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ABSTRACT 

Accurate prediction of product failures and the need for 
repair services become critical for various reasons, 
including understanding the warranty performance of 
manufacturers, defining cost-efficient repair strategies, and 
compliance with safety standards. The purpose of this study 
is to use machine learning tools to analyze several 
parameters crucial for achieving a robust repair service 
system, including the number of repairs, the time of the next 
repair ticket or product failure, and the time to repair. A 
large dataset of over 530,000 repairs and maintenance of 
medical devices has been investigated by employing the 
Support Vector Machine (SVM) tool. SVM with four kernel 
functions is used to forecast the timing of the next failure or 
repair request in the system for two different products and 
two different failure types, namely random failure and 
physical damage. A frequency analysis is also conducted to 
explore the product quality level based on product failure 
and the time to repair it. Besides, the best probability 
distributions are fitted for the number of failures, the time 
between failures, and the time to repair. The results reveal 
the value of data analytics and machine learning tools in 
analyzing post-market product performance and the cost of 
repair and maintenance operations. 
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NOMENCLATURE 
𝐴𝐼𝐶 Akaike information criterion 
𝐵𝐼𝐶 Bayesian information criterion 
𝑛 Number of the probability distribution 

parameters 
ℎ̂ The maximum value of the likelihood 

function 
𝑠 The number of samples 
𝑦̂ Target data 
𝑥 Input vector 
𝒘 Weight of support vector machine 
ɸ(𝑥) Nonlinear function 
𝑏 Bias 
𝑅 Structural risk function 
𝑐∗ Penalty parameter 

𝐿ɛ(𝑦̂) Vapnik’s ε-insensitive loss function 
ɛ Error tolerance 

𝜉, 𝜉∗ Slack variables 
𝑎, 𝑎∗ Lagrange multipliers 

𝐾(𝑥, 𝑥𝑘) Kernel function 
𝑥𝑘 Support vector 
𝑟 Scaling factor 
𝑑 Degree term 

RMSE Root mean square error 
MAE Mean absolute error 
CC Correlation coefficient 
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1. INTRODUCTION 
Most products experience some sort of failure during 

their lifespan. Several reasons for product failures include 
insufficient reliability, poor quality, wrong design, uncertain 
usage, and production conditions [1]. Product failure can 
cause adverse effects such as financial cost, consumer 
dissatisfaction, and ruining manufacturers' market image 
[2]. Product repair is often part of the product lifecycle 
events. For example, once the product reaches the end-of-
use or the end-of-life, customers may decide to upgrade their 
product due to technological advances or repair, refurbish, 
or remanufacturer to extend the product lifespan [3].  

The concept of end-of-use product recovery and 
extending the product lifecycle is nothing new in the 
literature. Previous studies have already discussed product 
recovery challenges that are facing different industries such 
as building material stocks [4], automobile [5], and 
household electric and electronic equipment [6]. 
Mathematical models have been developed to overcome 
some of those challenges (e.g., uncertain quality and 
quantity of waste stream) and help remanufacturers decide 
what to do with used devices [7],[8].  

Among the six common recovery strategies (e.g., reuse, 
repair, recondition/refurbishment, remanufacturing, 
cannibalization, and material recovery), repair has received 
less attention in the literature. However, predicting product 
failure has always been of interest to both academia and 
industry. Several studies have discussed the forecasting of 
product failure. To name a few, Yoon and Sohn (2007) built 
several random-effects regression models to forecast the 
mean time between failure (MTBF) [9]. Al-Garni et al. 
(2007) used the Weibull family to build a relationship with 
aircraft air-conditioning failure [10]. Wang and Yuan (2017) 
completed the failure rate prediction based on the AR model 
[11]. Wang and Yin (2019) adopted Weibull distribution to 
failure rate prediction [12]. Sexton et al. (2018) used 
different rules such as single-tag and rules-based to extract 
keywords to estimate median time to failure [13]. Brundage 
et al. (2021) also studied technical language processing by 
considering human-in-the-loop, natural language processing 
tools and text analysis to analyze documents that contain the 
equipment maintenance data [14]. While the previous 
studies have discussed product failure and maintenance, the 
number of studies that have worked with real industry 
datasets is very limited. The practical insights derived from 
analyzing big industry datasets help us define proper repair 
and maintenance strategies for corporations towards cost 
reduction and sustainability goals.  

This study aims to show how machine learning tools 
can help businesses analyze the overwhelming dataset of 
product post-market performance and identify the depth and 
significance of the demand for repair and maintenance 
services. The SVM regression model simulates the product 
failure scenario and predicts the timing of the next repair 
service. The forecasting accuracy of SVM in regression is 
already confirmed by several studies [15]–[17]. In this 

study, the dataset is collected from 2004 to 2018 under 
different management policies. Although some bias and 
dataset noise influence the decision to repair, the SVM 
model can still forecast failure time. 

Besides, this study runs a frequency analysis to analyze 
the product quality based on the probability distributions of 
failure count, time between failure (TBF), and time to repair 
(TTR). The frequency analysis provides information about 
each product maintenance condition. 

This study provides an overview of products 
maintenance condition by frequency analysis and offers a 
way to forecast product failure and the timing of the 
subsequent repair service request. Figure 1 shows the 
overall structure of this study.  
 
2. OVERVIEW OF DATASET 
2.1 Elements of the dataset 

In the current study, we investigate 536,597 records of 
repair and maintenance of medical devices, 90,278 
individual products, and 9,351 product types from 2004 
to 2018. The management policies may affect the collection 
and documentation of the repair dataset and might have 
imposed some biases in how the data is reported. The data 
come from one of the largest health care providers in the 
United States. The dataset includes 9,351 different products 
with different functions and purposes such as infusion 
pumps, pulse detection, and oximeters. The average number 
of repair orders is 35,773 per year or 98 repair orders per 
day. Therefore, the need for a maintenance plan is 
significant for the health care provider.  

 
TABLE 1: THE DESCRIPTION OF DATASET FIELDS. 

Data Attribute Description 
1. WO Number The work order of repair 
2. Type Code Product type  
3. First Asset Number Property unique number 
4. First Asset Description Function of product 
5. First Asset Manufacturer Name Manufacturer 
6. First Asset Model Number Product name 
7. First Asset Serial Number Unique serial number 
8. Date Created Repair start time  
9. Completed Date Repair completion time  
10. Repair Attribute The reason for repair 

 
Table 1 shows an overview of the available fields of 

data for each repair and maintenance record. First Asset 
Number is the unique code to identify an individual product. 
First Asset Description is the information of product 
function, and First Asset Model Number is the name of each 
type of product. Date Created and Completed Date fields are 
the start time and the completion time on the repair. Based 
on the Date Created and Completed Date, we can identify 
TBF and TTR. The TBF is the time between an individual 
product’s failures, and the TTR is the repair start time to 
repair completion time. TBF and TTR are good indicators of 
product reliability and cost of repair. The long TBF and short 
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TTR means that a product has high reliability and may be 
easier to be maintained. 

Figure 2 shows the distribution of 35 repair reasons 
among the top 10 product categories. We have only 
relabeled the equipment names, including CA type 1, CA 
type 2, M8 type 1, PA type 1, PC type 1, MF type 1, CSE 
type 1, VE type 1, R type 1, and M8 type 2. We have not 
relabeled the repair codes such as failure reasons and 

product type to train the models. As shown in Figure 2, 35 
repair reasons are listed for the relabeled products. The 
repair attributes field in the dataset provides specific details 
on why an individual product needs repair. For example, 
Random Failure (RF) is a physical failure with excessive 
stress of the device and can happen at any time [18], [19]. 

 

 

 
FIGURE 1: THE GENERAL DATA COLLECTION AND ANALYSIS PROCEDURE OF THIS STUDY. 

 
FIGURE 2: SUMMARY OF ALL REPAIR TYPES FOR ALL PRODUCTS AND SHOWING THE COUNT OF TOP 10 PRODUCTS 

(AMONG THE REPAIR REASONS, MOST REPAIR RECORDS ARE A RANDOM FAILURE.). 
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Figures 3 and 4 show the number of random failures and 
physical damage for the top 10 categories of products, 
respectively. The top 10 categories of products have the 
highest records of data among all 9,351 product types. 
Among the top 10 categories, the CA type 1 and CA type 2 
are selected for the forecasting part of the study due to 
enough sample size. The number of RF and Physical 
Damage (PD) is the highest among other failure reasons.  
 

 
FIGURE 3: THE NUMBER OF RANDOM FAILURES FOR 
THE TOP 10 PRODUCT TYPES OVER TIME. 
 

 
FIGURE 4: THE NUMBER OF PHYSICAL DAMAGES FOR 
THE TOP 10 PRODUCT TYPES OVER TIME. 
 
TABLE 2: THE SUMMARY OF FUNCTION FOR THE TOP 
10 PRODUCT CATEGORIES. 

Product First Asset Description 
CA type 1 Infusion Pumps, Multitherapy 

CA type 2 Controllers, Infusion Pump Systems, 
Programmable 

M8 type 1 Infusion Pumps, Multitherapy 
PA type 1 Infusion Pumps, Multitherapy 
PC type 1 Hospital Communication Systems, Nurse Call 
MF type 1 Infusion Pumps, Multitherapy, Syringe 

CSE type 1 Circulatory Assist Units, Peripheral 
Compression, Sequential 

VE type 1 Circulatory Assist Units, Peripheral 
Compression, Sequential 

R type 1 Oximeters, Pulse 
M8 type 2 Infusion Pumps, Multitherapy 

 

According to Table 2, some product categories serve 
the same functions. For example, there are many products 
with infusion pumps and multitherapy functions. Four 
product categories, including CA type 1, M8 type 1, PA type 
1, and M8 type 2 have the same function. 
 
2.2 Data frequency analysis 

This section describes the frequency analysis of the 
number of failures, TBF, and TTR. To analyze the reliability 
based on the above indices, we need to fit the best 
probability distribution for each product type. In the 
previous studies, Patil applied Normal, Lognormal, and 
Weibull distributions to reliability and maintainability 
analysis on hardware and software failures [20]. Lampreia 
et al. used the Weibull probability density function to 
analyze Mean Time Between Failure (MTBF) on the 
reliability analysis [21]. Sukhwani et al. applied Gamma 
distribution to analyze the reliability of NASA space flight 
software [22]. Tronskar et al. analyzed corrosion damage for 
pipelines and pressure vessels by using Gumbel distribution 
[23]. Four probability distributions, including Gumbel, 
Gamma, Normal, and Weibull distributions, have been 
applied to this study. The frequency analysis is also 
conducted for five categories of products: CA type 1, CA 
type 2, M8 type 1, PA type 1, and M8 type 2. 

The best-fitted probability distributions for the number 
of failures, TBF, and TTR are determined by the Akaike 
information criterion (AIC) and Bayesian information 
criterion (BIC). The AIC test that measures the discrepancy 
among the true model and simulated model is proposed by 
Akaike (1973) [24], and the BIC test is based on the 
Bayesian framework [25]. Several studies had applied the 
AIC or BIC to compute the best-fitted probability 
distributions and showed the AIC and BIC are good indices 
for this purpose [26]–[29]. The probability distribution with 
the minimum AIC and BIC, among other distributions, is the 
best-fitted distribution. The AIC is constituted by the 
principle of maximum entropy and is expressed as: 

𝐴𝐼𝐶 = 2𝑛 − 2ln(ℎ̂) (1) 

where ℎ̂  indicates the maximum value of the likelihood 
function, and n is the number of probability distribution 
parameters. The BIC is constructed by the Bayesian 
framework and is given as: 

𝐵𝐼𝐶 = ln(𝑠)𝑛 − 2ln(ℎ̂) (2) 

Where s expresses the number of samples.  
Table 3 shows the best-fitted probability distributions 

of RF and PD. As seen, the best-fitted probability 
distributions are either Weibull or Gamma. It is reasonable 
as the histograms of failure count, TBF, and TTR are similar 
to exponential shape. The example shown in Figures 5 and 
6 illustrates the probability density function (PDF) and the 
cumulative distribution function (CDF) of failure count for 
RF in CA type 2.  
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TABLE 3: THE BEST-FITTED PROBABILITY 
DISTRIBUTION OF RF AND PD (WEI: WEIBULL, GAM: 
GAMMA). 

Product Failure  
Count 

TBF  
(Year) 

TTR  
(10 days) 

CA type 1 

Wei, Wei Gam, Gam Wei, Wei 
AIC:  
4922, 737 
BIC:  
2947, 763 

AIC: 
926, 585  
BIC:  
944, 604 

AIC:  
3653, 5411  
BIC:  
3679, 5437 

CA type 2 

Wei, Wei Wei, Gam Wei, Wei 
AIC:  
1819, 583 
BIC:  
1842, 907 

AIC: 
604, 606  
BIC:  
627, 622 

AIC:  
6981, 4670 
BIC:  
7005, 4688 

M8 type 1 

Wei, Wei Wei, Gam Wei, Wei 
AIC: 
2109, 373  
BIC: 
2130, 387 

AIC: 
570, 342  
BIC:  
595, 346 

AIC: 36948, 
485  
BIC: 36975, 
465 

PA type 1 

Wei, Wei Gam, Gam Wei, Wei 
AIC: 
398, 410 
BIC: 
415, 427 

AIC: 
542, 461 
BIC: 
553, 471 

AIC: 
664, 999 
BIC: 
681, 1015 

M8 type 2 

Wei, Wei Gam, Gam Wei, Wei 
AIC: 
1388, 530 
BIC: 
1401, 540 

AIC: 
491, 445  
BIC: 
508, 446 

AIC: 
5208, 13214 
BIC: 
5225, 1325 

 
FIGURE 5: FOUR FITTED PDF OF FAILURE COUNT FOR 

RF OF CA TYPE 2. 
 

 
FIGURE 6: BEST-FITTED CDF OF FAILURE COUNT FOR 

RF OF CA TYPE 2. 

TABLE 4: THE PROBABILITY (0~100%) OF RF AND PD 
CONSIDERING THE BEST-FITTED PDF: P(X≥1) TO P(X≥5). 

Product Random Failure, Physical Damage 
P(X≥1) P(X≥2) P(X≥3) P(X≥4) P(X≥5) 

Failure count         
CA type 1 100, 100 40, 32 32, 13 28, 5 25, 2 
CA type 2 100, 100 33, 30 14, 12 6, 5 3, 2 
M8 type 1 100, 100 43, 14 26, 9 17, 6 12, 5 
PA type 1 99, 100 29, 22 26, 7 24, 2 23, 1 
M8 type 2 94, 100 77, 07 55, 2 37, 0 24, 0 
TBF (Year)       
CA type 1 51, 53 29, 27 16, 13 9, 6 5, 3 
CA type 2 44, 55 23, 27 12, 13 7, 6 4, 3 
M8 type 1 39, 58 19, 36 10, 22 5, 14 3, 9 
PA type 1 50, 45 28, 24 16, 13 9, 7 6, 4 
M8 type 2 38, 68 17, 42 8, 23 3, 12 2, 6 
TTR (10 days)         
CA type 1 40, 31 33, 22 29, 17 26, 14 24, 12 
CA type 2 25, 22 19, 15 15, 11 12, 09 11, 7 
M8 type 1 31, 46 19, 27 13, 17 9, 11 7, 7 
PA type 1 20, 2 10, 0.3 6, 0 4, 0 3, 0 
M8 type 2 39, 66 30, 50 26, 39 23, 31 21, 26 
 

Table 4 represents the frequency analysis results for RF 
and PD with the best-fitted PDF. The P(X≥1) for failure 
count means the probability that at least one failure happens. 
For TBF, it means the probability that an individual product 
has a normal operation of at least 1 year before it is broken. 
For TTR, it means the probability that an individual product 
needs at least 10 days to be repaired.  

Comparing RF and PD, the overall probability of RF is 
larger than PD. For example, the P(X≥1) to P(X≥5) of CA 
type 1 is from 1.00 to 0.25 on RF but is from 1.00 to 0.02 on 
PD. It reveals that random failure is the most repair reason 
for these products. The P(X≥1) and P(X≥2) of CA type 1 
to CA type 2 on RF are almost similar, but the P(X≥3) to 
P(X≥5) of CA type 2 is smaller than of CA type 1. It means 
that CA type 2 is more stable than CA type 1. Also, 
comparing CA type 1, M8 type 1, PA type 1, and M8 type 2 
under the same functional purposes (Infusion Pumps, 
Multitherapy) on RF, the PA type 1 is more reliable among 
these products. Although P(X≥4) and P(X≥5) of PA type 1 
are slightly higher than of M8 type 1, the overall P(X≥2) to 
P(X≥3) are smaller among the same functional products. 
M8 type 2 is not reliable among products with the same 
function since it has a high-value P(X≥2). Almost 77% of 
M8 type 2 products fail at least twice.  

The overall P(X≥1) to P(X≥5) for TBF among RF and 
PD are very similar. The TBF reveals that products can 
normally operate at least 1 year to 3 years before they fail. 
CA type 1 and PA type 1 have higher P(X≥1) on RF among 
all products. It means that CA type 1 and PA type 1 have 
higher probabilities of operating more than 1 year, among 
others. M8 type 2 can endure more PD because it has a 
higher probability of P(X≥1) to P(X≥3) than others with 
the same functional purpose. 
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The TTR results reveal that CA type 1 and M8 type 2 
are not easy to repair among all products. These two 
products have higher P(X≥ 1) to P(X≥ 5) than others, 
especially in P(X≥5). Once a random failure occurs, it takes 
up to 50 days to repair the device. Also, CA type 1, M8 type 
2, and M8 type 1 take a longer time to repair in the case of 
physical damage. Therefore, the cost of repair is likely 
higher for CA type 1 and M8 type 2. In contrast, PA type 1 
is easier to be repaired among other products. Therefore, 
after analyzing Table 4, the PA type 1 category is more cost-
effective for Infusion Pumps and Multitherapy functions. 
 
3. METHOD: SUPPORT VECTOR MACHINE 

Vapnik proposed support vector networks in 1995 to 
solve the classification problem and later developed it for 
regression analysis [30]. SVM has confirmed its forecasting 
accuracy through previous work [15]–[17]. It has been 
applied to different fields for various predictions, such as 
dewpoint temperature prediction [31], stock prediction [32], 
and flood forecasting [16], [33]. Further details on SVM can 
be found in [34].  

According to [16], given the training set of 
[(𝑥1, 𝑦1), (𝑥2, 𝑦2), (𝑥3, 𝑦3), . . . , (𝑥𝑛, 𝑦𝑛)]  with the input vector 
𝑥  and the target data 𝑦 . The regression function can be 
expressed as: 

𝑦̂ = 𝑓(𝑥) = 𝒘𝑇ɸ(𝑥) + 𝑏 (3) 

where 𝑦̂ is the output, 𝒘 is weight, ɸ(𝑥) is a nonlinear 
function, and 𝑏 is the bias. According to the structural risk 
minimization (SRM) principle, the 𝒘  and 𝑏  can be 
derived by minimizing the structural risk function as follow:  

𝑀𝑖𝑛 𝑅(𝑤, 𝑏, 𝜉, 𝜉∗) =
1

2
‖𝒘‖2 + 𝑐∗∑𝐿ɛ(𝜉 + 𝜉

∗)

𝑛

𝑖=1

 (6) 

Subject to 

{
 
 

 
 
𝑦
𝑖
− 𝑦̂

𝑖
= 𝑦̂

𝑖
− (𝒘𝑇ɸ(𝑥) + 𝑏) ≤ ɛ + 𝜉𝑖

𝑦
𝑖
− 𝑦̂

𝑖
= (𝒘𝑇ɸ(𝑥) + 𝑏) − 𝑦̂

𝑖
≤ ɛ + 𝜉𝑖

′

𝜉𝑖 ≥ 0

𝜉𝑖
′ ≥ 0

𝑖 = 1, 2, … , 𝑛

 (7) 

 
where 𝑐∗  is a penalty parameter for making a tradeoff 
between model complexity, and ɛ  is error tolerance as a 
range between target data 𝑦 and output data 𝑦̂. 𝜉 and 𝜉∗ 
are slack variables. The Lagrange multipliers with 𝑎  and 
𝑎∗ can be used to solve the above-mentioned optimization 
problem: 

𝑓(𝑥) =∑(𝑎𝑖 − 𝑎𝑖
∗)𝐾(𝑥𝑘, 𝑥

𝑠

𝑖=1

) + 𝑏 (8) 

Where s is the number of support vector, 𝑥𝑘 is the support 
vector, and 𝐾(𝑥𝑘, 𝑥) is a kernel function. SVM has four 
kernel functions as follow:  
 
 

Linear function: 
𝐾(𝑥𝑖, 𝑥𝑗) = 𝑥𝑖

𝑇 ∙ 𝑥𝑗  (9) 

Polynomial function: 
𝐾(𝑥𝑖, 𝑥𝑗) = (𝑟 ∙ 𝑥𝑖

𝑇 ∙ 𝑥𝑗 + 𝑐)𝑑  (10) 

Radial basis function: 
𝐾(𝑥𝑖, 𝑥𝑗) = 𝑒𝑥𝑝 (−𝑟‖𝑥𝑖 − 𝑥𝑗‖

2
) (11) 

Sigmoid function: 
𝐾(𝑥𝑖, 𝑥𝑗) = 𝑡𝑎𝑛ℎ(𝑟 ∙ 𝑥𝑖

𝑇 ∙ 𝑥𝑗 + 𝑐) (12) 

Where 𝑟 is a scaling factor, 𝑐 is the bias term, 𝑑 is the 
degree term. This study uses the grid search method [35] to 
find parameters (𝑟 , 𝑐∗ , 𝑑 , and ε). Figure 7 shows an 
overview of the SVM structure. 
 
4. FORECASTING THE TIME OF NEXT RANDOM 

FAILURE OR REPAIR SERVICE TICKET 
4.1 The input of SVM 

Four different kernel functions, including Linear (LN), 
Polynomial (PL), Radial basis (RBF), and Sigmoid (SIG) 
function, are selected to see which one has better forecasting 
performance. The input variable to the SVM model is the 
cumulative seconds, as illustrated in Table 5. The definition 
of cumulative seconds is the difference between the current 
failure time and the subsequent failure time. We should note 
that the current and upcoming failure may not be for the 
same individual product. The output of SVM is the 
forecasted time of the next failure. When the failure time is 
t+1, t+2, or t+3, the SVM model will forecast the next first, 
second, and third failure times in advance. The relationship 
of the failure time to the input factor is shown in Table 6. 
The T(t), T(t-1), and T(t-2) denote current, previous, and the 
second-to-last product failure time as an input factor, 
respectively. This study selects T(t-6), T(t-5), T(t-4), T(t-3,) 
T(t-2), T(t-1), T(t) as input factor to forecast the time of the 
next failure since these input factors have a high correlation 
coefficient with output data. Also, when the time of failure 
increases, the number of input factors is reduced. The reason 
for reducing the input factor is to maintain the high 
correlation coefficient between input and output data. 

We have selected two products, including CA type 1 
and CA type 2, for prediction since these two products have 
enough sample sizes and are commonly used in medical 
applications. Table 6 shows the basic information for CA 
type 1 and CA type 2. 

The proportion of training and test sample sizes is 7 and 
3. The available data on the start time and the end time for 
CA type 1 and CA type 2 are from 2008-7-23 11:00:00 to 
2018-12-31 8:14:23 and form 2011-6-25 14:00:00 to 2018-
12-27 16:16:40, respectively. The length of the dataset is at 
least 7.5 years for both products. The forecasting results will 
be discussed in the next section. 
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FIGURE 7: THE STRUCTURE OF THE SUPPORT VECTOR 
MACHINE. 
 
TABLE 5: EXAMPLE OF CALCULATING CUMULATIVE 
SECONDS (E.G., TIME OF THE FIRST FAILURE, THE 
SECOND FAILURE). 
Order Failure time Cumulative seconds 

1 2008-07-23 11:00:00 0 s (Time 1 – Time1)  

2 2008-07-24 08:00:00 75600 s (Time 2 - Time 1) 

3 2008-07-28 09:00:00 424800 s (Time 3 - Time 1) 

4 2008-08-08 09:00:00 1375200 s (Time 4 – Time 1) 

5 2008-08-08 09:00:00 1375200 s (Time 5-Time 1) 

6 2008-09-04 09:00:00 3708000 s (Time 6-Time 1)  

 
TABLE 6: BASIC INFORMATION ABOUT CA TYPE 1 AND 
CA TYPE 2. 

Information CA type 1 CA type 2 
Training RF dataset 5141 3256 
Testing RF dataset 2203 1395 

Data start time 2008-7-23 
11:00:00 

2011-6-25 
14:00:00 

Data end time 2018-12-31 
8:14:23 

2018-12-27 
16:16:40 

Dataset length (years) 10.5 7.51 
Failure Time 
(order) Input factor 

t+1 T(t-6), T(t-5), T(t-4), T(t-3,) T(t-2),  
T(t-1), T(t) 

t+2 T(t-5), T(t-4), T(t-3,) T(t-2), T(t-1), T(t) 
t+3 T(t-4), T(t-3,) T(t-2), T(t-1), T(t) 

 
4.2 The forecasting results for random failure 

The training and testing results for SVM-LN, SVM-PL, 
SVM-RBF, and SVM-SIG are shown in Tables 7 and 8. 
According to the tables, the SVM-PL has better 
performance on training and testing, among other kernel 
functions. When the time is t+1, t+2, and t+3, both SVM-
LN and SVM-PL can forecast the time of the next random 
failure for CA type 1 and CA type 2 shown in Figures 8 to 
11. The codes SVM-LN, SVM-PL, SVM-RBF, and SVM-

SIG means the kernel of SVM including linear, polynomial, 
radial basis, and sigmoid function, respectively. As time 
increases, it is obvious that the forecasting performance is 
decreased. Figures 9 and 11 provide specific details on the 
above-mentioned discussion. Based on Tables 7 to 8 and 
Figures 8 to 11, the performance of SVM models with 
different kernel functions can forecast the next random 
failure without overfitting. For the indices such as RMSE, 
MAE, and CC, the test results have a good forecasting 
performance as shown in each Figure. Each SVM model 
based on different kernel functions catches the trend of 
observation. Also, when the time is increasing, the SVM-PL 
will give overestimated values for both products. Although 
the SVM-PL will overestimate values as time increases, the 
model does not lose its forecasting performance with higher 
failure time. In Figure 9 on order 5,184 to 5,189 and Figure 
11 on order 3,277 to 3,283, the SVM-PL with time t+3 
provides forecasting value near to the observation. The 
actual failure time and the forecasted failure time for these 
orders are shown in Table 9.  

Since the observed trend is close to linear or polynomial 
function, SVM-LN and SVM-PL have a better performance 
than the other two models. SVM-PL is more suitable than 
SVM-LN since the trend of observation is like a polynomial 
function.  

All models have a value of 1.0 for CC. They perform 
with similar trends, as shown in Figures 8 to 11. Although 
all models have a similar trend, they do not guarantee small 
residual errors based on RMSE and MAE listed in Tables 7 
to 8.  

 
TABLE 7: THE TRAINING AND TESTING RESULTS FOR 
RANDOM FAILURE IN CA TYPE 1. 

Failure time 
(Order) 

Train, Test 
RMSE (sec.) MAE (sec.) CC 

SVM-LN       
t+1 400871, 49757 116881, 40583 1.0, 1.0 
t+2 518767, 61001 137235, 46601 1.0, 1.0 
t+3 674727, 80082 156101, 55303 1.0, 1.0 
SVM-PL   1.0, 1.0 
t+1 316582, 41586 104599, 25892 1.0, 1.0 
t+2 479382, 59246 126297, 43609 1.0, 1.0 
t+3 587345, 72843 149849, 54131 1.0, 1.0 
SVM-RBF   
t+1 657926, 180843 148978, 145477 1.0, 1.0 
t+2 767078, 186720 166230, 153202 1.0, 1.0 
t+3 869516, 210683 190072, 174058 1.0, 1.0 
SVM-SIG   1.0, 1.0 
t+1 561663, 68182 132766, 47432 1.0, 1.0 
t+2 728044, 81871 160764, 57391 1.0, 1.0 
t+3 820536, 89412 192585, 63175 1.0, 1.0 

 
Figures 12 and 13 show the error between 

forecasting t+1 and observation for CA type 1 and CA type 
2. SVM-PL has a better performance than others. In 
addition, the trend of error has a cycle period in both 
Figures.  Figure 12 shows the models overestimate the 
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actual day, but sometimes the models can catch the actual 
failure time. Figure 13 also shows a similar trend, such as 
error with the cycle period. Based on the current 
observation, the future work suggests training an error 
model that can forecast the next error between forecasting 
and actual failure time to reduce the error between 
forecasting and observation.  

 
TABLE 8: THE TRAINING AND TESTING RESULTS FOR 
RANDOM FAILURE IN CA TYPE 2. 

Failure time 
(Order) 

Train, Test 
RMSE (sec.) MAE (sec.) CC 

SVM-LN       
t+1 107236, 98583 78451, 67329 1.0, 1.0 
t+2 156948, 132817 126061, 105525 1.0, 1.0 
t+3 181359, 162836 134489, 120174 1.0, 1.0 
SVM-PL 

  
1.0, 1.0 

t+1 95388, 87427 71958, 56968 1.0, 1.0 
t+2 133387, 124724 91799, 84560 1.0, 1.0 
t+3 168557, 149977 132054, 119583 1.0, 1.0 
SVM-RBF 

  
1.0, 1.0 

t+1 175961, 146894 118780, 113243 1.0, 1.0 
t+2 201158, 167534 135506, 128570 1.0, 1.0 
t+3 221640, 182546 150537, 143188 1.0, 1.0 
SVM-SIG 

  
1.0, 1.0 

t+1 128303, 129916 88436, 88981 1.0, 1.0 
t+2 171729, 146100 126134, 116760 1.0, 1.0 
t+3 200389, 179164 142448, 132439 1.0, 1.0 

 
The outcomes provide helpful insights into enhancing 

the sustainability of medical devices. For example, the 
forecasting results provide information on product 
maintenance needs and the degree of repairability. Also, 
predicting time between failures gives repair service 
providers and technicians sufficient advance notice for 
predicting the resources needed for repair and proper 
resource management for repair services. Moreover, the 
prediction outcomes can be used for forecasting the amount 
of waste generated if the malfunctioning medical devices 

would not be repaired. Forecasting waste provides further 
information on how to define strategies for the reduction of 
GHG emissions. 

 
TABLE 9: THE ACTUAL FAILURE TIME AND 
FORECASTING FAILURE TIME WITH SVM-PL FOR ORDER 
5,184 TO 5,189 OF CA TYPE 1 AND ORDER 3,277 TO 3,283 
OF CA TYPE 2. 

Actual 
failure time 

Forecasting failure time 
t+1 t+2 t+3 

CA type 1       
2017-05-02 
09:20:16 

2017-05-02 
11:29:20 

2017-05-02 
14:07:12 

2017-05-02 
06:36:32 

2017-05-02 
12:07:12 

2017-05-02 
19:00:00 

2017-05-02 
17:07:28 

2017-05-02 
20:07:44 

2017-05-02 
23:59:44 

2017-05-02 
22:45:04 

2017-05-03 
02:53:04 

2017-05-02 
21:14:56 

2017-05-02 
23:59:44 

2017-05-03 
09:38:24 

2017-05-03 
04:22:40 

2017-05-03 
05:08:00 

2017-05-03 
15:22:56 

2017-05-03 
10:00:48 

2017-05-03 
17:30:56 

2017-05-03 
09:15:28 

2017-05-03 
15:24:00 

2017-05-04 
01:01:36 

2017-05-03 
19:46:24 

2017-05-03 
20:53:36 

CA type 2       
2016-09-01 
10:28:00 

2016-09-01 
22:02:40 

2016-09-01 
06:14:08 

2016-09-01 
14:28:16 

2016-09-02 
08:08:16 

2016-09-02 
02:16:32 

2016-09-02 
06:30:08 

2016-09-02 
05:23:28 

2016-09-02 
15:09:52 

2016-09-02 
21:25:20 

2016-09-02 
08:03:44 

2016-09-03 
06:19:44 

2016-09-02 
15:10:40 

2016-09-03 
06:33:04 

2016-09-03 
06:19:44 

2016-09-03 
08:06:24 

2016-09-03 
21:29:52 

2016-09-03 
08:06:24 

2016-09-03 
13:40:32 

2016-09-04 
07:02:24 

2016-09-04 
13:56:16 

2016-09-04 
09:29:20 

2016-09-03 
13:27:12 

2016-09-04 
13:29:52 

2016-09-04 
14:02:24 

2016-09-05 
03:31:28 

2016-09-04 
19:30:40 

2016-09-04 
12:36:16 

 
 
 

 
FIGURE 8: TESTING RESULTS OF FORECASTING T+1 
AMONG ALL KERNEL FUNCTIONS FOR CA TYPE 1. 

 
FIGURE 9: TESTING RESULTS OF FORECASTING T+1 TO 
T+3 WITH POLYNOMIAL KERNEL FUNCTION FOR CA 
TYPE 1. 
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FIGURE 10: TESTING RESULTS OF FORECASTING T+1 
AMONG ALL KERNEL FUNCTIONS FOR CA TYPE 2. 

 
FIGURE 11: TESTING RESULTS OF FORECASTING T+1 
TO T+3 WITH POLYNOMIAL KERNEL FUNCTION FOR CA 
TYPE 2. 
 

 
FIGURE 12: FORECAST ERROR OF T+1 IN CA TYPE 1. 
 

 
FIGURE 13: FORECAST ERROR OF T+1 IN CA TYPE 2. 
 

5. CONCLUSION 
This study aims to forecast the arrival time of the next 

repair order or the failure time by applying the SVM model 
into a medical device dataset with over 530,000 records of 
repair and maintenance activities. Four SVM kernel 
functions, including SVM-LN, SVM-PL, SVM-RBF, and 
SVM-SIG, have been compared for forecasting the next 
failure time of two categories of products labeled as CA type 
1 and CA type 2. The results reveal that the SVM-LN and 
SVM-PL perform well in forecasting the time of the next 
repair request or failure time. Among all functions, SVM-
PL has the best forecasting performance based on the RMSE 
and MAE values for testing.  

In addition, frequency analysis has been run to analyze 
the data further, and identify the best-fitted distributions to 
the failure count, the time between failure, and the time to 
repair. Four probability distributions, including Gumbel, 
Gamma, Normal, and Weibull distribution, have been 
analyzed. Analyzing the failure count reveals that PA type 1 
is more reliable among products with the same function. CA 
type 1 and PA type 1 have higher P(X≥1) among all 
products in terms of random failure. M8 type 2 has higher 
TBF in terms of physical damage among other products with 
the same function. Finally, analyzing TTR reveals that CA 
type 1 and M8 type 2 are not easy to repair among all 
products. 

The study shows the importance of machine learning 
tools such as SVM models in predicting the time of repair 
orders. Forecasting the time to failure and time to repair 
provides guidelines to designers for improving product 
repairability. The SVM model can further be used in 
forecasting the waste generation rate.  

The study can be extended in several ways. First, other 
categories of products and types of failures can be compared 
together to identify the most vulnerable products and the 
type of repairs needed in each category. Second, the study 
outcome, which includes after-market repair and 
maintenance requests, can be linked to the product design 
features to identify design improvement directions. Third, 
the data analytics results can be fed to cost modeling 
techniques to quantify the business outcomes of repair 
services and identify the best repair strategies companies 
need to adopt. Decisions such as whether to handle repair 
services by in-house teams or outsource them to original 
equipment manufacturers or third-party repair service 
providers, depending on the demand and repair cost, can be 
informed by the current data analyses. Fourth, the study 
outcomes can be fed to resource allocation and scheduling 
models to help enterprises manage workforce requirements 
for repair services. Fifth, other machine learning tools can 
be employed to facilitate data analytics efforts. Finally, 
training an error model that can forecast the following error 
between forecasting and actual failure time will be further 
analyzed. 
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