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ABSTRACT

Accurate prediction of product failures and the need for
repair services become critical for various reasons,
including understanding the warranty performance of
manufacturers, defining cost-efficient repair strategies, and
compliance with safety standards. The purpose of this study
is to use machine learning tools to analyze several
parameters crucial for achieving a robust repair service
system, including the number of repairs, the time of the next
repair ticket or product failure, and the time to repair. A
large dataset of over 530,000 repairs and maintenance of
medical devices has been investigated by employing the
Support Vector Machine (SVM) tool. SVM with four kernel
functions is used to forecast the timing of the next failure or
repair request in the system for two different products and
two different failure types, namely random failure and
physical damage. A frequency analysis is also conducted to
explore the product quality level based on product failure
and the time to repair it. Besides, the best probability
distributions are fitted for the number of failures, the time
between failures, and the time to repair. The results reveal
the value of data analytics and machine learning tools in
analyzing post-market product performance and the cost of
repair and maintenance operations.

Keywords: Machine Learning, Support Vector
Machine, Repair, Maintenance, Forecasting

NOMENCLATURE
AIC Akaike information criterion
BIC Bayesian information criterion
n Number of the probability distribution
parameters
h The maximum value of the likelihood
function
s The number of samples
y Target data
x Input vector
w Weight of support vector machine
d(x) Nonlinear function
b Bias
R Structural risk function
c* Penalty parameter
L.(y)  Vapnik’s e-insensitive loss function
€ Error tolerance
& & Slack variables
aa Lagrange multipliers
K (x, xk) Kernel function
X Support vector
r Scaling factor
d Degree term
RMSE  Root mean square error

MAE Mean absolute error
CC Correlation coefficient
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1. INTRODUCTION

Most products experience some sort of failure during
their lifespan. Several reasons for product failures include
insufficient reliability, poor quality, wrong design, uncertain
usage, and production conditions [1]. Product failure can
cause adverse effects such as financial cost, consumer
dissatisfaction, and ruining manufacturers' market image
[2]. Product repair is often part of the product lifecycle
events. For example, once the product reaches the end-of-
use or the end-of-life, customers may decide to upgrade their
product due to technological advances or repair, refurbish,
or remanufacturer to extend the product lifespan [3].

The concept of end-of-use product recovery and
extending the product lifecycle is nothing new in the
literature. Previous studies have already discussed product
recovery challenges that are facing different industries such
as building material stocks [4], automobile [5], and
household electric and electronic equipment [6].
Mathematical models have been developed to overcome
some of those challenges (e.g., uncertain quality and
quantity of waste stream) and help remanufacturers decide
what to do with used devices [7],[8].

Among the six common recovery strategies (e.g., reuse,
repair, recondition/refurbishment, remanufacturing,
cannibalization, and material recovery), repair has received
less attention in the literature. However, predicting product
failure has always been of interest to both academia and
industry. Several studies have discussed the forecasting of
product failure. To name a few, Yoon and Sohn (2007) built
several random-effects regression models to forecast the
mean time between failure (MTBF) [9]. Al-Garni et al.
(2007) used the Weibull family to build a relationship with
aircraft air-conditioning failure [10]. Wang and Yuan (2017)
completed the failure rate prediction based on the AR model
[11]. Wang and Yin (2019) adopted Weibull distribution to
failure rate prediction [12]. Sexton et al. (2018) used
different rules such as single-tag and rules-based to extract
keywords to estimate median time to failure [13]. Brundage
et al. (2021) also studied technical language processing by
considering human-in-the-loop, natural language processing
tools and text analysis to analyze documents that contain the
equipment maintenance data [14]. While the previous
studies have discussed product failure and maintenance, the
number of studies that have worked with real industry
datasets is very limited. The practical insights derived from
analyzing big industry datasets help us define proper repair
and maintenance strategies for corporations towards cost
reduction and sustainability goals.

This study aims to show how machine learning tools
can help businesses analyze the overwhelming dataset of
product post-market performance and identify the depth and
significance of the demand for repair and maintenance
services. The SVM regression model simulates the product
failure scenario and predicts the timing of the next repair
service. The forecasting accuracy of SVM in regression is
already confirmed by several studies [15]-[17]. In this

study, the dataset is collected from 2004 to 2018 under
different management policies. Although some bias and
dataset noise influence the decision to repair, the SVM
model can still forecast failure time.

Besides, this study runs a frequency analysis to analyze
the product quality based on the probability distributions of
failure count, time between failure (TBF), and time to repair
(TTR). The frequency analysis provides information about
each product maintenance condition.

This study provides an overview of products
maintenance condition by frequency analysis and offers a
way to forecast product failure and the timing of the
subsequent repair service request. Figure 1 shows the
overall structure of this study.

2. OVERVIEW OF DATASET
2.1 Elements of the dataset

In the current study, we investigate 536,597 records of
repair and maintenance of medical devices, 90,278
individual products, and 9,351 product types from 2004
to 2018. The management policies may affect the collection
and documentation of the repair dataset and might have
imposed some biases in how the data is reported. The data
come from one of the largest health care providers in the
United States. The dataset includes 9,351 different products
with different functions and purposes such as infusion
pumps, pulse detection, and oximeters. The average number
of repair orders is 35,773 per year or 98 repair orders per
day. Therefore, the need for a maintenance plan is
significant for the health care provider.

TABLE 1: THE DESCRIPTION OF DATASET FIELDS.

Data Attribute Description
. WO Number The work order of repair
. Type Code Product type

1

2

3. First Asset Number Property unique number
4. First Asset Description Function of product

5. First Asset Manufacturer Name = Manufacturer

6. First Asset Model Number Product name

7. First Asset Serial Number Unique serial number

8. Date Created Repair start time

9. Completed Date Repair completion time
10. Repair Attribute The reason for repair

Table 1 shows an overview of the available fields of
data for each repair and maintenance record. First Asset
Number is the unique code to identify an individual product.
First Asset Description is the information of product
function, and First Asset Model Number is the name of each
type of product. Date Created and Completed Date fields are
the start time and the completion time on the repair. Based
on the Date Created and Completed Date, we can identify
TBF and TTR. The TBF is the time between an individual
product’s failures, and the TTR is the repair start time to
repair completion time. TBF and TTR are good indicators of
product reliability and cost of repair. The long TBF and short
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TTR means that a product has high reliability and may be
easier to be maintained.

Figure 2 shows the distribution of 35 repair reasons
among the top 10 product categories. We have only
relabeled the equipment names, including CA type 1, CA
type 2, M8 type 1, PA type 1, PC type 1, MF type 1, CSE
type 1, VE type 1, R type 1, and M8 type 2. We have not
relabeled the repair codes such as failure reasons and
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FIGURE 2: SUMMARY OF ALL REPAIR TYPES FOR ALL PRODUCTS AND SHOWING THE COUNT OF TOP 10 PRODUCTS
(AMONG THE REPAIR REASONS, MOST REPAIR RECORDS ARE A RANDOM FAILURE.).
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Figures 3 and 4 show the number of random failures and
physical damage for the top 10 categories of products,
respectively. The top 10 categories of products have the
highest records of data among all 9,351 product types.
Among the top 10 categories, the CA type 1 and CA type 2
are selected for the forecasting part of the study due to
enough sample size. The number of RF and Physical
Damage (PD) is the highest among other failure reasons.
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FIGURE 3: THE NUMBER OF RANDOM FAILURES FOR
THE TOP 10 PRODUCT TYPES OVER TIME.
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FIGURE 4: THE NUMBER OF PHYSICAL DAMAGES FOR
THE TOP 10 PRODUCT TYPES OVER TIME.

TABLE 2: THE SUMMARY OF FUNCTION FOR THE TOP
10 PRODUCT CATEGORIES.

Product First Asset Description

CA type 1 Infusion Pumps, Multitherapy

CA type 2 Controllers, Infusion Pump Systems,
Programmable

MS type 1 Infusion Pumps, Multitherapy

PA type 1 Infusion Pumps, Multitherapy

PC type 1 Hospital Communication Systems, Nurse Call

MF type 1 Infusion Pumps, Multitherapy, Syringe
Circulatory Assist Units, Peripheral

CSE type 1 Compression, Sequential
Circulatory Assist Units, Peripheral

VE type 1 Compression, Sequential

R type 1 Oximeters, Pulse

MS type 2 Infusion Pumps, Multitherapy

According to Table 2, some product categories serve
the same functions. For example, there are many products
with infusion pumps and multitherapy functions. Four
product categories, including CA type 1, M8 type 1, PA type
1, and M8 type 2 have the same function.

2.2 Data frequency analysis

This section describes the frequency analysis of the
number of failures, TBF, and TTR. To analyze the reliability
based on the above indices, we need to fit the best
probability distribution for each product type. In the
previous studies, Patil applied Normal, Lognormal, and
Weibull distributions to reliability and maintainability
analysis on hardware and software failures [20]. Lampreia
et al. used the Weibull probability density function to
analyze Mean Time Between Failure (MTBF) on the
reliability analysis [21]. Sukhwani et al. applied Gamma
distribution to analyze the reliability of NASA space flight
software [22]. Tronskar et al. analyzed corrosion damage for
pipelines and pressure vessels by using Gumbel distribution
[23]. Four probability distributions, including Gumbel,
Gamma, Normal, and Weibull distributions, have been
applied to this study. The frequency analysis is also
conducted for five categories of products: CA type 1, CA
type 2, M8 type 1, PA type 1, and M8 type 2.

The best-fitted probability distributions for the number
of failures, TBF, and TTR are determined by the Akaike
information criterion (AIC) and Bayesian information
criterion (BIC). The AIC test that measures the discrepancy
among the true model and simulated model is proposed by
Akaike (1973) [24], and the BIC test is based on the
Bayesian framework [25]. Several studies had applied the
AIC or BIC to compute the best-fitted probability
distributions and showed the AIC and BIC are good indices
for this purpose [26]-[29]. The probability distribution with
the minimum AIC and BIC, among other distributions, is the
best-fitted distribution. The AIC is constituted by the
principle of maximum entropy and is expressed as:

AIC = 2n = 2In(h) (1)

where h indicates the maximum value of the likelihood
function, and »n is the number of probability distribution
parameters. The BIC is constructed by the Bayesian
framework and is given as:

BIC = In(s)n — 2In(h) Q)

Where s expresses the number of samples.

Table 3 shows the best-fitted probability distributions
of RF and PD. As seen, the best-fitted probability
distributions are either Weibull or Gamma. It is reasonable
as the histograms of failure count, TBF, and TTR are similar
to exponential shape. The example shown in Figures 5 and
6 illustrates the probability density function (PDF) and the
cumulative distribution function (CDF) of failure count for
RF in CA type 2.
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TABLE 3: THE BEST-FITTED PROBABILITY
DISTRIBUTION OF RF AND PD (WEI: WEIBULL, GAM:
GAMMA).

TABLE 4: THE PROBABILITY (0~100%) OF RF AND PD
CONSIDERING THE BEST-FITTED PDF: P(X>1) TO P(X>5).

Random Failure, Physical Damage

Product

P(X>1) P(X>2) P(X=3) PX>4) PX>5)
Failure count
CAtypel 100,100 40,32 32,13 28,5 25,2
CAtype2 100,100 33,30 14,12 6,5 3,2
M8typel 100,100 43,14 26,9 17,6 12,5
PAtypel 99, 100 29,22 26,7 24,2 23,1
MS8type2 94,100 77,07 55,2 37,0 24,0
TBF (Year)
CAtypel 51,53 29,27 16, 13 9,6 53
CAtype2 44,55 23,27 12,13 7,6 4,3
M8typel 39,58 19, 36 10, 22 5,14 3,9
PAtypel 50,45 28,24 16, 13 9,7 6,4
M8 type2 38, 68 17, 42 8,23 3,12 2,6

TTR (10 days)

CAtypel 40,31 33,22 29, 17 26, 14 24,12
CAtype2 25,22 19, 15 15,11 12, 09 11,7
M8typel 31,46 19, 27 13,17 9,11 7,7
PAtypel 20,2 10,0.3 6,0 4,0 3,0
M8 type 2 39, 66 30, 50 26, 39 23, 31 21,26

Product Failure TBF TTR
Count (Year) (10 days)
Wei, Wei Gam, Gam Wei, Wei
AIC: AIC: AIC:
CAtypel 4922, 737 926, 585 3653, 5411
BIC: BIC: BIC:
2947, 763 944, 604 3679, 5437
Wei, Wei Wei, Gam Wei, Wei
AIC: AIC: AIC:
CAtype2 1819, 583 604, 606 6981, 4670
BIC: BIC: BIC:
1842, 907 627, 622 7005, 4688
Wei, Wei Wei, Gam Wei, Wei
AIC: AIC: AIC: 36948,
M8type I 2109,373 570, 342 485
BIC: BIC: BIC: 36975,
2130, 387 595, 346 465
Wei, Wei Gam, Gam Wei, Wei
AIC: AIC: AIC:
PAtypel 398 410 542, 461 664, 999
BIC: BIC: BIC:
415, 427 553,471 681, 1015
Wei, Wei Gam, Gam Wei, Wei
AIC: AIC: AIC:
MBtype2 1388, 530 491, 445 5208, 13214
BIC: BIC: BIC:
1401, 540 508, 446 5225, 1325
0.5 -
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FIGURE 5: FOUR FITTED PDF OF FAILURE COUNT FOR
RF OF CATYPE 2.
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Table 4 represents the frequency analysis results for RF
and PD with the best-fitted PDF. The P(X=1) for failure
count means the probability that at least one failure happens.
For TBEF, it means the probability that an individual product
has a normal operation of at least 1 year before it is broken.
For TTR, it means the probability that an individual product
needs at least 10 days to be repaired.

Comparing RF and PD, the overall probability of RF is
larger than PD. For example, the P(X=1) to P(X=5) of CA
type 1 is from 1.00 to 0.25 on RF but is from 1.00 to 0.02 on
PD. It reveals that random failure is the most repair reason
for these products. The P(X=1) and P(X=2) of CA type 1
to CA type 2 on RF are almost similar, but the P(X=3) to
P(X=5) of CA type 2 is smaller than of CA type 1. It means
that CA type 2 is more stable than CA type 1. Also,
comparing CA type 1, M8 type 1, PA type 1, and M8 type 2
under the same functional purposes (Infusion Pumps,
Multitherapy) on RF, the PA type 1 is more reliable among
these products. Although P(X=4) and P(X=5) of PA type 1
are slightly higher than of M8 type 1, the overall P(X=2) to
P(X=3) are smaller among the same functional products.
MBS type 2 is not reliable among products with the same
function since it has a high-value P(X=2). Almost 77% of
MB8 type 2 products fail at least twice.

The overall P(X=1) to P(X=5) for TBF among RF and
PD are very similar. The TBF reveals that products can
normally operate at least 1 year to 3 years before they fail.
CA type 1 and PA type 1 have higher P(X=1) on RF among
all products. It means that CA type 1 and PA type 1 have
higher probabilities of operating more than 1 year, among
others. M8 type 2 can endure more PD because it has a
higher probability of P(X=1) to P(X=3) than others with
the same functional purpose.
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The TTR results reveal that CA type 1 and M8 type 2
are not easy to repair among all products. These two
products have higher P(X =1) to P(X=5) than others,
especially in P(X=5). Once a random failure occurs, it takes
up to 50 days to repair the device. Also, CA type 1, M8 type
2, and M8 type 1 take a longer time to repair in the case of
physical damage. Therefore, the cost of repair is likely
higher for CA type 1 and M8 type 2. In contrast, PA type 1
is easier to be repaired among other products. Therefore,
after analyzing Table 4, the PA type 1 category is more cost-
effective for Infusion Pumps and Multitherapy functions.

3. METHOD: SUPPORT VECTOR MACHINE

Vapnik proposed support vector networks in 1995 to
solve the classification problem and later developed it for
regression analysis [30]. SVM has confirmed its forecasting
accuracy through previous work [15]-[17]. It has been
applied to different fields for various predictions, such as
dewpoint temperature prediction [31], stock prediction [32],
and flood forecasting [16], [33]. Further details on SVM can
be found in [34].

According to [16], given the training set of
[Ce, y1), (22, ¥2), (x3,¥3), - .., (xn, ¥,)] Wwith the input vector
x and the target data y. The regression function can be
expressed as:

y=f)=w'dx) +b (€)

where J is the output, w is weight, ¢(x) is a nonlinear
function, and b is the bias. According to the structural risk
minimization (SRM) principle, the w and b can be
derived by minimizing the structural risk function as follow:

1 n
Min R(w,b,§,6) =5 Wl +¢ Y LE+ED  (©)

V=9 =9, Wrd() +b) e +§
V=9 =W +b) -y <e+§
Subject to &>0 (7
I § =20
k i=12,..,n

where c¢* is a penalty parameter for making a tradeoff
between model complexity, and € is error tolerance as a
range between target data y and output data y. & and &*
are slack variables. The Lagrange multipliers with a and
a* can be used to solve the above-mentioned optimization
problem:

S
FG) = ) (@ = @)K (o) + b ®)
i=1
Where s is the number of support vector, x; is the support
vector, and K (x,x) is a kernel function. SVM has four
kernel functions as follow:

Linear function:
K(x;x;) =« - X; )

Polynomial function:

K(x; %) =@ xl - x; +c)* (10)

Radial basis function:
K(xi_ xj) = exp (—r||xl- — xj||2) (11)

Sigmoid function:

K(x; xj) = tanh(r-x] - x; +¢) (12)

Where r is a scaling factor, ¢ is the bias term, d is the
degree term. This study uses the grid search method [35] to
find parameters (r, c*, d, and g). Figure 7 shows an
overview of the SVM structure.

4. FORECASTING THE TIME OF NEXT RANDOM

FAILURE OR REPAIR SERVICE TICKET
4.1 The input of SVM

Four different kernel functions, including Linear (LN),
Polynomial (PL), Radial basis (RBF), and Sigmoid (SIG)
function, are selected to see which one has better forecasting
performance. The input variable to the SVM model is the
cumulative seconds, as illustrated in Table 5. The definition
of cumulative seconds is the difference between the current
failure time and the subsequent failure time. We should note
that the current and upcoming failure may not be for the
same individual product. The output of SVM is the
forecasted time of the next failure. When the failure time is
t+1, t+2, or t+3, the SVM model will forecast the next first,
second, and third failure times in advance. The relationship
of the failure time to the input factor is shown in Table 6.
The 7(¢), T(z-1), and 7(z-2) denote current, previous, and the
second-to-last product failure time as an input factor,
respectively. This study selects 7(z-6), 7(¢-5), T(t-4), T(t-3,)
1(#-2), T(t-1), T(¢) as input factor to forecast the time of the
next failure since these input factors have a high correlation
coefficient with output data. Also, when the time of failure
increases, the number of input factors is reduced. The reason
for reducing the input factor is to maintain the high
correlation coefficient between input and output data.

We have selected two products, including CA type 1
and CA type 2, for prediction since these two products have
enough sample sizes and are commonly used in medical
applications. Table 6 shows the basic information for CA
type 1 and CA type 2.

The proportion of training and test sample sizes is 7 and
3. The available data on the start time and the end time for
CA type 1 and CA type 2 are from 2008-7-23 11:00:00 to
2018-12-31 8:14:23 and form 2011-6-25 14:00:00 to 2018-
12-27 16:16:40, respectively. The length of the dataset is at
least 7.5 years for both products. The forecasting results will
be discussed in the next section.
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TABLE 5: EXAMPLE OF CALCULATING CUMULATIVE
SECONDS (E.G., TIME OF THE FIRST FAILURE, THE
SECOND FAILURE).

Order Failure time

Cumulative seconds

1 2008-07-23 11:00:00 0 s (Time 1 — Timel)

2 2008-07-24 08:00:00 75600 s (Time 2 - Time 1)

3 2008-07-28 09:00:00 424800 s (Time 3 - Time 1)
4 2008-08-08 09:00:00 1375200 s (Time 4 — Time 1)
5 2008-08-08 09:00:00 1375200 s (Time 5-Time 1)
6 2008-09-04 09:00:00 3708000 s (Time 6-Time 1)

TABLE 6: BASIC INFORMATION ABOUT CA TYPE 1 AND

CATYPE 2.

Information CA type 1 CA type 2
Training RF dataset 5141 3256
Testing RF dataset 2203 1395

. 2008-7-23 2011-6-25
Data start time 11:00:00 14:00:00

. 2018-12-31 2018-12-27
Data end time 8:14:23 16:16:40
Dataset length (years) 10.5 7.51
Failure Time
(order) Input factor
1 1(t-6), T(t-5), T(t-4), 1(¢-3,) T(t-2),

T(t-1), 1(¢)

t+2 1(t-5), T(t-4), T(t-3,) T(t-2), T(t-1), T(¢)
t+3 1(t-4), T(t-3,) T(t-2), T(t-1), T(¢)

4.2 The forecasting results for random failure

The training and testing results for SVM-LN, SVM-PL,
SVM-RBF, and SVM-SIG are shown in Tables 7 and 8.
According to the tables, the SVM-PL has better
performance on training and testing, among other kernel
functions. When the time is 1, 2, and 3, both SVM-
LN and SVM-PL can forecast the time of the next random
failure for CA type 1 and CA type 2 shown in Figures 8 to
11. The codes SVM-LN, SVM-PL, SVM-RBF, and SVM-

SIG means the kernel of SVM including linear, polynomial,
radial basis, and sigmoid function, respectively. As time
increases, it is obvious that the forecasting performance is
decreased. Figures 9 and 11 provide specific details on the
above-mentioned discussion. Based on Tables 7 to 8 and
Figures 8 to 11, the performance of SVM models with
different kernel functions can forecast the next random
failure without overfitting. For the indices such as RMSE,
MAE, and CC, the test results have a good forecasting
performance as shown in each Figure. Each SVM model
based on different kernel functions catches the trend of
observation. Also, when the time is increasing, the SVM-PL
will give overestimated values for both products. Although
the SVM-PL will overestimate values as time increases, the
model does not lose its forecasting performance with higher
failure time. In Figure 9 on order 5,184 to 5,189 and Figure
11 on order 3,277 to 3,283, the SVM-PL with time +3
provides forecasting value near to the observation. The
actual failure time and the forecasted failure time for these
orders are shown in Table 9.

Since the observed trend is close to linear or polynomial
function, SVM-LN and SVM-PL have a better performance
than the other two models. SVM-PL is more suitable than
SVM-LN since the trend of observation is like a polynomial
function.

All models have a value of 1.0 for CC. They perform
with similar trends, as shown in Figures 8 to 11. Although
all models have a similar trend, they do not guarantee small
residual errors based on RMSE and MAE listed in Tables 7
to 8.

TABLE 7: THE TRAINING AND TESTING RESULTS FOR
RANDOM FAILURE IN CA TYPE 1.

Failure time Train, Test

(Order) RMSE (sec.) MAE (sec.) CC
SVM-LN

t+1 400871, 49757 116881, 40583 1.0, 1.0
t+2 518767, 61001 137235, 46601 1.0, 1.0
t+3 674727, 80082 156101, 55303 1.0,1.0
SVM-PL 1.0, 1.0
t+1 316582, 41586 104599, 25892 1.0, 1.0
t+2 479382, 59246 126297, 43609 1.0, 1.0
t+3 587345, 72843 149849, 54131 1.0, 1.0
SVM-RBF

t+1 657926, 180843 148978, 145477 1.0, 1.0
t+2 767078, 186720 166230, 153202 1.0, 1.0
t+3 869516,210683 190072, 174058 1.0, 1.0
SVM-SIG 1.0, 1.0
t+1 561663, 68182 132766, 47432 1.0, 1.0
t+2 728044, 81871 160764, 57391 1.0, 1.0
t+3 820536, 89412 192585, 63175 1.0, 1.0

Figures 12 and 13 show the error between
forecasting #+/ and observation for CA type 1 and CA type
2. SVM-PL has a better performance than others. In
addition, the trend of error has a cycle period in both
Figures. Figure 12 shows the models overestimate the
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actual day, but sometimes the models can catch the actual
failure time. Figure 13 also shows a similar trend, such as
error with the cycle period. Based on the current
observation, the future work suggests training an error
model that can forecast the next error between forecasting
and actual failure time to reduce the error between
forecasting and observation.

TABLE 8: THE TRAINING AND TESTING RESULTS FOR
RANDOM FAILURE IN CA TYPE 2.

would not be repaired. Forecasting waste provides further
information on how to define strategies for the reduction of
GHG emissions.

TABLE 9: THE ACTUAL FAILURE TIME AND
FORECASTING FAILURE TIME WITH SVM-PL FOR ORDER
5,184 TO 5,189 OF CA TYPE 1 AND ORDER 3,277 TO 3,283
OF CA TYPE 2.

Failure time Train, Test
(Order) RMSE (sec.) MAE (sec.) CC

SVM-LN

t+1 107236, 98583 78451, 67329 1.0, 1.0
t+2 156948, 132817 126061, 105525 1.0, 1.0
t+3 181359, 162836 134489, 120174 1.0, 1.0
SVM-PL 1.0, 1.0
t+1 95388, 87427 71958, 56968 1.0, 1.0
t+2 133387, 124724 91799, 84560 1.0, 1.0
t+3 168557, 149977 132054, 119583 1.0, 1.0
SVM-RBF 1.0, 1.0
t+1 175961, 146894 118780, 113243 1.0, 1.0
t+2 201158, 167534 135506, 128570 1.0, 1.0
t+3 221640, 182546 150537, 143188 1.0, 1.0
SVM-SIG 1.0, 1.0
t+1 128303, 129916 88436, 88981 1.0, 1.0
t+2 171729, 146100 126134, 116760 1.0, 1.0
t+3 200389, 179164 142448, 132439 1.0, 1.0

The outcomes provide helpful insights into enhancing
the sustainability of medical devices. For example, the
forecasting results provide information on product
maintenance needs and the degree of repairability. Also,
predicting time between failures gives repair service
providers and technicians sufficient advance notice for
predicting the resources needed for repair and proper
resource management for repair services. Moreover, the
prediction outcomes can be used for forecasting the amount
of waste generated if the malfunctioning medical devices
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AMONG ALL KERNEL FUNCTIONS FOR CA TYPE 1.
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5. CONCLUSION

This study aims to forecast the arrival time of the next
repair order or the failure time by applying the SVM model
into a medical device dataset with over 530,000 records of
repair and maintenance activities. Four SVM kernel
functions, including SVM-LN, SVM-PL, SVM-RBF, and
SVM-SIG, have been compared for forecasting the next
failure time of two categories of products labeled as CA type
1 and CA type 2. The results reveal that the SVM-LN and
SVM-PL perform well in forecasting the time of the next
repair request or failure time. Among all functions, SVM-
PL has the best forecasting performance based on the RMSE
and MAE values for testing.

In addition, frequency analysis has been run to analyze
the data further, and identify the best-fitted distributions to
the failure count, the time between failure, and the time to
repair. Four probability distributions, including Gumbel,
Gamma, Normal, and Weibull distribution, have been
analyzed. Analyzing the failure count reveals that PA type 1
is more reliable among products with the same function. CA
type 1 and PA type 1 have higher P(X=1) among all
products in terms of random failure. M8 type 2 has higher
TBF in terms of physical damage among other products with
the same function. Finally, analyzing TTR reveals that CA
type 1 and M8 type 2 are not easy to repair among all
products.
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FIGURE 13: FORECAST ERROR OF T+1 IN CA TYPE 2.

The study shows the importance of machine learning
tools such as SVM models in predicting the time of repair
orders. Forecasting the time to failure and time to repair
provides guidelines to designers for improving product
repairability. The SVM model can further be used in
forecasting the waste generation rate.

The study can be extended in several ways. First, other
categories of products and types of failures can be compared
together to identify the most vulnerable products and the
type of repairs needed in each category. Second, the study
outcome, which includes after-market repair and
maintenance requests, can be linked to the product design
features to identify design improvement directions. Third,
the data analytics results can be fed to cost modeling
techniques to quantify the business outcomes of repair
services and identify the best repair strategies companies
need to adopt. Decisions such as whether to handle repair
services by in-house teams or outsource them to original
equipment manufacturers or third-party repair service
providers, depending on the demand and repair cost, can be
informed by the current data analyses. Fourth, the study
outcomes can be fed to resource allocation and scheduling
models to help enterprises manage workforce requirements
for repair services. Fifth, other machine learning tools can
be employed to facilitate data analytics efforts. Finally,
training an error model that can forecast the following error
between forecasting and actual failure time will be further
analyzed.
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