insights from end-users provide a rich new data
source for augmenting this process.

ACKNOWLEDGMENTS
This material is based upon work supported by an Amazon grant, a Block Center for Technology
and Society grant, a National Science Foundation grant under No. IIS-2040942, and the National
Science Foundation Graduate Research Fellowship Program under grant No. DGE-1745016. Any
opinions, fndings, and conclusions or recommendations expressed in this material are those of
the authors and do not necessarily refect the views of Amazon, the Block Center or the National
Science Foundation.

REFERENCES
[1] Yongsu Ahn and Yu Ru Lin. 2020. Fairsight: Visual analytics for fairness in decision making. IEEE Transactions on

Visualization and Computer Graphics 26, 1 (2020), 1086–1095. https://doi.org/10.1109/TVCG.2019.2934262
[2] Saleema Amershi, Andrew Begel, Christian Bird, Robert DeLine, Harald Gall, Ece Kamar, Nachiappan Nagappan,

Besmira Nushi, and Thomas Zimmermann. 2019. Software Engineering for Machine Learning: A Case Study. Proceedings
- 2019 IEEE/ACM 41st International Conference on Software Engineering: Software Engineering in Practice, ICSE-SEIP 2019
(2019), 291–300. https://doi.org/10.1109/ICSE-SEIP.2019.00042

[3] Paul André, Aniket Kittur, and Steven P. Dow. 2014. Crowd synthesis: Extracting categories and clusters from
complex data. Proceedings of the ACM Conference on Computer Supported Cooperative Work, CSCW (2014), 989–998.
https://doi.org/10.1145/2531602.2531653

[4] Josh M Attenberg, Pagagiotis G Ipeirotis, and Foster Provost. 2011. Beat the machine: Challenging workers to fnd the
unknown unknowns. In Workshops at the Twenty-Fifth AAAI Conference on Artifcial Intelligence.

[5] Gagan Bansal and Daniel S. Weld. 2018. A coverage-based utility model for identifying unknown unknowns. 32nd
AAAI Conference on Artifcial Intelligence, AAAI 2018 (2018), 1463–1470.

[6] Solon Barocas and Andrew D Selbst. 2018. Big Data’s Disparate Impact. SSRN Electronic Journal 671 (2018), 671–732.
https://doi.org/10.2139/ssrn.2477899

[7] B. B. Bederson, J. Meyer, and L. Good. 2000. Jazz: An extensible zoomable user interface graphics toolkit in Java. UIST
(User Interface Software and Technology): Proceedings of the ACM Symposium (2000), 171–180. https://doi.org/10.1016/
b978-155860915-0/50016-0

[8] Nicolas Bettenburg, Sascha Just, Adrian Schröter, Cathrin Weiss, Rahul Premraj, and Thomas Zimmermann. 2008.
What Makes a Good Bug Report?. In Proceedings of the 16th ACM SIGSOFT International Symposium on Foundations of
Software Engineering (Atlanta, Georgia) (SIGSOFT ’08/FSE-16). Association for Computing Machinery, New York, NY,
USA, 308–318. https://doi.org/10.1145/1453101.1453146

[9] Nicolas Bettenburg, Rahul Premraj, Thomas Zimmermann, and Sunghun Kim. [n.d.]. Duplicate bug reports considered
harmful. . . really?. In 2008 IEEE International Conference on Software Maintenance. IEEE, 337–345.

[10] Joy Buolamwini and Timnit Gebru. 2018. Gender shades: Intersectional accuracy disparities in commercial gender
classifcation. In Conference on fairness, accountability and transparency. 77–91.

Proc. ACM Hum.-Comput. Interact., Vol. 5, No. CSCW2, Article 425. Publication date: October 2021.

https://doi.org/10.1109/TVCG.2019.2934262
https://doi.org/10.1109/ICSE-SEIP.2019.00042
https://doi.org/10.1145/2531602.2531653
https://doi.org/10.2139/ssrn.2477899
https://doi.org/10.1016/b978-155860915-0/50016-0
https://doi.org/10.1016/b978-155860915-0/50016-0
https://doi.org/10.1145/1453101.1453146

425:20 Ángel Alexander Cabrera et al.

[11] Ángel Alexander Cabrera, Will Epperson, Fred Hohman, Minsuk Kahng, Jamie Morgenstern, and Duen Horng Chau.
2019. FairVis: Visual Analytics for Discovering Intersectional Bias in Machine Learning. In 2019 IEEE Conference on Visual
Analytics Science and Technology, VAST 2019 - Proceedings. 46–56. https://doi.org/10.1109/VAST47406.2019.8986948

[12] Ángel Alexander Cabrera, Fred Hohman, Jason Lin, and Duen Horng Chau. 2018. Interactive Classifcation for Deep
Learning Interpretation. (2018), 1–5. http://arxiv.org/abs/1806.05660

[13] Joseph Chee Chang, Aniket Kittur, and Nathan Hahn. 2016. Alloy: Clustering with crowds and computation. Conference
on Human Factors in Computing Systems - Proceedings (2016), 3180–3191. https://doi.org/10.1145/2858036.2858411

[14] Duen Horng Chau, Aniket Kittur, Jason I. Hong, and Christos Faloutsos. 2011. Apolo: Making sense of large network
data by combining rich user interaction and machine learning. Conference on Human Factors in Computing Systems -
Proceedings (2011), 167–176. https://doi.org/10.1145/1978942.1978967

[15] Nan Chen Chen, Jina Suh, Johan Verwey, Gonzalo Ramos, Steven Drucker, and Patrice Simard. 2018. Anchorviz:
Facilitating classifer error discovery through interactive semantic data exploration. International Conference on
Intelligent User Interfaces, Proceedings IUI (2018), 269–280. https://doi.org/10.1145/3172944.3172950

[16] Vincent S. Chen, Sen Wu, Zhenzhen Weng, Alexander Ratner, and Christopher Ré. 2019. Slice-based Learning: A
Programming Model for Residual Learning in Critical Data Slices. NeurIPS (2019). http://arxiv.org/abs/1909.06349

[17] Justin Cheng and Michael S. Bernstein. 2015. Flock: Hybrid crowd-machine learning classifers. CSCW 2015 - Proceedings
of the 2015 ACM International Conference on Computer-Supported Cooperative Work and Social Computing (2015), 600–611.
https://doi.org/10.1145/2675133.2675214

[18] Yeounoh Chung, Tim Kraska, Neoklis Polyzotis, Ki Hyun Tae, and Steven Euijong Whang. 2019. Slice fnder: Automated
data slicing for model validation. Proceedings - International Conference on Data Engineering 2019-April (2019), 1550–
1553. https://doi.org/10.1109/ICDE.2019.00139

[19] Cristian Felix, Steven Franconeri, and Enrico Bertini. 2018. Taking Word Clouds Apart: An Empirical Investigation of
the Design Space for Keyword Summaries. IEEE Transactions on Visualization and Computer Graphics 24, 1 (2018),
657–666. https://doi.org/10.1109/TVCG.2017.2746018

[20] Kristie Fisher, Scott Counts, and Aniket Kittur. 2012. Distributed sensemaking: Improving sensemaking by leveraging
the eforts of previous users. Conference on Human Factors in Computing Systems - Proceedings (2012), 247–256.
https://doi.org/10.1145/2207676.2207711

[21] Eureka Foong, Darren Gergle, and Elizabeth M. Gerber. 2017. Novice and expert sensemaking of crowdsourced feedback.
Proceedings of the ACM on Human-Computer Interaction 1, CSCW (2017), 1–18. https://doi.org/10.1145/3134680

[22] Carsten Görg, Zhicheng Liu, Jaeyeon Kihm, Jaegul Choo, Haesun Park, and John Stasko. 2013. Combining computational
analyses and interactive visualization for document exploration and sensemaking in jigsaw. IEEE Transactions on
Visualization and Computer Graphics 19, 10 (2013), 1646–1663. https://doi.org/10.1109/TVCG.2012.324

[23] Nitesh Goyal. 2015. Designing for Collaborative Sensemaking: Using Expert & Non-Expert Crowd. (2015). http:
//arxiv.org/abs/1511.06053

[24] Geon Heo, Yuji Roh, Seonghyeon Hwang, Dayun Lee, and Steven Euijong Whang. 2020. Inspector Gadget: A Data
Programming-Based Labeling System for Industrial Images. Proc. VLDB Endow. 14, 1 (Sept. 2020), 28–36. https:
//doi.org/10.14778/3421424.3421429

[25] Kenneth Holstein, Jennifer Wortman Vaughan, Hal Daumé, Miroslav Dudík, and Hanna Wallach. 2019. Improving
fairness in machine learning systems: What do industry practitioners need? Conference on Human Factors in Computing
Systems - Proceedings (2019), 1–16. https://doi.org/10.1145/3290605.3300830

[26] Panos Ipeirotis. [n.d.]. Demographics of mechanical Turk CeDER-10-01.pdf. ([n. d.]). http://archive.nyu.edu/fda/
bitstream/2451/29585/2/CeDER-10-01.pdf

[27] He Jiang, Xiaochen Li, Zhilei Ren, Jifeng Xuan, and Zhi Jin. 2018. Toward Better Summarizing Bug Reports With
Crowdsourcing Elicited Attributes. IEEE Transactions on Reliability PP (2018), 1–21. https://doi.org/10.1109/TR.2018.
2873427

[28] Shubhra Goyal Jindal, Student Member, and Arvinder Kaur. 2020. Automatic Keyword and Sentence-Based Text
Summarization for Software Bug Reports. IEEE Access 8 (2020), 65352–65370. https://doi.org/10.1109/ACCESS.2020.
2985222

[29] Minsuk Kahng, Dezhi Fang, and Duen Horng Chau. 2016. Visual exploration of machine learning results using
data cube analysis. HILDA 2016 - Proceedings of the Workshop on Human-In-the-Loop Data Analytics (2016). https:
//doi.org/10.1145/2939502.2939503

[30] Been Kim, Martin Wattenberg, Justin Gilmer, Carrie Cai, James Wexler, Fernanda Viegas, and Rory Sayres. 2018.
Interpretability beyond feature attribution: Quantitative Testing with Concept Activation Vectors (TCAV). 35th
International Conference on Machine Learning, ICML 2018 6 (2018), 4186–4195.

[31] Miryung Kim, Thomas Zimmermann, Robert Deline, and Andrew Begel. 2018. Data scientists in software teams: State
of the art and challenges. IEEE Transactions on Software Engineering 44, 11 (2018), 1024–1038. https://doi.org/10.1109/
TSE.2017.2754374

Proc. ACM Hum.-Comput. Interact., Vol. 5, No. CSCW2, Article 425. Publication date: October 2021.

https://doi.org/10.1109/VAST47406.2019.8986948
http://arxiv.org/abs/1806.05660
https://doi.org/10.1145/2858036.2858411
https://doi.org/10.1145/1978942.1978967
https://doi.org/10.1145/3172944.3172950
http://arxiv.org/abs/1909.06349
https://doi.org/10.1145/2675133.2675214
https://doi.org/10.1109/ICDE.2019.00139
https://doi.org/10.1109/TVCG.2017.2746018
https://doi.org/10.1145/2207676.2207711
https://doi.org/10.1145/3134680
https://doi.org/10.1109/TVCG.2012.324
http://arxiv.org/abs/1511.06053
http://arxiv.org/abs/1511.06053
https://doi.org/10.14778/3421424.3421429
https://doi.org/10.14778/3421424.3421429
https://doi.org/10.1145/3290605.3300830
http://archive.nyu.edu/fda/bitstream/2451/29585/2/CeDER-10-01.pdf
http://archive.nyu.edu/fda/bitstream/2451/29585/2/CeDER-10-01.pdf
https://doi.org/10.1109/TR.2018.2873427
https://doi.org/10.1109/TR.2018.2873427
https://doi.org/10.1109/ACCESS.2020.2985222
https://doi.org/10.1109/ACCESS.2020.2985222
https://doi.org/10.1145/2939502.2939503
https://doi.org/10.1145/2939502.2939503
https://doi.org/10.1109/TSE.2017.2754374
https://doi.org/10.1109/TSE.2017.2754374

Crowdsourced Failure Reports 425:21

[32] Aniket Kittur, Andrew M. Peters, Abdigani Diriye, and Michael R. Bove. 2014. Standing on the schemas of giants:
Socially augmented information foraging. Proceedings of the ACM Conference on Computer Supported Cooperative Work,
CSCW (2014), 999–1010. https://doi.org/10.1145/2531602.2531644

[33] Aniket Kittur, Andrew M. Peters, Abdigani Diriye, Trupti Telang, and Michael R. Bove. 2013. Costs and benefts of
structured information foraging. Conference on Human Factors in Computing Systems - Proceedings (2013), 2989–2998.
https://doi.org/10.1145/2470654.2481415

[34] Kostiantyn Kucher and Andreas Kerren. 2015. Text visualization techniques: Taxonomy, visual survey, and community
insights. IEEE Pacifc Visualization Symposium 2015-July (2015), 117–121. https://doi.org/10.1109/PACIFICVIS.2015.
7156366

[35] Alina Kuznetsova, Hassan Rom, Neil Alldrin, Jasper Uijlings, Ivan Krasin, Jordi Pont-Tuset, Shahab Kamali, Stefan
Popov, Matteo Malloci, Alexander Kolesnikov, Tom Duerig, and Vittorio Ferrari. 2020. The Open Images Dataset V4:
Unifed Image Classifcation, Object Detection, and Visual Relationship Detection at Scale. International Journal of
Computer Vision 128, 7 (2020), 1956–1981. https://doi.org/10.1007/s11263-020-01316-z

[36] Himabindu Lakkaraju, Ece Kamar, Rich Caruana, and Eric Horvitz. 2017. Identifying unknown unknowns in the open
world: Representations and policies for guided exploration. 31st AAAI Conference on Artifcial Intelligence, AAAI 2017
Settles 2009 (2017), 2124–2132.

[37] Anthony Liu, Santiago Guerra, Isaac Fung, Gabriel Matute, Ece Kamar, and Walter Lasecki. 2020. Towards Hybrid
Human-AI Workfows for Unknown Unknown Detection. The Web Conference 2020 - Proceedings of the World Wide
Web Conference, WWW 2020 2020 (2020), 2432–2442. https://doi.org/10.1145/3366423.3380306

[38] Ziwei Liu, Ping Luo, Xiaogang Wang, and Xiaoou Tang. 2015. Deep Learning Face Attributes in the Wild. In Proceedings
of International Conference on Computer Vision (ICCV).

[39] Travis Mandel, Jahnu Best, Randall H. Tanaka, Hiram Temple, Chansen Haili, Sebastian J. Carter, Kayla Schlechtinger,
and Roy Szeto. 2020. Using the Crowd to Prevent Harmful AI Behavior. Proceedings of the ACM on Human-Computer
Interaction 4, CSCW2 (2020). https://doi.org/10.1145/3415168

[40] Leland McInnes, John Healy, Nathaniel Saul, and Lukas Grossberger. 2018. UMAP: Uniform Manifold Approximation
and Projection. The Journal of Open Source Software 3, 29 (2018), 861.

[41] Jose G. Moreno-Torres, Troy Raeder, Rocío Alaiz-Rodríguez, Nitesh V. Chawla, and Francisco Herrera. 2012. A unifying
view on dataset shift in classifcation. Pattern Recognition 45, 1 (2012), 521–530. https://doi.org/10.1016/j.patcog.2011.
06.019

[42] Besmira Nushi, Ece Kamar, and Eric Horvitz. 2018. Towards Accountable AI: Hybrid Human-Machine Analyses for
Characterizing System Failure. HCOMP (2018). http://arxiv.org/abs/1809.07424

[43] Jefrey Pennington, Richard Socher, and Christopher D Manning. 2014. Glove: Global vectors for word representation.
In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP). 1532–1543.

[44] Peter Pirolli and Stuart Card. 1999. Information foraging. Psychological Review 106, 4 (1999), 643–675. https:
//doi.org/10.1037/0033-295X.106.4.643

[45] Peter Pirolli and Stuart Card. 2005. The sensemaking process and leverage points for analyst technology as identifed
through cognitive task analysis. Proceedings of International Conference on Intelligence Analysis 2005, January (2005),
2–4. https://doi.org/10.1007/s13398-014-0173-7.2 arXiv:9809069v1 [gr-qc]

[46] Bryan A. Plummer, Liwei Wang, Chris M. Cervantes, Juan C. Caicedo, Julia Hockenmaier, and Svetlana Lazebnik. 2017.
Flickr30k Entities: Collecting Region-to-Phrase Correspondences for Richer Image-to-Sentence Models. International
Journal of Computer Vision 123, 1 (2017), 74–93. https://doi.org/10.1007/s11263-016-0965-7

[47] Alec Radford, Luke Metz, and Soumith Chintala. 2016. Unsupervised representation learning with deep convolutional
generative adversarial networks. 4th International Conference on Learning Representations, ICLR 2016 - Conference
Track Proceedings (2016), 1–16.

[48] Iyad Rahwan, Manuel Cebrian, Nick Obradovich, Josh Bongard, Jean François Bonnefon, Cynthia Breazeal, Jacob W.
Crandall, Nicholas A. Christakis, Iain D. Couzin, Matthew O. Jackson, Nicholas R. Jennings, Ece Kamar, Isabel M.
Kloumann, Hugo Larochelle, David Lazer, Richard McElreath, Alan Mislove, David C. Parkes, Alex ‘Sandy’ Pentland,
Margaret E. Roberts, Azim Sharif, Joshua B. Tenenbaum, and Michael Wellman. 2019. Machine behaviour. Nature 568,
7753 (2019), 477–486. https://doi.org/10.1038/s41586-019-1138-y

[49] Ramya Ramakrishnan, Ece Kamar, Besmira Nushi, Debadeepta Dey, Julie Shah, and Eric Horvitz. 2019. Overcoming
Blind Spots in the Real World: Leveraging Complementary Abilities for Joint Execution. Proceedings of the AAAI
Conference on Artifcial Intelligence 33 (2019), 6137–6145. https://doi.org/10.1609/aaai.v33i01.33016137

[50] Sarah Rastkar, Gail C Murphy, and Gabriel Murray. 2014. Automatic summarization of bug reports. IEEE Transactions
on Software Engineering 40, 4 (2014), 366–380. https://doi.org/10.1109/TSE.2013.2297712

[51] Alexander Ratner, Christopher De Sa, Sen Wu, Daniel Selsam, and Christopher Ré. 2016. Data Programming: Creating
Large Training Sets, Quickly. In Proceedings of the 30th International Conference on Neural Information Processing
Systems (Barcelona, Spain) (NIPS’16). Curran Associates Inc., Red Hook, NY, USA, 3574–3582.

Proc. ACM Hum.-Comput. Interact., Vol. 5, No. CSCW2, Article 425. Publication date: October 2021.

https://doi.org/10.1145/2531602.2531644
https://doi.org/10.1145/2470654.2481415
https://doi.org/10.1109/PACIFICVIS.2015.7156366
https://doi.org/10.1109/PACIFICVIS.2015.7156366
https://doi.org/10.1007/s11263-020-01316-z
https://doi.org/10.1145/3366423.3380306
https://doi.org/10.1145/3415168
https://doi.org/10.1016/j.patcog.2011.06.019
https://doi.org/10.1016/j.patcog.2011.06.019
http://arxiv.org/abs/1809.07424
https://doi.org/10.1037/0033-295X.106.4.643
https://doi.org/10.1037/0033-295X.106.4.643
https://doi.org/10.1007/s13398-014-0173-7.2
https://arxiv.org/abs/9809069v1
https://doi.org/10.1007/s11263-016-0965-7
https://doi.org/10.1038/s41586-019-1138-y
https://doi.org/10.1609/aaai.v33i01.33016137
https://doi.org/10.1109/TSE.2013.2297712

425:22 Ángel Alexander Cabrera et al.

[52] Benjamin Recht, Rebecca Roelofs, Ludwig Schmidt, and Vaishaal Shankar. 2019. Do ImageNet classifers generalize to
ImageNet? 36th International Conference on Machine Learning, ICML 2019 2019-June (2019), 9413–9424.

[53] Donghao Ren, Saleema Amershi, Bongshin Lee, Jina Suh, and Jason D. Williams. 2017. Squares: Supporting Interactive
Performance Analysis for Multiclass Classifers. IEEE Transactions on Visualization and Computer Graphics 23, 1 (2017),
61–70. https://doi.org/10.1109/TVCG.2016.2598828

[54] Stuart Rose, Dave Engel, Nick Cramer, and Wendy Cowley. 2010. Automatic Keyword Extraction from Individual
Documents. Text Mining: Applications and Theory March (2010), 1–20. https://doi.org/10.1002/9780470689646.ch1

[55] Adrian Schröter, Nicolas Bettenburg, and Rahul Premraj. 2010. Do stack traces help developers fx bugs?. In Proceedings
- International Conference on Software Engineering. 118–121. https://doi.org/10.1109/MSR.2010.5463280

[56] Andrew D. Selbst, Danah Boyd, Sorelle A. Friedler, Suresh Venkatasubramanian, and Janet Vertesi. 2019. Fairness and
abstraction in sociotechnical systems. FAT* 2019 - Proceedings of the 2019 Conference on Fairness, Accountability, and
Transparency (2019), 59–68. https://doi.org/10.1145/3287560.3287598

[57] Yedendra B. Shrinivasan and Jarke J. Van Wijk. 2008. Supporting the analytical reasoning process in information
visualization. Conference on Human Factors in Computing Systems - Proceedings (2008), 1237–1246. https://doi.org/10.
1145/1357054.1357247

[58] Tom Simonite. 2018. When it comes to gorillas, google photos remains blind. Wired, January 13 (2018).
[59] Chengnian Sun, David Lo, Siau Cheng Khoo, and Jing Jiang. 2011. Towards more accurate retrieval of duplicate bug

reports. 2011 26th IEEE/ACM International Conference on Automated Software Engineering, ASE 2011, Proceedings (2011),
253–262. https://doi.org/10.1109/ASE.2011.6100061

[60] Chengnian Sun, David Lo, Xiaoyin Wang, Jing Jiang, and Siau Cheng Khoo. 2010. A discriminative model approach for
accurate duplicate bug report retrieval. Proceedings - International Conference on Software Engineering 1 (2010), 45–54.
https://doi.org/10.1145/1806799.1806811

[61] Sandra Wachter, Brent Mittelstadt, and Chris Russell. 2017. Counterfactual Explanations Without Opening the Black
Box: Automated Decisions and the GDPR. SSRN Electronic Journal (2017), 1–52. https://doi.org/10.2139/ssrn.3063289

[62] Daisuke Wakabayashi. 2018. Self-driving Uber car kills pedestrian in Arizona, where robots roam. The New York Times
3 (2018), 19.

[63] Karl E Weick. 1995. Sensemaking in Organizations (Foundations for Organizational Science). Star (1995).
[64] Tongshuang Wu, Marco Tulio Ribeiro, Jefrey Heer, and Daniel Weld. 2019. {E}rrudite: Scalable, Reproducible, and

Testable Error Analysis. Proceedings of the 57th Conference of the Association for Computational Linguistics (2019),
747–763. https://www.aclweb.org/anthology/P19-1073

[65] Shamima Yeasmin, Chanchal K. Roy, and Kevin A. Schneider. 2014. Interactive visualization of bug reports using topic
evolution and extractive summaries. Proceedings - 30th International Conference on Software Maintenance and Evolution,
ICSME 2014 (2014), 421–425. https://doi.org/10.1109/ICSME.2014.66

[66] Jie Zhang, Xiao Yin Wang, Dan Hao, Bing Xie, Lu Zhang, and Hong Mei. 2015. A survey on bug-report analysis. Science
China Information Sciences 58, 2 (2015), 1–24. https://doi.org/10.1007/s11432-014-5241-2

[67] Thomas Zimmermann, Rahul Premraj, Nicolas Bettenburg, Sascha Just, Adrian Schröter, and Cathrin Weiss. 2010.
What makes a good bug report? IEEE Transactions on Software Engineering 36, 5 (2010), 618–643. https://doi.org/10.
1109/TSE.2010.63

Received January 2021; revised April 2021; accepted July 2021

Proc. ACM Hum.-Comput. Interact., Vol. 5, No. CSCW2, Article 425. Publication date: October 2021.

https://doi.org/10.1109/TVCG.2016.2598828
https://doi.org/10.1002/9780470689646.ch1
https://doi.org/10.1109/MSR.2010.5463280
https://doi.org/10.1145/3287560.3287598
https://doi.org/10.1145/1357054.1357247
https://doi.org/10.1145/1357054.1357247
https://doi.org/10.1109/ASE.2011.6100061
https://doi.org/10.1145/1806799.1806811
https://doi.org/10.2139/ssrn.3063289
https://www.aclweb.org/anthology/P19-1073
https://doi.org/10.1109/ICSME.2014.66
https://doi.org/10.1007/s11432-014-5241-2
https://doi.org/10.1109/TSE.2010.63
https://doi.org/10.1109/TSE.2010.63

	Abstract
	1 Introduction
	2 Background and Related Work
	3 Crowd Auditing With Failure Reports
	3.1 Motivating Scenario
	3.2 Process Overview

	4 Failure Report Collection
	4.1 What is a Failure Report?
	4.2 Methods for Collecting Reports

	5 Failure Report Analysis
	5.1 Design Requirements
	5.2 System Design
	5.3 Implementation

	6 User Study Methodology
	7 User Study Results
	7.1 Deblinder and the Sensemaking Process
	7.2 Applications and Limitations of Failure Reports

	8 Experimental Validity of Failure Reports
	9 Discussion
	9.1 Generalization of Failure Reports and Deblinder
	9.2 Limitations and Future Work

	10 Conclusion
	Acknowledgments
	References

