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Forecasting Repair and
Maintenance Services of Medical
Devices Using Support Vector
Machine
Accurate prediction of product failures and the need for repair services become critical for
various reasons, including understanding the warranty performance of manufacturers,
defining cost-efficient repair strategies, and compliance with safety standards. The
purpose of this study is to use machine learning tools to analyze several parameters
crucial for achieving a robust repair service system, including the number of repairs, the
time of the next repair ticket or product failure, and the time to repair. A large data set
of over 530,000 repairs and maintenance of medical devices has been investigated by
employing the Support Vector Machine (SVM) tool. SVM with four kernel functions is
used to forecast the timing of the next failure or repair request in the system for two different
products and two different failure types, namely, random failure and physical damage. Fre-
quency analysis is also conducted to explore the product quality level based on product
failure and the time to repair it. Besides, the best probability distributions are fitted for
the failure count, the time between failures, and the time to repair. The results reveal the
value of data analytics and machine learning tools in analyzing post-market product per-
formance and the cost of repair and maintenance operations. [DOI: 10.1115/1.4051886]
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1 Introduction
Most products experience some sort of failure during their life-

span. Several reasons for product failures include insufficient relia-
bility, poor quality, wrong design, uncertain usage, and production
conditions [1]. Product failure can cause adverse effects such as
financial cost, consumer dissatisfaction, and ruining manufacturers’
market image [2]. Product repair is often part of the product life-
cycle events. For example, once the product reaches the end-of-use
or the end-of-life, customers may decide to upgrade their product
due to technological advances or repair, refurbish, or remanufac-
turer to extend the product lifespan [3].
The concept of end-of-use product recovery and extending the

product lifecycle is nothing new in the literature. Previous studies
have already discussed product recovery challenges that are facing
different industries, such as buildingmaterial stocks [4], automobiles
[5], and household electric and electronic equipment [6]. Mathemat-
ical models have been developed to overcome some of those chal-
lenges (e.g., uncertain quality and quantity of waste stream) and
help remanufacturers decide what to do with used devices [7,8].
Among the six common recovery strategies (e.g., reuse, repair,

recondition/refurbishment, remanufacturing, cannibalization, and
material recovery), repair has received less attention in the literature.
However, predicting product failure has always been of interest to
both academia and industry. Several studies have discussed the fore-
casting of product failure. To name a few, Yoon and Sohn built
several random-effects regression models to forecast the mean time
between failure (MTBF) [9]. Al-Garni et al. used the Weibull
family to build a relationship with aircraft air-conditioning failure
[10]. Wang and Yuan completed the failure rate prediction based
on the AR model [11]. Wang and Yin adopted Weibull distribution
to failure rate prediction [12]. Sexton et al. used different rules
such as single-tag and rules-based to extract keywords to estimate

median time to failure [13]. Brundage et al. also studied technical lan-
guage processing by considering human-in-the-loop, natural lan-
guage processing tools, and text analysis to analyze documents
that contain the equipment maintenance data [14]. While the previ-
ous studies have discussed product failure and maintenance, the
number of studies that have worked with real industry data sets is
very limited. The practical insights derived from analyzing big indus-
try data sets help us define proper repair and maintenance strategies
for corporations toward cost reduction and sustainability goals.
This study aims to show how machine learning tools can help

businesses analyze the overwhelming data set of product post-
market performance and identify the depth and significance of the
demand for repair and maintenance services. The Support Vector
Machine (SVM) regression model simulates the product failure sce-
nario and predicts the timing of the next repair service. The forecast-
ing accuracy of SVM in regression is already confirmed by several
studies [15–17]. In this study, the data set is collected from 2004 to
2018 under different management policies. Although some bias and
data set noise influence the decision to repair, the SVM model can
still forecast failure time.
Besides, this study runs a frequency analysis to analyze the

product quality based on the probability distributions of failure
count, TBF, and time to repair (TTR). The frequency analysis pro-
vides information about each product maintenance condition.
This study provides an overview of products maintenance condi-

tions by frequency analysis and offers a way to forecast product
failure and the timing of the subsequent repair service request.
Figure 1 shows the overall structure of this study.

2 Overview of Data Set
2.1 Elements of the Data Set. In the current study, we inves-

tigate 536,597 records of repair and maintenance of medical
devices, 90,278 individual products, and 9,351 product types
from 2004 to 2018. The management policies may affect the collec-
tion and documentation of the repair data set and might have
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imposed some biases in how the data are reported. The data come
from one of the largest health care providers in the United States.
The data set includes 9351 different products with different func-
tions and purposes, such as infusion pumps, pulse detection, and
oximeters. The average number of repair orders is 35,773 per
year or 98 repair orders per day. Therefore, the need for a mainte-
nance plan is significant for the health care provider.
Table 1 shows an overview of the available fields of data for

each repair and maintenance record. First Asset Number is the
unique code to identify an individual product. First Asset Descrip-
tion is the information of product function, and First Asset Model
Number is the name of each type of product. Date Created and
Completed Date fields are the start time and the completion time
on the repair. Based on the Date Created and Completed Date,
we can identify TBF and TTR. The TBF is the time between an
individual product’s failures, and the TTR is the repair start time
to repair completion time. TBF and TTR are good indicators of
product reliability and cost of repair. The long TBF and short
TTR mean that a product has high reliability and may be easier
to be maintained.
Figure 2 shows the distribution of 35 repair reasons among the

top 10 product categories. We have only relabeled the equipment
names, including CA type 1, CA type 2, M8 type 1, PA type 1,
PC type 1, MF type 1, CSE type 1, VE type 1, R type 1, and M8
type 2. We have not relabeled the repair codes, such as failure
reasons and product type, to train the models. As shown in
Fig. 2, 35 repair reasons are listed for the relabeled products. The
repair attributes field in the data set provides specific details on

why an individual product needs repair. For example, random
failure (RF) is a physical failure with excessive stress of the
device and can happen at any time [18,19].
Figures 3 and 4 show the number of RF and physical damage

(PD) for the top 10 categories of products, respectively. The top
10 categories of products have the highest records of data among
all 9351 product types. Among the top 10 categories, the CA type
1 and CA type 2 are selected for the forecasting part of the study
due to enough sample size. The number of RF and PD is the
highest among other failure reasons.
According to Table 2, some product categories serve the same

functions. For example, there are many products with infusion
pumps and multitherapy functions. Four product categories, includ-
ing CA type 1, M8 type 1, PA type 1, and M8 type 2, have the same
function.

2.2 Data Frequency Analysis. This section describes the fre-
quency analysis of the failure count, TBF, and TTR. To analyze the
reliability based on the above indices, we need to fit the best prob-
ability distribution for each product type. In the previous studies,
Patil applied Normal, Lognormal, andWeibull distributions to relia-
bility and maintainability analysis on hardware and software fail-
ures [20]. Lampreia et al. used the Weibull probability density
function to analyze MTBF on the reliability analysis [21]. Sukh-
wani et al. applied Gamma distribution to analyze the reliability
of NASA space flight software [22]. Tronskar et al. analyzed corro-
sion damage for pipelines and pressure vessels by using Gumbel
distribution [23]. Four probability distributions, including
Gumbel, Gamma, Normal, and Weibull distributions, have been
applied to this study. The frequency analysis is also conducted for
five categories of products: CA type 1, CA type 2, M8 type 1,
PA type 1, and M8 type 2.
The best-fitted probability distributions for the failure count,

TBF, and TTR are determined by the Akaike information criterion
(AIC) and Bayesian information criterion (BIC). The AIC test that
measures the discrepancy between the true model and simulated
model is proposed by Akaike (1973) [24], and the BIC test is
based on the Bayesian framework [25]. Several studies had
applied the AIC or BIC to compute the best-fitted probability
distributions and showed the AIC and BIC are good indices for
this purpose [26–29]. The probability distribution with the
minimum AIC and BIC, among other distributions, is the best-fitted
distribution. The AIC is constituted by the principle of maximum

Fig. 1 The general data collection and analysis procedure of this study

Table 1 The description of data set fields

Data attribute Description

1. Work order number The work order of repair
2. Type code Product type
3. First asset number Property unique number
4. First asset description Function of product
5. First asset manufacturer name Manufacturer
6. First asset model number Product name
7. First asset serial number Unique serial number
8. Date created Repair start time
9. Completed date Repair completion time
10. Repair attribute The reason for repair
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entropy and is expressed as

AIC = 2n − 2ln(ĥ) (1)

where ĥ indicates the maximum value of the likelihood function,
and n is the number of probability distribution parameters. The
BIC is constructed by the Bayesian framework and is given as

BIC = ln(s)n − 2ln(ĥ) (2)

where s expresses the number of samples.
Table 3 shows the best-fitted probability distributions of RF and

PD. As seen, the best-fitted probability distributions are either
Weibull or Gamma. It is reasonable as the histograms of failure
count, TBF, and TTR are similar to exponential shape. The
example shown in Figs. 5 and 6 illustrates the probability density
function (PDF) and the cumulative distribution function (CDF) of
failure count for RF in CA type 2.
Table 4 represents the frequency analysis results for RF and PD

with the best-fitted PDF. The P(X≥ 1) for failure count means the
probability that at least one failure happens. For TBF, it means

the probability that an individual product has a normal operation
of at least one year before it is broken. For TTR, it means the prob-
ability that an individual product needs at least ten days to be
repaired.

Fig. 2 Summary of all repair types for all products and showing the count of top 10 products (among the repair reasons, most
repair records are the RF)

Fig. 3 The number of RF for the top 10 product types over time Fig. 4 The number of PD for the top 10 product types over time

Table 2 The summary of function for the top 10 product
categories

Product First asset description

CA type 1 Infusion Pumps, Multitherapy
CA type 2 Controllers, Infusion Pump Systems, Programmable
M8 type 1 Infusion Pumps, Multitherapy
PA type 1 Infusion Pumps, Multitherapy
PC type 1 Hospital Communication Systems, Nurse Call
MF type 1 Infusion Pumps, Multitherapy, Syringe
CSE type 1 Circulatory Assist Units, Peripheral Compression, Sequential
VE type 1 Circulatory Assist Units, Peripheral Compression, Sequential
R type 1 Oximeters, Pulse
M8 type 2 Infusion Pumps, Multitherapy
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Comparing the failure count of RF and PD, the overall probabil-
ity of RF is larger than PD. For example, the P(X≥ 1) to P(X≥ 5) of
CA type 1 is from 100% to 25% on RF but is from 100% to 2% on
PD. It reveals that random failure is the most repair reason for these
products. The P(X≥ 1) and P(X≥ 2) of CA type 1 to CA type 2 on
RF are almost similar, but the P(X≥ 3) to P(X≥ 5) of CA type 2 is
smaller than that of CA type 1. It means that CA type 2 is more
stable than CA type 1. Also, comparing CA type 1, M8 type 1,
PA type 1, and M8 type 2 under the same functional purposes (Infu-
sion Pumps, Multitherapy) on RF, the PA type 1 is more reliable
among these products. Although P(X≥ 4) and P(X ≥ 5) of PA
type 1 are slightly higher than those of M8 type 1, the overall
P(X≥ 2) to P(X≥ 3) are smaller among the same functional prod-
ucts. M8 type 2 is not reliable among products with the same func-
tion since it has a high-value P(X≥ 2). Almost 77% of M8 type 2
products fail at least twice.
The overall P(X≥ 1) to P(X≥ 5) for TBF among RF and PD are

very similar. The TBF reveals that products can normally operate at

least 1 year to 3 years before they fail. CA type 1 and PA type 1
have higher P(X≥ 1) on RF among all products. It means that
CA type 1 and PA type 1 have higher probabilities of operating
for more than 1 year, among others. M8 type 2 can endure more
PD because it has a higher probability of P(X≥ 1) to P(X≥ 3)
than others with the same functional purpose.
The TTR results reveal that CA type 1 and M8 type 2 are not

easy to repair among all products. These two products have
higher P(X≥ 1) to P(X≥ 5) than others, especially in P(X≥ 5).
Once a random failure occurs, it takes up to 50 days to repair
the device. Also, CA type 1, M8 type 2, and M8 type 1 take
a longer time to repair in the case of PD. Therefore, the cost
of repair is likely higher for CA type 1 and M8 type 2. In con-
trast, PA type 1 is easier to be repaired among other products.
Therefore, after analyzing Table 4, the PA type 1 category is
more cost-effective for Infusion Pumps and Multitherapy
functions.

3 Method: Support Vector Machine
Vapnik proposed support vector networks in 1995 to solve the

classification problem and later developed it for regression analysis
[30]. SVM has confirmed its forecasting accuracy through previous
work [15–17]. It has been applied to different fields for various pre-
dictions, such as dewpoint temperature prediction [31], stock pre-
diction [32], and flood forecasting [16,33]. Further details on
SVM can be found in Ref. [34].
According to Ref. [16], it is given the training set of [(x1, y1), (x2,

y2), (x3, y3),…, (xn, yn)] with the input vector x and the target data y.
The regression function can be expressed as

ŷ = f (x) = wTΦ(x) + b (3)

where ŷ is the output, w is the weight, Φ(x) is a nonlinear function,
and b is the bias. According to the structural risk minimization
(SRM) principle, the w and b can be derived by minimizing the
structural risk function as follows

Min R(w, b, ξ, ξ∗) =
1
2
‖w‖2 + c∗

∑n
i=1

Lε(ξ + ξ∗) (4)

Fig. 5 Four fitted PDF of failure count for RF of CA type 2

Table 4 The probability (0 ∼ 100%) of RF and PD considering
the best-fitted pdf: P(X≥1) to P(X≥5)

Product

Random failure, physical damage

P(X≥ 1) P(X≥ 2) P(X≥ 3) P(X≥ 4) P(X≥ 5)

Failure count
CA type 1 100, 100 40, 32 32, 13 28, 5 25, 2
CA type 2 100, 100 33, 30 14, 12 6, 5 3, 2
M8 type 1 100, 100 43, 14 26, 9 17, 6 12, 5
PA type 1 99, 100 29, 22 26, 7 24, 2 23, 1
M8 type 2 94, 100 77, 07 55, 2 37, 0 24, 0

TBF (year)
CA type 1 51, 53 29, 27 16, 13 9, 6 5, 3
CA type 2 44, 55 23, 27 12, 13 7, 6 4, 3
M8 type 1 39, 58 19, 36 10, 22 5, 14 3, 9
PA type 1 50, 45 28, 24 16, 13 9, 7 6, 4
M8 type 2 38, 68 17, 42 8, 23 3, 12 2, 6

TTR (10 days)
CA type 1 40, 31 33, 22 29, 17 26, 14 24, 12
CA type 2 25, 22 19, 15 15, 11 12, 09 11, 7
M8 type 1 31, 46 19, 27 13, 17 9, 11 7, 7
PA type 1 20, 2 10, 0.3 6, 0 4, 0 3, 0
M8 type 2 39, 66 30, 50 26, 39 23, 31 21, 26

Table 3 The best-fitted probability distribution of RF and PD

Product Failure count TBF (year) TTR (10 days)

CA type 1 Wei, Wei Gam, Gam Wei, Wei
AIC: 4922, 737
BIC: 2947, 763

AIC: 926, 585
BIC: 944, 604

AIC: 3653, 5411
BIC: 3679, 5437

CA type 2 Wei, Wei Wei, Gam Wei, Wei
AIC: 1819, 583
BIC: 1842, 907

AIC: 604, 606
BIC: 627, 622

AIC: 6981, 4670
BIC: 7005, 4688

M8 type 1 Wei, Wei Wei, Gam Wei, Wei
AIC: 2109, 373
BIC: 2130, 387

AIC: 570, 342
BIC: 595, 346

AIC: 36948, 485
BIC: 36975, 465

PA type 1 Wei, Wei Gam, Gam Wei, Wei
AIC: 398, 410
BIC: 415, 427

AIC: 542, 461
BIC: 553, 471

AIC: 664, 999
BIC: 681, 1015

M8 type 2 Wei, Wei Gam, Gam Wei, Wei
AIC: 1388, 530
BIC: 1401, 540

AIC: 491, 445
BIC: 508, 446

AIC: 5208, 13214
BIC: 5225, 1325

Note: wei, weibull; gam, gamma.

Fig. 6 Best-fitted CDF of failure count for RF of CA type 2
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Subject to

yi − ŷi = ŷi − (wTΦ(x) + b) ≤ ε + ξi
yi − ŷi = (wTΦ(x) + b) − ŷi ≤ ε + ξ′i

ξi ≥ 0
ξ′i ≥ 0

i = 1, 2, . . . , n

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(5)

where c∗ is a penalty parameter for making a tradeoff between
model complexity, and ɛ is the error tolerance as a range between
target data y and output data ŷ. ξ and ξ∗ are slack variables. The
Lagrange multipliers with a and a∗ can be used to solve the above-
mentioned optimization problem

f (x) =
∑v
i=1

(ai − a∗i )K(xk , x) + b (6)

where v is the number of support vector, xk is the support vector, and
K(xk, x) is a kernel function. SVM has four kernel functions as
follows:
Linear function:

K(xi, xj) = xTi · xj (7)

Polynomial function:

K(xi, xj) = (r · xTi · xj + c)d (8)

Radial basis function:

K(xi, xj) = exp(−r‖xi − xj‖2) (9)

Sigmoid function:

K(xi, xj) = tanh(r · xTi · xj + c) (10)

where r is a scaling factor, c is the bias term, and d is the degree
term. This study uses the grid search method [35] to find parameters
(r, c∗, d, and ɛ). Figure 7 shows an overview of the SVM structure.

4 Forecasting the Time of Next Random Failure
or Repair Service Ticket
4.1 The Input of Support Vector Machine. Four different

kernel functions, including Linear (LN), Polynomial (PL), Radial
basis (RBF), and Sigmoid (SIG) functions, are selected to see
which one has better forecasting performance. The input variable
to the SVM model is the cumulative seconds, as illustrated in
Table 5. The definition of cumulative seconds is the difference

between the current failure time and the subsequent failure time.
We should note that the current and upcoming failures may not
be for the same individual product. The output of SVM is the fore-
casted time of the next failure. When the failure time is t+ 1, t+ 2,
or t+ 3, the SVMmodel will predict the next first, second, and third
failure times in advance. The relationship of the failure time to the
input factor is shown in Table 6. The T(t), T(t−1), and T(t−2)
denote current, previous, and the second-to-last product failure
time as an input factor, respectively. This study selects T(t−6),
T(t−5), T(t−4), T(t−3), T(t−2), T(t−1), T(t) as input factors to fore-
cast the time of the next failure since these input factors have a high
correlation coefficient (CC) with output data. Also, when the time of
failure increases, the number of input factors is reduced. The reason
for reducing the input factor is to maintain the high correlation coef-
ficient between input and output data.
We have selected two products, including CA type 1 and CA type

2, for prediction since these two products have enough sample sizes

Fig. 7 The structure of the support vector machine

Table 5 Example of calculating cumulative seconds (e.g., time
of the first failure and the second failure)

Order Failure time Cumulative seconds

1 2008-07-23 11:00:00 0 s (Time 1–Time1)
2 2008-07-24 08:00:00 75600 s (Time 2–Time 1)
3 2008-07-28 09:00:00 424800 s (Time 3–Time 1)
4 2008-08-08 09:00:00 1375200 s (Time 4–Time 1)
5 2008-08-08 09:00:00 1375200 s (Time 5–Time 1)
6 2008-09-04 09:00:00 3708000 s (Time 6–Time 1)

Table 6 Basic information about CA type 1 and CA type 2

Information CA type 1 CA type 2

Training RF data set 5141 3256
Testing RF data set 2203 1395
Data start time 2008-7-23 11:00:00 2011-6-25 14:00:00
Data end time 2018-12-31 8:14:23 2018-12-27 16:16:40
Data set length (years) 10.5 7.51

Failure time (order) Input factor
t+ 1 T(t−6), T(t−5), T(t−4), T(t−3,) T(t−2), T(t−1),

T(t)
t+ 2 T(t−5), T(t−4), T(t−3,) T(t−2), T(t−1), T(t)
t+ 3 T(t−4), T(t−3,) T(t−2), T(t−1), T(t)
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and are commonly used in medical applications. Table 6 shows the
basic information for CA type 1 and CA type 2.
The proportion of training and test sample sizes is 7 and 3. The

available data on the start time and the end time for CA type 1
and CA type 2 are from July 23, 2008, 11:00:00 to December 31,
2018, 8:14:23 and from June 25, 2011, 14:00:00 to December 27,
2018, 16:16:40, respectively. The length of the data set is at least
7.5 years for both products. The forecasting results will be dis-
cussed in Sec. 4.2.

4.2 The Forecasting Results for Random Failure. The train-
ing and testing results for SVM-LN, SVM-PL, SVM-RBF, and
SVM-SIG are shown in Tables 7 and 8. According to the tables,
the SVM-PL has better performance on training and testing,
among other kernel functions. When the time is t+ 1, t+ 2, and
t + 3, both SVM-LN and SVM-PL can forecast the time of the
next random failure for CA type 1 and CA type 2 shown in
Figs. 8–11. The codes SVM-LN, SVM-PL, SVM-RBF, and
SVM-SIG mean the kernel of SVM, including linear, polynomial,

radial basis, and sigmoid function, respectively. As time increases,
it is obvious that the forecasting performance is decreased. Figures 9
and 11 provide specific details on the above-mentioned discussion.
Based on Tables 7 and 8 and Figs. 8–11, the performance of
SVM models with different kernel functions can forecast the next
random failure without overfitting. For the indices such as
root-mean-square-error (RMSE), mean absolute error (MAE), and

Table 7 The training and testing results for random failure in CA
type 1

Failure time (order)

Train, test

RMSE (s) MAE (s) CC

SVM-LN
t+ 1 400871, 49757 116881, 40583 1.0, 1.0
t+ 2 518767, 61001 137235, 46601 1.0, 1.0
t+ 3 674727, 80082 156101, 55303 1.0, 1.0

SVM-PL
t+ 1 316582, 41586 104599, 25892 1.0, 1.0
t+ 2 479382, 59246 126297, 43609 1.0, 1.0
t+ 3 587345, 72843 149849, 54131 1.0, 1.0

SVM-RBF
t+ 1 657926, 180843 148978, 145477 1.0, 1.0
t+ 2 767078, 186720 166230, 153202 1.0, 1.0
t+ 3 869516, 210683 190072, 174058 1.0, 1.0

SVM-SIG
t+ 1 561663, 68182 132766, 47432 1.0, 1.0
t+ 2 728044, 81871 160764, 57391 1.0, 1.0
t+ 3 820536, 89412 192585, 63175 1.0, 1.0

Table 8 The training and testing results for random failure in CA
type 2

Failure time (order)

Train, test

RMSE (s) MAE (s) CC

SVM-LN
t+ 1 107236, 98583 78451, 67329 1.0, 1.0
t+ 2 156948, 132817 126061, 105525 1.0, 1.0
t+ 3 181359, 162836 134489, 120174 1.0, 1.0

SVM-PL
t+ 1 95388, 87427 71958, 56968 1.0, 1.0
t+ 2 133387, 124724 91799, 84560 1.0, 1.0
t+ 3 168557, 149977 132054, 119583 1.0, 1.0

SVM-RBF
t+ 1 175961, 146894 118780, 113243 1.0, 1.0
t+ 2 201158, 167534 135506, 128570 1.0, 1.0
t+ 3 221640, 182546 150537, 143188 1.0, 1.0

SVM-SIG
t+ 1 128303, 129916 88436, 88981 1.0, 1.0
t+ 2 171729, 146100 126134, 116760 1.0, 1.0
t+ 3 200389, 179164 142448, 132439 1.0, 1.0

Fig. 8 Testing results of forecasting t+1 among all kernel func-
tions for CA type 1

Fig. 9 Testing results of forecasting t+1 to t+3 with polyno-
mial kernel function for CA type 1

Fig. 10 Testing results of forecasting t+1 among all kernel
functions for CA type 2

Fig. 11 Testing results of forecasting t+1 to t+ 3 with polyno-
mial kernel function for CA type 2
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CC, the test results have a good forecasting performance, as shown
in each Figure. Each SVM model based on different kernel func-
tions catches the trend of observation. Also, when the time is
increasing, the SVM-PL will give overestimated values for both
products. Although the SVM-PL will overestimate values as time
increases, the model does not lose its forecasting performance
with higher failure time. In Fig. 9 on orders 5184 to 5189 and
Fig. 11 on orders 3277 to 3,283, the SVM-PL with time t+ 3 pro-
vides a forecasting value near to the observation. The actual failure
time and the forecasted failure time for these orders are shown in
Table 9.
Since the observed trend is close to linear or polynomial function,

SVM-LN and SVM-PL have a better performance than the other

two models. SVM-PL is more suitable than SVM-LN since the
trend of observation is like a polynomial function.
All models have a value of 1.0 for CC. They perform with similar

trends, as shown in Figs. 8–11. Although all models have a similar
trend, they do not guarantee small residual errors based on RMSE
and MAE listed in Tables 7 and 8.
Figures 12 and 13 show the error between forecasting t+ 1 and

observation for CA type 1 and CA type 2. SVM-PL has a better per-
formance than others. In addition, the trend of error has a cycle
period in both Figures. Figure 12 shows the models overestimate
the actual day, but sometimes the models can catch the actual
failure time. Figure 13 also shows a similar trend, such as error
with the cycle period. Based on the current observation, future
work suggests training an error model that can forecast the next
error between forecasting and actual failure time to reduce the
error between forecasting and observation.
The outcomes provide helpful insights into enhancing the sus-

tainability of medical devices. For example, the forecasting
results provide information on product maintenance needs and the
degree of repairability. Also, predicting time between failures
gives repair service providers and technicians sufficient advance
notice for predicting the resources needed for repair and proper
resource management for repair services. Moreover, the prediction
outcomes can be used for forecasting the amount of waste generated
if the malfunctioning medical devices would not be repaired. Fore-
casting waste provides further information on how to define strate-
gies for the reduction of greenhouse gas (GHG) emissions.

5 Conclusion
This study aims to forecast the arrival time of the next repair

order or the failure time by applying the SVM model into a
medical device data set with over 530,000 records of repair and
maintenance activities. Four SVM kernel functions, including
SVM-LN, SVM-PL, SVM-RBF, and SVM-SIG, have been com-
pared for forecasting the next failure time of two categories of prod-
ucts labeled as CA type 1 and CA type 2. The results reveal that the
SVM-LN and SVM-PL perform well in forecasting the time of the
next repair request or failure time. Among all functions, SVM-PL
has the best forecasting performance based on the RMSE and
MAE values for testing.
In addition, frequency analysis has been run to analyze the data

further and identifies the best-fitted distributions to the failure
count, the time between failure, and the time to repair. Four proba-
bility distributions, including Gumbel, Gamma, Normal, and
Weibull distribution, have been analyzed. Analyzing the failure

Table 9 The actual failure time and forecasting failure time with SVM-PL for orders 5184 to 5189
of CA type 1 and orders 3277 to 3283 of CA type 2

Actual failure time

Forecasting failure time

t+ 1 t+ 2 t+ 3

CA type 1
2017-05-02 09:20:16 2017-05-02 11:29:20 2017-05-02 14:07:12 2017-05-02 06:36:32
2017-05-02 12:07:12 2017-05-02 19:00:00 2017-05-02 17:07:28 2017-05-02 20:07:44
2017-05-02 23:59:44 2017-05-02 22:45:04 2017-05-03 02:53:04 2017-05-02 21:14:56
2017-05-02 23:59:44 2017-05-03 09:38:24 2017-05-03 04:22:40 2017-05-03 05:08:00
2017-05-03 15:22:56 2017-05-03 10:00:48 2017-05-03 17:30:56 2017-05-03 09:15:28
2017-05-03 15:24:00 2017-05-04 01:01:36 2017-05-03 19:46:24 2017-05-03 20:53:36

CA type 2
2016-09-01 10:28:00 2016-09-01 22:02:40 2016-09-01 06:14:08 2016-09-01 14:28:16
2016-09-02 08:08:16 2016-09-02 02:16:32 2016-09-02 06:30:08 2016-09-02 05:23:28
2016-09-02 15:09:52 2016-09-02 21:25:20 2016-09-02 08:03:44 2016-09-03 06:19:44
2016-09-02 15:10:40 2016-09-03 06:33:04 2016-09-03 06:19:44 2016-09-03 08:06:24
2016-09-03 21:29:52 2016-09-03 08:06:24 2016-09-03 13:40:32 2016-09-04 07:02:24
2016-09-04 13:56:16 2016-09-04 09:29:20 2016-09-03 13:27:12 2016-09-04 13:29:52
2016-09-04 14:02:24 2016-09-05 03:31:28 2016-09-04 19:30:40 2016-09-04 12:36:16

Fig. 12 Forecast error of t+1 in CA type 1

Fig. 13 Forecast error of t+1 in CA type 2
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count reveals that PA type 1 is more reliable among products
with the same function. CA type 1 and PA type 1 have higher
P(X≥ 1) of TBF among all products in terms of random failure.
M8 type 2 has a higher P(X≥ 1) of TBF in terms of PD among
other products with the same function. Finally, analyzing TTR
reveals that CA type 1 and M8 type 2 are not easy to repair
among all products.
The study shows the importance of machine learning tools such

as SVM models in predicting the time of repair orders. Forecasting
the time to failure and time to repair provides guidelines to design-
ers for improving product repairability. The SVMmodel can further
be used in forecasting the waste generation rate.
The study can be extended in several ways. First, other categories

of products and types of failures can be compared together to iden-
tify the most vulnerable products and the type of repairs needed in
each category. Second, the study outcome, which includes after-
market repair and maintenance requests, can be linked to the
product design features to identify design improvement directions.
Third, the data analytics results can be fed to cost modeling techni-
ques to quantify the business outcomes of repair services and iden-
tify the best repair strategies companies need to adopt. Decisions
such as whether to handle repair services by in-house teams or out-
source them to original equipment manufacturers or third-party
repair service providers, depending on the demand and repair
cost, can be informed by the current data analyses. Fourth, the
study outcomes can be fed to resource allocation and scheduling
models to help enterprises manage workforce requirements for
repair services. Fifth, other machine learning tools can be employed
to facilitate data analytics efforts. Finally, training an error model
that can forecast the following error between forecasting and
actual failure time will be further analyzed.
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Nomenclature
b = bias
d = degree term
n = number of the probability distribution parameters
r = scaling factor
s = the number of samples
x = input vector
v = number of support vector
w = weight of support vector machine
R = structural risk function
c∗ = penalty parameter
ĥ = the maximum value of the likelihood function
ŷ = target data
xk = support vector

a, a∗ = Lagrange multipliers
K(x, xk) = Kernel function

Lε(ŷ) = Vapnik’s ɛ-insensitive loss function
ɛ = error tolerance

ξ, ξ∗ = slack variables
Φ(x) = nonlinear function
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