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ABSTRACT 

Products often experience different failure and repair 
needs during their lifespan. Prediction of the type of failure 
is crucial to the maintenance team for various reasons, such 
as realizing the device performance, creating standard 
strategies for repair, and analyzing the trade-off between 
cost and profit of repair. This study aims to apply machine 
learning tools to forecast failure types of medical devices 
and help the maintenance team properly decides on repair 
strategies based on a limited dataset. Two types of medical 
devices are used as the case study. The main challenge 
resides in using the limited attributes of the dataset to 
forecast product failure type. First, a multilayer perceptron 
(MLP) algorithm is used as a regression model to forecast 
three attributes, including the time of next failure, repair 
time, and repair time z-scores. Then, eight classification 
models, including Naïve Bayes with Bernoulli (NB-
Bernoulli), Gaussian (NB-Gaussian), Multinomial (NB-
Multinomial) model, Support Vector Machine with linear 
(SVM-Linear), polynomial (SVM-Poly), sigmoid (SVM-
Sigmoid), and radical basis (SVM-RBF) function, and K-
Nearest Neighbors (KNN) are used to forecast the failure 
type. Finally, Gaussian Mixture Model (GMM) is used to 
identify maintenance conditions for each product. The 
results reveal that the classification models could forecast 
failure type with similar performance, although the 
attributes of the dataset were limited. 

Keywords: Machine Learning, Repair, Maintenance, 
Medical Devices, Regression, Classification, Clustering 

NOMENCLATURE 
𝑟𝑡 Repair time 

mrt Mean of repair time 
rs Standard deviation of repair time 

𝐶𝑘 Class k 
𝑋 Input dataset 

𝑃(𝐶𝑘|𝑋)  Posterior in Bayes' theorem 
𝑃(𝑋|𝐶𝑘) Prior in Bayes' theorem 
𝑃(𝐶𝑘) Likelihood in Bayes' theorem 
𝑃(𝑋) Evidence in Bayes' theorem 
𝑁𝑘 Number of class k 
N Number of all classes. 
𝑝𝑘𝑖
𝑥𝑖 Probability when event 𝑘𝑖  occurs for 

sample 𝑥𝑖. 
𝑢𝑘 Mean of class k 
𝜎𝑘
2 Variances of class k 

ɸ(𝑥) Nonlinear function 
𝒘 Weight of support vector machine 
𝑏 Bias of support vector machine 
𝑅 Structural risk function 
𝑐∗ Penalty parameter 
ɛ Error tolerance 

𝜉, 𝜉∗ Slack variables 
𝑎, 𝑎∗ Lagrange multipliers 

𝐾(𝑥, 𝑥𝑘) Kernel function 
𝑥𝑘 Support vector 
𝑟 Scaling factor 
𝑑 Degree term 

RMSE Root mean square error 
MAE Mean absolute error 
CC Correlation coefficient 

Accuracy Accuracy of classifiers 
 

1. INTRODUCTION 
The US is known as a “throw-away” society due to 

limited repair and reuse practices [1]. One way to handle 
end-of-use products is to discard them in municipal solid 
waste (MSW). In 2000, the main components of MSW were 
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discarded products [2]. Although landfill is a convenient 
way to dispose of items, it creates significant environmental 
issues [2]–[4]. It threatens public health through 
groundwater contamination and air pollution [2], leading to 
land loss for other usages like housing, leisure, and 
agriculture [4]. Besides, landfill threatens the house values, 
especially in higher-priced neighborhoods [5]. Thus, 
product recovery options such as repair and reuse seem 
proper replacement for landfills.  

Looking at electronic waste (e-waste) as an example 
reveals the extent of the problem. The US abandons 30 
million computers each year, and Europe discards 100 
million phones annually. The Environmental Protection 
Agency estimates that approximately 15 to 20% of e-waste 
is recycled, and the remainder is disposed of into landfills 
and incinerators [6]. A significant number of studies have 
been conducted on the relationship between e-waste and 
sustainability [7]–[10]. Reuse, recycle, refurbishment, 
recycling, and repair are several actions to handle e-waste. 
Among them, repair is a preferred option due to its 
environmental benefits and materials conservation; 
however, it is challenging to handle consumer behavior 
towards repair [4]. It is essential to encourage consumers to 
repair by showing the economic and environmental aspects 
of repair. 

Previous studies have discussed the importance of 
investigating product lifecycle. To name a few studies, 
Gopalakrishnan and Behdad (2017) analyzed the failure 
factors of hard disk drives using the product lifecycle data 
[11]. Romero and Vieira (2014) analyzed the relationship 
between product lifecycle management and maintenance, 
repair, and overhaul (MRO) service to enhance services 
[12]. Zhang et al. (2017) also proposed a framework of 
product lifecycle management based on big data to improve 
MRO service quality [13]. Houssin and Coulibaly (2014) 
analyzed the entire product lifespan and used Markov 
models by considering operating time, maintenance time, 
and preparing time after failure to evaluate product 
performance [14]. Wu et al. (2017) proposed a framework 
by analyzing product lifecycle to enhance product design 
performance [15].  

While previous studies have discussed the impact of 
analyzing the entire product lifecycle and particularly the 
repair and operation stage, detailed studies that make repair 
practices feasible are limited. Particularly, the use of data 
science techniques and machine learning to support 
maintenance services is very limited. This study aims to 
build a forecasting framework to predict the product failure 
type based on its repair and maintenance history log. We 
expect the proposed framework will improve the efficiency 
of services, reduce the cost of repairing and ultimately lead 
to waste reduction. 

The proposed framework consists of two main phases. 
First, the MLP model was used as a regression model to 
forecast the next failure time, repair time, and repair time z-
scores. Then, in the next phase, these three forecasted values 

were fed into a classification model to forecast the failure 
type. Different classification techniques, including NB-
Bernoulli, NB-Gaussian, NB-Multinomial, SVM-Linear, 
SVM-Poly, SVM-Sigmoid, and SVM-RBF, and KKN, will 
be compared to each other. Finally, a GMM model will 
identify the maintenance condition for each product. We 
demonstrated the application of the above-mentioned 
machine learning models in medical devices repair. In 
addition, the study discusses the challenge of limited 
attributes in the dataset for training classification models 
and further investigates the performance of different 
models. 

 
2. BACKGROUND OF DATASET 
2.1 Overview of Dataset 

Two medical devices relabeled as CA type 1 and CA 
type 2 are used in this paper. The primary function of these 
devices is the infusion pump. We obtained the dataset from 
one of the largest healthcare providers in the US. The above-
mentioned devices were selected due to sufficient dataset. 
The two types of products have been used for over 5 years 
and have 22 different types of failure reasons, as shown in 
Figures 1 and 2.  
 

 
FIGURE 1: The failure reason counts for CA type 1. 

 

 
FIGURE 2: The failure reason counts for CA type 2. 
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The CA type 1 and CA type 2 have 24,516 repair 
records of 14,660 samples and 21,234 repair records of 
12,496 samples respectively, and the average number of 
repair orders for CA type 1 and CA type 2 is 14 per day. The 
main maintenance reasons for CA type 1 are the No Problem 
Found, Physical Damage, and Random Failure, and for CA 
type 2 are the Battery Related, No Problem Found, Physical 
Damage, and Random Failure. 

Table 1 shows the dataset attributes such as work order 
and product type. In this table, the Date Created, Completed 
Date, and Determination Description are the repair start 
time, repair completion time, and the reason for repair, 
respectively. The only information available in the dataset is 
the repair start time and completion time. The aim is to 
forecast the failure type for the next upcoming repair order 
based on the available data. 

 
TABLE 1: The description of dataset fields. 

Data Attribute Description 
WO Number The work order of repair 
Type Code Product type  
First Asset Number Property unique number 
First Asset Description Function of product 
First Asset Manufacturer  Manufacturer Name 
First Asset Model Number Product name 
First Asset Serial Number Property unique serial number 
Date Created Repair start time  
Completed Date Repair completion time  
Determination Description The reason for repair 

 
2.2 Data analysis 

First, we calculated the current failure and repair time 
by using the data set, and then we used these data to predict 
the next failure time, repair time, and repair time z-scores. 
The regression model was trained by available data and used 
to forecast the next failure time, repair time, and repair time 
z-scores. The failure time of a product is assumed to be the 
same as the arrival time of a repair request. The repair time 
is the difference between Date Created (repair start time) 
and Completed Date (repair completion time). The repair 
time z-score (RTZS) is the normalized repair time. Using 
RTZS improves the accuracy of the classification models. 

 However, the model outputs are influenced by the 
limitation of the current dataset. Figures 3 and 4 show the 
frequency of main failure reasons in each year. The 
sequence of repair order arrivals is not smooth. For example, 
CA type 1 has peaks on 07/2015 for Physical Damage and 
Random Failure. CA type 2 has a peak around 04/2014 for 
Battery Related reason. Several reasons such as a change in 
repair and replacement policy and purchasing actions will 
unstable the system.  

For example, CA type 1 has three main maintenance 
reasons including No Problem Found, Physical Damage, 
and Random Failure. The main maintenance reasons for CA 
type 2 are Battery Related, No Problem Found, Physical 
Damage, and Random Failure. Although each product might 

have failed due to 22 different reasons, we have only used 
the data for the most frequent failure types. 87% of the 
dataset for CA type 1 includes main failure reasons. 

 
FIGURE 3: The frequency of main failure reasons for CA 
type 1. 

 
FIGURE 4: The frequency of main failure reasons for CA 
type 2. 
 
3. METHOD 
3.1 Data input and output 
Figure 5 shows the proposed framework, along with the data 
input and output. The MLP as regressor was trained to 
forecast the next failure time, repair time, and RTZS before 
the classifiers is trained by forecasting results to predict 
failure type for the next repair order.

 
FIGURE 5: The proposed framework for data analysis. 

 
The initial data exploration and analysis show that after 

adding RTZS, classifiers' accuracy will be better. The RTZS 
is calculated as: 

𝑅𝑇𝑍𝑆 =  
𝑟𝑡 − 𝑚𝑟𝑡

𝑟𝑠
 (1) 

where rt is repair time. mrt is the mean of repair time, and 
rs is the standard deviation of repair time.  
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We normalized each repair type independently. We 
found that after applying RTZS, the accuracy of classifiers 
is improved. Although RTZS does not have any statistical 
significance in this study, RTZS can enhance accuracy by its 
normalization property. Therefore, we still used RTZS as 
one of the inputs to each classifier. In addition, the 
regression model is evaluated by root-mean-square error 
(RMSE), mean absolute error (MAE), and correlation 
coefficient. The classifiers will be assessed by accuracy. 

We implemented regression, classification, and cluster 
learning on the two medical devices. In CA type 1, we have 
21,312 records for main failure reasons. CA type 2 has 
18,487 records for main failure reasons. The 70% and 30% 
of the dataset have been used for training and testing 
respectively. We defined Mean Time Between Failures 
(MTBF) as the average time between failure for a specific 
failure reason for cluster learning. For cluster learning as 
unsupervised learning, however, we do not have the true 
label for the dataset to our MTBF definition. The clustering 
learning will find the best group based on the characteristic 
of the dataset. We applied cluster learning to the MTBF of 
Random Failure and Physical Damage to analyze the 
properties of each clustering group. 

 
3.2 Multilayer Perceptron (MLP) 

MLP is popular for regression analyses. Liu et al. 
(2021) used stepwise regression analysis and combined 
other networks like MLP for air quality detectors [16]. 
Leszczynski and Jasinski (2020) used MLP to build an 
evaluation model for estimating product life cycle cost [17].  
Liu et al. (1995) demonstrated MLP to analyze the reliability 
data and identify the underlying distribution of failure data 
[18]. Xu et al. (2003) used MLP to forecast the engine 
systems reliability [19]. When training MLP, several 
parameters will need to be considered, such as the number 
of hidden layers and learning rate. These parameters will 
influence the performance of forecasting results. The MLP 
structure is shown in Figure 6. 

 
FIGURE 6: The MLP network structure [16]. 

 
We used MLP in the first phase of the framework for 

predicting time. In the second phase, we will use different 
classification techniques described in future subsections.  

 
3.3 Naïve Bayes 

The Naïve Bayes will consider the probability 
distribution of the training dataset based on Bayes' 

assumption. The approach has been widely used in the 
literature. Let’s review some formulas from the Bayes’ 
theorem. The conditional probability can be expressed as: 

𝑃(𝐶𝑘|𝑋) =
𝑃(𝑋|𝐶𝑘)𝑃(𝐶𝑘)

𝑃(𝑋)
 (2) 

where 𝐶𝑘 is class k, 𝑋 is the input dataset. In the Bayes' 
theorem, the 𝑃(𝐶𝑘|𝑋)  is posterior, 𝑃(𝑋|𝐶𝑘)  is prior 
multiplied by 𝑃(𝐶𝑘)  as the likelihood, and 𝑃(𝑋)  is the 
evidence. The 𝑃(𝐶𝑘) and 𝑃(𝑋) are indicated as: 

𝑃(𝐶𝑘) =
𝑁𝑘
𝑁

 (3) 

𝑃(𝑋) =∑𝑃(X|𝐶𝑘)𝑃(𝐶𝑘)

𝑘

 (4) 

where, 𝑁𝑘 is the number of class k and N is the number of 
all classes. After considering different probability 
distributions, the Naïve Bayes classifiers with Bernoulli, 
Gaussian, and Multinomial are expressed as [20] [21]: 

𝑃(𝑋|𝐶𝑘) =∏𝑝𝑘𝑖
𝑥𝑖(1 − 𝑝𝑘𝑖)

(1−𝑥𝑖)

𝑛

𝑖=1

 (5) 

𝑃(𝑋|𝐶𝑘) =
1

√2𝜋𝜎𝑘
2
𝑒
−
(𝑥−𝑢𝑘)

2

2𝜎𝑘
2  (6) 

𝑃(𝑋|𝐶𝑘) =
(∑ 𝑥𝑖𝑖 )!

∏ 𝑥𝑖!𝑖
∏𝑝𝑘𝑖

𝑥𝑖

𝑖

 (7) 

where 𝑝𝑘𝑖
𝑥𝑖 is the probability when an event 𝑘𝑖 occurs for 

sample 𝑥𝑖. 𝑢𝑘 and 𝜎𝑘2 are the mean and variances of class 
k. Equations (3), (4), and (5) are for NB-Bernoulli, NB-
Gaussian, and NB-Multinomial. 
 
3.4 Support Vector Machine (SVM)  

In 1995, Vapnik proposed SVM to solve classification 
problems [22]. Previous researchers have confirmed the 
high performance of SVM in different applications [23]–
[25]. According to [24], the 𝒘 (weights) and 𝑏 (bias) can 
be determined by minimizing the structural risk function as 
follow: 

𝑀𝑖𝑛 𝑅(𝑤, 𝑏, 𝜉, 𝜉∗) =
1

2
‖𝒘‖2 + 𝑐∗∑𝐿ɛ(𝜉 + 𝜉

∗)

𝑛

𝑖=1

 (8) 

Subject to 

{
 
 

 
 
𝑦
𝑖
− 𝑦̂

𝑖
= 𝑦̂

𝑖
− (𝒘𝑇ɸ(𝑥) + 𝑏) ≤ ɛ + 𝜉𝑖

𝑦
𝑖
− 𝑦̂

𝑖
= (𝒘𝑇ɸ(𝑥) + 𝑏) − 𝑦̂

𝑖
≤ ɛ + 𝜉𝑖

′

𝜉𝑖 ≥ 0

𝜉𝑖
′ ≥ 0

𝑖 = 1, 2, … , 𝑛

 (9) 

where 𝑐∗  is a penalty parameter for making a tradeoff 
between model complexity, ɛ is error tolerance, 𝑦 is the 
target, 𝑦̂  is evaluated output, and 𝜉 , 𝜉∗  are slack 
variables. After finding the best 𝒘 and 𝑏, the evaluated 𝑦̂ 
is expressed as: 



              5 © 2021 by ASME 
 

𝑦̂ = 𝑓(𝑥) = 𝒘𝑇ɸ(𝑥) + 𝑏   (10) 

Where ɸ(𝑥) is a nonlinear kernel function, the SVM has 
four kernel functions as follow:  

Linear function (SVM-LN): 
𝐾(𝑥𝑖, 𝑥𝑗) = 𝑥𝑖

𝑇 ∙ 𝑥𝑗  (11) 

Polynomial function (SVM-Poly): 
𝐾(𝑥𝑖, 𝑥𝑗) = (𝑟 ∙ 𝑥𝑖

𝑇 ∙ 𝑥𝑗 + 𝑐)𝑑  (12) 

Radial basis function (SVM-RBF): 
𝐾(𝑥𝑖, 𝑥𝑗) = 𝑒𝑥𝑝 (−𝑟‖𝑥𝑖 − 𝑥𝑗‖

2
) (13) 

Sigmoid function (SVM-Sigmoid): 
𝐾(𝑥𝑖, 𝑥𝑗) = 𝑡𝑎𝑛ℎ(𝑟 ∙ 𝑥𝑖

𝑇 ∙ 𝑥𝑗 + 𝑐) (14) 

Where 𝑟 is a scaling factor, 𝑐 is the bias term, 𝑑 is the 
degree term. This study uses the grid search method [26] to 
find parameters (𝑟, 𝑐∗, 𝑑, and ε).  
 
3.5 K-Nearest Neighbors (KNN)  

Another popular classification technique is KNN. The 
KNN classifiers will consider near samples to determine the 
class for input data. Figure 7 shows the process to determine 
the class of the star point. When k equal to 5 votes, the KNN 
will find the nearest 5 samples to the input data. After 
finding the nearest 5 samples, the most frequent class is 
chosen as the class of input data. The KNN model is useful 
in larger datasets and has a good performance in 
classification. Previous studies have confirmed the 
performance of KNN is various classification problems [27] 
[28]. 

  
FIGURE 7: Classifying the yellow star to Random Failure when 
k is 5. 
 
3.6 Gaussian Mixture Models (GMM)  

We also applied the Gaussian Mixture Models to do 
cluster learning on analyzing products' performance based 
on failure reasons. The GMM is a probabilistic model. It 
assumes the dataset is created by a finite number of 
Gaussian distributions [29]. Previous researchers have 
confirmed that GMM is a useful tool for cluster learning. 
For example, McLachlan et al. (2014) investigated GMM on 
cluster learning and found that the dataset's components are 
constructed based on the probability distribution [30]. Sahbi 
(2008) also used GMM to retrieve information contained in  
images [31]. Glowacz et al. (2018) applied GMM to the 
early fault diagnostic of the single-phase induction motor 

[32]. Wang and Zarader (2012) used GMM for analyzing 
aircraft fault diagnosis[33]. The optimal number of clusters 
is decided by the Dunn index. The Dunn index considers the 
distance between each point and each cluster. The larger is 
Dunn index, the better is the number of clusters [34]. The 
GMM model considers the distribution of the dataset and 
evaluates the equi-probability surfaces for the dataset as 
shown in Figure 8. 

 
FIGURE 8: Example of two-component Gaussian Mixture 
Model [29]. 
 
4. THE RESULTS OF FORECASTING, 

CLASSIFICATION, AND CLUSTERING 
In this section, we discuss the outcome of the prediction, 

classification, and clustering techniques. We applied scikit-
learn python library for this study. The best-trained 
parameters are shown in Table 5. The explanation of each 
parameter can be obtained from scikit-learn documents [29]. 

 
4.1 Product lifecycle analysis 

To provide a better understanding of the analysis, the 
lifecycle of two individual products are mapped in Figure 9. 
Figure 9 (A) shows the product lifecycle of CA type 1 with 
ID 94012568, which has more maintenance records than 
others, and Figure 9 (B) demonstrates CA type 2 with ID 
94027178, which is a randomly selected sample. The first 
product is an extreme case with 34 maintenance records with 
three types of failure including Random Failure, No 
Problem Found, and Random Software Failure. The most 
frequent maintenance record is Random Failure, and the 
longest maintenance time is 31 days as shown in the 20th 
records.  

The longest maintenance time for No Problem Found is 
15.9 days as shown in the 17th records. The longer time of 
maintenance could be due to the long diagnosis time or 
longer repair time. The CA type 2 with ID 94012568 has 
similar conditions on No Problem Found. The longest 
maintenance time is 17.3 days in the 1st record.  

The longer maintenance time shows the necessity for 
predicting the type of failures. The prediction results help 
the maintenance team better manage labor cost and 
maintenance schedules.  

Table 2 shows the summary of the two products. The 
information such as the number of failures, and % of up and 
down timetable is useful in deciding whether to repair or 
replace a medical device. 
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FIGURE 9: The product lifecycle of (A) CA type 1 with ID 94012568 and 34 maintenance records and (B) CA type 2 with ID 94027178 
and 11 maintenance records, including Random Failure (RF), No Problem Found (NPF), Physical Damage (PD), Accessory Problem (AP), 
Random Software Failure (RSF), and Battery Related (BR) (Up: Operating Time and Down: Maintenance Time). 
 
TABLE 2: Summary of the two selected individual products. 

Product ID 94012568 94027178 
Number of Failures 34 11 
% of up time 0.57 0.96 
% of down time 0.43 0.04 
Number of RF 26 1 
Number of PD 0 3 
Number of NPF 7 2 
Number of AP 0 1 
Number of RSF 1 1 
Number of BR 0 3 

4.2 Regressor results 
After training MLP regressors, the best parameters were 

determined based on RMSE, MAE, and CC. Table 3 shows 
the training and testing results for MLP. The results reveal 
that MLP forecasts the next failure time better than two other 
variables including next repair time and z-score. The CC is 
almost one for CA type 1 and CA type 2. The performance 
of forecasting repair time and RTZS are similar for both CA 
type 1 and CA type 2. The results of the regression are 
shown in Figures 10 to 12. As seen, the forecasted failure 
time catches the observation, but the forecasted repair time 
and z-scores overestimate the actual values. As expected 
from the analysis, forecasting the next repair's timing from 
historical data is challenging due to the independence of the 

repair events. The previous repair event and the current 
repair event have different failure reasons and different 
repair time ranges. Also, we found the correlation 
coefficient between t and t-1 is near 0.37. Therefore, it is 
hard to forecast the repair time for the next failure from the 
current dataset. 
TABLE 3: The MLP training and testing results for CA type 1 
and CA type 2. 

Lead time 
(t+1) 

RMSE 
(Sec.) 

MAE 
(Sec.) CC 

Forecasting next failure time   

Train 87422, 
35926 

24399, 
19169 1, 1 

Test 84110, 
34708 

24491, 
18719 1, 1 

Forecasting next repair time   

Train 1983521, 
1860649 

777089, 
640744 0.42, 0.39 

Test 1852907, 
1759914 

772451, 
619292 0.47, 0.45 

Forecasting next RTZS 
Train 0.92, 0.96 0.42, 0.38 0.41, 0.44 
Test 0.86, 0.88 0.42, 0.38 0.44, 0.47 
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FIGURE 10: The forecasted time for the next failure of CA type 
1. 

 
FIGURE 11: The forecasted repair time for the next failure in 
CA type 1. 

 
FIGURE 12: Forecasting the next RTZS for CA type 1. 

4.3 Classifiers results 
Our main objective is to build classification models that 

can predict the next failure type. Once the maintenance 
services are aware of the type of failure that happens to a 
product, they can prepare strategies and resources needed 
for fixing the next product. After training the regressor, the 
regression results are fed into classifiers to find the future 
failure types. As a reminder, the main failure types for CA 
type 1 are Random Failure, Physical Damage, and No 
Problem Found, and for CA type 2 are Battery Related, 
Random Failure, Physical Damage, and No Problem Found. 
Table 4 shows the classification results for each classifier. 
Among them, KNN outperforms in both products. The 
testing accuracy is 0.363 for CA type 1 and 0.350 for CA 
type 2. The results have slight overfitting even though we 
have adjusted different parameters such as k votes and 

weights. Figures 13 and 14 show the actual and forecasted 
labels for CA type 1 with three main failure reasons. For 
example, the green star shows the actual label for Random 
Failure in Figure 13. In Figure 14, if the model forecasts this 
point with a green star, it is the correct forecasting, 
otherwise, it is the incorrect forecasting. The results show 
that the forecasting model can predict the failure type 
correctly as shown in Figure 14. 

.  
FIGURE 13: The actual label of CA type 1 (Red: No Problem 
Found; Blue: Physical Damage; Green: Random Failure). 

 
FIGURE 14: The forecasted label of CA type 1 by SVM-RBF 
models (Red: No Problem Found; Blue: Physical Damage; Green: 
Random Failure). 
 
TABLE 4: The training and testing results of each classifier for 
CA type 1 and CA type 2. 

Model Training 
Accuracy 

Testing 
Accuracy 

NB-Bernoulli 0.348, 0.344 0.348, 0.344 
NB-Gaussian 0.361, 0.245 0.361, 0.242 
NB-Multinomial 0.350, 0.344 0.350, 0.344 
SVM-Linear 0.338, 0.331 0.340, 0.331 
SVM-Poly 0.349, 0.343 0.350, 0.343 
SVM-RBF 0.362, 0.354 0.350, 0.326 
SVM-Sigmoid 0.355, 0.343 0.355, 0.343 
KNN 0.381, 0.355 0.363, 0.350 

4.4 The results of clustering 
The GMM clustering model is applied to the dataset. The 

GMM is an unsupervised learning clustering algorithm. The 
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clustering model will divide each group based on the 
dataset. After separating each group, we analyzed the 
properties of each group based on an unsupervised GMM 
model. Figures 15 and 16 show the clustering results for CA 
type 1 and CA type 2. Each group has its own meaning for 
maintenance purposes. For example, in Figure 9 (B), 
individual product 94027178 has three Physical Damage 
records (7th, 8th, and 11th). The MTBF of Physical Damage 
for 94027178 was computed based on the three records. The 
optimal number of clusters for both CA type 1 and CA type 
2 is 3 based on the largest Dunn Index, as shown in Figure 

17. In Group A, the overall samples have less MTBF for 
Physical Damage and Random Failure reasons. It means that 
if a product is classified in group A, the product may need 
more care on maintenance to extend the product lifespan as 
the MTBF is low for any type of failure. Group B has more 
lifespan on Random Failure and less lifespan on Physical 
Damage. That means these samples need more care on 
Physical Damage maintenance. Group C is the inverse of 
Group B. The samples in this group need more attention to 
the maintenance of Random Failure

TABLE 5: Best trained parameters of CA type 1 and CA type 2. 
Item Model Parameters         

  MLP hidden_layer_sizes learning_rate_init momentum     
Next failure time 
forecasting 

  (100, 20), (50, 20) 1E-03, 1E-04 0.1, 0.1     

Next repair time 
forecasting 

  (4, 2), (4, 2) 1E-05, 1E-05 0.1, 0.1     

Next RTZS 
forecasting 

  (500, 20), (500, 20) 1E-03, 1E-03 0.1, 0.1     

  NB Type alpha binarize var_smoothing   
Next failure type 
forecasting 

  Bernoulli 1E-09, 1E-09 1, 1 None   

    Gaussian None  None 1E-09, 1E-09   
    Multinomial 1E-09, 1E+02 None None   
  SVM kernel C coef0 gamma degree 
    Linear 1, 500 0, 0 scale, scale None 
    Poly 10, 1 1, 1 scale, scale 2, 1 
    RBF 1, 1 0, 0 auto, auto None 
    Sigmoid 10, 1 1, 100 scale, scale None 
  KNN n_neighbors p weights     
    240, 180 2, 1 uniform, 

uniform 
    

  GMM n_components covariance_type       
Clustering on 
MTBF-RF & PD 

  3, 3 full       

 
FIGURE 15: The results of clustering CA type1 (RF: Random 
Failure and PD: Physical Damage). 

 
FIGURE 16: The results of clustering CA type 2 (RF: Random 
Failure and PD: Physical Damage). 



              9 © 2021 by ASME 
 

 
FIGURE 17: The Dunn Index for CA type 1. 

 
The clustering results provide the maintenance team 

with helpful insights for repair decisions when the next 
failure type happens. For example, if the classifiers predict 
that the next failure type is Physical Damage. By reviewing 
the product records, if the product is in Group B, the 
maintenance team needs to inspect the product for Physical 
Damage to increase product's lifespan based on the 
combination of both classifiers and clustering results. 

 
5. CONCLUSION 

This study aims to build a data analytics framework to 
forecast the time and type of the product's next failure 
toward proper repair and maintenance planning. A set of 
regression, classification, and clustering techniques have 
been used. The prediction of the time and type of failure 
helps repair shops with efficient resource management. 
Although it is challenging to build prediction models given 
limited or imperfect datasets, the results show that the 
classifier models can forecast the type of next failure type as 
a piece of supportive information for maintenance services. 
A dataset of medical equipment has been used to show the 
application of the proposed data analytics framework. Two 
types of products have been selected for product lifecycle 
analysis. Although the dataset is limited, the results of 
prediction, classification, and clustering provide helpful 
insights for the maintenance team.  

This research can be extended in several ways to 
improve the accuracy of models. First, applying the 
proposed framework to other datasets with complete data 
attributes increases the prediction and classification 
accuracy. Second, extending the framework to other failure 
reasons. We only considered the most frequent failure 
reasons. Therefore, the classification methods can be 
extended to enhance the learning accuracy of all failure 
reasons together. Third, other product features such as 
frequency of failure, average operating time, and average 
repair time can be included in ML techniques. Fourth, deep 
learning techniques can be applied. For example, 
transferring product’s records into signal images to identify 
the maintenance condition. Finally, developing an expert 

system to decide whether to repair or replace based on the 
maintenance records. 
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