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ABSTRACT

Products often experience different failure and repair
needs during their lifespan. Prediction of the type of failure
is crucial to the maintenance team for various reasons, such
as realizing the device performance, creating standard
strategies for repair, and analyzing the trade-off between
cost and profit of repair. This study aims to apply machine
learning tools to forecast failure types of medical devices
and help the maintenance team properly decides on repair
strategies based on a limited dataset. Two types of medical
devices are used as the case study. The main challenge
resides in using the limited attributes of the dataset to
forecast product failure type. First, a multilayer perceptron
(MLP) algorithm is used as a regression model to forecast
three attributes, including the time of next failure, repair
time, and repair time z-scores. Then, eight classification
models, including Naive Bayes with Bernoulli (NB-
Bernoulli), Gaussian (NB-Gaussian), Multinomial (NB-
Multinomial) model, Support Vector Machine with linear
(SVM-Linear), polynomial (SVM-Poly), sigmoid (SVM-
Sigmoid), and radical basis (SVM-RBF) function, and K-
Nearest Neighbors (KNN) are used to forecast the failure
type. Finally, Gaussian Mixture Model (GMM) is used to
identify maintenance conditions for each product. The
results reveal that the classification models could forecast
failure type with similar performance, although the
attributes of the dataset were limited.

Keywords: Machine Learning, Repair, Maintenance,
Medical Devices, Regression, Classification, Clustering

NOMENCLATURE
rt Repair time
mrt Mean of repair time
rs Standard deviation of repair time
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Cy Class k
X Input dataset
P(C|X) Posterior in Bayes' theorem

P(X|C,) Prior in Bayes' theorem
P(Cy) Likelihood in Bayes' theorem
P(X) Evidence in Bayes' theorem

Ny Number of class &

N Number of all classes.
pl’:ll Probability when event k; occurs for
sample x;.
Uy, Mean of class k&
o Variances of class k
d(x) Nonlinear function
w Weight of support vector machine
b Bias of support vector machine
R Structural risk function
c* Penalty parameter
€ Error tolerance

$, ¢ Slack variables
a,a’ Lagrange multipliers

K(x x,) Kernel function
Xp Support vector
r Scaling factor
d Degree term

RMSE  Root mean square error
MAE Mean absolute error
CC Correlation coefficient
Accuracy Accuracy of classifiers

1. INTRODUCTION

The US is known as a “throw-away” society due to
limited repair and reuse practices [1]. One way to handle
end-of-use products is to discard them in municipal solid
waste (MSW). In 2000, the main components of MSW were
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discarded products [2]. Although landfill is a convenient
way to dispose of items, it creates significant environmental
issues [2]-[4]. It threatens public health through
groundwater contamination and air pollution [2], leading to
land loss for other usages like housing, leisure, and
agriculture [4]. Besides, landfill threatens the house values,
especially in higher-priced neighborhoods [5]. Thus,
product recovery options such as repair and reuse seem
proper replacement for landfills.

Looking at electronic waste (e-waste) as an example
reveals the extent of the problem. The US abandons 30
million computers each year, and Europe discards 100
million phones annually. The Environmental Protection
Agency estimates that approximately 15 to 20% of e-waste
is recycled, and the remainder is disposed of into landfills
and incinerators [6]. A significant number of studies have
been conducted on the relationship between e-waste and
sustainability [7]-[10]. Reuse, recycle, refurbishment,
recycling, and repair are several actions to handle e-waste.
Among them, repair is a preferred option due to its
environmental benefits and materials conservation;
however, it is challenging to handle consumer behavior
towards repair [4]. It is essential to encourage consumers to
repair by showing the economic and environmental aspects
of repair.

Previous studies have discussed the importance of
investigating product lifecycle. To name a few studies,
Gopalakrishnan and Behdad (2017) analyzed the failure
factors of hard disk drives using the product lifecycle data
[11]. Romero and Vieira (2014) analyzed the relationship
between product lifecycle management and maintenance,
repair, and overhaul (MRO) service to enhance services
[12]. Zhang et al. (2017) also proposed a framework of
product lifecycle management based on big data to improve
MRO service quality [13]. Houssin and Coulibaly (2014)
analyzed the entire product lifespan and used Markov
models by considering operating time, maintenance time,
and preparing time after failure to evaluate product
performance [14]. Wu et al. (2017) proposed a framework
by analyzing product lifecycle to enhance product design
performance [15].

While previous studies have discussed the impact of
analyzing the entire product lifecycle and particularly the
repair and operation stage, detailed studies that make repair
practices feasible are limited. Particularly, the use of data
science techniques and machine learning to support
maintenance services is very limited. This study aims to
build a forecasting framework to predict the product failure
type based on its repair and maintenance history log. We
expect the proposed framework will improve the efficiency
of services, reduce the cost of repairing and ultimately lead
to waste reduction.

The proposed framework consists of two main phases.
First, the MLP model was used as a regression model to
forecast the next failure time, repair time, and repair time z-
scores. Then, in the next phase, these three forecasted values

were fed into a classification model to forecast the failure
type. Different classification techniques, including NB-
Bernoulli, NB-Gaussian, NB-Multinomial, SVM-Linear,
SVM-Poly, SVM-Sigmoid, and SVM-RBF, and KKN, will
be compared to each other. Finally, a GMM model will
identify the maintenance condition for each product. We
demonstrated the application of the above-mentioned
machine learning models in medical devices repair. In
addition, the study discusses the challenge of limited
attributes in the dataset for training classification models
and further investigates the performance of different
models.

2. BACKGROUND OF DATASET
2.1 Overview of Dataset

Two medical devices relabeled as CA type | and CA
type 2 are used in this paper. The primary function of these
devices is the infusion pump. We obtained the dataset from
one of the largest healthcare providers in the US. The above-
mentioned devices were selected due to sufficient dataset.
The two types of products have been used for over 5 years
and have 22 different types of failure reasons, as shown in
Figures 1 and 2.
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FIGURE 1: The failure reason counts for CA type 1.
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FIGURE 2: The failure reason counts for CA type 2.

©2021 by ASME



The CA type 1 and CA type 2 have 24,516 repair
records of 14,660 samples and 21,234 repair records of
12,496 samples respectively, and the average number of
repair orders for CA type 1 and CA type 2 is 14 per day. The
main maintenance reasons for CA type 1 are the No Problem
Found, Physical Damage, and Random Failure, and for CA
type 2 are the Battery Related, No Problem Found, Physical
Damage, and Random Failure.

Table 1 shows the dataset attributes such as work order
and product type. In this table, the Date Created, Completed
Date, and Determination Description are the repair start
time, repair completion time, and the reason for repair,
respectively. The only information available in the dataset is
the repair start time and completion time. The aim is to
forecast the failure type for the next upcoming repair order
based on the available data.

TABLE 1: The description of dataset fields.

Data Attribute Description
WO Number The work order of repair
Type Code Product type
First Asset Number Property unique number

First Asset Description Function of product

First Asset Manufacturer Manufacturer Name

First Asset Model Number ~ Product name

First Asset Serial Number ~ Property unique serial number
Date Created Repair start time

Completed Date Repair completion time
Determination Description  The reason for repair

2.2 Data analysis

First, we calculated the current failure and repair time
by using the data set, and then we used these data to predict
the next failure time, repair time, and repair time z-scores.
The regression model was trained by available data and used
to forecast the next failure time, repair time, and repair time
z-scores. The failure time of a product is assumed to be the
same as the arrival time of a repair request. The repair time
is the difference between Date Created (repair start time)
and Completed Date (repair completion time). The repair
time z-score (RTZS) is the normalized repair time. Using
RTZS improves the accuracy of the classification models.

However, the model outputs are influenced by the
limitation of the current dataset. Figures 3 and 4 show the
frequency of main failure reasons in each year. The
sequence of repair order arrivals is not smooth. For example,
CA type 1 has peaks on 07/2015 for Physical Damage and
Random Failure. CA type 2 has a peak around 04/2014 for
Battery Related reason. Several reasons such as a change in
repair and replacement policy and purchasing actions will
unstable the system.

For example, CA type 1 has three main maintenance
reasons including No Problem Found, Physical Damage,
and Random Failure. The main maintenance reasons for CA
type 2 are Battery Related, No Problem Found, Physical
Damage, and Random Failure. Although each product might

have failed due to 22 different reasons, we have only used
the data for the most frequent failure types. 87% of the

dataset for CA type | includes main failure reasons.
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type 2.
3. METHOD

3.1 Data input and output

Figure 5 shows the proposed framework, along with the data
input and output. The MLP as regressor was trained to
forecast the next failure time, repair time, and RTZS before
the classifiers is trained by forecasting results to predict
failure  type  for the next repair  order
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failure, (¢,....--1)

Repair time z-
scores, (7,..../-n)

Repair time, ‘

Regressor

l

Forecasting next time
between failure, r+1

Forecasting next
Repair time, 1+1

Forecasting next Repair
time z-scores, 1+1

Classifiers

| Forecasting failure type ‘

FIGURE 5: The proposed framework for data analysis.

The initial data exploration and analysis show that after
adding RTZS, classifiers' accuracy will be better. The RTZS

is calculated as:

RTZS = rt —mrt
T s M

where 7t is repair time. mrt is the mean of repair time, and
rs is the standard deviation of repair time.
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We normalized each repair type independently. We
found that after applying RTZS, the accuracy of classifiers
is improved. Although RTZS does not have any statistical
significance in this study, RTZS can enhance accuracy by its
normalization property. Therefore, we still used RTZS as
one of the inputs to each classifier. In addition, the
regression model is evaluated by root-mean-square error
(RMSE), mean absolute error (MAE), and correlation
coefficient. The classifiers will be assessed by accuracy.

We implemented regression, classification, and cluster
learning on the two medical devices. In CA type 1, we have
21,312 records for main failure reasons. CA type 2 has
18,487 records for main failure reasons. The 70% and 30%
of the dataset have been used for training and testing
respectively. We defined Mean Time Between Failures
(MTBF) as the average time between failure for a specific
failure reason for cluster learning. For cluster learning as
unsupervised learning, however, we do not have the true
label for the dataset to our MTBF definition. The clustering
learning will find the best group based on the characteristic
of the dataset. We applied cluster learning to the MTBF of
Random Failure and Physical Damage to analyze the
properties of each clustering group.

3.2 Multilayer Perceptron (MLP)

MLP is popular for regression analyses. Liu et al.
(2021) used stepwise regression analysis and combined
other networks like MLP for air quality detectors [16].
Leszczynski and Jasinski (2020) used MLP to build an
evaluation model for estimating product life cycle cost [17].
Liu et al. (1995) demonstrated MLP to analyze the reliability
data and identify the underlying distribution of failure data
[18]. Xu et al. (2003) used MLP to forecast the engine
systems reliability [19]. When training MLP, several
parameters will need to be considered, such as the number
of hidden layers and learning rate. These parameters will
influence the performance of forecasting results. The MLP
structure is shown in Figure 6.
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FIGURE 6: The MLP network structure [16].

We used MLP in the first phase of the framework for
predicting time. In the second phase, we will use different
classification techniques described in future subsections.

3.3 Naive Bayes
The Naive Bayes will consider the probability
distribution of the training dataset based on Bayes'

assumption. The approach has been widely used in the
literature. Let’s review some formulas from the Bayes’
theorem. The conditional probability can be expressed as:
P(X|C)P(Cy)
P(CylX) = ——~——
(CelX) %) 2

where Cj, is class k, X is the input dataset. In the Bayes'
theorem, the P(Cp|X) is posterior, P(X|Cy) is prior
multiplied by P(Ci) as the likelihood, and P(X) is the
evidence. The P(C) and P(X) are indicated as:

Ny
P(C,) = m (3)
P(X) = Z P(X|Ci)P(Cy) 4)
%

where, Nj is the number of class k and N is the number of
all classes. After considering different probability
distributions, the Naive Bayes classifiers with Bernoulli,
Gaussian, and Multinomial are expressed as [20] [21]:

n

P(XIc) = | [piict = p)00 )
i=1
1 _(x_uk)z
PX|C,) = e 2% 6
‘ \V2ma} ©)
Gix)! ;
P(X|Cy) = Mx! 1 Py, (7
L

where p,fll is the probability when an event k; occurs for

sample x;. u, and o2 are the mean and variances of class
k. Equations (3), (4), and (5) are for NB-Bernoulli, NB-
Gaussian, and NB-Multinomial.

3.4 Support Vector Machine (SVM)

In 1995, Vapnik proposed SVM to solve classification
problems [22]. Previous researchers have confirmed the
high performance of SVM in different applications [23]-
[25]. According to [24], the w (weights) and b (bias) can
be determined by minimizing the structural risk function as
follow:

1 n
Min R(w,b,§,§°) = Iwll” + C*ZLg(c’ ) ®

V=¥, =9, -W'dl)+b) e+
Y, =9, =Wo(x)+b) -5 <e+§
Subject to &>0 ©)
l §20
\ i=12.,n

where ¢ is a penalty parameter for making a tradeoff
between model complexity, € is error tolerance, y is the
target, y is evaluated output, and &, &* are slack
variables. After finding the best w and b, the evaluated
is expressed as:
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y=f)=w'dx) +b (10)

Where ¢(x) is a nonlinear kernel function, the SVM has
four kernel functions as follow:
Linear function (SVM-LN):

K(x,x;) = x[ - x; (11)
Polynomial function (SVM-Poly):
K(x; %) =@ xl"x; +c)* (12)
Radial basis function (SVM-RBF):
2
K(x; %) = exp (—r||x; — x]|) (13)
Sigmoid function (SVM-Sigmoid):
K(x; x;) = tanh(r - x] - x; +c) (14)

Where r is a scaling factor, ¢ is the bias term, d is the
degree term. This study uses the grid search method [26] to
find parameters (r, ¢*, d, and ).

3.5 K-Nearest Neighbors (KNN)

Another popular classification technique is KNN. The
KNN classifiers will consider near samples to determine the
class for input data. Figure 7 shows the process to determine
the class of the star point. When k equal to 5 votes, the KNN
will find the nearest 5 samples to the input data. After
finding the nearest 5 samples, the most frequent class is
chosen as the class of input data. The KNN model is useful
in larger datasets and has a good performance in
classification. Previous studies have confirmed the
performance of KNN is various classification problems [27]
[28].

A Random Failure

Physical Damage
No Problem Found

FIGURE 7: Classifying the yellow star to Random Failure when
kis 5.

3.6 Gaussian Mixture Models (GMM)

We also applied the Gaussian Mixture Models to do
cluster learning on analyzing products' performance based
on failure reasons. The GMM is a probabilistic model. It
assumes the dataset is created by a finite number of
Gaussian distributions [29]. Previous researchers have
confirmed that GMM is a useful tool for cluster learning.
For example, McLachlan et al. (2014) investigated GMM on
cluster learning and found that the dataset's components are
constructed based on the probability distribution [30]. Sahbi
(2008) also used GMM to retrieve information contained in
images [31]. Glowacz et al. (2018) applied GMM to the
early fault diagnostic of the single-phase induction motor

[32]. Wang and Zarader (2012) used GMM for analyzing
aircraft fault diagnosis[33]. The optimal number of clusters
is decided by the Dunn index. The Dunn index considers the
distance between each point and each cluster. The larger is
Dunn index, the better is the number of clusters [34]. The
GMM model considers the distribution of the dataset and
evaluates the equi-probability surfaces for the dataset as
shown in Figure 8.

Negative log-likelihood predicted by a GMM
40

30 4

ot

FIGURE 8: Example of two-component Gaussian Mixture
Model [29].

4. THE RESULTS OF FORECASTING,
CLASSIFICATION, AND CLUSTERING
In this section, we discuss the outcome of the prediction,
classification, and clustering techniques. We applied scikit-
learn python library for this study. The best-trained
parameters are shown in Table 5. The explanation of each
parameter can be obtained from scikit-learn documents [29].

4.1 Product lifecycle analysis

To provide a better understanding of the analysis, the
lifecycle of two individual products are mapped in Figure 9.
Figure 9 (A) shows the product lifecycle of CA type 1 with
ID 94012568, which has more maintenance records than
others, and Figure 9 (B) demonstrates CA type 2 with ID
94027178, which is a randomly selected sample. The first
product is an extreme case with 34 maintenance records with
three types of failure including Random Failure, No
Problem Found, and Random Software Failure. The most
frequent maintenance record is Random Failure, and the
longest maintenance time is 31 days as shown in the 20%
records.

The longest maintenance time for No Problem Found is
15.9 days as shown in the 17" records. The longer time of
maintenance could be due to the long diagnosis time or
longer repair time. The CA type 2 with ID 94012568 has
similar conditions on No Problem Found. The longest
maintenance time is 17.3 days in the 1% record.

The longer maintenance time shows the necessity for
predicting the type of failures. The prediction results help
the maintenance team better manage labor cost and
maintenance schedules.

Table 2 shows the summary of the two products. The
information such as the number of failures, and % of up and
down timetable is useful in deciding whether to repair or
replace a medical device.
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Up (days): Operating time
Down (days): Repairing time AP: Accessory Problem

RF: Random Failure

NPF: No Problem Found

(A)

PD: Physical Damage

RSF: Random Software Failure
BR: Battery Related

281 14.0 18.0 11 11 99
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RF RF RF RF RF RF RF
Down (days) —
5.0 0.05 20 10 0.1 01 0.8
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FIGURE 9: The product lifecycle of (A) CA type 1 with ID 94012568 and 34 maintenance records and (B) CA type 2 with ID 94027178
and 11 maintenance records, including Random Failure (RF), No Problem Found (NPF), Physical Damage (PD), Accessory Problem (AP),
Random Software Failure (RSF), and Battery Related (BR) (Up: Operating Time and Down: Maintenance Time).

TABLE 2: Summary of the two selected individual products.

Product ID 94012568 94027178
Number of Failures 34 11

% of up time 0.57 0.96

% of down time 0.43 0.04
Number of RF 26 1
Number of PD 0 3
Number of NPF 7 2
Number of AP 0 1
Number of RSF 1 1
Number of BR 0 3

4.2 Regressor results

After training MLP regressors, the best parameters were
determined based on RMSE, MAE, and CC. Table 3 shows
the training and testing results for MLP. The results reveal
that MLP forecasts the next failure time better than two other
variables including next repair time and z-score. The CC is
almost one for CA type 1 and CA type 2. The performance
of forecasting repair time and RTZS are similar for both CA
type 1 and CA type 2. The results of the regression are
shown in Figures 10 to 12. As seen, the forecasted failure
time catches the observation, but the forecasted repair time
and z-scores overestimate the actual values. As expected
from the analysis, forecasting the next repair's timing from
historical data is challenging due to the independence of the

repair events. The previous repair event and the current
repair event have different failure reasons and different
repair time ranges. Also, we found the correlation
coefficient between 7 and #-1 is near 0.37. Therefore, it is
hard to forecast the repair time for the next failure from the
current dataset.

TABLE 3: The MLP training and testing results for CA type 1

and CA type 2.

Lead time RMSE MAE cC

(t+1) (Sec.) (Sec.)

Forecasting next failure time

Train 87422, 24399, 11

a 35926 19169 ’

84110, 24491,

Test 34708 18719 L1

Forecasting next repair time

. 1983521, 777089,

Train 1860649 640744 0.42,0.39
1852907, 772451,

Test 1759914 619200 047,045

Forecasting next RTZS

Train 0.92, 0.96 0.42,0.38 0.41,0.44

Test 0.86, 0.88 0.42,0.38 0.44,0.47
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FIGURE 10: The forecasted time for the next failure of CA type
1.
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FIGURE 11: The forecasted repair time for the next failure in
CA type 1.
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FIGURE 12: Forecasting the next RTZS for CA type 1.

4.3 Classifiers results

Our main objective is to build classification models that
can predict the next failure type. Once the maintenance
services are aware of the type of failure that happens to a
product, they can prepare strategies and resources needed
for fixing the next product. After training the regressor, the
regression results are fed into classifiers to find the future
failure types. As a reminder, the main failure types for CA
type 1 are Random Failure, Physical Damage, and No
Problem Found, and for CA type 2 are Battery Related,
Random Failure, Physical Damage, and No Problem Found.
Table 4 shows the classification results for each classifier.
Among them, KNN outperforms in both products. The
testing accuracy is 0.363 for CA type 1 and 0.350 for CA
type 2. The results have slight overfitting even though we
have adjusted different parameters such as k votes and

weights. Figures 13 and 14 show the actual and forecasted
labels for CA type 1 with three main failure reasons. For
example, the green star shows the actual label for Random
Failure in Figure 13. In Figure 14, if the model forecasts this
point with a green star, it is the correct forecasting,
otherwise, it is the incorrect forecasting. The results show
that the forecasting model can predict the failure type
correctly as shown in Figure 14.
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FIGURE 13: The actual label of CA type 1 (Red: No Problem
Found; Blue: Physical Damage; Green: Random Failure).
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FIGURE 14: The forecasted label of CA type 1 by SVM-RBF
models (Red: No Problem Found; Blue: Physical Damage; Green:
Random Failure).

TABLE 4: The training and testing results of each classifier for
CA type 1 and CA type 2.

Model Accuraey _ Accuracy

NB-Bernoulli 0.348,0.344  0.348,0.344
NB-Gaussian 0.361,0.245  0.361, 0.242
NB-Multinomial ~ 0.350, 0.344  0.350, 0.344
SVM-Linear 0.338, 0.331 0.340, 0.331
SVM-Poly 0.349, 0.343 0.350, 0.343
SVM-RBF 0.362,0.354  0.350, 0.326
SVM-Sigmoid 0.355, 0.343 0.355, 0.343
KNN 0.381,0.355  0.363, 0.350

4.4 The results of clustering
The GMM clustering model is applied to the dataset. The
GMM is an unsupervised learning clustering algorithm. The

©2021 by ASME



clustering model will divide each group based on the
dataset. After separating each group, we analyzed the
properties of each group based on an unsupervised GMM
model. Figures 15 and 16 show the clustering results for CA
type 1 and CA type 2. Each group has its own meaning for
maintenance purposes. For example, in Figure 9 (B),
individual product 94027178 has three Physical Damage
records (7", 8%, and 11™). The MTBF of Physical Damage
for 94027178 was computed based on the three records. The
optimal number of clusters for both CA type 1 and CA type
2 is 3 based on the largest Dunn Index, as shown in Figure
TABLE 5: Best trained parameters of CA type 1 and CA type 2.

17. In Group A, the overall samples have less MTBF for
Physical Damage and Random Failure reasons. It means that
if a product is classified in group A, the product may need
more care on maintenance to extend the product lifespan as
the MTBEF is low for any type of failure. Group B has more
lifespan on Random Failure and less lifespan on Physical
Damage. That means these samples need more care on
Physical Damage maintenance. Group C is the inverse of
Group B. The samples in this group need more attention to
the maintenance of Random Failure

Item Model Parameters
MLP hidden_layer_sizes learning_rate_init momentum
Next failure time (100, 20), (50, 20) 1E-03, 1E-04 0.1,0.1
forecasting
Next repair time 4,2),4,2) 1E-05, 1E-05 0.1, 0.1
forecasting
Next RTZS (500, 20), (500, 20) 1E-03, 1E-03 0.1, 0.1
forecasting
NB Type alpha binarize var_smoothing
Next failure type Bernoulli 1E-09, 1E-09 1,1 None
forecasting
Gaussian None None 1E-09, 1E-09
Multinomial 1E-09, 1E+02 None None
SVM kernel C coef( gamma degree
Linear 1, 500 0,0 scale, scale None
Poly 10, 1 1,1 scale, scale 2,1
RBF 1,1 0,0 auto, auto None
Sigmoid 10, 1 1, 100 scale, scale None
KNN n_neighbors p weights
240, 180 2,1 uniform,
uniform
GMM n_components covariance_type
Clustering on 3,3 full
MTBF-RF & PD
T F . .
6 ] ? * ¢ . )
L ]
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FIGURE 15: The results of clustering CA typel (RF: Random
Failure and PD: Physical Damage).

PD-MTBF (year)
FIGURE 16: The results of clustering CA type 2 (RF: Random
Failure and PD: Physical Damage).
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FIGURE 17: The Dunn Index for CA type 1.

The clustering results provide the maintenance team
with helpful insights for repair decisions when the next
failure type happens. For example, if the classifiers predict
that the next failure type is Physical Damage. By reviewing
the product records, if the product is in Group B, the
maintenance team needs to inspect the product for Physical
Damage to increase product's lifespan based on the
combination of both classifiers and clustering results.

5. CONCLUSION

This study aims to build a data analytics framework to
forecast the time and type of the product's next failure
toward proper repair and maintenance planning. A set of
regression, classification, and clustering techniques have
been used. The prediction of the time and type of failure
helps repair shops with efficient resource management.
Although it is challenging to build prediction models given
limited or imperfect datasets, the results show that the
classifier models can forecast the type of next failure type as
a piece of supportive information for maintenance services.
A dataset of medical equipment has been used to show the
application of the proposed data analytics framework. Two
types of products have been selected for product lifecycle
analysis. Although the dataset is limited, the results of
prediction, classification, and clustering provide helpful
insights for the maintenance team.

This research can be extended in several ways to
improve the accuracy of models. First, applying the
proposed framework to other datasets with complete data
attributes increases the prediction and classification
accuracy. Second, extending the framework to other failure
reasons. We only considered the most frequent failure
reasons. Therefore, the classification methods can be
extended to enhance the learning accuracy of all failure
reasons together. Third, other product features such as
frequency of failure, average operating time, and average
repair time can be included in ML techniques. Fourth, deep
learning techniques can be applied. For example,
transferring product’s records into signal images to identify
the maintenance condition. Finally, developing an expert

system to decide whether to repair or replace based on the
maintenance records.
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