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ABSTRACT
Change point detection is widely used for finding transitions be-
tween states of data generation within a time series. Methods for
change point detection currently assume this transition is instan-
taneous and therefore focus on finding a single point of data to
classify as a change point. However, this assumption is flawed be-
cause many time series actually display short periods of transitions
between different states of data generation. Previous work has
shown Bayesian Online Change Point Detection (BOCPD) to be the
most effective method for change point detection on a wide range
of different time series. This paper explores adapting the change
point detection algorithms to detect abrupt changes over short pe-
riods of time. We design a segment-based mechanism to examine
a window of data points within a time series, rather than a single
data point, to determine if the window captures abrupt change. We
test our segment-based Bayesian change detection algorithm on 36
different time series and compare it to the original BOCPD algo-
rithm. Our results show that, for some of these 36 time series, the
segment-based approach for detecting abrupt changes can much
more accurately identify change points based on standard metrics.
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1 INTRODUCTION
A common problem in time series analysis is identifying when a
time series changes between states of data generation. This type of
analysis is known as change point detection (CPD). CPD searches
for abrupt changes within a time series. These abrupt changes are
assumed to occur at a single point, known as the change point,
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which marks the transition from one state to another state. For
example, finding abrupt changes in the state of a hospital patient’s
blood pressure is crucial for their well-being. CPD analysis is applied
to a wide range of fields. such as humanmotion analysis [3], climate
change detection [7], speech recognition [10], and finance [13].

Current CPD algorithms assume an instantaneous change be-
tween states of data generation. Therefore these algorithms are
designed to find a single point that describes when this change oc-
curs. However, while a change within a time series may be abrupt,
it may actually happen over a relatively short segment of time. CPD
algorithms designed to detect change as a single point may produce
false positives or false negatives. Figure 1 shows an example of
a time series that changes states of data generation. This change
occurs over the segment between the red dotted lines. An algorithm
designed to detect change as a single point might classify all, some,
or none of the points between the red dotted lines as change points
depending on the algorithm. In this situation, it is better to evaluate
all the data points between the red dotted lines as a segment to
determine if an abrupt change occurred. The segment of abrupt
change described here is not like segments found by segmentation
algorithms. A segment of abrupt change is a single occurrence not
part of repeating patterns found by segmentation methods.

Figure 1: Example of simple time series displaying a change
in state of data generation over a brief period of time.

In this paper we explore the idea of finding segments of abrupt
changes within a time series by implementing a segment-based
mechanism for the widely used CPD algorithm, Bayesian Online
Change Point Detection (BOCPD) [1]. BOCPD has recently been
shown to outperform several other CPD algorithms, old and new,
across many different time series [14], and has been extensively
studied across many survey papers [2, 4, 5, 8, 12, 14, 15]. BOCPD
also has the advantage of being adaptable for both offline and online
CPD problem settings. Therefore we focus our efforts on creating a
segment-based mechanism for this method.
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Our proposed method, Segment-based Bayesian Online Detec-
tion (SB-BOCPD), analyzes a small window of the most recent data
from a stream of data instead of a single point. This window is
compared to a set of probability density functions estimated from
prior data within the stream to determine if the window captures
an abrupt change in the time series. We test SB-BOCPD on a data
set consisting of 31 real-world time series and 5 artificially gen-
erated time series. This data set was recently established from a
survey paper that compiled a collection of time series from several
domains and employed multiple human annotators to establish
labels for change points [14]. Van den Burg and Williams [14] also
adapted two standard metrics, covering and 𝐹1-score, to handle an-
notations from multiple sources for evaluating CPD performance.
Therefore we use covering and 𝐹1-score to compare SB-BOCPD
to BOCPD. These metrics encompass two prominent viewpoints
that CPD should be evaluated as either a clustering or classification
problem, respectively.

The contributions of this paper are summarized as follows:
• Our work is the first to to explore detecting abrupt changes
in a time series as a short segment rather than a single point.

• We create Segment-Based Bayesian Online Detection (SB-
BOCPD), a change detection algorithm based on Bayesian
change point detection but adapted to include a segment-
based mechanism to detect abrupt changes within a small
window of time.

• We validate our proposed method on a total of 36 time-series
data using two standard metrics for CPD evaluation.

2 METHODOLOGY
Let 𝑆 = {𝑥1, 𝑥2, ..., 𝑥𝑖 , ...} be a univariate time series data stream
where 𝑥𝑖 is the most recent observation at time stamp 𝑖 . A segment
of 𝑆 from time stamp 𝑎 to time stamp 𝑏 where 𝑎 < 𝑏 is denoted
as 𝑥𝑎:𝑏 . Given a univariate time series data stream, 𝑆 , our method
returns an ordered set of non-overlapping change segments denoted
as 𝐶 = {𝑐𝑎0:𝑏0 , 𝑐𝑎1:𝑏1 , ..., 𝑐𝑎𝑛 :𝑏𝑛 }

2.1 Segment-based Bayesian Online Detection
Our proposed method is built upon Bayesian Online Change Point
Detection (BOCPD) [1]. Like BOCPD, our method estimates a prob-
ability distribution over a run length using observations up to some
recent data point within 𝑆 . A recursive message-passing algorithm
is used for calculating the joint distribution over the current run
lengths. The main difference between our method and BOCPD is
that our method creates a window,𝑊𝑙 , of the most recent data
from the time series data stream. This window introduces a new
parameter, 𝑙 , which describes the length of the window.

𝑊𝑙 = {𝑥𝑖−𝑙 , 𝑥𝑖−𝑙+1, ..., 𝑥𝑖 } (1)

𝑊𝑙 is the set of the 𝑙 most recent observations from the time series
data stream. This window is evaluated to determine if it contains
an abrupt change.

SB-BOCPD first initializes the parameters that describe the se-
lected probability distribution. This set of parameters is denoted
as 𝜈 (𝑟 )

𝑖
and 𝑋 (𝑟 )

𝑖
. These parameters are inherited by the choice of

probability distribution and usually refer to size, shape, and other
statistical properties of the distribution.

After a new observation is read,𝑊𝑙 is updated and the predictive
probability is calculated. Traditional BOCPD calculates a predictive
probability for the most recent data point, 𝑥𝑡 , as follows:

𝜋
(𝑟 )
𝑖

= 𝑃 (𝑥𝑖 |𝜈 (𝑟 )𝑖
, 𝑋

(𝑟 )
𝑖

) (2)

The variable 𝑟 is the current run length and 𝑥𝑡 is the newest ob-
servation from the data stream. The predictive distribution for run
time, 𝑟 , is described by the set of parameters 𝜈 (𝑟 )

𝑖
and 𝑋 (𝑟 )

𝑖
. In or-

der to evaluate if𝑊𝑙 describes an abrupt change, we calculate the
average of (𝑥𝑖−𝑙 , 𝑥𝑖−1+1, ..., 𝑥𝑖 ) in𝑊𝑙 , denoted as 𝑤𝑎𝑣𝑔 . We substi-
tute 𝑥𝑖 with 𝑤𝑎𝑣𝑔 in Eq. (2). We evaluated multiple methods for
analyzing𝑊𝑙 to determine the presence of abrupt change. These
methods included Kolmogrov-Smirnov test, energy statistics [11],
distance metrics, and comparing probability density function values
calculated from𝑊𝑙 versus those calculated from past observations
outside𝑊𝑙 . However, none of these approaches performed as well
as𝑤𝑎𝑣𝑔 .

We change which observations are used to estimate the probabil-
ity distributions over the run lengths. BOCPD normally estimates
these distributions using all observations up to the most recent one,
denoted as 𝑥1:𝑖 . Our method estimates the probability distributions
using all observations up to the beginning of the window, denoted
as 𝑥1:𝑖−𝑙 . Therefore, our prediction function changes to Eq. (3).

𝜋
(𝑟 )
𝑖−𝑙 = 𝑃 (𝑤𝑎𝑣𝑔 |𝜈

(𝑟 )
𝑖−𝑙 , 𝑋

(𝑟 )
𝑖−𝑙 ) (3)

From the predictive probability, we calculate the growth and
change probability as defined in Eq. (4) and Eq. (5) respectively. 𝐻
is a hazard function defined by the user that describes when a time
series is expected to switch states.

𝑃 (𝑟𝑖 = 𝑟𝑖−1 + 1|𝑥1:𝑖−𝑙 ) = 𝑃 (𝑟𝑖−1, 𝑥1:𝑖−𝑙 )𝜋
(𝑟 )
𝑖

(1 − 𝐻 (𝑟𝑖−1)) (4)

𝑃 (𝑟𝑖 = 0|𝑥1:𝑖−𝑙 ) =
∑
𝑟𝑖−1

𝑃 (𝑟𝑖−1, 𝑥1:𝑖−𝑙 )𝜋
(𝑟 )
𝑖

(𝐻 (𝑟𝑖−1)) (5)

We then update the run length posterior distribution, 𝑃 (𝑟𝑖 |𝑥1:𝑖−𝑙 )
by calculating and dividing by the evidence defined as 𝑃 (𝑥1:𝑖−𝑙 =∑
𝑟𝑖 𝑃 (𝑟𝑖 , 𝑥1:𝑖−𝑙 ). Lastly, the parameters for the distribution, 𝑋 (𝑟 )

𝑖

and 𝜈 (𝑟 )
𝑖

, are also updated before predicting if𝑊𝑙 is a segment of
abrupt change.

To determine if the current window,𝑊𝑙 , is a segment of abrupt
change, the maximum posterior at the current run length is calcu-
lated. If the change probability, 𝑃 (𝑟𝑖 = 0|𝑥1:𝑖−𝑙 ), is the maximum
posterior probability then𝑊𝑙 is classified as a change segment. If
change segments overlap, then the union of the segments is taken.
This gives us our final output of non-overlapping change segments,
𝐶 = {𝑐𝑎0:𝑏0 , 𝑐𝑎1:𝑏1 , ..., 𝑐𝑎𝑛 :𝑏𝑛 }. The code for our algorithm is avail-
able online (https://github.com/ecdraayer/SB-BOCPD)

2.2 Evaluation of Method
Our proposed method, SB-BOCPD, finds a set of non-overlapping
change segments, whereas BOCPD and other CPD algorithms re-
turn a set of change points. In order to directly compare the per-
formance of these two algorithms, we represent our change seg-
ments as a single point so that we can use standard metrics for
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evaluating CPD algorithms. We represent the segments as a sin-
gle point by using the median of the change segment, denoted as
𝑐𝑚𝑖𝑑𝑖 = 𝑐 (𝑎𝑖+𝑏𝑖 )/2.

We want to avoid creating another metric for evaluating change
segment detection so that our method can be directly compared
with CPD methods. Also, datasets labeled with change segments in-
stead of change points would be needed before developing metrics
tailored for evaluating change segment detection methods. Many
metrics already exist for CPD, which makes evaluating the per-
formance of CPD algorithms difficult across multiple papers that
each use their own. Therefore, we focus on adapting our output for
metrics that are well established and widely used for CPD.

Even though our method introduces a new parameter, 𝑙 , which
describes the window length. For this parameter, offline analysis or
prior knowledge about the time series should help find the appro-
priate value of 𝑙 . For example, a sensor recording human movement
at a frequency of 500 Hertz can be expected to experience abrupt
change within a single second and therefore 𝑙 should be set to 500.
Having a window also means that our proposed method needs
to read 𝑙 + 1 observations from the stream before the algorithm
can start detecting abrupt changes. However, this disadvantage is
negligible since the length of𝑊𝑙 should be very small (generally
≪ 1%) relative to the length of the time series data stream. Note
that if 𝑙 = 1, then SB-BOCPD becomes BOCPD.

3 EXPERIMENTS
Datasets. Our method is tested on 31 real-world time series and 5
synthetic time series established in a recent benchmark study [14].
The 5 synthetic time series are quality_control_1-5. The rest of the
time series were collected from various online sources. Each time
series is standardized. Time series were selected based on displaying
abrupt changes and interesting behavior of seasonality, and out-
liers. This benchmark study also created annotations for each time
series by employing several data scientists to mark points where
they perceived abrupt changes. Each time series has five sets of
annotations created by five different data scientists. All time series
tested are univariate, but our proposed method can also perform on
a multivariate time series stream. In a multivariate setting, change
can be detected by running independent methods for each variable
of the time series data stream, turning the problem into multiple
univariate CPD problems. Therefore we test our proposed method
only on 1-dimensional time series streams.
Baselines. We compare our proposed method, Segment-based
Bayesian Online Detection (SB-BOCPD) to Bayesian Online Change
Point Detection (BOCPD). We compare our method solely against
BOCPD for two reasons: (i) BOCPD is a popular CPD algorithm
used in offline and online settings and recently been shown to out-
perform many other CPD algorithms in a recent benchmark study
[14] and (ii) we are researching the idea of detecting change within
a short segment versus a single point.
EvaluationMetrics.We use 𝐹1-score [9] and covering [6] as evalu-
ation metrics for our algorithm. These are two standard metrics and
were adapted to handle evaluating on time series data with multiple
annotations in a recent benchmark study [14]. Both metrics range
from scores 0 to 1.0. The ideal score is 1.0 and the worst possible
score is 0 for both metrics. These metrics measure performance

Table 1: 𝐹1-scores and Covering for BOCPD and SB-BOCPD

𝐹1-Score Covering Score
Dataset BOCPD SB-BOCPD BOCPD SB-BOCPD
bank 1.000 1.000 1.000 1.000
bitcoin 0.733 0.615 0.822 0.782
brent_spot 0.609 0.597 0.667 0.652
businv 0.588 0.776 0.693 0.696
centralia 1.000 0.909 0.753 0.675
children_per_woman 0.712 0.810 0.801 0.861
co2_canada 0.924 0.679 0.773 0.631
construction 0.709 0.750 0.585 0.679
debt_ireland 1.000 0.958 0.688 0.814
gdp_argentina 0.947 0.889 0.737 0.737
gdp_croatia 1.000 1.000 0.708 0.833
gdp_iran 0.862 1.000 0.583 0.814
gdp_japan 1.000 1.000 0.802 0.802
global_co2 0.889 0.929 0.758 0.758
homeruns 0.829 0.879 0.694 0.694
jfk_passengers 0.776 0.966 0.837 0.873
lga_passengers 0.704 0.683 0.547 0.596
measles 0.947 0.947 0.951 0.951
nile 1.000 1.000 0.888 0.857
ozone 0.857 1.000 0.602 0.852
quality_control_1 1.000 1.000 0.996 0.989
quality_control_2 1.000 1.000 0.927 0.917
quality_control_3 1.000 1.000 0.997 0.997
quality_control_4 0.787 0.780 0.673 0.673
quality_control_5 1.000 1.000 1.000 1.000
rail_lines 0.966 0.966 0.768 0.872
ratner_stock 0.868 0.889 0.906 0.874
robocalls 0.966 1.000 0.808 0.752
scanline_126007 0.921 0.748 0.631 0.654
scanline_42049 0.962 0.799 0.892 0.778
seatbelts 0.683 0.824 0.800 0.688
uk_coal_employ 0.868 0.966 0.920 0.928
unemployment_n1 0.876 0.843 0.669 0.628
usd_isk 1.000 0.814 0.737 0.863
us_population 0.785 0.615 0.853 0.787
well_log 0.832 0.495 0.793 0.679
Average 0.878 0.865 0.785 0.795

based on one of two major views that CPD is a classification or a
clustering problem.

𝐹1 =
2𝑃𝑅
𝑃 + 𝑅 (6)

𝑃 =
|𝑇𝑃 (𝑌 ∗,𝐶) |

|𝐶 | , 𝑅 =
1
𝐾

𝐾∑
𝑘=1

|𝑇𝑃 (𝑌𝑘 ,𝐶) |
|𝑌𝑘 |

(7)

As a classification problem, each observation is classified as ei-
ther a "change-point" or "not change-point". In this scenario, the
𝐹1-score can be used to evaluate the performance of the CPD al-
gorithm. Eq. (6) defines the 𝐹1-score where 𝑃 is precision and 𝑅 is
recall. Precision is defined in Eq. (7) where 𝐶 is the set of change
points found by an algorithm and 𝑌 ∗ is the combined set of all
annotations established for the time series. 𝑇𝑃 (𝑌 ∗,𝐶) is the set of
true positives for 𝑌 ∗ and𝐶 . The recall, 𝑅, is defined by Eq. (7) and is
the average of the recalls calculated using each set of change points
established by annotators. A true positive, 𝑇𝑃 , is determined based
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on margin of error,𝑀 . If the difference between the ground truth
change point and detected change point is < 𝑀 then it is counted
as a true positive. We use margin of error𝑀 = 5 in all experiments.
When viewed as a clustering problem, CPD algorithms partition
the time series according to the location of the detected change
points. Partitions are created at each change point. In this scenario,
covering can be used as a metric to evaluate performance based on
similarity between partitions from the CPD algorithm output and
the ground truth.

𝐶 (𝐵′, 𝐵) = 1
𝑇

∑
𝐴∈𝐵

|𝐴|𝑚𝑎𝑥𝐴′∈𝐵′ 𝐽 (𝐴,𝐴′) (8)

Eq. (8) defines covering where 𝐵′ and 𝐵 are two sets of partitions of
a time series. 𝐽 (𝐴,𝐴′) is the intersection over union of the two sets
𝐴 and 𝐴′, also known as the Jaccard Index. 𝑇 is the total length of
the time series dataset. Since our dataset has multiple annotators,
we compute the average covering across all annotators for the final
measure of performance.
Parameter Choice. BOCPD and SB-BOCPD both use the Gaussian
distribution with the negative inverse gamma prior. No truncation
of the run length is applied. The initial mean of the distribution
is set to 0. We perform a grid search for the parameters 𝛼0, 𝛽0, 𝜅0,
and 𝜆𝑔𝑎𝑝 used by both BOCPD and SB-BOCPD. The parameters 𝛼0,
𝛽0, and 𝜅0 describe the Gaussian distribution with negative inverse
gamma prior. The parameter 𝜆𝑔𝑎𝑝 is a constant associated with the
hazard function of BOCPD and SG-BOCPD. The hazard function
is defined as 𝐻 (𝑡) = 1/𝜆𝑔𝑎𝑝 . We also perform a grid search for the
parameter, 𝑙 that describes the window length in SB-BOCPD. The
parameters are varied as follows:

• 𝛼0 = (0.01,1,100)
• 𝛽0 = (0.01,1,100)
• 𝜅0 = (0.01,1,100)
• 𝜆𝑔𝑎𝑝 = (50,100,200)
• 𝑙 = (3,5,8,13,21,34)

PerformanceComparison. Table 1 shows covering and 𝐹1-scores
across the 36 different time series. Scores highlighted in bold indi-
cate SB-BOCPD outperformed BOCPD for that time series.

Table 1 shows SB-BOCPD slightly outperforms BOCPD on av-
erage in terms of covering. Closer inspection shows large differ-
ences between scores for most of the datasets. For the datasets
gdp_iran and ozone we can see a major performance increase of
over 40% in favor of SB-BOCPD. Other datasets such as construc-
tion, gdp_ireland, gdp_croatia, usd_isk, and rail_lines show other
instances of substantially better performance for SB-BOCPD. How-
ever, BOCPD substantially outperforms SB-BOCPD on datasets
such as centralia, co2_canada, scanline_42049, us_population, and
well_log.

Table 1 also shows BOCPD slightly outperforms SB-BOCPD
on average in terms of 𝐹1-score. We can see a similar pattern of
many datasets having substantial differences between 𝐹1-scores.
The datasets businv, children_per_woman, jfk_passengers, ozone,
and seatbelts show substantially better performance for SB-BOCPD.
The datasets bitcoin, co2_cananda, scanline_126007, scanline_42049,
us_population, and well_log show BOCPD substantially outper-
forming SB-BOCPD.

Table 1 shows a similar pattern between covering and 𝐹1-scores
of certain datasets performing much better with one method over
the other. Datasets such as ozone and construction seem to be better
suited for our proposed method, SB-BOCPD. Other datasets such
as scanline_42049 and well_log remain better suited for BOCPD.

Inspection of individual datasets where SB-BOCPD performed
well tended to have abrupt changes over a segment. Annotations
of change points from the multiple annotators of these datasets
were typically in disagreement about the exact point, but concen-
trated in the same area of the time series. Datasets where BOCPD
performed well tended to have abrupt changes marked by a single
point. Therefore we attribute the major differences in performance
between BOCPD and SB-BOCPD to the behavior of abrupt changes
in the datasets.
Computational Cost. SB-BOCPD maintains the linear space- and
time-complexity, 𝑂 (𝑛), per time stamp of BOCPD. The additional
calculation of𝑤𝑎𝑣𝑔 per time stamp is 𝑂 (𝑚) where𝑚 << 𝑛 and the
only additional memory is for the𝑚 observations of𝑊𝑙 . Truncation
of low probability estimations in the tail of the distribution can
further reduce running time.

4 CONCLUSIONS AND FUTURE WORK
In this paper, we proposed the idea of detecting abrupt changes
in time series by examining short segments of time. Tradition-
ally, change detection algorithms are built upon the assumption
that changes in the state of data generation of a time series hap-
pen instantaneously. We argue that this assumption is flawed, and
that it may be better to detect abrupt changes within a short seg-
ment of time for some time series. We demonstrate this by adapt-
ing Bayesian Online Change Point Detection (BOCPD), a popular
CPD algorithm, to use a segment-based mechanism for detecting
change within a short window. We call our method Segment-Based
Bayesian Online Detection (SB-BOCPD). Our method is compared
to BOCPD using two standard metrics for CPD across 36 different
time series datasets. Our results show major differences in perfor-
mance between these two methods, suggesting that improvements
to change detection can be made by detecting abrupt change as a
segment.

For future research we plan to adapt other CPD algorithms with a
segment-basedmechanism. There is also a lot of potential to develop
more sophisticated segment-based mechanisms. For example, our
segment-based mechanism for BOCPD relies on a fixed window
length. However, abrupt changes within a time series may happen
over varying lengths. Developing a segment-based mechanism with
a self-adjustable window length may provide better results. Time
series segmentation, which traditionally partitions a time series
using a set of single points called cut points, may also benefit from a
similar segment based approach. Instead of searching for cut points,
a segment based method would search for cut segments.

ACKNOWLEDGMENTS
This work is partially supported by NSF #1757207, #1914635, and
GAANN DOE grant number P200A180005.

REFERENCES
[1] Ryan Prescott Adams and David JC MacKay. 2007. Bayesian online changepoint

detection. arXiv preprint arXiv:0710.3742 (2007).

Short Paper Track  CIKM ’21, November 1–5, 2021, Virtual Event, Australia

2992



[2] Samaneh Aminikhanghahi and Diane J Cook. 2017. A survey of methods for time
series change point detection. Knowledge and information systems 51, 2 (2017),
339–367.

[3] Samaneh Aminikhanghahi and Diane J Cook. 2017. Using change point detection
to automate daily activity segmentation. In 2017 IEEE International Conference on
Pervasive Computing and Communications Workshops (PerCom Workshops). IEEE,
262–267.

[4] Michele Basseville. 1988. Detecting changes in signals and systems—a survey.
Automatica 24, 3 (1988), 309–326.

[5] Sooyoung Cheon and Jaehee Kim. 2010. Multiple change-point detection of
multivariate mean vectors with the Bayesian approach. Computational Statistics
& Data Analysis 54, 2 (2010), 406–415.

[6] Mark Everingham, Luc Van Gool, Christopher KI Williams, John Winn, and
Andrew Zisserman. 2010. The pascal visual object classes (voc) challenge. Inter-
national journal of computer vision 88, 2 (2010), 303–338.

[7] Zhenmei Ma, Shaozhong Kang, Lu Zhang, Ling Tong, and Xiaoling Su. 2008.
Analysis of impacts of climate variability and human activity on streamflow for
a river basin in arid region of northwest China. Journal of hydrology 352, 3-4
(2008), 239–249.

[8] Aleksey S Polunchenko and Alexander G Tartakovsky. 2012. State-of-the-art
in sequential change-point detection. Methodology and computing in applied
probability 14, 3 (2012), 649–684.

[9] C. J. Van Rijsbergen. 1979. Information Retrieval. Butterworths (1979).
[10] David Rybach, Christian Gollan, Ralf Schluter, and Hermann Ney. 2009. Audio

segmentation for speech recognition using segment features. In 2009 IEEE Inter-
national Conference on Acoustics, Speech and Signal Processing. IEEE, 4197–4200.

[11] Gábor J Székely. 2003. E-statistics: The energy of statistical samples. Bowling
Green State University, Department of Mathematics and Statistics Technical Report
3, 05 (2003), 1–18.

[12] Alexander G Tartakovsky and George V Moustakides. 2010. State-of-the-art in
Bayesian changepoint detection. Sequential Analysis 29, 2 (2010), 125–145.

[13] Sven Thies and Peter Molnár. 2018. Bayesian change point analysis of Bitcoin
returns. Finance Research Letters 27 (2018), 223–227.

[14] Gerrit JJ van den Burg and Christopher KI Williams. 2020. An evaluation of
change point detection algorithms. arXiv preprint arXiv:2003.06222 (2020).

[15] S Zacks. 1983. Survey of classical and Bayesian approaches to the change-point
problem: fixed sample and sequential procedures of testing and estimation. In
Recent advances in statistics. Elsevier, 245–269.

Short Paper Track  CIKM ’21, November 1–5, 2021, Virtual Event, Australia

2993


	Abstract
	1 Introduction
	2 Methodology
	2.1 Segment-based Bayesian Online Detection
	2.2 Evaluation of Method

	3 Experiments
	4 Conclusions and Future Work
	References



