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The cost of repair and maintenance of medical devices can be fairly burdensome to the healthcare industry. 
Healthcare providers often consider plans such as increasing in-house repairs, using multiple repair service 
providers, or timely replacement of devices to overcome this issue. This study aims to develop a data-driven 
Markov Decision Process (MDP) framework based on Discrete-Time Markov Chain (DTMC) model to optimize 
medical equipment repair and replacement decisions. Effective decision-making on whether to repair or replace 
is crucial to managing the product lifecycle cost and the costs to healthcare facilities. The study determines the 
optimal repair or replacement decision based on the product lifecycle data and current product failure status. It 
utilizes a net present value model to maximize expected value over an infinite time horizon. The study uses a 
dataset of 24,516 repair and maintenance records of 5,171 individual medical devices of a particular type to 
extract parameters needed for the optimization model. The dataset provides a rich baseline for analyzing 
different failures and event modes during product lifespan such as battery-related issues, random failure, pre
ventive maintenance, and physical damage. It further quantifies the chance of moving from one product status to 
another. The model outcomes are discussed for a particular case. The findings reveal the most frequent reasons 
for failures and the most economically viable repair and replacement decision for each end-of-use device based 
on their current condition. Several sensitivity analyses are conducted to clarify the impact of operating revenue 
and warranty time on the repair or replacement.   

1. Background 

Repair and maintenance of medical equipment can be quite costly for 
healthcare facilities (Mummolo et al., 2007). In 2018, the expenditure 
on US health care was estimated to be $3.6 trillion, reaching nearly $6.0 
trillion by 2027 (Centers for Medicare and Medicaid Services, 2019). 
One cost-saving approach that healthcare facilitates can take is to make 
an effective repair and replacement policy. The decision-making on 
repair and replacement is a traditional problem backing to the 1960s, 
still popular in many fields (Azevedo et al., 2020, Sheu et al., 2020, Leu 
and Ying, 2020). The objective of repair and replacement decisions is 
often to minimize cost while maximizing the operational period (Pan 
and Thomas, 2010). 

The repair and replacement decisions have been studied in the pre
vious literature. To name a new, Abdi and Taghipour (2019) proposed a 
repair-replacement decision model based on environmental impact 
factors using a plastic shredder case study (Abdi and Taghipour, 2019). 
van den Boomen et al. (2020) built Markov Decision Processes (MDP) to 

consider uncertainty in prices when deciding on maintenance and 
replacement of infrastructures (van den Boomen et al., 2020). Azevedo 
et al. (2020) developed a multi-objective genetic algorithm combined 
with discrete event simulation using the Generalized Renewal Process 
for replacement policy problems (Azevedo et al., 2020). Sheu et al. 
(2020) proposed a replacement policy based on two types of failure 
arrivals, minor or catastrophic shocks. The preventive replacement 
occurred when one of the indexes, such as the system’s age, the number 
of occurrence of type 1 failure, and the accumulative damage exceed 
predefined thresholds (Sheu et al., 2020). Leu and Ying (2020) consid
ered economic assessment to decide the replacement time of hydraulic 
machinery (Leu and Ying, 2020). Khan et al. (2020) considered factors 
such as obsolescence, productivity, and cost types to develop a 
replacement framework for midlife upgrades (Khan et al., 2020). Zheng 
and Makis (2020) proposed a condition-based maintenance policy based 
on a semi-Markov decision process (SMDP) for soft and hard failure. 
When the deterioration reaches the predefined level, the system de
termines repair or replacement (Zheng and Makis, 2020). Hamed and 
Al-Eideh (2020) used a random parameters mixed logit model to 
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determine the repair and replacement of damaged cars caused by traffic 
accidents (Hamed and Al-Eideh, 2020). 

McLaren et al. (2020) highlighted that the understanding of repair in 
the circular economy literature is limited, and the transformative 
future-oriented roles of repair are overlooked (McLaren et al., 2020). 
Wieser and Tröger (2017) explored the customers’ behaviors about 
replacement, repair, and reuse of mobile phones. They revealed that tax 
benefits and more information about repair could encourage customers 
to repair broken devices (Wieser and Troeger, 2017). Sabbaghi and 
Behdad (2018) evaluated consumer decisions on repairing mobile phones 
and estimated the economic leakage of not repairing devices for both 
consumers and businesses (Sabbaghi and Behdad, 2018). In another 
study, Sabbaghi et al. (2016) discussed product repairability’s business 
outcomes and the impact on consumer loyalty and brand recommenda
tions (Sabbaghi et al., 2016). Dabous et al. (2017) compared the life cycle 
assessment of repair and replacement for a bridge deck case (Dabous 
et al., 2017). Wursthorn et al. (2010) assessed the environmental impacts 
of repair and replacement in vehicle maintenance decisions (Wursthorn 
et al., 2010). He et al. (2017) proposed a model to make the optimal 
replacement decision for changing the hybrid electric vehicles (He et al., 
2017). Stutzman et al. (2017) adopted a numerical analysis model to 
optimize coal power plant replacement decisions (Stutzman et al., 2017). 
Mashhadi et al. (2016) investigated customers’ experience on product 
repair with several attributes such as repair cost and repair activity type 
like replacement (Mashhadi et al., 2016). Vlok et al. (2002) applied a 
vibration monitoring mechanism to build optimal replacement decisions 
for circulating pumps in a coal wash plant (Vlok et al., 2002). Although 
analyzing repair or replacement decisions is common in the previous 
studies, the literature on the repair and maintenance of medical equip
ment and the timing of repair or replacement decisions is limited. 

Along with repair and replacement decisions of medical devices, 
Sloan (2007) used a Markov decision model on single-use devices to 
decide whether to reuse or discard (Sloan, 2007). Several studies on 
repair and replacement of medical devices consider scores such as Pri
ority Replacement Index (PRI) to determine the rank of replacement 
order (Mummolo et al., 2007, Basiony, 2013). The PRI is calculated 
based on several factors, such as mean downtime ratio, life support, and 
technological obsolescence. Taylor and Jackson (2005) used the Medical 
Equipment Replacement Score (MERS) system to score the priority 
replacement for medical devices (Taylor and Jackson, 2005). Taghipour 
et al. (2011) created a Multi-Criteria Decision Making (MCDM) model to 
prioritize medical devices for maintenance decisions (Taghipour et al., 
2011). Rajasekaran (2005) adopted Equipment Replacement Planning 

System (ERPS) to automate replacement planning in hospitals (Rajase
karan, 2005). 

Although the studies mentioned above can prioritize repair or 
replacement decisions, the factors contributing to the score are deter
mined by human subjects instead of observed data. For example, tech
nological obsolescence or the ratio of usage might be too subjective since 
the medical staff often decides whether a newer device has more ad
vantages (Mummolo et al., 2007). Thus, more data-driven approaches 
are needed to enhance the effectiveness of repair and replacement 
decisions. 

In the current study, we develop a Markov Chain model to optimize 
the decision-making process. Prior studies have already used Markov 
Chain models for repair and replacement decisions. Those studies can be 
divided into two groups. The first group is studies that use the number of 
failures and product age. If the two attributes exceed the predefined 
thresholds, the decision is to replace instead of repair or maintenance 
(Kapur et al., 1989, Kijima, 1989, Makis and Jardine, 1993, Love et al., 
2000). Another group of studies is those that build Markovian deterio
ration to identify repair or replacement decisions (Pan and Thomas, 
2010, Klein, 1962, Kolesar, 1966, Derman, 1963, Ross, 1971). In those 
studies, the Markov model is built based on the device deterioration 
level. While the previous studies can make decisions among repair and 
replacement, they only considered few attributes such as the number of 
failures, ages, and deterioration. They lack comprehensive empirical 
datasets to support the analysis and ignored the failure reasons such as 
battery-related issues, random failure, and physical damage. What dis
tinguishes the current study from the previous literature (Azevedo et al., 
2020, Sheu et al., 2020, Leu and Ying, 2020, Khan et al., 2020, Zheng 
and Makis, 2020, Hamed and Al-Eideh, 2020) is that we consider 
different types of failure based on product condition beyond just reli
ability and age deterioration. Also, the cost model is structured based on 
the product condition derived from lifecycle data, and finally, a real 
work dataset is employed to show the model’s application. 

In addition to the repair decision, the DTMC has shown its success in 
modeling other decision-making processes. To name a few, Abboud 
(2001) built a discrete-time Markov model to manage 
production-inventory cost (Abboud, 2001). Behdad and Thurston 
(2011) developed a DTMC to identify consumer electronics’ optimal 
upgrade levels (Behdad and Thurston, 2011). Ranjith et al. (2013) dis
cussed timber bridge elements’ prediction to predict deterioration de
gree (Ranjith et al., 2013). Although previous researchers have used 
Markov models to handle repair and replacement decisions, there is still 
limited literature on repair and replacement of medical equipment and 

Nomenclature 

Pi,j = P(j | i) Transition probability from state i to state j 
fi(z) The probability density function of repair time for a device 

in state i (failure type i) 
Xt+1 = j The process is in state j at time t+1 
ni,j The number of occurrences from state i to state j 
n Number of states 
L (p) The log maximum likelihood equation of probabilities of 

the realization 
λi Lagrange multipliers 
M Transition matrix 
Di,j Average operating days from state i to state j 
(di,j)k The kth record of operating days from state i to state j 
PV Present value 
FV Future value 
β Discount factor 
βi,j Discount factor from state i to state j 

r Annual discount rate or rate of return 
p The number of periods 
Oi,j,δ Operating revenue from state i to state j based on decision δ 
δ decision (δ = 1 means repair; δ = 0 means replacement) 
OR Operating revenue per day 
V(i) Net present value (revenue - cost) earned over an infinite 

number of periods 
ri,δ Cost of decision δ in state i 
ARDi Average repair or maintenance days for the state i 
NC Replacement costs 
WD Warranty days 
RC Repair costs per day 
AIC Akaike information criterion 
BIC Bayesian information criterion 
L̂ The maximum value of the likelihood function 
k Number of the probability distribution parameters  
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factors influencing this domain’s decision-making process. The DTMC is 
a random procedure through the transition from one state to another 
state and has an important Markov property called “memoryless” (Arif 
and Shahid, 2018). Also, the MDP framework is constructed based on 
the four elements including set of states, actions, transition probability, 
and rewards (Goyal and Grand-Clement, 2018, Zheng and Siami Namin, 
2018). When implementing the MDP framework, the MDP framework 
must be satisfied with Markov property (Zheng and Siami Namin, 2018). 
Previous researchers applied MDP to different decision-making situa
tions. For example, Marais (2013) used dynamic programming to 
determine the flows of no failure, repair, and replacement to maximize 
the present value of net profit (Marais, 2013). Xia (2018) developed the 
mean-variance optimization problem based on the MDP framework to 
minimize the variance of system rewards (Xia, 2018). Thodoroff et al. 
(2018) solved temporal regularization by the MDP framework for 
different policy evaluation settings (Thodoroff et al., 2018). Roy et al. 
(2019) proposed a new Reinforcement Learning algorithm by consid
ering an infinite-horizon average reward MDP framework to find 
optimal policy (Roy et al., 2019). 

Table 1 shows the comparison of the existing models and the pro
posed model in this study on repair and replacement decisions. In the 
previous studies, the replacement priority decisions on medical devices 
are often determined by computing PRI. However, when calculating the 
PRI, some subjective features such as obsolescence and subjective score 
range of each feature are considered. To overcome the limitations of 
descriptive decision-making methods, several researchers developed 
data-driven optimization models to find the optimal decisions. Most 
researchers built their optimization frameworks based on cost minimi
zation, instead of profit maximization. The cost minimization does not 
guarantee the maximum profit. Different from previous data-driven 
optimization models, the proposed model in this study focuses on 
profit maximization and further incorporates consideration of different 
failure reasons for a product. Moreover, The proposed cost structure is 
different from other studies in which the repair and replacement will be 
determined for each type of failure reason. 

This study aims to model and analyze the decision-making process on 
the timing of repair or replacement of medical devices. The DTMC model 
has been used to calculate the transition probability from one state to 
another state. In addition, an MDP framework has been developed with 
four elements: states, actions, transition probability, and rewards. 
Among these elements, the transition probability is obtained from the 
DTMC model. The MDP framework provides the optimal decisions on 
repair or replacement. Since the MDP framework is constructed from the 
DTMC model’s output, we rename our framework as the MDP-DTMC 
model. We use a dataset of the repair and maintenance logs of medical 
devices to estimate the parameters needed in the model. The proposed 
optimization model is built based on different failure reasons, and the 
corresponding cost structures are applied in the optimization model. The 
optimization model provides optimal repair and replacement decisions 
for each type of failure reason. 

The MDP-DTMC model is built based on different types of mainte
nance reasons. The transition matrix of probabilities and average 
operating days (operating cycle) used in DTMC have been obtained from 
the real-world dataset. Finally, an optimization model is framed based 
on the MDP framework to identify the optimal repair or replacement 
timing for medical devices. Fig. 1 shows the procedure between the 
healthcare industry, product dealer, and repair center. The healthcare 
provider is the primary decision-maker here. Upon receiving a broken 
product, the failure reason is recorded in their database. If the product 
fails during the warranty time, the dealer will offer a new replacement at 
no cost. Otherwise, the healthcare provider needs to decide on repair 
and replacement. The contribution of this study is to build an optimi
zation framework based on the proposed cost model by considering 
different types of failure from a real-world dataset. 

The remainder of this paper is organized as follows. Section 2 dis
cusses the proposed optimization model. Section 3 provides an overview 
of the dataset used in this paper. Section 4 summarizes the results. 
Finally, Section 5 concludes the paper. 

2. Methodology 

In this section, we first describe the DTMC model. We will then 
integrate the DTMC process with an optimization framework to deter
mine the optimal repair or replacement decision that maximizes the 
revenue. Finally, we will discuss a dataset of repair and maintenance of 
medical devices to estimate the transition probabilities used in the 
proposed method. 

2.1. Discrete-time markov chain (DTMC) 

The Markov chain is built based on matrix analysis (Craig and Sendi, 
2002), and is a powerful tool to model discrete-time stochastic processes 
(Ross, 2014). Due to its benefits, it is a popular method for solving 
problems in different domains such as air quality, suspended sediment 
concentrations, and flower pollination algorithm (Tsai et al., 2016, He 
et al., 2017, Chung et al., 2020, Alfa, 2020). Assuming the state space of 
x = { i0, i1, …, it−1, …, i, j}, the probability that the process moves from 
state i to state j can be expressed as (Tsai et al., 2016): 

P{Xt+1 = j|Xt = i, Xt−1 = it−1, ⋯, X1 = i1, X0 = i0} = Pi,j = P(j | i) (1)  

where Xt+1 = j means the process is in state j at time t+1, and Pi,j is the 
transition probability from state i to state j. Due to the memoryless 
property of the Markov chain (Li et al., 2017), the transition probability 
can be expressed as: 

P{Xt+1 = j|Xt = i} = Pi,j = P(j | i) (2) 

In this study, since transition probabilities are unknown, we adopt 
the maximum likelihood to estimate the transition probabilities by using 
Lagrange multipliers (Shalizi, 2009). The log maximum likelihood 

Table 1 
Comparison of existing models and the current study.  

Reference Method Subjective Features Optimization Model Failure Type Cost Structure Real Case Maximum Profit Minimum Cost 

(Mummolo et al., 2007) PRI ✓    ✓   
(Basiony, 2013) PRI ✓       
(Taylor and Jackson, 2005) PRI ✓    ✓   
(Taghipour et al., 2011) PRI ✓  ✓  ✓   
(Rajasekaran, 2005) PRI ✓      ✓ 
(Love et al., 2000) MCM  ✓  ✓   ✓ 
(Pan and Thomas, 2010) MCM  ✓  ✓   ✓ 
(Ranjith et al., 2013) MCM  ✓   ✓   
(Marais, 2013) MDP  ✓  ✓  ✓  
(Sloan, 2007) MDP  ✓  ✓ ✓  ✓ 
(van den Boomen et al., 2020) MDP  ✓  ✓ ✓  ✓ 
This study MDP  ✓ ✓ ✓ ✓ ✓  

PRI: Priority Replacement Index, MCM: Markov Chain Model, MDP: Markov Decision Processes 
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equation of probabilities of the realization can be expressed as: 

L (p) = logP(Xt = xt) = logP(X = x1) +
∑

i,j
ni,jlogPi,j (3)  

where Xt is the realization of the random variable at time t, xt is the 
observed state from the chain at time t, which is defined as xt ≡ x1, x2, … 
, xt which shows the history of the chain up to time t for a specific 
observation, and ni,j is the number of occurrences from state i to state j. 
Assuming that the dataset has n number of states, the n constraint 
equations is expressed as: 

∑n

j=1
Pi,j = 1 (4) 

Based on the n constraint equations for each state, the Lagrange 
multipliers’ equation as the objective function can be represented as: 

L (p) −
∑n

i=1
λi

(
∑n

j=1
Pi,j − 1

)

(5)  

where λi is the Lagrange multipliers. Taking derivatives with respect to 
Pi,j from the above equation, the Pi,j is as follow: 

Pi,j =
ni,j

λi
(6) 

According to the constraint of Eq. (4), the λi can be expressed as: 

λi =
∑n

j=1
ni,j (7) 

Now, the transition probabilities can be calculated as: 

Pi,j = P(j | i) =
ni,j

∑n
j=1ni,j

(8) 

Once transition probabilities are calculated, the transition matrix can 
be derived: 

M =

⎡

⎢
⎢
⎢
⎢
⎣

P1,1 P1,2 ⋯ P1,n
P2,1 P2,2 ⋯ P2,n
⋮ ⋮ ⋱ ⋮

Pn−1,1 Pn−1,2 ⋯ Pn−1,n
Pn,1 Pn,2 ⋯ Pn,n

⎤

⎥
⎥
⎥
⎥
⎦

(9) 

Each device’s condition upon failure is defined as a state that in
cludes failure type such as Random Failure, Physical Damage, and 
others. The states do not have sequential relations. It should be noted 
that the state of a new device is labeled as “New”, where while new 
devices can transform to other types of failure, there is no trans
formation from other failure states to the state “New”. The transition 
probabilities between states will be determined based on the number of 
failures recorded in the repair log available in the whole database. In 
addition, the average operating days from state i to state j can be 
expressed as: 

Di,j =

∑ni,j
k=1

(
di,j

)

k

ni,j
(10)  

where Di,j is the average operating days for a device moving from state i 
to state j, and (di,j)k is the kth record of operating cycle data from state i to 
state j. The average operating days gives information about the average 
operating days from state i to j. 

Fig. 1. The relationship between healthcare industry, product dealer, and repair center in this study.  
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2.2. The optimization framework 

An optimization framework is created to identify the optimal repair 
or replacement decision. The objective function consists of three com
ponents: immediate costs, operating revenue, and the expected net 
present value. 

Marais (2013) used a semi-Markov approach to maximize profits 
under general repair decisions, and considered the expected net present 
value that includes immediate costs such as repair and replacement cost, 
operating revenue, and the expected net present value of the next step 
based on failure times and virtual ages as the objective function (Marais, 
2013). Since we will model product lifespan, we need to consider the 
present and future value of profit. The present value is calculated as: 

PV =
FV

(1 + r)
p = β⋅FV (11)  

where PV is the present value, FV is the future value, r is the annual 
discount rate or rate of return, p is the number of periods, and β is the 
discount factor, which can be expressed as β = (1 + r)

−p. The present 
value can be obtained by future value multiplied by a discount factor. 
The discount factor, the future value as operating revenues, and repair 
or replacement cost as the immediate cost can be expressed as: 

βi,j,δ = (1 + r)
−p

=

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(
1 +

r
100

)−

(
Di,j
365

)

for δ = 1

(
1 +

r
100

)−

(

WD
365

)

for δ = 0

(12)  

Oi,j,δ =

{
Di,j⋅OR for δ = 1

WD⋅OR for δ = 0 (13)  

ri,δ =

{
−ARDi⋅RC for δ = 1

−NC for δ = 0 (14)  

where βi,j,δ is the discount factor from state i to state j based on decision δ 
(δ = 1 means repair; δ = 0 means replacement). If the decision is to 
replace, the new product can work at least during the warranty days 
labeled as WD before being failed. Since the annual discount rate is 
considered, the number of periods can be obtained by dividing it into 
365 days. Oi,j,δ is the operating revenue as the future value from state i to 
state j, and OR is the operating revenue per day based on decision δ. rj,δ is 
the immediate cost at the start of each period. Eq. (13) is the future value 
of operating revenue calculated based on average operating days from 
state i to state j (repair decision) and warranty days (replacement de
cision). Eq. (13) is multiplied by the discount factor, presented in Eq. 
(12), to find the net present value. Eq. (14) shows the immediate cost of 
repair or replacement decision at the present time, so it is not multiplied 
by the discount factor. 

Marais (2013) applied a semi-Markov decision process combined 
with discounted cash flow techniques to evaluate the net present value 
of profit based on the different status of failure using a dynamic pro
gramming approach (Marais, 2013). Several assumptions are defined in 
Marais’s model including modeling the system as a semi-Markov deci
sion process, describing the failure state by the number of failures and 
the product age, and assuming operating revenues among other 

parameters. The stochastic deterioration model was defined by the 
number of failures and product age in which the number of failures and 
product age defines the probability density function of the first time to 
failure. Based on the probability density function, the transition prob
abilities and the expected mean durations for repair and replacement 
can be computed. Moreover, the cost and revenue flow was determined 
based on three conditions including no failure, repair, and replace. 
Marais used a numerical example to show the application of the model 
by assuming a gamma probability density function for the first time to 
failure, and defining repair level, annual interest rate, among other 
parameters. The current study aims to extend the previous model. 
Inspired by (Marais, 2013) contributions, this study also considers im
mediate costs, operating revenue, and the expected net present value. 
However, the current study considers different failure reasons beyond 
just the number of failures and product age to build the decision-making 
framework. In addition, the study uses a big dataset of historical repair 
and maintenance of medical devices as a case study for calculating 
transition probabilities for different types of failure that may occur to a 
device. Our model is built based on proposed cost structures in Eq. (12) 
to (14). Therefore, the value of each decision can be represented as: 

V(i) = −ri,δ +
∑n

j=1
P(j|i)βi,j,δOi,j,δ +

∑n

j=1
P(j|i)βi,j,δV(j) (15)  

where V(i) is the net present value (revenue - cost), ri,δ is the cost of 
repair or replacement, P(j | i) is the transition probability from state i to 
state j. In Eq. (15), the first item is immediate costs, which depends on 
repair or replacement. The second item is the operating revenue with the 
present value. This item is multiplied by transition probability based on 
the different routes from state i to state j. The average operating days 
will be different depending on state i and state j. This point will be 
further discussed in future sections. The third item is the expected net 
present value of the next future lifecycle over an infinite time horizon. 
The process is considered as an infinite horizon. Fig. 2 shows the process 
from state i to j and from state j to k for the reward earned over an 
infinite number of periods. We presented two periods to clarify the 
process further. State i, j, and k all represent failure reasons such as 
Random Failure, Physical Damage, and Battery Related. 

State i is the initial state as the start time in period 1. The immediate 
cost is the repair or replacement cost at state i as the start time. The first 
operating revenue will start from state i to state j. The operating revenue 
is multiplied by a discount factor to be the present value in initial state i. 
The net present value of expected reward in the state i as the start 
timepoint includes direct cost and operating revenues. The process of 
the second period is the same as the process of the first period. 

The linear programming approach can be applied to the above 
Markov decision process to solve the optimal expected discounted 
reward for each state. Finding the best strategy or decision that maxi
mizes Markov chain’s expected value over an infinite horizon is equiv
alent to solving the following linear programming problem Puterman, 
1994). Based on Eqs. (12) to (15), the optimization model is as follow: 

Min
∑

j=1, …,n
V(j) (16) 

Subject to   

V(i) ≥ −ARDi × RC +
∑n

j=1
P(j | i)

(
1 +

r
100

)−

(
Di,j
365

)

(
Di,j × OR

)
+

∑n

j=1
P(j | i)

(
1 +

r
100

)−

(
Di,j
365

)

V(j)

for repair decision with δ = 1

(17)   
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i = 1, 2, …, n − 1 (19)   

V(1), V(2), …, V(n − 1), V(n) ≥ 0 (20)  

where ARDi is average repair or maintenance days for the state i, NC is 
replacement cost, WD is warranty days, and RC is repair costs per day. 
V(1) to V(n −1) are the states with repair decision except for New state 
with replacement decision as V(n). In this study, we describe the state 
“New” to describe the use of a new product. Therefore, when a broken 
device is replaced with a new device, the new device does not have any 
failure record. Therefore, the replacement decision will open a state New 
as a starting point. 

The medical devices dataset provides us the information of transition 
probabilities between failure types (states). Also, it provides the chance 
of moving from “New” to any other failure types. So, it is assumed that 
the New state is equivalent to a new device or replacement decision. 
Also, since we did not have access to the device acquisition time, we 
assume that a new device can work at least during the warranty time 
before it is failed. 

According to the optimization model, the V(i) is calculated for each 
state i. When one of the repair states among n-1 types has a value greater 
than the value of state n (replacement), the decision is to repair, and vice 
versa. 

2.3. Frequency analysis 

According to MarketsandMarkets, the global infusion pump market 
will reach near $16 billion by 2023 from near $12 billion in 2018 

(MarketsandMarkets 2021). The case study described in this paper is 
based on the dataset provided for a medical device labeled as Device A, 
which is applied in infusion pumps and multitherapy. The dataset pro
vides 24,516 records of repair and maintenance logs of Device A over a 
10-year time horizon from 2008 to 2018. Device A has 23 different 
maintenance reasons, such as battery-related issues, random failure, and 
physical damage. To further understand the device’s repair and main
tenance needs, frequency analysis has been conducted to analyze the 
failure count, time to repair (TTR), and failure count per 72 hours to 
analyze different maintenance reasons. The TTR is the interval time 
between the repair start time and completion time, and failure count per 
72 hours is the number of failures in 72 hours for each maintenance 
reason. 

The first step is to fit the best probability distribution to the factors 
mentioned above. Previous studies have analyzed failure datasets using 
different distributions. For example, Patil (2019) uses Normal, 
Lognormal, and Weibull distributions to analyze the hardware and soft
ware failure data (Patil, 2019). Lampreia et al. (2019) used Weibull for 
the mean time between failure of marine gas turbines (Lampreia et al., 
2019), and Sukhwani et al. (2016) used Gamma distribution for the 
software reliability analysis (Sukhwani et al., 2016). Wessels (2007) 
adopted Weibull and Exponential distribution to analyze reliability 
(Wessels, 2007). This study selected five distributions, including Gamma, 
Normal, Lognormal, Weibull, and Exponential, to analyze the dataset. 

The Akaike information criterion (AIC) and Bayesian information 
criterion (BIC) are used to fit the best probability distribution to the 
failure count, TTR, and failure count per 72 hours. The best-fitted 
probability distribution has the minimum AIC and BIC values 
compared to other distributions. AIC or BIC for identifying the best- 
fitted probability distribution is common in the literature (Mutua, 
1994, Haddad and Rahman, 2011, Rahman et al., 2013, Alam et al., 
2018). The AIC is based on the maximum entropy principle and is given 
by (Akaike, 1998): 

Fig. 2. The relationship between periods 1 and 2 for initial state i, state j, and state k in periods 1 and 2.  

V(n) ≥ −NC +
(

1 +
r

100

)−

(

WD
365

)

(WD × OR) +
∑

j=1, …,n
P(j | i)

(
1 +

r
100

)−

(
Di,j
365

)

V(j)

for replacement decision with δ = 0

(18)   
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AIC = 2k − 2ln
(

L̂
)

(21)  

where L̂ denotes the maximum value of the likelihood function and k is 
the number of the probability distribution parameters fitted to real data. 
The best-fitted distribution has a minimum value of AIC. The BIC has a 
similar equation to the AIC and is based on the Bayesian framework 
(Schwarz, 1978): 

BIC = ln(n)k − 2ln
(

L̂
)

(22)  

where n denotes the sample size. Section 3 provides further information 
on the dataset and the outcomes of frequency analysis. 

3. Background of dataset 

Although the prior studies (Mummolo et al., 2007, Taylor and 
Jackson, 2005, Taghipour et al., 2011, Rajasekaran, 2005) investigated 
repair decisions, the factors contributing to the score are determined by 
human subjects instead of observed data. In this study, we investigated 
24,516 repair and maintenance records from 2008 to 2018 for a medical 
device labeled as Device A, and we have 5,171 individual products. The 
dataset is provided by one of the largest healthcare providers in the US. 
The function of Device A is infusion pumps and multitherapy for medical 
purposes with the price of $895. Because we do not have the first active 
time of each individual product, we estimate that the healthcare in
dustry buys 2,585 Device A every 5 years, assuming that the minimum 
operation time of Device A is 5 years. It seems that the healthcare in
dustry needs to spend $462,715 (895*2585/5) each year. Also, the 
average number of repair and maintenance records per year is 2,452. If 
the healthcare industry decided to replace whatever type of failure, the 
cost for purchasing new Device A will be $2,194,540 (895*2452) every 
year. Since the healthcare industry reuses Device A for five years, they 
do not need to spend the replacement cost each year. 

Each repair record has 10 data attributes, as shown in Table 2. First 
Asset Number and First Asset Model Number provide sufficient infor
mation to identify an individual product’s unique code and the product’s 
name. The First Asset Description provides information on the function 

purposes like infusion pumps and multitherapy. The attributes Date 
Created and Completed Date show the start time and the completion 
time for each repair record. Finally, the Determination Description 
provides the record of repair and maintenance reasons. 

Table 3 shows 23 failure types identified from Determination 
Description, the number of records of each type, and the average days 
for repair or maintenance. The first twenty-second states are derived 
from 24,516 records. The final ‘New’ state is defined by us to describe 
the use of a new device. This state somehow reflects the point that 
among the 24,516 records, we have 5,171 individual products. Each 
individual product has only one “New” state reflecting the use of a new 
product. The 23 states are independent and do not have sequential re
lations. For example, if the current failure reason is Random Failure, the 
next failure can be any one of the states. The transition probabilities 
reflect the chance of moving from the current state to the next once 
based on the percentage of failure transitions observed in the dataset. 
Table 3 shows that Physical Damage, Random failure, and No problem 
Found are the most frequent failure types. Also, the average time of 
repair for PM Failed, Damaged Beyond Repair, and Applicable is the 
highest. For example, the average time of repairing a Device A failed due 
to PM Failed is 3 months. 

4. Case study and results 

4.1. Outcomes of frequency analysis 

According to Section 2.3, five distributions, including Gamma, 
Normal, Lognormal, Weibull, and Exponential distributions, will be used 
to fit the frequency analysis of the failure count, TTR, and failure count 
per 72 hours. The best-fitted probability distributions are shown in 
Table 4. Some states are not shown in Table 4 as we did not have suf
ficient data for them. Most of the best-fitted probability distributions are 
Weibull and Gamma. The fitted distributions help us calculate different 
probability values. For example, if a device has a battery-related failure, 
by employing the TTR on Gamma distribution, we can calculate the 
likelihood that it may take over 15 days to repair the device. The five 
distributions fitted to the data have been commonly used in the litera
ture for reliability analyses (Patil, 2019, Lampreia et al., 2019, Sukh
wani et al., 2016, Wessels, 2007). 

According to the best-fitted distributions, Fig. 3 to Fig. 5 reveals the 
probabilities on failure count, TTR, and failure count per 72 hours, 
respectively. The number listed on each bar means the probability (%) of 
that property. The X of P(X ≥ 1) is used as a general random variable for 
failure count, TTR, and failure count per 72 hours. For example, the 
P(X ≥ 1) for failure count shows the probability that the number of 
failures is greater or equal to 1. For TTR, it shows the probability that the 
repair time is greater or equal to 10 days. And for failure count per 72 
hours, it shows the probability that the number of failures per 72 hours is 
greater or equal to 1. 

In Fig. 3, three states have higher probabilities among other states, 

Table 2 
The description of dataset fields.  

# Data Attribute Description 

1 WO Number The work order of repair 
2 Type Code Product type 
3 First Asset Number Property unique number 
4 First Asset Description Function of product 
5 First Asset Manufacturer Name Maintenance manufacturer 
6 First Asset Model Number Product name 
7 First Asset Serial Number Property unique serial number 
8 Date Created Repair start time 
9 Completed Date Repair completion time 
10 Determination Description The reason for repair  

Table 3 
The description of determination description.  

# Determination Description 
(State) 

Count Average Days of Repair/ 
Maintenance 

# Determination Description 
(State) 

Count Average Days of Repair/ 
Maintenance 

1 Accessory Problem 496 8 13 PM Related 1309 10 
2 Applicable 11 19 14 Prior To Clinical Use - Failed 1 13 
3 Battery Related 103 6 15 Project 12 1 
4 Damaged Beyond Repair 2 28 16 Random Failure 7348 11 
5 Environment Related 499 7 17 Random Software Failure 241 11 
6 Modification/Upgrade 37 5 18 Rechargeable Battery Failure 1 0 
7 Network Problem 62 2 19 Repeat Repair 10 7 
8 No Problem Found 6579 8 20 Setup Related 27 4 
9 Not Applicable 4 1 21 Tech Support 153 10 
10 Physical Damage 7384 8 22 Use Error 188 6 
11 PM Failed 1 102 23 New 5171 0 
12 PM Passed 48 8      

H.-y. Liao et al.                                                                                                                                                                                                                                 



Resources, Conservation & Recycling 171 (2021) 105609

8

including No problem found, Physical Damage, and Random Failure. The 
question is whether to repair or replace Device A when encountering 
these issues. The decision model in Section 4.3 will be used. 

Fig. 4 shows the results for TTR. In P(X ≥ 1), Modification/Upgrade, 
PM Passed, and Tech Support are states with a higher chance of TTR 
more than 10 days. In the case of P(X ≥ 2) to P(X ≥ 4), PM Passed, and 
Tech Support are higher among others. For P(X ≥ 5), the PM Passed is 
the most frequent state. Higher probabilities on TTR mean higher repair 
cost and ultimately higher chance of being replaced instead of repair. 

Fig. 5 shows the results for the failure count per 72 hours. The reason 
to use per 72 hours is that we attempt to observe the frequency by 
moderate time-scale instead of tight scales like one day or long scales 
like a week. For P(X ≥ 1) to P(X ≥ 5), three states, including No prob
lem found, Physical Damage, and Random Failure, have higher proba
bilities among other states. 

The frequency analysis analyzes metrics such as failure count, TTR, 
and failure count per 72 hours. The analyses provide an overview of the 
situation and help us quantify the transition probabilities for the DTMC 
process in the next section. 

According to Fig. 4, the average TTR can be computed as: 

average TTR =

⎡

⎣
∑

i=1,…,n

∫∞

0

zfi(z)dz

⎤

⎦

/

n (23)  

where fi(z) is the probability density function of the repair time for a 
product with failure state i. The repair time can range from 0 to infinity. 
The integral part shows the average repair time for each state i. Each 
state has a different average repair time. After computing each state’s 
average repair time, the grand average TTR will be calculated by 

averaging n states. Based on Eq. (23), the average TTR for Device A is 18 
days. Assuming that the total repair cost for Device A is 40% of the 
original purchase price of 895$. Thus, the repair cost per day is around 
$20 which is 40% of $895 divided by 18 days. The $20 repair cost per 
day is an input to the optimization model. 

4.2. Probability transition matrix and the average operating cycle 

The transition probabilities and the average operating day are calcu
lated using Eqs. (8) and (10). The results are summarized in Figs. 6, and 7. 

As listed in Fig. 6, all current states will move into No Problem Found, 
Physical Damage, and Random Failure with higher probabilities, as we 
expected in Section 4.1. For example, if the current state is Battery 
Related, after repairing, the next state will be No Problem Found, Physical 
Damage, and Random Failure with a probability of 0.19, 0.22, and 0.39. 

Fig. 7 shows the average operating time for Device A before having 
any issue in the next state. None means that the dataset does not have 
any record from the current state to the next state. The dataset also does 
not have records from the current state New to the next state as the 
dataset does not include the operating start time. Regardless of the 
operating start time, the information on the probability from state New 
to the next state can be evaluated since the dataset has records on the 
first repair order. With the first repair order info, we can evaluate the 
transition from a new product to the first repair order. Thus, it is possible 
to evaluate the transition probabilities from the state New to other 
states. The replacement decision will open the state “New” as the 
starting point of using a new product. 

According to Fig. 7, states such as Damaged Beyond Repair, Prior To 
Clinical Use – Failed, and Rechargeable Battery Failure do not have 
transition information from them to other states. These three states do 
not have enough data, as shown in Table 3. Also, after repairing or 
maintenance, Device A can operate for a long time. For example, if the 
repair reason is Battery Related, it can work up to 960 days after 
repairing the device. In contrast, in some cases like Repeat Repair, the 
device can work for 2 or 3 months. 

4.3. Specific case for the optimization model 

The model has been run for a specific case, as summarized in Table 5. 
A 3% discount rate is considered. OR is assumed to be $1 to $30 per day, 
RC to be $20 per day, and WD to be 1, 2, and 3 years. Besides, the prices 
for a new Device A is $895. Using Eqs. (16) to (20), the optimization 
model is formulated: 

Min
∑

j=1, …,23
V(j) (24) 

Subject to 

Table 4 
The best-fitted probability distribution for each state.  

State Failure 
Count 

TTR (10 
days) 

Failure count per 72 
hours 

Accessory Problem Gamma Lognorm Gamma 
Battery Related Gamma Gamma Gamma 
Environment Related Weibull Weibull Gamma 
Modification/Upgrade Weibull Gamma Gamma 
Network Problem Weibull Weibull Gamma 
No Problem Found Weibull Lognorm Expon 
Physical Damage Weibull Lognorm Weibull 
PM Passed Weibull Weibull Gamma 
PM Related Gamma Weibull Weibull 
Random Failure Lognorm Weibull Weibull 
Random Software 

Failure 
Gamma Weibull Weibull 

Tech Support Weibull Gamma Gamma 
Use Error Weibull Gamma Gamma  

V(i) ≥ −ARDi × 20 +
∑23

j=1
P(j | i)

(

1 +
3

100

)−

(
Di,j
365

)

(
Di,j × OR

)
+

∑23

j=1
P(j | i)

(

1 +
3

100

)−

(
Di,j
365

)

V(j)

for repair decision with δ = 1

(25)  

V(23) ≥ −895 +

(

1 +
3

100

)−

(

WD
365

)

(WD × OR) +
∑23

j=1
P(j | i)

(

1 +
3

100

)−

(
Di,j
365

)

V(j)

for replacement decision with δ = 0

(26)   
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i = 1, 2, …, 21, 22 (27)  

V(1), V(2), …, V(22), V(23) ≥ 0 (28)  

OR = 1, 2, …, 21, 30 (29)  

WD = 1, 2, 3 (30) 

The information of V(1) to V(22) is described in Table 3. V(23)

represents the state “New”. After calculating each state’s profit, the 
optimal decision of repair or replacement can be determined. 

4.4. Results and sensitivity analysis 

The transition probabilities are used as inputs to the optimization 
model. The outcome of the optimization model gives us the profit of 
each state,V(1) to V(23). If the profit of state i, V(i), is greater than the 
state New, V(23), the decision is to repair, otherwise, to replace. For 
example, the Network Problem’s value of $ 321,811 is less than the 
value of state New with $325,437. Thus, the decision will be to replace it 
with a new Device A. 

Fig. 8 shows the optimal decision in each state along with each 
state’s expected value, for the case of $20 repair cost and $30 operating 
revenue per day. The repair decision is shown by the red bar and the 
replacement decision by the blue bar. If a state’s value is greater than the 
value of state New (the yellow bar), the decision is to repair. Otherwise, 
to replace. 

Fig. 9 shows a sensitivity analysis on warranty durations when the 
repair cost is $20 per day. For some states such as Damaged Beyond 
Repair, Prior To Clinical Use – Failed, and Rechargeable Battery Failure, 
since there is not sufficient data as discussed in Section 4.1, the decision 
always is to replace, as shown in Fig. 8. However, if more data is 

recorded for these three states, the optimal decision may change. The 
white color in Fig. 9 shows the uncertain decision due to limited data. 
Also, the optimization model shows if the value of V(1) to V(22) is less 
than V(23), the decision is to replace it. 

Two factors of operating revenue per day and warranty have been 
used for conducting sensitivity analyses. The operating revenue varies 
from $1 to $30 per day, and the warranty varies from 1 year to 3 years. 
The repair costs are $20 per day based on the discussion in Section 4.1. 
In Fig. 9 (a), the x-axis corresponds to each state as defined in Table 3, 
the y-axis is the operating revenue from $1 to $30 per day, and the z-axis 
is warranty time from 1 to 3 years. The repair decision is shown with red 
color, the replacement with blue color. 

According to Fig. 9, the decision to repair or replace depends on the 
product condition. For example, if the product is in State 2, the decision 
is to replace it. The main factor contributing to the replacement is the 
lengthy repair time. The repair time for State 2 is 19 days. However, the 
repair time is not the only contributing factor. For example, although the 
PM Failed state has the highest repair time among all states, as operating 
revenue per day increases, the decision will be changed from replace
ment to repair. With probability 1, the device will move from the PM 
Failed state to the PM Related state. The PM Related state can generate 
more profit than state New. Thus, if the failure state is PM Failed, the 
decision will be to repair. 

In Fig. 9, as operating revenue per day increases, four situations may 
happen. The first situation is to always repair, regardless of operating 
revenue per day. For example, in State 8, “No Problem Found”, the 
decision is to repair. With minor repairs such as clear up or maintenance, 
Device A with state No Problem Found can still generate profits. The 
second situation is to always replace, regardless of operating revenue 
per day. One example is State 2. 

The third situation is when the decision changes from repair to 

Fig. 4. The probability (%) of TTR (10 days) considering the best-fitted PDF:P(X≥1) to P(X≥5).  

Fig. 3. The probability (%) of failure count considering the best-fitted PDF:P(X≥1) to P(X≥5).  
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replacement as operating revenue per day or warranty time increases. 
Table 6 shows the sensitivity analysis based on the operating revenue 
per day to highlight the operating revenue threshold. If operating rev
enue per day changes by 20%, from $5 to $6, the decision will change 
from repair to replacement. The profits increases by $10,904 (from 
$49,209 to $60,113) and by $11,053 (from $49,115 to $60,168) for 
Network Problem and New, respectively. 

In Table 6, regression equations show the operating revenue per day 
for each state. Overall, by increasing the operating revenue per day, the 
decision switches from repair to replacement. Also, different warranty 
times influence the optimal decision as shown in Fig. 10. The profits of 
the Use Error state do not change among different warranty years, but of 
State New changes depending on different warranty years. By increasing 

warranty years, the decision will change from repair to replacement. 
Also, the profits increase when the warranty time increases by 50% 
(from 2 years to 3 years). 

The fourth situation is when the optimal decision switches from 
replacement to repair, as shown in Table 6. If operating revenue per day 
is less than $16, the decision is to replace when the state is the PM 
Failed. When operating revenue per day increases by 6%, from $15 to 
$16, the optimal decision switches from replacement to repair. Also, the 
fourth situation is not sensitive to the warranty years. By increasing 
warranty years, some state’s decision will change from repair to 
replacement, but no decision will be changed from replacement to 
repair. 

The four situations are summarized in Table 7. Under different 

Fig. 6. The transition matrix of probabilities from 2008 to 2018 (y-axis is current state; x-axis is next state)  

Fig. 5. The probability (%) of failure count per 72 hours considering the best-fitted PDF:P(X≥1) to P(X≥5).  
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operating revenue and warranty times, the optimal decision can be 
determined. 

4.5. Practical implications and limitations 

The results help healthcare providers minimize their operational 
costs and maximize the expected revenue by setting proper repair and 
replacement policies. In addition, proper decisions reduce the waste 
generation rate by considering repair instead of replacement to extend 
the product lifespan. Furthermore, the outcomes can help decision- 

Fig. 7. The transition matrix for average operating days from 2008 to 2018 (y-axis is current state; x-axis is next state).  

Table 5 
The parameters for the specific case.  

Parameter Values Remarks 

r 3% Annual discount rate 
OR $1 to $30 per day Operating revenue per day 
RC $20 per day Repair costs per day 
WD 1 to 3 years Warranty days 
NC $895 Replacement costs  

Fig. 8. Decision-making results under $20 repair costs and $30 operating revenue per day for 1 year warranty (repair decision with red bar, and replacement 
decision with blue bar). 

H.-y. Liao et al.                                                                                                                                                                                                                                 



Resources, Conservation & Recycling 171 (2021) 105609

12

Fig. 9. Decision-making results (repair with red color, replacement with blue color, and an uncertain decision due to limited data with white color) under $20 repair 
costs per day: (a) 1 to 3 (z-axis) year warranty, (b) 1-year warranty, (c) 2-year warranty, and (d) 3-year warranty. 

Table 6 
Sensitivity analysis on the relationship between operating revenue per day (OR) and net present value (V) under $20 repair cost per day and a 1-year warranty for 
Network Problem (repair decision) and state New (replacement decision) as a case from repair to replacement decision; and PM Failed (repair decision) and New 
(replacement decision) as a case from replacement to repair decision.  

Example of switching from repair to replacement decision Example of switching from replacement to repair decision 
Operating revenue per day ($) Network Problem ($) New ($) Operating revenue per day ($) PM Failed ($) New ($) 

1 5593 4904 11 115033 115433 
2 16497 15956 12 126173 126485 
3 27401 27009 13 137313 137538 
4 38305 38062 14 148453 148591 
5 49209 49115 15 159594 159644 
6 60113 60168 16 170734 170697 
7 71017 71221 17 181874 181750 
8 81921 82274 18 193014 192803 
9 92826 93327 19 204154 203856 
10 103730 104380 20 215294 214909 
Linear regression V=10904OR-5311 V =11053OR-6149 Linear regression V =11140(OR-10)+103893 V =11053(OR-10)+104380  
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makers with labor scheduling and efficient operational planning of 
repair technicians. Finally, the research outcomes can reveal the de
mand for repair services and help healthcare providers determine 
whether to outsource repair services or use in-house resources to reduce 
operational costs. 

The outcomes of the model are not limited to medical equipment. 
They can be applied to other cases such as home appliances, 
manufacturing machinery, and consumer electronics, to name a few. 
Overall, the emergence of data collection technologies such as IoT and 
distributed ledger technologies makes it easier to track individual de
vices over their entire lifespan and collect lifecycle data like the timing 
of repair needs and failure events. Therefore, analytical models such as 
the proposed optimization model help use the collected data toward 
more sustainable lifecycle engineering. 

The proposed model and the corresponding case study have several 
limitations. For example, the lack of data on different failure reasons 
such as Damaged Beyond Repair, Prior To Clinical Use–Failed, and 

Rechargeable Battery Failure. The dataset quality is another limitation 
as some records such as the repair start and completion times lack 
consistency and accuracy. Also, we have analyzed only one type of 
medical device. However, healthcare providers often deal with hun
dreds of devices, and they make repair and replacement decisions 
considering a family of products or product-service bundle available to 
them. Also, other considerations such as healthcare safety standards, 
rules, and regulations may influence the decision to repair or replace 
specific medical equipment. 

5. Conclusion 

In order to address the cost burden of repair and maintenance of 
medical devices, this study develops a decision-making framework to 
help healthcare providers decide on the optimal timing of repair or 
replacement of medical devices. A discrete-time Markov Chain model is 
used to model the device lifecycle, and an optimization framework is 
developed to determine the repair or replace decision. The transition 
probability obtained from the DTMC model is used in an MDP frame
work, where the MDP framework provides the optimal repair or 
replacement decisions. Three factors, including the immediate cost of 
repair or replacement, operating revenues, and future profits, are 
considered to form the objective function. A dataset of 24,516 records of 
repair and maintenance of a medical device from 2008 to 2018 is used to 
show the application of the model. The dataset was used to identify 
failure modes and calculate the transition probabilities needed in the 
optimization model. A frequency analysis and several sensitivity ana
lyses are conducted to elaborate the results further. 

The outcomes of the frequency analysis reveal the most frequent 
failure reasons for infusion pumps in the current dataset, including No 
problem found, Physical Damage, and Random Failure. The results of the 
sensitivity analysis show that the repair and replacement decision is 
influenced by operating revenue per day and warranty times. Four classes 
of decisions, including always repair, always replacement, switch from 
repair to replacement, and from replacement to repair, are presented. 

This study can be extended in several ways. First, defining the timing 
of repair or replacement decision is influenced by other factors such as 
safety standards, regulation, production functionalities, complexity, and 
new technologies coming to the market. Second, artificial intelligence 

Fig. 10. Sensitivity analysis for warranty year with Use Error state (repair decision) and New state (replacement decision) under 20$ repair costs per day and 9$ 
operating revenue per day. 

Table 7 
Four classes for the decisions based on sensitivity analysis.  

Class Decision Illustration Sensitive condition 

1 Repair forever Regardless of operating 
revenue per day and 
warranty year, the decision is 
to repair. 

Not sensitive to 
operating revenue per 
day and warranty 
year. 

2 Replacement 
forever 

Regardless of operating 
revenue per day and 
warranty year, the decision is 
to replace it. 

Not sensitive to 
operating revenue per 
day and warranty 
year. 

3 From repair to 
replacement 

With lower operating 
revenue per day and 
warranty year, the decision is 
to repair. However, by 
increasing both variables, 
the optimal decision is to 
replace. 

Sensitive for 
operating revenue per 
day and warranty 
year. 

4 From 
replacement to 
repair 

With lower operating 
revenue per day, the optimal 
decision is to replace, and 
with higher revenue, the 
decision is to repair. 

Sensitive for 
operating revenue per 
day.  
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and machine learning tools can be used to analyze the product reliability 
data and provide further insights into Markov chain models. Third, the 
Markov chain model can be extended to consider the dynamic nature of 
the problem. Fourth, forecasting models can be used to estimate better 
the future value of repair or replacement decisions based on economic 
consequences and environmental and social outcomes such as health 
equity and public access to the health services, resulting from repair and 
reuse of medical devices. Finally, comparison with other extant models 
can further validate the performance of the proposed model. 
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