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AI systems can fail to learn important behaviors, leading to real-world issues like safety concerns and biases. 
Discovering these systematic failures often requires signifcant developer attention, from hypothesizing 
potential edge cases to collecting evidence and validating patterns. To scale and streamline this process, we 
introduce crowdsourced failure reports, end-user descriptions of how or why a model failed, and show how 
developers can use them to detect AI errors. We also design and implement Deblinder , a visual analytics 
system for synthesizing failure reports that developers can use to discover and validate systematic failures. In 
semi-structured interviews and think-aloud studies with 10 AI practitioners, we explore the afordances of the 
Deblinder system and the applicability of failure reports in real-world settings. Lastly, we show how collecting 
additional data from the groups identifed by developers can improve model performance. 
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1 INTRODUCTION 
AI systems deployed in the real world can have signifcant consequences when they fail, including 
safety issues like self-driving cars harming pedestrians [62], and fairness concerns like inadvertently 
racist image labels [58]. Developers need to be able to efciently detect, validate, and fx systematic 
failures to improve the safety, equity, and overall performance of their systems [48]. 
Unfortunately, discovering what systematic errors AI systems make presents developers with 

various challenges [2, 25, 31]. First, developers often have to sift through thousands of failure cases, 
many of which are random, one-of errors, to identify systematic failures. This manual task can be 
prohibitively labor-intensive for individuals or small teams. Second, once a developer discovers 
a pattern of failure, they have to validate their hypothesis by fnding more evidence of the same 
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Fig. 1. The Deblinder system looking at failure reports for a classification model that detects if a person is 
wearing eyeglasses. The descriptions of why each instance was misclassified are textual reports generated by 
crowdworkers. In the Failure Report Embedding (A), a developer can explore high-level concepts extracted 
from the failure reports. They can then search for or look through specific reports using the Failure Report 
Drawer (B). Finally, the developer can create hypotheses for blind spots in the Hypothesis Panel (C) and test 
them by modifying instances or collecting additional data. 

behavior. In common domains like images, there are few tools for fnding similar instances, making 
it hard to fnd more evidence. Lastly, data scientists have to repeat this process to track and mitigate 
the various systematic failures a model may have. 

To tackle these challenges, we defne and formalize crowdsourced failure reports, text descriptions 
from end-users detailing how or why they think an AI system failed. Failure reports can, for example, 
describe a face recognition model that didn’t detect a person who was outside, or a smartwatch 
that miscounted steps when a user was running on a treadmill. When collected at scale in a crowd 
auditing process, failure reports can be used to discover AI errors developers were unaware of and 
provide evidence to validate their hypotheses. Failure reports are inspired by the well-established 
concept of bug reports in software engineering [8], but are diferent in a few signifcant ways. 
Primarily, since AI systems are often stochastic, black-box models, failure reports have to be 
aggregated and further validated to uncover AI failures. In this work, we discuss the similarities 
and diferences between failure reports and bug reports and the design of methods for collecting 
useful reports. We also tested diferent collection methods and techniques and implemented an 
example report collection system using Amazon’s Mechanical Turk platform. 
Failure reports can describe AI failures, but collecting hundreds or thousands of free-text sen-

tences leads us back to one of data scientists’ original challenges: they still have to sift through 
countless failure reports to fnd and validate patterns. To address this issue, we designed and 
implemented a visual analytics system, Deblinder, that lets users explore hundreds or thousands 
of failure reports to discover and test systematic failures. The system’s main interface is a visu-
alization that aggregates failure reports to let developers fnd patterns of error. Developers can 
then create hypotheses for failures they fnd in the report visualization. Deblinder also provides 
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two complementary features for validating failure hypotheses and assessing if they generalize -
similar instance search and instance manipulation. While Deblinder is focused on image models, it 
is designed to be adapted to other domains like text and video data. 

We explored the applications of failure reports and the Deblinder system through semi-structured 
interviews and think-aloud studies with 10 AI practitioners. We found that the process of creating 
and testing hypotheses for systematic failures mirrors developers’ debugging process and that 
they found consistent failures with supporting evidence when using Deblinder. The study also 
scoped the best uses of failure reports, including their limitation to domains where end-users can 
understand the input data and see the model output directly. Lastly, we experimentally showed that 
a model retrained with failures discovered by study participants can improve model performance. 
Failure reports add a useful strategy to developers’ AI debugging toolbox. They complement 

existing algorithmic, visual, and crowd debugging systems by detecting and describing complex 
failures in deployment, like those developers may not have considered due to their own blind 
spots and biases [6, 25, 49, 56]. Visualizing crowdsourced failure reports continues the emerging 
theme of distributed or crowd sensemaking [20, 21, 23, 32, 33], which has been used to improve 
clustering [3, 13], summarize bug reports [27], and learn model features [17]. 
In summary, our contributions are the following: 
• Failure reports, end-user descriptions of how or why an AI system failed. We for-
malize a crowd auditing process for discovering AI failures based on failure reports, text 
descriptions of model errors from end-users. We explore the parallels between failure re-
ports and software bug reports, design methods for efectively collecting them, and implement 
an example collection method using Amazon Mechanical Turk. 

• Deblinder, a visual analytics system for making sense of failure reports. We designed 
and implemented a visual analytics system for synthesizing failure reports developers can 
use to discover and validate AI failures. The system uses an interactive word-embedding 
visualization to aggregate and spatially organize the text reports. Developers can then create, 
track, and test hypotheses using Deblinder , which provides two validation methods. 

• Evaluation of failure reports and the Deblinder system. In semi-structured interviews 
and think-aloud studies with 10 AI practitioners, we explored the real-world applications 
and limitations of failure reports. We found that developers discovered consistent, evidence-
backed failures using Deblinder, and showed experimentally that collecting data from the 
discovered failures improved model performance. 

2 BACKGROUND AND RELATED WORK 

Bug reports in software engineering. Bug reports are an essential stage of the software engi-
neering process. A bug report generally consists of a description of the issue, steps to reproduce 
the problem, and supporting information like a stack trace [8, 66], which software engineers can 
use to fnd and fx the failing code. While at a high level failure reports are similar to bug reports, 
debugging AI systems present various new challenges. Primarily, while a single bug report can 
be used to identify and fx a bug, various examples of the same issue are required to discover a 
systematic failure in an AI system. Additionally, there is no ground-truth evidence like a stack 
trace [55] from faulty code in black-box AI systems - the only supporting evidence comes from 
failure reports and instances themselves. Therefore, developers need numerous failure reports for 
the same issue and additional evidence to detect and validate AI failures. 
While failure reports difer signifcantly from bug reports, we build on existing software engi-

neering research on improving bug reporting. Bug summaries can be helpful for quickly triaging 
bugs and fnding similar issues [28, 50]. For example, one method for improving reports showed 
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how using crowd-elicited attributes could improve bug summaries [27]. Visualizations, like the 
topic modeling approach by Yeasmin et al. [65], have also been used to improve bug reporting by 
summarizing bug repositories. Lastly, fnding duplicate bugs is also an active area of interest for 
reducing bug reports and fnding more evidence for an issue [9, 59, 60]. While we do not summarize 
or remove duplicate failure reports, we extract keywords and combine similar reports to provide a 
high-level view of the issues end-users describe. 
Error analysis for AI systems. We use the term systematic failures to describe a group of instances 
sharing semantic features for which an AI produces the wrong output signifcantly more often than 
for the overall dataset. Since there is no standard term in the literature for systematic failures, we use 
it interchangeably with terms from existing work like blind spots [49] or unknown unknowns [5, 36]. 
There are various algorithmic techniques for discovering and characterizing systematic fail-

ures, ranging from fully automated to human-driven, crowdsourced techniques. Fully algorithmic 
strategies aim to automatically slice data to discover areas of error, for example Lakkaraju et al.’s 
exploration-exploitation technique for clustering and discovering model blind spots [36] and Slice 
Finder, which splits data according to tabular features and uses the model’s loss to rank their 
severity [18]. These techniques require data that can be easily clustered or sliced, both of which 
are rarely available for data like images and videos. By using human-generated failure reports, 
developers can fnd more nuanced and complex failures that are not defned by pre-existing features. 
In addition to algorithmic methods, many visualization tools exist for helping data scientists 

develop and debug AI systems. These tools provide support across the entire ML development 
pipeline, from model tuning to error characterization. For example, Squares [53] and MLCube [29] 
are visualizations for tracking models’ performance across diferent dimensions, including class 
confusion and various performance metrics. Visualization tools can also help developers debug 
models for specifc types of error, for example, the What-If Tool [61], FairSight [1], and FairVis 
[11] are visual analytics systems for auditing the fairness of AI systems. These techniques, like 
the algorithmic methods, are limited to errors described using input features or model outputs. By 
using text reports, our method can describe any human-defned failure. 

There are also visual systems specifcally for exploring and characterizing model errors. Errudite 
is one such system specifc for natural language processing (NLP) models [64]. It uses a regex-based 
querying language for searching and replacing parts of text to discover and correct error hypotheses. 
This technique works well for text data but requires users to already have hypotheses and does not 
generalize to domains like images. AnchorViz is a polar-coordinates visualization that lets users 
create semantic anchors to visualize data instances across diferent concepts [15]. This method 
requires users to manually label sentences with ‘anchors’ or concepts, which does not scale easily. 
Failure reports can surface initial hypotheses and supporting evidence for systematic failures. 
Lastly, while not specifcally designed for error analysis, data programming can be a powerful 

tool for discovering slices, or subgroups, of a dataset [24, 51]. Data programming is a method of 
combining noisy labeling functions to train a classifer. Developers can create labeling functions 
to quickly slice their data and discover systematic failures, similar to how MLCube [29] and Slice 
Finder [18] help developers do subgroup analysis. Data programming can be a helpful validation 
tool for discovering more evidence for errors detected using failure reports. 
Crowd auditing. Using crowdsourced human input has shown promise for discovering and 
characterizing AI models’ systematic failures. The frst study to show that humans could efectively 
fnd AI failures was Beat the Machine, a fully human-driven technique that asked users to fnd 
examples for which an AI system failed, specifcally for hate speech detection [4]. They found that 
humans could quickly fnd websites that the AI misclassifed with very high probability. However, 
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the authors did not take on the subsequent problem of aggregating the individually reported errors 
to describe and validate a model’s systematic failures. 
Crowds can also be used to establish the boundaries of AI behavior and prevent models from 

making harmful decisions. Mandel et al. [39] explored how to use the crowd to defne acceptable AI 
behavior, created a rule-based interface to generate AI system constraints, and showed its efcacy 
in a real-world education domain. Deblinder and failure reports can help identify the edge cases 
that would inform this type of crowd deliberation. 
Recent work has explored how crowd input can be combined with algorithmic techniques to 

characterize AI failures. Nushi et al. [42] developed Pandora, a system that uses human and machine 
described clusters of data to derive a decision tree visualization of model errors. Pandora is an 
efective method for fnding features that correlate with or predict failure, visualized with a usable 
decision tree. Like the clustering method by Lakkaraju et al. [36], Pandora is dependent on the 
clustering algorithm to fnd meaningful groups of failures. By using free text input, failure reports 
can describe nuanced failures that may not be found with clustering. 
Liu et al. [37] introduced another method for detecting systematic failures, Patterned Beat the 

Machine (P-BTM), that extends BTM by using crowd workers to fnd more examples of unknown 
unknowns. They ask crowd workers to provide initial labels for unknown unknowns, which are 
then used to train an expansion classifer to fnd more examples in an unlabeled dataset. Like 
clustering methods, P-BTM requires a classifcation model for any semantic concept, which they 
note is often challenging. It also requires labeling initial unknown unknowns using a mechanism 
like BTM. Crowd auditing with failure reports uses the human labels to discover the initial failure 
instances and, with a system like Deblinder , surface similar instances that may be difcult for the 
expansion classifer to fnd. 
Pandora and P-BTM are efective methods for detecting systematic failures that complement 

failure reports and Deblinder well. Failure reports are better suited for fnding semantic failures 
not present in a training or test set. Since failure reports are text sentences, they can describe 
failures that involve actions or arbitrary semantic features, including those that are challenging to 
detect with a clustering or classifcation algorithm. When collected for deployed systems, failure 
reports can also detect real-world failures that are not present in a test set and labeled as an 
unknown unknown. Pandora and P-BTM, on the other hand, can be more efcient and require less 
manual analysis since they partially automate the discovery and validation of systematic failures. 
Developers can collect failure reports and fnd initial systematic failures with Deblinder that can be 
further validated using these hybrid, algorithmic methods. 

3 CROWD AUDITING WITH FAILURE REPORTS 
3.1 Motivating Scenario 
To motivate the use of failure reports for detecting systematic failures and describe the process, we 
walk through an example scenario. 

Kristen, an ML developer, has created an eyeglass detection system for use in airport customs. 
For security reasons, people should not wear glasses when taking their picture at passport control. 
Given a picture of someone’s face, the system provides a binary output of whether or not the person 
is wearing glasses. While the system has a high test set accuracy, Kristen wants to know if her 
model performs well in practice. 

At each photo kiosk, Kristen adds a text prompt that lets people write a report if the model fails 
to detect if they’re wearing glasses or not. After a month, she has collected thousands of failure 
reports, and uses Deblinder to explore the reports and discover any systematic issues. With this 
information, she collects additional data representative of those blind spots and retrains her model. 
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Fig. 2. The iterative process of using failure reports to discover and mitigate AI models’ systematic failures. (1) 
In the Failure Report Collection stage, end users observe and report model failures back to the developer. 
(2) Next, in the Failure Report Analysis stage, developers analyze the failure reports to discover, describe, 
and validate hypotheses of potential failures. In this work, Deblinder is used as the primary interface for this 
sensemaking process. (3) In the final Model Improvement stage, developers can use the discovered failures 
to collect additional data, tweak their models, and analyze the real-world impact of their systems. 

The retrained model performs better on the test set, and she deploys the updated system. She 
continues collecting reports to see if the blind spots persist or new issues arise over time. 

We collect failure reports for the domain in this example, eyeglass detection, and use the results 
in our user study in Section 6. Specifcally, we trained a convolutional neural network (CNN) using 
PyTorch to classify headshots of people, with an overall accuracy of over 99%. We trained the model 
using images from the CelebA dataset, which has over 160,000 headshots of celebrities with labels 
for eyeglasses [38]. Additionally, we collected reports and applied Deblinder to the domain of image 
captioning (see Section 9.1) to show how the process and system generalize to other domains. 

3.2 Process Overview 
The crowd auditing process with failure reports consists of three major stages, as can be seen 
in Figure 2. It is an iterative and ongoing process, as end-users report newly discovered failures 
and developers update their model. The three main stages are the following: (1) Failure Report 
Collection, (2) Failure Report Analysis, and (3) Model Improvement. 

In the frst stage, Failure Report Collection, end-users of an AI system describe why or how a 
model failed for a given instance. This stage can either be done during development to proactively 
fnd potential blind spots or be conducted in deployment to discover real-world problems. The 
second stage is Failure Report Analysis, where developers have to make sense of the numerous 
text failure reports. In the last stage, Model Improvement, developers can use their validated 
insights to mitigate the real-world efects of model errors and improve their systems. 
Using failure reports to discover model blind spots provides unique advantages over standard 

manual and algorithmic methods. Primarily, aggregated failure reports can be a more cost and 
time-efcient option for fnding systematic failures by surfacing commonly represented errors, 
a task that often requires signifcant manual labor. By including a more diverse set of users, this 
crowd auditing method can also detect and describe failures that developers had not considered 
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due to their own blind spots and biases [25]. Additionally, if the process is applied to real-world 
domains instead of using crowd workers, the process can identify failures that are not present in 
the test set or that arise due to issues like dataset shift [41, 52]. In the rest of this paper, we explore 
the challenges for collecting and analyzing failure reports, and describe the design choices and 
technical solutions we took to address them. 

4 FAILURE REPORT COLLECTION 
We defne failure reports as text submissions from end-users of AI systems describing a model’s 
failure for a certain instance. While failure reports are conceptually similar to bug reports for 
software systems, their content difers substantially. ML systems do not provide any additional 
insight into why an error occurred, like stack traces and logs in software systems [67]. A failure 
report and data instance is the only information reported back to the developer, and thus a report’s 
entire value comes from the text. Given the open-ended structure of failure reports, developers can 
make various design choices when collecting reports, including the question they pose to end-users 
and the response format. Here, we describe these design options and the specifc choices we made 
for this work. 

4.1 What is a Failure Report? 
Failure reports are free-text responses from end-users describing certain features of an instance. 
While we tested other types of reports, specifcally short ‘tags’ describing an error, we found that 
descriptive sentences were necessary to capture nuance like actions and complex image features. 
Free-text sentences are also a low barrier of entry for end-users that do not require any additional 
training, instruction, or domain knowledge. Beyond being a short sentence, there is considerable 
freedom in what developers can ask end-users to describe in their failure report. Through testing 
in diferent domains and results from our user study, we found that the type of report a developer 
should collect depends on a model’s domain. 

In complex tasks with ambiguous ground truth or performance measures, it is often most useful 
to collect responses of how a model is failing. For example, in a system that automatically generates 
captions for an image, collecting descriptions of how the captions are wrong (e.g., the dog is holding 
a frisbee although the caption says it is a tennis ball) can provide model developers with a mental 
map of the kinds of mistakes the model is making. 

In more well-defned domains like classifcation, collecting responses of why a model is failing is 
often more useful since the type of error is apparent (the wrong class). For a system that detects if 
someone is wearing glasses, for example, it is often clear what the problem is (e.g., the glasses were 
not detected) but not why it happened (e.g., the glasses had thin frames, or the person was looking 
to the side). Descriptions of what aspects of an instance end-users think caused the algorithm to 
fail can provide the context needed to help developers fnd systematic errors. 

In this work, we used diferent techniques for the two image domains we analyzed. In the eyeglass 
detection example, we collected why descriptions since the model failures are clear, and for image 
captioning we collected how descriptions to discover the ways in which captions were wrong. 

4.2 Methods for Collecting Reports 
In addition to what developers ask end-users to describe, developers also have to decide how they 
will collect reports. We defne two primary methods for collecting failure reports: from end-users 
in a deployed setting or workers on a crowdsourcing platform. For a deployed AI system, failure 
reports can be collected in the same way software bug reports are - when users see that a model’s 
output is wrong, they can submit free-response text reports through a reporting interface. This 
can be implemented as a dedicated error reporting UI, or integrated into the existing support 
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Fig. 3. The web-based interface used to collect failure reports. We provided Amazon Mechanical Turk (AMT) 
workers with a series of 3 images that a model had failed for. In this example, the AMT worker was given a 
false negative error from the eyeglass detection model which they atributed the error to the person’s glasses 
being rimless and reflective. These reports were used in Deblinder for our user study and evaluation. 

and feedback features of a product. Crowdsourcing platforms are a viable alternative that can be 
used to gather failure reports if end-users do not typically see a system’s outputs or developers 
want immediate results. The primary diference between the two methods is that crowdsourcing 
platforms require the developer to have a set of labeled failure instances to show crowdworkers, 
while in deployed systems end-users discover the model failures themselves. 

To run controlled experiments and reproduce our results, we used the crowdsourcing strategy 
in this work and created a web-based interface for end-users to describe how or why a model 
failed for an instance. We used Amazon Mechanical Turk (AMT) to collect failure reports using a 
web interface we created seen in Figure 3. We showed each worker three instances, and for each 
instance asked the worker for a description of either how or why, depending on the domain, the 
model had failed. The task took an average of 5 minutes, and we paid participants $1, the equivalent 
of $12 per hour. We used the system to collect failure reports for both the eyeglass detection and 
image captioning models, collecting 163 and 55 failure reports for each domain respectively. This 
report collection interface is a proof of concept for this work - real-world systems would implement 
their own report collection platforms and processes specifc to their product. 
Since AMT is generally representative of US internet users (with some small, consistent varia-

tion [26]), it provides a good approximation of the type and quality of reports that would be gathered 
in public-facing AI applications. To control AMT responses’ quality, we limited participants to 
those who had an approval rating of over 98% with over 500 completed tasks. We found the re-
sponses to be of high quality generally, corroborated both by direct comments by study participants 
(AI developers) and the consistency and impact of the failures they discovered (Section 6). One 
developer commented that “there’s no way this is Turker data” due to the reports’ high quality, and 
all developers found consistent, evidenced blind spots from the AMT failure reports. Future work 
could explore methods for incentivizing good reports and study the diferences between failures 
discovered by the general public and data scientists. 

5 FAILURE REPORT ANALYSIS 
Failure reports provide the core insights into model errors, but to discover valid systematic failures 
developers have to extract aggregate patterns and supporting evidence from hundreds or thousands 
of text reports. To support this process, we present the design and implementation of a visual 
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analytics system, Deblinder, that aggregates failure reports in a word embedding visualization and 
lets developers create and test their blind spot hypotheses. 
There is a rich literature of visual analytics approaches for exploring large corpora of text [34]. 

This text analysis is often described as sensemaking, the process by which people organize large 
datasets to understand and validate patterns [44, 45, 63] The sensemaking framework specifc to 
data analysis by Pirolli and Card [45] has been used to derive the design requirements for many 
visual analytics systems. One such system is Jigsaw, a visualization system for exploring large 
text datasets [22]. The authors used algorithmic methods to summarize, aggregate, and organize 
documents in a visual interface. Other systems using the sensemaking framework include the Aruvi 
system for analytical reasoning [57] and Apolo for exploring large networks [14]. 
Like these existing visual systems, we derive design challenges for Deblinder using the estab-

lished sensemaking framework by Pirolli and Card [45]. Sensemaking consists of two processes -
information foraging, where an analyst fnds evidence and forms initial ideas, and synthesis, where 
the analyst creates and tests formal hypotheses. The three primary design challenges we defne 
come directly from the central stages of the sensemaking process, the [R1] evidence fle, [R2] 
schema, and [R3] hypotheses. We tailor the challenges specifcally for text analysis and AI failures. 

5.1 Design Requirements 
A visual analytics system should address the following challenges for analyzing failure reports : 
R1. Extract, flter, and search for high-level concepts. 

Text-based failure reports should be summarized in a way that scales to thousands of reports. 
Developers should be able to quickly see an overview of high-level concepts derived from 
raw reports. Developers should also be able to apply their own domain knowledge of possible 
failures by fltering and searching for specifc concepts and reports. 

R2. Meaningfully organize concepts and failure reports. 
To develop and validate hypotheses, it is useful to know what concepts and reports are most 
similar to each other. This context allows users to brainstorm hypotheses that include a 
variety of similar concepts and fnd reports that may ft into their existing hypotheses. 

R3. Create, manage, and validate multiple hypotheses. 
Developers should be able to create, track, and test formal hypotheses of systematic errors. 
They should be able to create and name hypotheses with supporting evidence, failure reports, 
and testing instances. When a developer has a hypothesis of a certain systematic failure, they 
should have methods for validating their hypothesis. 

5.2 System Design 
The Deblinder interface, seen in Figure 1, is primarily composed of two views, the Failure Report 
Embedding (Figure 1A) and the Hypothesis Panel (Figure 1C). The Failure Report Embedding is 
the frst point of entry and provides an interactive, aggregated visualization of failure reports. 
Developers explore and select reports from this view to generate hypotheses in the Hypothesis 
Panel. In the Hypothesis Panel, they then create and collect evidence for hypothesized systematic 
failures. Developers can then use two diferent strategies to validate their hypotheses: modify 
instances to see the model’s new output, or collect additional instances to see if the systematic 
failure generalizes to similar instances. 

5.2.1 Making Sense of Failure Reports. The Failure Report Embedding is the primary interface 
with failure reports. The collected reports are free-response sentences semantically describing 
either how or why an end-user believes the AI system failed for a given instance. To give users 
a high-level view of which types of errors are happening most often, we extract concepts from 
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Fig. 4. The Failure Report Embedding view used to explore and derive insights from reports, shown with 
reports for the image captioning model. Concepts are extracted from reports and displayed using word 
embeddings. When a user hovers over a concept, it shows a few example reports and instances. Clicking on a 
concept expands all the reports in the reports panel, allowing users to add them to their hypothesis. Hovering 
over any instance in the interface shows the full instance in the upper lef corner with the model’s prediction. 

the reports [R1], key phrases from the reports representing commonly mentioned terms. These 
concepts are aggregated, counted, and displayed in the Failure Report Embedding visualization, an 
example of which can be seen in Figure 4 for the domain of eyeglass detection. 
To extract concepts from the reports, we use RAKE (Rapid Automatic Keyword Extraction), a 

domain-agnostic keyphrase extraction algorithm [54]. The extracted high-level concepts are then 
shown in a two-dimensional word embedding visualization. To create the visual embedding, we use 
word vectors and dimensionality reduction. For each extracted concept, we calculate its embedding 
vector using the GloVe (Global Vectors for Word Representation) algorithm [43], which gives us a 
quantitative measure of how similar each concept is to each other. To project the 300-dimensional 
GloVe vectors of each concept into a two-dimensional plot, we use the UMAP dimensionality 
reduction algorithm, which maintains the locality of points in the reduced space [40]. 
We decided to use a visual embedding instead of a table or word cloud to fulfll the proposed 

design requirements. A central requirement for the failure reports visualization is showing the 
semantic similarity between reports [R2]. This is helpful because it can help users fnd similar 
concepts that may not share the same text. For example, in the eyeglass detection model, the 
concepts frames and rims are closely related and often interchangeable. A visual embedding groups 
similar concepts like these in space - in the same eyeglass domain, the concepts for glasses, frames, 
and lenses are located close to each other. In contrast, the concepts for helmet and hat are tightly 
coupled in another area of the embedding. This locality allows users to quickly see the relationship 
between concepts and explore reports that are similar in meaning. The visual embedding medium 
is also interactive and allows developers to quickly go from concepts to individual reports, which 
would not be easily accomplished with a table. 

To improve the usability of the Failure Report Embedding we use empirical fndings from 
visualization research. For each extracted concept, we calculate how many times it is mentioned 
across all failure reports, and set the size and opacity of its text accordingly. This both gives 
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Fig. 5. Example areas of the Failure Report Embedding for the eyeglass detection and image captioning 
domains. In the eyeglass detection embedding, reports for thin, transparent, and rims are close to glasses, 
priming the hypothesis for clear or thin glasses frames. For image captioning we see the concepts for frisbee 
and running, hinting at the common error of captions mentioning a nonexistent frisbee for standing dogs. 

developers an idea of what the most common reports are [R2] and helps deal with the scalability 
issue of too many reports crowding the embedding and reducing legibility. Additionally, research 
has found that keyword discovery, a task similar to exploring concepts, is best aided by changes 
to the spatial layout and font of the text [19]. The fnal usability feature we include is a form of 
semantic zooming [7]. As users zoom into sections of the Failure Report Embedding, we rescale the 
font size and opacity, spreading out the phrases and making smaller concepts easier to see. 

After exploring high-level concepts, users next have to look at specifc reports and instances to 
support their hypotheses. When a user hovers over a concept, a preview box appears around the 
phrase. It includes a few example instances, the number of reports with that concept, and excerpts 
from a few reports giving context to how end-users are using the concept. When the user clicks on 
the concept, it pins the phrase and expands all the related reports in the reports panel (Figure 1B). 
The reports panel shows all the instances and full failure reports for the selected concept and allows 
users to add the reports to their hypotheses. 
Lastly, it is often the case that a developer has domain knowledge about the model they might 

want to apply. Towards this end, we include several utility features in Deblinder [R1]. We let users 
add new keywords to the Failure Report Embedding, which are placed with the appropriate scale 
and coloring where they semantically belong. There is also a fltering feature that dynamically 
highlights in the embedding any concept the developer writes. Users may also want to fnd key 
phrases or words in the failure reports themselves, which we enable with the search functionality in 
the reports panel. With these utility features, developers can correlate their intuitions and fndings 
with the failure reports they gather. 

5.2.2 Creating and Tracking Hypotheses. Once developers have generated initial hypotheses using 
the Failure Report Embedding, they can use the Hypothesis Panel (see Figure 1C) to create, track, 
and further test systematic failures. Developers can name and track multiple hypotheses consisting 
of representative failure reports, and use two validation methods to test their initial ideas. 
The frst step developers take is creating and adding evidence to a hypothesis, which is done 

in the Hypothesis Panel. At the top of the Hypothesis Panel developers can name the current 
hypothesis according to a specifc type of error. Using the dropdown menu, they can switch 
between diferent hypotheses or create a new hypothesis [R3]. An example of the Hypothesis 
Panel can be seen in Figure 6 for the domain of eyeglass detection. 
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When a hypothesis is selected, the frst section of the panel shows the failure reports the developer 
has added to the hypothesis. These reports are instances end-users reported due to the failure 
reason described by the hypothesis. When developers hover on each failure report , the concept’s 
related reports are highlighted in the Failure Report Embedding, allowing the user to fnd potential 
new concepts to explore and expand their hypotheses [R3]. 

5.2.3 Validating Hypotheses. While failure reports provide strong evidence of a model’s systematic 
failures, they are not sufcient evidence to conclude that the issue generalizes. Failure reports are 
an incomplete source of evidence for two primary reasons. The frst is that failure reports only show 
us instances for which the model is wrong. In practice, it may be the case that the model is correct 
for most instances described by a hypothesis. In the eyeglass detection domain, it may be that 
most people with clear glasses are correctly classifed at a similar rate as people with dark-rimmed 
glasses, despite various failure reports mentioning clear glasses. The second way in which failure 
reports are insufcient evidence is in testing how plausible end-user reasons for model failure are. 
The reasons for failure reported by end-users are subjective and may not be real causes of a model’s 
failure. Using the same example as above, it could be the case that the images of people with clear 
glasses were incorrectly classifed because they were all worn low on the face, confounding the 
provided reason of clear glasses. 
To address these issues, we introduce two methods in Deblinder that allow users to test their 

hypotheses and validate how viable each one is: additional instance search and image manipulation. 
The frst testing method available in Deblinder is running the model on additional instances described 
by a hypothesis. By looking at the model’s performance on additional instances, developers get a 
better approximation of how their model performs on a given blind spot compared to the overall 
dataset. While the most straightforward way to fnd additional examples would be to search through 
the training and testing sets, this method presents a couple of signifcant difculties. First, fnding 
images that match an arbitrary human-defned feature, for example, ‘a person with clear glasses 
looking sideways’, is a challenging and generally unsolved problem. Second, if the types of model 
failures reported by end-users are not present in the original dataset, additional instances of the 
reported issues would not be found with this strategy. 

Due to these difculties, we include a diferent method for discovering new instances inspired by 
Beat the Machine [4]: we allow developers to fnd additional data in the wild [R3]. Search engines 
are often able to fnd data for arbitrary descriptions, so Deblinder embeds a search feature for 
fnding images using the Flickr API, which developers can use directly from the interface to fnd and 
upload images for a given search term. Deblinder also allows developers to upload new instances 
developers fnd using other means. The AI system is then run on the new instances to get the 
model’s output, and developers can indicate whether the model is correct or incorrect. A percentage 
bar tracks the model’s accuracy on the new instances, giving developers an approximation for how 
well their hypotheses generalize. 

This technique can also be used for the last stage of the process, Model Improvement, by collecting 
additional training data. As we show in Section 8, the additional images collected as evidence can 
be added to the training set to improve the model’s performance. To be model and framework 
agnostic, Deblinder does not have a feature for directly retraining the AI system but lets users 
export the discovered images to be included in future training sets. 
The second validation technique available in Deblinder lets developers directly test their hy-

potheses by modifying an instance and looking at the model’s changed output. For a reported or 
additional instance, a developer can download the instance, modify it, and re-upload it [R3]. Devel-
opers can use any tool or system they are comfortable with to modify the instance, ranging from 
photo manipulation software to algorithmic manipulations. This technique takes inspiration from 
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Fig. 6. The Hypothesis Panel developers use to create, track, and test hypotheses. Developers can name 
hypotheses according to the features describing a systematic failure. For each hypothesis, developers add 
reports that match the hypothesis reason. They can then test the hypotheses with the modified instance 
and additional example strategies. Lastly, users can import and export hypotheses files for collaboration and 
integration into existing ML development tools. 

Cabrera et al. [12]’s web-based interface that allows users to remove features of an image and see 
the model’s new output. However, we decided not to include any predefned image manipulations 
to allow developers to use techniques they are familiar with to modify the image in any way. For 
the example hypothesis above of clear glasses, the developer may download an image of someone 
with clear glasses and darken the glasses frames. They can then upload the edited image and see the 
model’s output. The model output for both the original and modifed instance are presented to the 
developer, who indicates whether the model’s output changed as expected. As with the additional 
image validation, a percentage bar tracks how many of the modifed instances changed as expected, 
giving the user a heuristic for how valid their hypothesis is. 

5.3 Implementation 
Deblinder is a web-based system built using Svelte1 and D32 for the front-end, and Flask3 for 
the server, both of which can be run locally. The Flask server hosts the machine learning model, 
which is used to get the model output for additional examples and modifed images. The resulting 
hypotheses and evidence can be saved, exported, and shared. Deblinder will be open source and 
can be adapted to new domains by updating the instance preview. 

6 USER STUDY METHODOLOGY 
The goal of the user study was twofold: to understand the real-world applications and limitations 
of failure reports, and to evaluate Deblinder’s usability for discovering systematic failures. To 
derive these insights, we conducted semi-structured interviews and think-aloud studies with 10 

1https://svelte.dev/ 
2https://d3js.org/ 
3https://fask.palletsprojects.com/en/1.1.x/ 
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participants. The 10 participants were recruited through university and company email lists. They 
all had at least three years of ML experience and either published an ML research project or 
deployed a production AI system. 8 were Ph.D. candidates in a computer science-related discipline 
(machine learning, human-computer interaction, or computer science), and 2 were developers at 
diferent software companies who work with deployed models. The study lasted up to one hour, 
and participants were compensated with a $20 Amazon gift card. 

All studies were done remotely over video conferencing and consisted of three primary sections. 
The frst part of the study was a semi-structured interview to understand the types of AI systems 
participants work with and their current process for discovering and fxing systematic failures. 
The second part of the study aimed to evaluate the usability and workfow of Deblinder by having 
participants use the system to create and validate hypotheses. After a ten-minute introduction and 
walk-through of the system’s major features, we tasked participants with thinking aloud while 
creating and testing two or three failure hypotheses. We then provided them with additional images 
to upload into Deblinder and try one of the hypothesis testing strategies. In the fnal section, we 
discussed with participants the potential applications and limitations of using failure reports in 
their own models and systems. 

Participants used a web-hosted version of Deblinder loaded with the reports collected for the do-
main of eyeglass detection described in Sections 3.1 and 4.2. We focused on eyeglass detection since 
facial recognition systems are widespread and have received attention for real-world issues [10]. 

7 USER STUDY RESULTS 
Two researchers independently analyzed the results of the user study using thematic analysis and 
afnity diagramming. Additionally, the hypotheses participants generated using Deblinder were 
aggregated in Table 1. We found that with 10 participants the themes for the applications of failure 
reports, usability of Deblinder, and failures participants discovered (Table 1) converged signifcantly. 

7.1 Deblinder and the Sensemaking Process 

The crowd auditing workfow. All participants found the workfow of Deblinder to follow their 
mental process for discovering and testing systematic errors. One participant who conducts ed-
ucation research described their model debugging process specifcally in terms of sensemaking: 
“... we’re going to get together and talk and say like, what are our hypotheses about what’s really 
going on here? [...] And then we test the hypothesis by saying: Okay. Here’s what we think might 
be going on. Can we test whether that seems to be true? If we look at thousands of students rather 
than just this one instance.” 
Other participants described similar debugging processes in their own work and identifed 

benefts specifc to a crowd auditing process with failure reports. One participant who works at a 
self-driving car company stated that “This is basically the exact workfow at some level that we 
kind of do, but it’s more of a manual process and it’s usually after the fact instead of before the 
fact.” Another participant stated that they “become the crowd and try to simulate the test set” when 
validating their models and concluded that our process “is great for democratizing AI.” 
Exploring failure reports with the report embedding. Eight of the developers came up with 
their hypotheses from looking at the Failure Report Embedding, while two had preexisting ideas of 
potential errors they either looked for in the embedding or used the search functionality to discover. 
While some participants noticed that the embedding contained extraneous concepts, for example, 
glasses, they generally found the embedding useful, with one participant mentioning it was “very 
good at fnding patterns.” 
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Table 1. Participant Hypotheses. The hypotheses participants generated in the study using Deblinder. We 
joined similar hypotheses together and show how many participants reported each one. 

Hypothesis # of Participants 
Thin, clear, or no rims 
Dark or tinted lenses 
Eyes occluded 
Bad image quality 
Looking sideways 
Eyebrows confused with frames 
Shadow over eyes 
Oddly positioned glasses 

7 
5 
4 
2 
2 
1 
1 
1 

While all participants eventually found the failure reports useful and understood what they 
represented, it took two participants a few interactions to fully understand them. These participants 
were initially confused about both where the reports came from and what they represented. One 
participant thought that the reports were hypotheses that other developers had created, while 
another did not know the reports were only for wrongly classifed images. We do not believe this 
is a severe faw in the Deblinder system or crowd auditing process since, in a deployed setting, the 
developer would be more involved in defning and collecting the failure reports. The developer 
would then have a clear mental model of what the raw data being visualized is. 
Creating and validating failure hypotheses. All participants found the Hypothesis Panel inter-
face useful for tracking and testing hypotheses. There was also signifcant overlap in the systematic 
failures participants described, as seen in Table 1, suggesting that Deblinder can surface the most 
prevalent patterns present in a set of failure reports. 
An interesting dynamic we discovered during the studies was three participants’ uncertainty 

with how specifc to make their hypotheses. One participant was unsure whether to create a 
hypothesis for “face is obstructed”, or the more specifc hypothesis of “hair is covering their face”. 
Another participant overcame this uncertainty by beginning with a more general hypothesis and 
then refning it if, through testing, the general hypothesis was not confrmed. We intentionally 
let the developer choose the granularity of hypotheses since, depending on the domain, certain 
description levels may be more helpful for fxing the discovered issues. 
Another interaction four participants wished for was richer interactions between hypotheses. 

In Deblinder each hypothesis has its own isolated sets of reports and instances. Participants at times 
wished they could drag and drop additional instances into other hypotheses or reuse some of their 
collected reports. Richer interactions between hypotheses could create a more seamless experience. 
All participants found the additional instance validation useful for testing their hypotheses. 

The modifed instance interaction also refected participants’ expectations. For example, before 
being introduced to the system, one participant mentioned that “counterfactuals seem like a logical 
choice” for testing their model. 

7.2 Applications and Limitations of Failure Reports 

Suitable domains. Through conversations with our participants, we found a pattern for which AI 
systems would be best suited for crowd auditing using failure reports. Our participants worked with 
various models, data types, and domains in both industry and research. We found that the primary 
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Fig. 7. Retraining the eyeglass detection model with data from the blind spots identified with Deblinder shows 
significant improvement in performance over retraining with randomly selected additional data. 

factor dictating the usefulness of Deblinder was how human-understandable the model’s input and 
output are. For an end-user to generate a probable explanation, they have to understand what the 
data and output represent. For example, fnancial data or signal processing will generally not work 
well, as it is often difcult for humans to spot potential issues or edge cases. This is not the case for 
domains like pedestrian detection and image captioning, where it is often evident to humans when 
a model is wrong and what the problem is. Many AI systems focus on these human-understandable 
domains for which end-users can provide viable reports, and over half of our participants worked 
with such systems. Failure reports can even be used in more complex domains if domain experts are 
seeing the model output and can describe potential failures, for example, radiologists and x-rays. 
Model errors in practice. Nine participants had encountered situations in which their models 
had systematic errors in practice. For example, one participant developed a system for tracking 
hands using a video feed and found that the model tended to fail when a hand was at the edge of 
the screen. After some investigation, they attributed this issue to a “center bias” in the data, which 
was mostly made up of hands in the middle of the video or picture frame. Following this example, 
most participants attributed their system’s systematic failures to the data rather than the model. 

One of our participants works on a production AI system with multiple chained models. In this 
case, it is hard to pinpoint the exact source of the problem, i.e., which model is at fault for the 
failure, using the testing mechanisms in Deblinder. Despite this, failure reports can still be used to 
characterize failures the overall system is making. 

8 EXPERIMENTAL VALIDITY OF FAILURE REPORTS 
While the user study showed that developers can fnd and validate various types of systematic 
failures using Deblinder, there is an open question if these insights can be used to improve model 
performance. To directly test the fnal stage of our crowd auditing process, Model Improvement, we 
gathered additional data from the hypotheses participants identifed in the user study and retrained 
the glasses detection model. We hypothesized that adding data specifcally from systematic failure 
groups will improve a model more than adding the same type of data. If this hypothesis holds, it 
suggests images from the blind spots developers found were underrepresented in the data, leading 
to the failures crowd auditing was able to detect with failure reports and Deblinder. 
We collected additional data by using a script to scrape Google Images, limited to permissibly 

licensed images. To fnd particular images, we used search terms like ‘person wearing glasses’ and 
‘person with covered face’. We then downloaded the images for each search term and removed 
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those that did not ft the description. This data gathering process can also be done using the similar 
image search functionality in Deblinder 
To isolate the impact of blind spot images on model performance, we used three diferent 

conditions. The baseline condition was a random subset of the original CelebA training data, 
which has 160,000 headshots of celebrities [38]. The control condition consisted of the images from 
the baseline condition plus 644 additional images: 354 images of people with glasses and 290 of 
people without glasses. The fnal experimental condition also consisted of the baseline images 
plus a diferent set of 673 additional images: 361 images of people with glasses (145 with clear 
glasses and 215 with covered or occluded faces and glasses) and 312 images of people without 
glasses and covered or occluded faces. These additional images represent the most common blind 
spots discovered by participants in the user study, as seen in Table 1. For both the control and 
experimental condition, we originally collected 750 images each but removed the images that did 
not ft the search terms. 

To measure the impact of additional images on model performance, we retrained every model at 
diferent-sized subsets of baseline training images. When training the baseline model, 600 random 
images from the training set were added to control for the additional data in the other conditions. 
The results can be seen in Figure 7, with the F1 score used to measure performance on the test set 
since it gives a more accurate view of performance for imbalanced data. We fnd that at almost 
every training size, the experimental condition performs better than both the control and baseline 
conditions, confrming our hypothesis that collecting data from blind spots can better improve 
model performance. 

There are several additional results from this experiment. First, the control condition performed 
consistently better than the baseline condition. We believe that this is likely due to the new images 
difering from the training data in dimensions like image quality and face positioning that help the 
model generalize, a phenomenon that has been shown in ImageNet models [52]. Second, we fnd that 
the impact of additional images on performance diminishes as the training set size increases. This 
is likely due to the number of additional images (~600) being two orders of magnitude smaller than 
the original training set (40,000-70,000), minimizing the impact of additional images on training. 

9 DISCUSSION 
9.1 Generalization of Failure Reports and Deblinder 
Our implementation of Deblinder represents one example design of how to make failure reports 
useful for discovering systematic failures. Notably, Deblinder is focused on the setting of one analyst 
looking at various failure reports in the domain of images. Future work could explore methods for 
using crowdsourcing to synthesize and make sense of reports, further scaling the manual process 
enabled by Deblinder, or developing algorithmic techniques for extracting insights. This work 
also focused on text-based failure reports as the primary medium of reporting. More advanced 
techniques like data tagging could lead to better methods for clustering similar instances and 
extracting systematic failures. 

The current version of Deblinder generalizes to image domains beyond binary classifcation. We 
show this by collecting and visualizing failure reports for an image captioning model on pictures 
of animals. We used a pre-trained PyTorch captioning model4 and a subset of images from the 
Flickr30K dataset [46]. In this case, how the model failed is not obvious to end-users, as it might fail 
to recognize the objects in the image correctly or fail to generate syntactical text. For this reason, 
we collected failure reports for how the model failed instead of why in contrast to the eyeglass 

4https://github.com/yunjey/pytorch-tutorial/tree/master/tutorials/03-advanced/image_captioning 

Proc. ACM Hum.-Comput. Interact., Vol. 5, No. CSCW2, Article 425. Publication date: October 2021. 

https://github.com/yunjey/pytorch-tutorial/tree/master/tutorials/03-advanced/image_captioning


425:18 Ángel Alexander Cabrera et al. 

detection example. We used the same interface and Amazon Mechanical Turk process as described 
in Section 4.2. 
The resulting Failure Report Embedding for image captioning can be seen in Figure 5B, and 

demonstrates some interesting insights. These include frisbee being a common concept; as it turns 
out, the captioning model describes many standing dogs as holding a frisbee regardless of whether 
they are holding one or not. Running is also prevalent, as the model describes animals as ‘running’ 
if they are just standing or upright. While Deblinder was designed to work with any image domain, 
it is also extensible to include other domains like video, text, and tabular data. 

9.2 Limitations and Future Work 
Failure reports provide a valuable snapshot into AI systems’ real-world systematic errors, but model 
blind spots are complex with various dimensions. Extensions to Deblinder and future work could 
further developers’ ability to understand and improve their model’s real-world performance. 
Fixing systematic failures. Deblinder’s similar image search can be used to collect more training 
data and improve model performance, but it is not a complete solution. Future work could explore 
more efective methods for fxing the detected failures. Algorithmic techniques like clustering and 
classifcation could supplement similar image search and be used to label more training data [30, 37]. 
For natural images, this includes pre-trained models for image classifcation and object detection 
like those for OpenImages [35]. Even without more data, recent data programming methods like 
slice-based learning can be used to improve model performance in areas of high error [16]. 
Better testing and tracking. While developers appreciated the hypothesis testing techniques, 
they require nontrivial developer efort and only provide approximations to the ground truth 
validity of hypotheses. To scale the testing of hypotheses, crowd-based systems similar to Beat 
the Machine could be used to task crowd workers with editing or discovering new images [4]. 
Research into scalable and novel testing techniques could also help improve hypothesis evaluation. 
These include more advanced algorithmic methods for fnding additional instances or solutions 
like Generative Adversarial Nets (GANs) that could create synthetic examples to test a blind spot 
hypothesis [47]. Additional validation methods would also help counter confrmation bias that 
might come from confounders or biases in individual sources of evidence. 

As developers begin to change and improve AI systems, it is important to track their performance 
over time. Is the model doing better for some regions of error? Is it regressing for others? Are there 
new blind spots? Tracking an AI system’s performance Deblinder could be extended to visualize the 
evolution of failures over time, tracking whether data and model changes have their desired efect. 
Complex hypotheses and domain knowledge. The Deblinder system and the overall process 
generally matched developers’ model debugging processes, but we discovered some limitations and 
opportunities for improvement in our user study. Deblinder was designed to work with discrete, 
separable blind spots, but we found that they are often much more ambiguously defned. Some 
participants wanted to be able to nest and group hypotheses, like, for example, putting the ‘hat 
covering face’ hypothesis in the more general hypothesis for ‘face is obstructed’. This ambiguity 
could impact later stages of the process like what type of data is collected. Future work could 
explore more complex methods for visualizing and organizing hypotheses and supporting evidence. 
Another interaction that participants desired was a more direct way to include their domain 

knowledge and insights into the Failure Report Embedding and system. Richer interactions with the 
embedding, such as allowing developers to add their own tags and descriptions to failure reports, 
could deepen the insights developers can get from the reports. 
Better understanding failure reports. We have shown for two distinct domains that end-users 
provide probable failure reports, and experimentally showed for one of the domains that those 
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fndings can be used to improve model performance. While developers can verify blind spots 
in Deblinder, future work could explore human descriptions of model errors further, for example, 
understanding the types of failures people are more likely to detect. A more complex understanding 
of the human side of crowd auditing could help developers decide when to deploy the process and 
guide the development of techniques and systems for encouraging better reporting. 

10 CONCLUSION 
AI systems are being deployed to a growing number of societally impactful domains. To improve 
their performance and understand their potential impacts, developers must know what types of 
errors their models are making. We introduce crowdsourced failure reports, descriptions of how 
or why a model failed, and show how they can be used to detect and validate systematic failures 
in AI systems. To synthesize hundreds or thousands of text reports, we design and implement a 
visual analytics system, Deblinder, for aggregating, visualizing, and validating insights from failure 
reports. Tightening the loop between model development and real-world evaluation is essential for 
developing safe and responsible AI systems, and insights from end-users provide a rich new data 
source for augmenting this process. 
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