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ARTICLE INFO
The cost of repair and maintenance of medical devices can be fairly burdensome to the healthcare industry.

Healthcare providers often consider plans such as increasing in-house repairs, using multiple repair service

Keywords:

M;,r?:ov decision process providers, or timely replacement of devices to overcome this issue. This study aims to develop a data-driven
Repair Markov Decision Process (MDP) framework based on Discrete-Time Markov Chain (DTMC) model to optimize
Replacement medical equipment repair and replacement decisions. Effective decision-making on whether to repair or replace
Meéi“”l d?Vice is crucial to managing the product lifecycle cost and the costs to healthcare facilities. The study determines the
Optimization optimal repair or replacement decision based on the product lifecycle data and current product failure status. It

utilizes a net present value model to maximize expected value over an infinite time horizon. The study uses a
dataset of 24,516 repair and maintenance records of 5,171 individual medical devices of a particular type to
extract parameters needed for the optimization model. The dataset provides a rich baseline for analyzing
different failures and event modes during product lifespan such as battery-related issues, random failure, pre-
ventive maintenance, and physical damage. It further quantifies the chance of moving from one product status to
another. The model outcomes are discussed for a particular case. The findings reveal the most frequent reasons
for failures and the most economically viable repair and replacement decision for each end-of-use device based
on their current condition. Several sensitivity analyses are conducted to clarify the impact of operating revenue
and warranty time on the repair or replacement.

consider uncertainty in prices when deciding on maintenance and
replacement of infrastructures (van den Boomen et al., 2020). Azevedo
et al. (2020) developed a multi-objective genetic algorithm combined
with discrete event simulation using the Generalized Renewal Process
for replacement policy problems (Azevedo et al., 2020). Sheu et al.
(2020) proposed a replacement policy based on two types of failure
arrivals, minor or catastrophic shocks. The preventive replacement
occurred when one of the indexes, such as the system’s age, the number
: g . - . of occurrence of type 1 failure, and the accumulative damage exceed
an e.ffectlve repair and .replacer.n?nt policy. The deaflswn-makmg on predefined thresholds (Sheu et al., 2020). Leu and Ying (2020) consid-
rePalr and re?placemer.lt is a traditional problem backing to the 1960s, ered economic assessment to decide the replacement time of hydraulic
still pc?pular In mary ﬁd‘?‘s (/}ZCVCdO et :‘11" 2020, Sheu et al,, 2920’ Lc}l machinery (Leu and Ying, 2020). Khan et al. (2020) considered factors
and Ying, 2020). The objective of repair and replacement decisions is such as obsolescence, productivity, and cost types to develop a
often to minimize cost while maximizing the operational period (Pan replacement framework for midlife upgrades (Khan et al., 2020). Zheng
and Thomas{ 2010). . L and Makis (2020) proposed a condition-based maintenance policy based

The repair and replacement decisions have been studied in the pre- on a semi-Markov decision process (SMDP) for soft and hard failure.
viou? literature. To name a new, Abdi and Taghlpour. (2019) Pr"?"sed a When the deterioration reaches the predefined level, the system de-
repair-replacement decision model based on environmental impact termines repair or replacement (Zheng and Makis, 2020). Hamed and
factors using a plastic shredder case study (Abdi and Taghipour, 2019). Al-Eideh (2020) used a random parameters mixed logit model to
van den Boomen et al. (2020) built Markov Decision Processes (MDP) to

1. Background

Repair and maintenance of medical equipment can be quite costly for
healthcare facilities (Mummolo et al., 2007). In 2018, the expenditure
on US health care was estimated to be $3.6 trillion, reaching nearly $6.0
trillion by 2027 (Centers for Medicare and Medicaid Services, 2019).
One cost-saving approach that healthcare facilitates can take is to make
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Nomenclature

P;; = P(j | i) Transition probability from state i to state j

fi(z) The probability density function of repair time for a device
in state i (failure type i)

X:+1 =j The process is in state j at time t+1

ngj The number of occurrences from state i to state j

n Number of states

Z(p) The log maximum likelihood equation of probabilities of
the realization

Ai Lagrange multipliers

M Transition matrix

D;; Average operating days from state i to state j

(dij)k The k™ record of operating days from state i to state j

PV Present value

FV Future value

p Discount factor

Bij Discount factor from state i to state j

r Annual discount rate or rate of return

P The number of periods

Oijs Operating revenue from state i to state j based on decision §

3 decision (6 = 1 means repair; § = 0 means replacement)

OR Operating revenue per day

V(i) Net present value (revenue - cost) earned over an infinite
number of periods

Tis Cost of decision § in state i

ARD; Average repair or maintenance days for the state i

NC Replacement costs

WD Warranty days

RC Repair costs per day

AIC Akaike information criterion

BIC Bayesian information criterion

L The maximum value of the likelihood function

k Number of the probability distribution parameters

determine the repair and replacement of damaged cars caused by traffic
accidents (Hamed and Al-Eideh, 2020).

McLaren et al. (2020) highlighted that the understanding of repair in
the circular economy literature is limited, and the transformative
future-oriented roles of repair are overlooked (McLaren et al., 2020).
Wieser and Troger (2017) explored the customers’ behaviors about
replacement, repair, and reuse of mobile phones. They revealed that tax
benefits and more information about repair could encourage customers
to repair broken devices (Wieser and Troeger, 2017). Sabbaghi and
Behdad (2018) evaluated consumer decisions on repairing mobile phones
and estimated the economic leakage of not repairing devices for both
consumers and businesses (Sabbaghi and Behdad, 2018). In another
study, Sabbaghi et al. (2016) discussed product repairability’s business
outcomes and the impact on consumer loyalty and brand recommenda-
tions (Sabbaghi et al., 2016). Dabous et al. (2017) compared the life cycle
assessment of repair and replacement for a bridge deck case (Dabous
etal., 2017). Wursthorn et al. (2010) assessed the environmental impacts
of repair and replacement in vehicle maintenance decisions (Wursthorn
et al.,, 2010). He et al. (2017) proposed a model to make the optimal
replacement decision for changing the hybrid electric vehicles (He et al.,
2017). Stutzman et al. (2017) adopted a numerical analysis model to
optimize coal power plant replacement decisions (Stutzman et al., 2017).
Mashhadi et al. (2016) investigated customers’ experience on product
repair with several attributes such as repair cost and repair activity type
like replacement (Mashhadi et al., 2016). Vlok et al. (2002) applied a
vibration monitoring mechanism to build optimal replacement decisions
for circulating pumps in a coal wash plant (Vlok et al., 2002). Although
analyzing repair or replacement decisions is common in the previous
studies, the literature on the repair and maintenance of medical equip-
ment and the timing of repair or replacement decisions is limited.

Along with repair and replacement decisions of medical devices,
Sloan (2007) used a Markov decision model on single-use devices to
decide whether to reuse or discard (Sloan, 2007). Several studies on
repair and replacement of medical devices consider scores such as Pri-
ority Replacement Index (PRI) to determine the rank of replacement
order (Mummolo et al., 2007, Basiony, 2013). The PRI is calculated
based on several factors, such as mean downtime ratio, life support, and
technological obsolescence. Taylor and Jackson (2005) used the Medical
Equipment Replacement Score (MERS) system to score the priority
replacement for medical devices (Taylor and Jackson, 2005). Taghipour
etal. (2011) created a Multi-Criteria Decision Making (MCDM) model to
prioritize medical devices for maintenance decisions (Taghipour et al.,
2011). Rajasekaran (2005) adopted Equipment Replacement Planning

System (ERPS) to automate replacement planning in hospitals (Rajase-
karan, 2005).

Although the studies mentioned above can prioritize repair or
replacement decisions, the factors contributing to the score are deter-
mined by human subjects instead of observed data. For example, tech-
nological obsolescence or the ratio of usage might be too subjective since
the medical staff often decides whether a newer device has more ad-
vantages (Mummolo et al., 2007). Thus, more data-driven approaches
are needed to enhance the effectiveness of repair and replacement
decisions.

In the current study, we develop a Markov Chain model to optimize
the decision-making process. Prior studies have already used Markov
Chain models for repair and replacement decisions. Those studies can be
divided into two groups. The first group is studies that use the number of
failures and product age. If the two attributes exceed the predefined
thresholds, the decision is to replace instead of repair or maintenance
(Kapur et al., 1989, Kijima, 1989, Makis and Jardine, 1993, Love et al.,
2000). Another group of studies is those that build Markovian deterio-
ration to identify repair or replacement decisions (Pan and Thomas,
2010, Klein, 1962, Kolesar, 1966, Derman, 1963, Ross, 1971). In those
studies, the Markov model is built based on the device deterioration
level. While the previous studies can make decisions among repair and
replacement, they only considered few attributes such as the number of
failures, ages, and deterioration. They lack comprehensive empirical
datasets to support the analysis and ignored the failure reasons such as
battery-related issues, random failure, and physical damage. What dis-
tinguishes the current study from the previous literature (Azevedo et al.,
2020, Sheu et al., 2020, Leu and Ying, 2020, Khan et al., 2020, Zheng
and Makis, 2020, Hamed and Al-Eideh, 2020) is that we consider
different types of failure based on product condition beyond just reli-
ability and age deterioration. Also, the cost model is structured based on
the product condition derived from lifecycle data, and finally, a real
work dataset is employed to show the model’s application.

In addition to the repair decision, the DTMC has shown its success in
modeling other decision-making processes. To name a few, Abboud
(2001) built a discrete-time Markov model to manage
production-inventory cost (Abboud, 2001). Behdad and Thurston
(2011) developed a DTMC to identify consumer electronics’ optimal
upgrade levels (Behdad and Thurston, 2011). Ranjith et al. (2013) dis-
cussed timber bridge elements’ prediction to predict deterioration de-
gree (Ranjith et al., 2013). Although previous researchers have used
Markov models to handle repair and replacement decisions, there is still
limited literature on repair and replacement of medical equipment and
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factors influencing this domain’s decision-making process. The DTMC is
a random procedure through the transition from one state to another
state and has an important Markov property called “memoryless” (Arif
and Shahid, 2018). Also, the MDP framework is constructed based on
the four elements including set of states, actions, transition probability,
and rewards (Goyal and Grand-Clement, 2018, Zheng and Siami Namin,
2018). When implementing the MDP framework, the MDP framework
must be satisfied with Markov property (Zheng and Siami Namin, 2018).
Previous researchers applied MDP to different decision-making situa-
tions. For example, Marais (2013) used dynamic programming to
determine the flows of no failure, repair, and replacement to maximize
the present value of net profit (Marais, 2013). Xia (2018) developed the
mean-variance optimization problem based on the MDP framework to
minimize the variance of system rewards (Xia, 2018). Thodoroff et al.
(2018) solved temporal regularization by the MDP framework for
different policy evaluation settings (Thodoroff et al., 2018). Roy et al.
(2019) proposed a new Reinforcement Learning algorithm by consid-
ering an infinite-horizon average reward MDP framework to find
optimal policy (Roy et al., 2019).

Table 1 shows the comparison of the existing models and the pro-
posed model in this study on repair and replacement decisions. In the
previous studies, the replacement priority decisions on medical devices
are often determined by computing PRI. However, when calculating the
PRI, some subjective features such as obsolescence and subjective score
range of each feature are considered. To overcome the limitations of
descriptive decision-making methods, several researchers developed
data-driven optimization models to find the optimal decisions. Most
researchers built their optimization frameworks based on cost minimi-
zation, instead of profit maximization. The cost minimization does not
guarantee the maximum profit. Different from previous data-driven
optimization models, the proposed model in this study focuses on
profit maximization and further incorporates consideration of different
failure reasons for a product. Moreover, The proposed cost structure is
different from other studies in which the repair and replacement will be
determined for each type of failure reason.

This study aims to model and analyze the decision-making process on
the timing of repair or replacement of medical devices. The DTMC model
has been used to calculate the transition probability from one state to
another state. In addition, an MDP framework has been developed with
four elements: states, actions, transition probability, and rewards.
Among these elements, the transition probability is obtained from the
DTMC model. The MDP framework provides the optimal decisions on
repair or replacement. Since the MDP framework is constructed from the
DTMC model’s output, we rename our framework as the MDP-DTMC
model. We use a dataset of the repair and maintenance logs of medical
devices to estimate the parameters needed in the model. The proposed
optimization model is built based on different failure reasons, and the
corresponding cost structures are applied in the optimization model. The
optimization model provides optimal repair and replacement decisions
for each type of failure reason.

Table 1
Comparison of existing models and the current study.
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The MDP-DTMC model is built based on different types of mainte-
nance reasons. The transition matrix of probabilities and average
operating days (operating cycle) used in DTMC have been obtained from
the real-world dataset. Finally, an optimization model is framed based
on the MDP framework to identify the optimal repair or replacement
timing for medical devices. Fig. 1 shows the procedure between the
healthcare industry, product dealer, and repair center. The healthcare
provider is the primary decision-maker here. Upon receiving a broken
product, the failure reason is recorded in their database. If the product
fails during the warranty time, the dealer will offer a new replacement at
no cost. Otherwise, the healthcare provider needs to decide on repair
and replacement. The contribution of this study is to build an optimi-
zation framework based on the proposed cost model by considering
different types of failure from a real-world dataset.

The remainder of this paper is organized as follows. Section 2 dis-
cusses the proposed optimization model. Section 3 provides an overview
of the dataset used in this paper. Section 4 summarizes the results.
Finally, Section 5 concludes the paper.

2. Methodology

In this section, we first describe the DTMC model. We will then
integrate the DTMC process with an optimization framework to deter-
mine the optimal repair or replacement decision that maximizes the
revenue. Finally, we will discuss a dataset of repair and maintenance of
medical devices to estimate the transition probabilities used in the
proposed method.

2.1. Discrete-time markov chain (DTMC)

The Markov chain is built based on matrix analysis (Craig and Sendi,
2002), and is a powerful tool to model discrete-time stochastic processes
(Ross, 2014). Due to its benefits, it is a popular method for solving
problems in different domains such as air quality, suspended sediment
concentrations, and flower pollination algorithm (Tsai et al., 2016, He
etal., 2017, Chung et al., 2020, Alfa, 2020). Assuming the state space of
r ={io,i1,...,it-1,...,1,j}, the probability that the process moves from
state i to state j can be expressed as (Tsai et al., 2016):

P{X=jlXi=i,X =iy, X1 =0,Xo=1io} = Py =P(j | i) (@)

where X;,1 = j means the process is in state j at time t+1, and P;; is the
transition probability from state i to state j. Due to the memoryless
property of the Markov chain (Li et al., 2017), the transition probability
can be expressed as:

P{X,1=j|X,=i} =P; =P(j | i) (2)

In this study, since transition probabilities are unknown, we adopt
the maximum likelihood to estimate the transition probabilities by using
Lagrange multipliers (Shalizi, 2009). The log maximum likelihood

Reference Method Subjective Features Optimization Model  Failure Type Cost Structure Real Case ~ Maximum Profit ~ Minimum Cost
(Mummolo et al., 2007) PRI v v

(Basiony, 2013) PRI v

(Taylor and Jackson, 2005) PRI v v

(Taghipour et al., 2011) PRI v v v

(Rajasekaran, 2005) PRI v v
(Love et al., 2000) MCM v v v
(Pan and Thomas, 2010) MCM v v v
(Ranjith et al., 2013) MCM v v

(Marais, 2013) MDP v v v

(Sloan, 2007) MDP v v v v
(van den Boomen et al., 2020) MDP v v v v
This study MDP v v v v v

PRI: Priority Replacement Index, MCM: Markov Chain Model, MDP: Markov Decision Processes
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Fig. 1. The relationship between healthcare industry, product dealer, and repair center in this study.

equation of probabilities of the realization can be expressed as:

Z(p) =logP(X, =x;) = logP(X =x;) + Zn,jlogP,-J 3)

i

where X; is the realization of the random variable at time t, x; is the
observed state from the chain at time t, which is defined as x; = x,x2, ...
,X; which shows the history of the chain up to time t for a specific
observation, and n;; is the number of occurrences from state i to state j.
Assuming that the dataset has n number of states, the n constraint
equations is expressed as:

S Py =1 “)
Jj=1

Based on the n constraint equations for each state, the Lagrange
multipliers’ equation as the objective function can be represented as:

J’(p)—iﬂ,-(iﬂ_j—l) 5)

where 4; is the Lagrange multipliers. Taking derivatives with respect to
P;; from the above equation, the P;; is as follow:

Py== 6)
According to the constraint of Eq. (4), the 4; can be expressed as:
A= Z n;j @)

j=1

Now, the transition probabilities can be calculated as:

ni;
= (8)
DY

Once transition probabilities are calculated, the transition matrix can
be derived:

Py =P(|i)=

Py, Py o Py,
Py, Pyy o Py,
M= : : : )
Pn—l.l Pn—l.Z Pn—l,n
P, Py o Py,

Each device’s condition upon failure is defined as a state that in-
cludes failure type such as Random Failure, Physical Damage, and
others. The states do not have sequential relations. It should be noted
that the state of a new device is labeled as “New”, where while new
devices can transform to other types of failure, there is no trans-
formation from other failure states to the state “New”. The transition
probabilities between states will be determined based on the number of
failures recorded in the repair log available in the whole database. In
addition, the average operating days from state i to state j can be
expressed as:

D, i (), a0

L
nj

where D;; is the average operating days for a device moving from state i
to state j, and (d;;), is the k™ record of operating cycle data from state i to
state j. The average operating days gives information about the average
operating days from state i to j.
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2.2. The optimization framework

An optimization framework is created to identify the optimal repair
or replacement decision. The objective function consists of three com-
ponents: immediate costs, operating revenue, and the expected net
present value.

Marais (2013) used a semi-Markov approach to maximize profits
under general repair decisions, and considered the expected net present
value that includes immediate costs such as repair and replacement cost,
operating revenue, and the expected net present value of the next step
based on failure times and virtual ages as the objective function (Marais,
2013). Since we will model product lifespan, we need to consider the
present and future value of profit. The present value is calculated as:

Fv

PV = 57 =p-FV a1

where PV is the present value, FV is the future value, r is the annual
discount rate or rate of return, p is the number of periods, and f is the
discount factor, which can be expressed as # = (1 +r)P. The present
value can be obtained by future value multiplied by a discount factor.
The discount factor, the future value as operating revenues, and repair
or replacement cost as the immediate cost can be expressed as:

(1 +r)(> fors =1

- 100
ﬂi.j.&:(1+") P = (12)
e
(1 +W> fors =0
| Dij-OR for 6 = 1
Ouis = { WD-OR for § = 0 a3)

ry = {—ARD,-~RC fors =1 a4

—NCfors = 0

where f;; ; is the discount factor from state i to state j based on decision &
(6 = 1 means repair; § = 0 means replacement). If the decision is to
replace, the new product can work at least during the warranty days
labeled as WD before being failed. Since the annual discount rate is
considered, the number of periods can be obtained by dividing it into
365 days. Oy is the operating revenue as the future value from state i to
state j, and OR is the operating revenue per day based on decision é. rj 5 is
the immediate cost at the start of each period. Eq. (13) is the future value
of operating revenue calculated based on average operating days from
state i to state j (repair decision) and warranty days (replacement de-
cision). Eq. (13) is multiplied by the discount factor, presented in Eq.
(12), to find the net present value. Eq. (14) shows the immediate cost of
repair or replacement decision at the present time, so it is not multiplied
by the discount factor.

Marais (2013) applied a semi-Markov decision process combined
with discounted cash flow techniques to evaluate the net present value
of profit based on the different status of failure using a dynamic pro-
gramming approach (Marais, 2013). Several assumptions are defined in
Marais’s model including modeling the system as a semi-Markov deci-
sion process, describing the failure state by the number of failures and
the product age, and assuming operating revenues among other

V(i) > —ARD; x RC+ > P(j | i)(l +ﬁ

Jj=1 J=1

for repair decision with § = 1

)(?“> (D;; x OR) +§:P(i \ i)(l +1(r)0><m> Vi)
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parameters. The stochastic deterioration model was defined by the
number of failures and product age in which the number of failures and
product age defines the probability density function of the first time to
failure. Based on the probability density function, the transition prob-
abilities and the expected mean durations for repair and replacement
can be computed. Moreover, the cost and revenue flow was determined
based on three conditions including no failure, repair, and replace.
Marais used a numerical example to show the application of the model
by assuming a gamma probability density function for the first time to
failure, and defining repair level, annual interest rate, among other
parameters. The current study aims to extend the previous model.
Inspired by (Marais, 2013) contributions, this study also considers im-
mediate costs, operating revenue, and the expected net present value.
However, the current study considers different failure reasons beyond
just the number of failures and product age to build the decision-making
framework. In addition, the study uses a big dataset of historical repair
and maintenance of medical devices as a case study for calculating
transition probabilities for different types of failure that may occur to a
device. Our model is built based on proposed cost structures in Eq. (12)
to (14). Therefore, the value of each decision can be represented as:

V(i) = —ris + ZPUIi)ﬂi,jﬁOi-jﬁ + Zp(j‘i>ﬁij.ﬁv(j) (15)
Jj=1 Jj=1

where V(i) is the net present value (revenue - cost), ris is the cost of
repair or replacement, P(j | i) is the transition probability from state i to
state j. In Eq. (15), the first item is immediate costs, which depends on
repair or replacement. The second item is the operating revenue with the
present value. This item is multiplied by transition probability based on
the different routes from state i to state j. The average operating days
will be different depending on state i and state j. This point will be
further discussed in future sections. The third item is the expected net
present value of the next future lifecycle over an infinite time horizon.
The process is considered as an infinite horizon. Fig. 2 shows the process
from state i to j and from state j to k for the reward earned over an
infinite number of periods. We presented two periods to clarify the
process further. State i, j, and k all represent failure reasons such as
Random Failure, Physical Damage, and Battery Related.

State i is the initial state as the start time in period 1. The immediate
cost is the repair or replacement cost at state i as the start time. The first
operating revenue will start from state i to state j. The operating revenue
is multiplied by a discount factor to be the present value in initial state i.
The net present value of expected reward in the state i as the start
timepoint includes direct cost and operating revenues. The process of
the second period is the same as the process of the first period.

The linear programming approach can be applied to the above
Markov decision process to solve the optimal expected discounted
reward for each state. Finding the best strategy or decision that maxi-
mizes Markov chain’s expected value over an infinite horizon is equiv-
alent to solving the following linear programming problem Puterman,
1994). Based on Egs. (12) to (15), the optimization model is as follow:

Min > Vi) (16)

Subject to

a7
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V(n) > —NC + (1 +r)(3W> (WD x OR)+ 3 P(| i)(l +’>(3) V()

100 . 100
j=1, ...n
for replacement decision with 6 = 0
i=1,2,...,n—1 (19)
V(1),V(2),.... V(1= 1),V(n) > 0 (20)

where ARD; is average repair or maintenance days for the state i, NC is
replacement cost, WD is warranty days, and RC is repair costs per day.
V(1) to V(n—1) are the states with repair decision except for New state
with replacement decision as V(n). In this study, we describe the state
“New” to describe the use of a new product. Therefore, when a broken
device is replaced with a new device, the new device does not have any
failure record. Therefore, the replacement decision will open a state New
as a starting point.

The medical devices dataset provides us the information of transition
probabilities between failure types (states). Also, it provides the chance
of moving from “New” to any other failure types. So, it is assumed that
the New state is equivalent to a new device or replacement decision.
Also, since we did not have access to the device acquisition time, we
assume that a new device can work at least during the warranty time
before it is failed.

According to the optimization model, the V(i) is calculated for each
state i. When one of the repair states among n-1 types has a value greater
than the value of state n (replacement), the decision is to repair, and vice
versa.

2.3. Frequency analysis

According to MarketsandMarkets, the global infusion pump market
will reach near $16 billion by 2023 from near $12 billion in 2018

Immediate cost at start
time for initial state i

Timeline from i to j
|

Period 1

Expected reward of timeline from i to j:

1. First reward: Immediate cost with decision,
—Tigs-

2. Second reward: Operating revenues from
timeline from i to j, Zj:l,...,n P(jl)Bi,j,60:),6

|

\

V(i) = Expected discounted reward earned over an infinite
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(18)

(MarketsandMarkets 2021). The case study described in this paper is
based on the dataset provided for a medical device labeled as Device A,
which is applied in infusion pumps and multitherapy. The dataset pro-
vides 24,516 records of repair and maintenance logs of Device A over a
10-year time horizon from 2008 to 2018. Device A has 23 different
maintenance reasons, such as battery-related issues, random failure, and
physical damage. To further understand the device’s repair and main-
tenance needs, frequency analysis has been conducted to analyze the
failure count, time to repair (TTR), and failure count per 72 hours to
analyze different maintenance reasons. The TTR is the interval time
between the repair start time and completion time, and failure count per
72 hours is the number of failures in 72 hours for each maintenance
reason.

The first step is to fit the best probability distribution to the factors
mentioned above. Previous studies have analyzed failure datasets using
different distributions. For example, Patil (2019) uses Normal,
Lognormal, and Weibull distributions to analyze the hardware and soft-
ware failure data (Patil, 2019). Lampreia et al. (2019) used Weibull for
the mean time between failure of marine gas turbines (Lampreia et al.,
2019), and Sukhwani et al. (2016) used Gamma distribution for the
software reliability analysis (Sukhwani et al., 2016). Wessels (2007)
adopted Weibull and Exponential distribution to analyze reliability
(Wessels, 2007). This study selected five distributions, including Gamma,
Normal, Lognormal, Weibull, and Exponential, to analyze the dataset.

The Akaike information criterion (AIC) and Bayesian information
criterion (BIC) are used to fit the best probability distribution to the
failure count, TTR, and failure count per 72 hours. The best-fitted
probability distribution has the minimum AIC and BIC values
compared to other distributions. AIC or BIC for identifying the best-
fitted probability distribution is common in the literature (Mutua,
1994, Haddad and Rahman, 2011, Rahman et al., 2013, Alam et al.,
2018). The AIC is based on the maximum entropy principle and is given
by (Akaike, 1998):

Operating revenues from timeline
from i (start time) to j (end time)

>

)

Timeline from j to k&

|

Period 2 !

Expected reward of timeline from j to k:
1. First reward: Immediate cost with decision,

- Tj‘g.
2. Second reward: Operating revenues from
timeline fromjto k, Yp—1  n P(k|j)ﬂ,-_k,50,-,k,5

l

V() = Expected discounted reward earned over an infinite

number of periods, given that at the beginning of time number of periods, given that at the beginning of time
period 1, the state is i and the stationary policy is . period 2, the state is j and the stationary policy is &.

Fig. 2. The relationship between periods 1 and 2 for initial state i, state j, and state k in periods 1 and 2.
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Table 2
The description of dataset fields.
# Data Attribute Description
1 WO Number The work order of repair
2 Type Code Product type
3 First Asset Number Property unique number
4 First Asset Description Function of product
5 First Asset Manufacturer Name Maintenance manufacturer
6 First Asset Model Number Product name
7 First Asset Serial Number Property unique serial number
8 Date Created Repair start time
9 Completed Date Repair completion time
10 Determination Description The reason for repair
AIC = 2k —2In (Z) (21)

where I denotes the maximum value of the likelihood function and k is
the number of the probability distribution parameters fitted to real data.
The best-fitted distribution has a minimum value of AIC. The BIC has a
similar equation to the AIC and is based on the Bayesian framework
(Schwarz, 1978):

BIC = In(n)k — 2In (Z) (22)

where n denotes the sample size. Section 3 provides further information
on the dataset and the outcomes of frequency analysis.

3. Background of dataset

Although the prior studies (Mummolo et al., 2007, Taylor and
Jackson, 2005, Taghipour et al., 2011, Rajasekaran, 2005) investigated
repair decisions, the factors contributing to the score are determined by
human subjects instead of observed data. In this study, we investigated
24,516 repair and maintenance records from 2008 to 2018 for a medical
device labeled as Device A, and we have 5,171 individual products. The
dataset is provided by one of the largest healthcare providers in the US.
The function of Device A is infusion pumps and multitherapy for medical
purposes with the price of $895. Because we do not have the first active
time of each individual product, we estimate that the healthcare in-
dustry buys 2,585 Device A every 5 years, assuming that the minimum
operation time of Device A is 5 years. It seems that the healthcare in-
dustry needs to spend $462,715 (895*2585/5) each year. Also, the
average number of repair and maintenance records per year is 2,452. If
the healthcare industry decided to replace whatever type of failure, the
cost for purchasing new Device A will be $2,194,540 (895%2452) every
year. Since the healthcare industry reuses Device A for five years, they
do not need to spend the replacement cost each year.

Each repair record has 10 data attributes, as shown in Table 2. First
Asset Number and First Asset Model Number provide sufficient infor-
mation to identify an individual product’s unique code and the product’s
name. The First Asset Description provides information on the function

Table 3
The description of determination description.

Resources, Conservation & Recycling 171 (2021) 105609

purposes like infusion pumps and multitherapy. The attributes Date
Created and Completed Date show the start time and the completion
time for each repair record. Finally, the Determination Description
provides the record of repair and maintenance reasons.

Table 3 shows 23 failure types identified from Determination
Description, the number of records of each type, and the average days
for repair or maintenance. The first twenty-second states are derived
from 24,516 records. The final ‘New’ state is defined by us to describe
the use of a new device. This state somehow reflects the point that
among the 24,516 records, we have 5,171 individual products. Each
individual product has only one “New” state reflecting the use of a new
product. The 23 states are independent and do not have sequential re-
lations. For example, if the current failure reason is Random Failure, the
next failure can be any one of the states. The transition probabilities
reflect the chance of moving from the current state to the next once
based on the percentage of failure transitions observed in the dataset.
Table 3 shows that Physical Damage, Random failure, and No problem
Found are the most frequent failure types. Also, the average time of
repair for PM Failed, Damaged Beyond Repair, and Applicable is the
highest. For example, the average time of repairing a Device A failed due
to PM Failed is 3 months.

4. Case study and results
4.1. Outcomes of frequency analysis

According to Section 2.3, five distributions, including Gamma,
Normal, Lognormal, Weibull, and Exponential distributions, will be used
to fit the frequency analysis of the failure count, TTR, and failure count
per 72 hours. The best-fitted probability distributions are shown in
Table 4. Some states are not shown in Table 4 as we did not have suf-
ficient data for them. Most of the best-fitted probability distributions are
Weibull and Gamma. The fitted distributions help us calculate different
probability values. For example, if a device has a battery-related failure,
by employing the TTR on Gamma distribution, we can calculate the
likelihood that it may take over 15 days to repair the device. The five
distributions fitted to the data have been commonly used in the litera-
ture for reliability analyses (Patil, 2019, Lampreia et al., 2019, Sukh-
wani et al., 2016, Wessels, 2007).

According to the best-fitted distributions, Fig. 3 to Fig. 5 reveals the
probabilities on failure count, TTR, and failure count per 72 hours,
respectively. The number listed on each bar means the probability (%) of
that property. The X of P(X > 1) is used as a general random variable for
failure count, TTR, and failure count per 72 hours. For example, the
P(X > 1) for failure count shows the probability that the number of
failures is greater or equal to 1. For TTR, it shows the probability that the
repair time is greater or equal to 10 days. And for failure count per 72
hours, it shows the probability that the number of failures per 72 hours is
greater or equal to 1.

In Fig. 3, three states have higher probabilities among other states,

# Determination Description Count  Average Days of Repair/ # Determination Description Count  Average Days of Repair/
(State) Maintenance (State) Maintenance

1 Accessory Problem 496 8 13 PM Related 1309 10

2 Applicable 11 19 14  Prior To Clinical Use - Failed 1 13

3 Battery Related 103 6 15  Project 12 1

4 Damaged Beyond Repair 2 28 16  Random Failure 7348 11

5 Environment Related 499 7 17  Random Software Failure 241 11

6 Modification/Upgrade 37 5 18  Rechargeable Battery Failure 1 0

7 Network Problem 62 2 19  Repeat Repair 10 7

8 No Problem Found 6579 8 20  Setup Related 27 4

9 Not Applicable 4 1 21  Tech Support 153 10

10  Physical Damage 7384 8 22 Use Error 188 6

11 PM Failed 1 102 23 New 5171 0

12 PM Passed 48 8
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Table 4
The best-fitted probability distribution for each state.

State Failure TTR (10 Failure count per 72
Count days) hours
Accessory Problem Gamma Lognorm Gamma
Battery Related Gamma Gamma Gamma
Environment Related Weibull Weibull Gamma
Modification/Upgrade Weibull Gamma Gamma
Network Problem Weibull Weibull Gamma
No Problem Found Weibull Lognorm Expon
Physical Damage Weibull Lognorm Weibull
PM Passed Weibull Weibull Gamma
PM Related Gamma Weibull Weibull
Random Failure Lognorm Weibull Weibull
Random Software Gamma Weibull Weibull
Failure
Tech Support Weibull Gamma Gamma
Use Error Weibull Gamma Gamma

including No problem found, Physical Damage, and Random Failure. The
question is whether to repair or replace Device A when encountering
these issues. The decision model in Section 4.3 will be used.

Fig. 4 shows the results for TTR. In P(X > 1), Modification/Upgrade,
PM Passed, and Tech Support are states with a higher chance of TTR
more than 10 days. In the case of P(X > 2) to P(X > 4), PM Passed, and
Tech Support are higher among others. For P(X > 5), the PM Passed is
the most frequent state. Higher probabilities on TTR mean higher repair
cost and ultimately higher chance of being replaced instead of repair.

Fig. 5 shows the results for the failure count per 72 hours. The reason
to use per 72 hours is that we attempt to observe the frequency by
moderate time-scale instead of tight scales like one day or long scales
like a week. For P(X > 1) to P(X > 5), three states, including No prob-
lem found, Physical Damage, and Random Failure, have higher proba-
bilities among other states.

The frequency analysis analyzes metrics such as failure count, TTR,
and failure count per 72 hours. The analyses provide an overview of the
situation and help us quantify the transition probabilities for the DTMC
process in the next section.

According to Fig. 4, the average TTR can be computed as:

average TTR = Z /Zﬁ(z)dz /n (23)
End

where fi(z) is the probability density function of the repair time for a
product with failure state i. The repair time can range from 0 to infinity.
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averaging n states. Based on Eq. (23), the average TTR for Device A is 18
days. Assuming that the total repair cost for Device A is 40% of the
original purchase price of 895$. Thus, the repair cost per day is around
$20 which is 40% of $895 divided by 18 days. The $20 repair cost per
day is an input to the optimization model.

4.2. Probability transition matrix and the average operating cycle

The transition probabilities and the average operating day are calcu-
lated using Egs. (8) and (10). The results are summarized in Figs. 6, and 7.

As listed in Fig. 6, all current states will move into No Problem Found,
Physical Damage, and Random Failure with higher probabilities, as we
expected in Section 4.1. For example, if the current state is Battery
Related, after repairing, the next state will be No Problem Found, Physical
Damage, and Random Failure with a probability of 0.19, 0.22, and 0.39.

Fig. 7 shows the average operating time for Device A before having
any issue in the next state. None means that the dataset does not have
any record from the current state to the next state. The dataset also does
not have records from the current state New to the next state as the
dataset does not include the operating start time. Regardless of the
operating start time, the information on the probability from state New
to the next state can be evaluated since the dataset has records on the
first repair order. With the first repair order info, we can evaluate the
transition from a new product to the first repair order. Thus, it is possible
to evaluate the transition probabilities from the state New to other
states. The replacement decision will open the state “New” as the
starting point of using a new product.

According to Fig. 7, states such as Damaged Beyond Repair, Prior To
Clinical Use - Failed, and Rechargeable Battery Failure do not have
transition information from them to other states. These three states do
not have enough data, as shown in Table 3. Also, after repairing or
maintenance, Device A can operate for a long time. For example, if the
repair reason is Battery Related, it can work up to 960 days after
repairing the device. In contrast, in some cases like Repeat Repair, the
device can work for 2 or 3 months.

4.3. Specific case for the optimization model

The model has been run for a specific case, as summarized in Table 5.
A 3% discount rate is considered. OR is assumed to be $1 to $30 per day,
RC to be $20 per day, and WD to be 1, 2, and 3 years. Besides, the prices
for a new Device A is $895. Using Eqs. (16) to (20), the optimization
model is formulated:

The integral part shows the average repair time for each state i. Each Min Z V() (24)
state has a different average repair time. After computing each state’s et
average repair time, the grand average TTR will be calculated by .
Subject to
D, D;
V(i) > —ARD; x 20+ 3 _P(j| i) (1 + ﬁ) (Dij x OR) +> P | i) (1 + ﬁ) V() (25)

Jj=1

for repair decision with § = 1

V(23) > —895 + (1 +%)<?£> (WD x OR) +iP(j | i)(l +i>(3°

100

J=1

for replacement decision with =0

(26)
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i=1,2,.., 21,22 27)
V(1),V(2),...,V(22),V(23) > 0 28)
OR=1,2,..., 21, 30 (29)
WD =1,2,3 (30)

The information of V(1) to V(22) is described in Table 3. V(23)
represents the state “New”. After calculating each state’s profit, the
optimal decision of repair or replacement can be determined.

4.4. Results and sensitivity analysis

The transition probabilities are used as inputs to the optimization
model. The outcome of the optimization model gives us the profit of
each state,V(1) to V(23). If the profit of state i, V(i), is greater than the
state New, V(23), the decision is to repair, otherwise, to replace. For
example, the Network Problem’s value of $ 321,811 is less than the
value of state New with $325,437. Thus, the decision will be to replace it
with a new Device A.

Fig. 8 shows the optimal decision in each state along with each
state’s expected value, for the case of $20 repair cost and $30 operating
revenue per day. The repair decision is shown by the red bar and the
replacement decision by the blue bar. If a state’s value is greater than the
value of state New (the yellow bar), the decision is to repair. Otherwise,
to replace.

Fig. 9 shows a sensitivity analysis on warranty durations when the
repair cost is $20 per day. For some states such as Damaged Beyond
Repair, Prior To Clinical Use - Failed, and Rechargeable Battery Failure,
since there is not sufficient data as discussed in Section 4.1, the decision
always is to replace, as shown in Fig. 8. However, if more data is

- P(X>1)

- P(X>2)

E P(X>3)
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recorded for these three states, the optimal decision may change. The
white color in Fig. 9 shows the uncertain decision due to limited data.
Also, the optimization model shows if the value of V(1) to V(22) is less
than V(23), the decision is to replace it.

Two factors of operating revenue per day and warranty have been
used for conducting sensitivity analyses. The operating revenue varies
from $1 to $30 per day, and the warranty varies from 1 year to 3 years.
The repair costs are $20 per day based on the discussion in Section 4.1.
In Fig. 9 (a), the x-axis corresponds to each state as defined in Table 3,
the y-axis is the operating revenue from $1 to $30 per day, and the z-axis
is warranty time from 1 to 3 years. The repair decision is shown with red
color, the replacement with blue color.

According to Fig. 9, the decision to repair or replace depends on the
product condition. For example, if the product is in State 2, the decision
is to replace it. The main factor contributing to the replacement is the
lengthy repair time. The repair time for State 2 is 19 days. However, the
repair time is not the only contributing factor. For example, although the
PM Failed state has the highest repair time among all states, as operating
revenue per day increases, the decision will be changed from replace-
ment to repair. With probability 1, the device will move from the PM
Failed state to the PM Related state. The PM Related state can generate
more profit than state New. Thus, if the failure state is PM Failed, the
decision will be to repair.

In Fig. 9, as operating revenue per day increases, four situations may
happen. The first situation is to always repair, regardless of operating
revenue per day. For example, in State 8, “No Problem Found”, the
decision is to repair. With minor repairs such as clear up or maintenance,
Device A with state No Problem Found can still generate profits. The
second situation is to always replace, regardless of operating revenue
per day. One example is State 2.

The third situation is when the decision changes from repair to

P(X >4) P(X >5)

Accessory Problem
Battery Related
Environment Related
Modification/Upgrade
Network Problem

No Problem Found
Physical Damage

PM Passed

PM Related

Random Failure
Random Software Failure
Tech Support

Use Error

19 12 8

11

Fig. 3. The probability (%) of failure count considering the best-fitted PDF:P(X>1) to P(X>5).

N p(X>1) B PX>2)

mE P(X>3)

P(X>4) PX=5)

Accessory Problem
Battery Related
Environment Related
Modification/Upgrade
Network Problem

No Problem Found
Physical Damage

PM Passed

PM Related

Random Failure
Random Software Failure
Tech Support

Use Error

18

15 11

Fig. 4. The probability (%) of TTR (10 days) considering the best-fitted PDF:P(X>1) to P(X>5).
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replacement as operating revenue per day or warranty time increases.
Table 6 shows the sensitivity analysis based on the operating revenue
per day to highlight the operating revenue threshold. If operating rev-
enue per day changes by 20%, from $5 to $6, the decision will change
from repair to replacement. The profits increases by $10,904 (from
$49,209 to $60,113) and by $11,053 (from $49,115 to $60,168) for
Network Problem and New, respectively.

In Table 6, regression equations show the operating revenue per day
for each state. Overall, by increasing the operating revenue per day, the
decision switches from repair to replacement. Also, different warranty
times influence the optimal decision as shown in Fig. 10. The profits of
the Use Error state do not change among different warranty years, but of
State New changes depending on different warranty years. By increasing

EE P(X>1)

EE P(X3>2)

E P(X>3)
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warranty years, the decision will change from repair to replacement.
Also, the profits increase when the warranty time increases by 50%
(from 2 years to 3 years).

The fourth situation is when the optimal decision switches from
replacement to repair, as shown in Table 6. If operating revenue per day
is less than $16, the decision is to replace when the state is the PM
Failed. When operating revenue per day increases by 6%, from $15 to
$16, the optimal decision switches from replacement to repair. Also, the
fourth situation is not sensitive to the warranty years. By increasing
warranty years, some state’s decision will change from repair to
replacement, but no decision will be changed from replacement to
repair.

The four situations are summarized in Table 7. Under different

P(X>4) P(X>5)

Accessory Problem
Battery Related
Environment Related

Modification/Upgrade
Network Problem
No Problem Found 46 38
Physical Damage
PM Passed
PM Related
Random Failure 40
Random Software Failure
Tech Support
Use Error
Fig. 5. The probability (%) of failure count per 72 hours considering the best-fitted PDF:P(X>1) to P(X>5).
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Fig. 6. The transition matrix of probabilities from 2008
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to 2018 (y-axis is current state; x-axis is next state)
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Fig. 7. The transition matrix for average operating days from 2008 to 2018 (y-axis is current state; x-axis is next state).

operating revenue and warranty times, the optimal decision can be

Table 5 .
. determined.
The parameters for the specific case.
Parameter Values Remarks 4.5. Practical implications and limitations
r 3% Annual discount rate
OR $1 to $30 per day Operating revenue per day The results help healthcare providers minimize their operational
I;VCD fzt(; gereiz \}};;i:niosip:r day costs and maximize the expected revenue by setting proper repair and
NC $895 y Replaceiemy costs replacement policies. In addition, proper decisions reduce the waste
generation rate by considering repair instead of replacement to extend
the product lifespan. Furthermore, the outcomes can help decision-
35.00 [32.92 32.93 31.60 32.1832.9233.0332.9332.6732 01 32.86 32.93 32.9432.9132.6332.4732.54
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Fig. 8. Decision-making results under $20 repair costs and $30 operating revenue per day for 1 year warranty (repair decision with red bar, and replacement
decision with blue bar).
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State

State

Fig. 9. Decision-making results (repair with red color, replacement with blue color, and an uncertain decision due to limited data with white color) under $20 repair
costs per day: (a) 1 to 3 (z-axis) year warranty, (b) 1-year warranty, (c) 2-year warranty, and (d) 3-year warranty.

Table 6

Sensitivity analysis on the relationship between operating revenue per day (OR) and net present value (V) under $20 repair cost per day and a 1-year warranty for
Network Problem (repair decision) and state New (replacement decision) as a case from repair to replacement decision; and PM Failed (repair decision) and New
(replacement decision) as a case from replacement to repair decision.

Example of switching from repair to replacement decision

Example of switching from replacement to repair decision

Operating revenue per day ($) Network Problem ($) New ($) Operating revenue per day ($) PM Failed ($) New ($)
1 5593 4904 11 115033 115433
2 16497 15956 12 126173 126485
3 27401 27009 13 137313 137538
4 38305 38062 14 148453 148591
5 49209 49115 15 159594 159644
6 60113 60168 16 170734 170697
7 71017 71221 17 181874 181750
8 81921 82274 18 193014 192803
9 92826 93327 19 204154 203856
10 103730 104380 20 215294 214909

Linear regression

V=109040R-5311 V =110530R-6149

Linear regression

V =11140(0OR-10)+103893

V =11053(0OR-10)+104380
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H New 93327
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Fig. 10. Sensitivity analysis for warranty year with Use Error state (repair decision) and New state (replacement decision) under 20$ repair costs per day and 9%

operating revenue per day.

Table 7
Four classes for the decisions based on sensitivity analysis.

Class  Decision Illustration Sensitive condition
1 Repair forever Regardless of operating Not sensitive to
revenue per day and operating revenue per
warranty year, the decisionis  day and warranty
to repair. year.
2 Replacement Regardless of operating Not sensitive to
forever revenue per day and operating revenue per
warranty year, the decisionis  day and warranty
to replace it. year.
3 From repair to With lower operating Sensitive for
replacement revenue per day and operating revenue per
warranty year, the decisionis  day and warranty
to repair. However, by year.
increasing both variables,
the optimal decision is to
replace.
4 From With lower operating Sensitive for
replacement to revenue per day, the optimal ~ operating revenue per
repair decision is to replace, and day.

with higher revenue, the
decision is to repair.

makers with labor scheduling and efficient operational planning of
repair technicians. Finally, the research outcomes can reveal the de-
mand for repair services and help healthcare providers determine
whether to outsource repair services or use in-house resources to reduce
operational costs.

The outcomes of the model are not limited to medical equipment.
They can be applied to other cases such as home appliances,
manufacturing machinery, and consumer electronics, to name a few.
Overall, the emergence of data collection technologies such as IoT and
distributed ledger technologies makes it easier to track individual de-
vices over their entire lifespan and collect lifecycle data like the timing
of repair needs and failure events. Therefore, analytical models such as
the proposed optimization model help use the collected data toward
more sustainable lifecycle engineering.

The proposed model and the corresponding case study have several
limitations. For example, the lack of data on different failure reasons
such as Damaged Beyond Repair, Prior To Clinical Use-Failed, and
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Rechargeable Battery Failure. The dataset quality is another limitation
as some records such as the repair start and completion times lack
consistency and accuracy. Also, we have analyzed only one type of
medical device. However, healthcare providers often deal with hun-
dreds of devices, and they make repair and replacement decisions
considering a family of products or product-service bundle available to
them. Also, other considerations such as healthcare safety standards,
rules, and regulations may influence the decision to repair or replace
specific medical equipment.

5. Conclusion

In order to address the cost burden of repair and maintenance of
medical devices, this study develops a decision-making framework to
help healthcare providers decide on the optimal timing of repair or
replacement of medical devices. A discrete-time Markov Chain model is
used to model the device lifecycle, and an optimization framework is
developed to determine the repair or replace decision. The transition
probability obtained from the DTMC model is used in an MDP frame-
work, where the MDP framework provides the optimal repair or
replacement decisions. Three factors, including the immediate cost of
repair or replacement, operating revenues, and future profits, are
considered to form the objective function. A dataset of 24,516 records of
repair and maintenance of a medical device from 2008 to 2018 is used to
show the application of the model. The dataset was used to identify
failure modes and calculate the transition probabilities needed in the
optimization model. A frequency analysis and several sensitivity ana-
lyses are conducted to elaborate the results further.

The outcomes of the frequency analysis reveal the most frequent
failure reasons for infusion pumps in the current dataset, including No
problem found, Physical Damage, and Random Failure. The results of the
sensitivity analysis show that the repair and replacement decision is
influenced by operating revenue per day and warranty times. Four classes
of decisions, including always repair, always replacement, switch from
repair to replacement, and from replacement to repair, are presented.

This study can be extended in several ways. First, defining the timing
of repair or replacement decision is influenced by other factors such as
safety standards, regulation, production functionalities, complexity, and
new technologies coming to the market. Second, artificial intelligence
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and machine learning tools can be used to analyze the product reliability
data and provide further insights into Markov chain models. Third, the
Markov chain model can be extended to consider the dynamic nature of
the problem. Fourth, forecasting models can be used to estimate better
the future value of repair or replacement decisions based on economic
consequences and environmental and social outcomes such as health
equity and public access to the health services, resulting from repair and
reuse of medical devices. Finally, comparison with other extant models
can further validate the performance of the proposed model.
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