
 
 
 

Abstract— Stochastic unit commitment is an efficient method 
for grid operation in the presence of significant uncertainties. An 
example is an operation during a predicted hurricane with uncer-
tain line out-ages. However, the solution quality comes at the cost 
of substantial computational burden, which makes its adoption 
challenging. This paper evaluates some possible ways that machine 
learning can be used to reduce this computational burden. First, a 
set of feasibility studies is conducted. Results suggest that using 
machine learning as an assistant to the stochastic unit commitment 
solver is more advantageous than using it as a standalone solver. 
In particular, the machine learning model is trained to facilitate 
solving the problem by determining the unnecessary constraints 
that can be removed from the original problem without affecting 
the final accuracy. The variables that can be used as input fea-
tures/predictors or outputs for the machine learning model are de-
termined through feasibility studies. Then, an algorithm to train 
and utilize a machine learning model is proposed. The method is 
tested on a 500-bus synthetic South Carolina system. Various test 
cases show an average reduction in solution time by more than 
90% by using the trained machine learning model to assist the sto-
chastic unit commitment solver.  
 

Index Terms— Large-scale systems, load shedding, machine 
learning, ML-assisted power system operation, power outage, 
power system resiliency, preventive operation, stochastic unit 
commitment, severe weather, transmission line outage. 

NOMENCLATURE 

A. Sets 
𝑔 Index of the generator, 𝑔 𝜖 𝐺 
𝑛 Index of the bus, 𝑛 𝜖 𝑁 
𝑘 Index of the transmission line and transformer, 𝑘 𝜖 𝐾 
𝑚 Index of the monitored transmission line, 𝑚 𝜖 𝑀 
𝑠 Index of the scenario, 𝑠 𝜖 𝑆 
𝑜 Index of the line outage, 𝑜 𝜖 𝑂 
𝑡 Index of the time interval, 𝑡 𝜖 𝑇 
𝑓𝑟𝑚 Set of starting bus of lines 
𝑡𝑜 Set of ending bus of lines 

B. Parameters 
𝑐 Cost of generation 
𝑐𝑁𝐿 No-load cost for generator 
𝑐𝑆𝑈  Start-up cost for generator 

 
 

𝑐𝑆𝐷 Shut-down cost for generator 
𝑐𝑙𝑠ℎ  Load shedding cost (penalty) 
𝜋 Scenario possibility 
𝑃𝐺𝑚𝑎𝑥  Maximum generation power by generator 
𝑃𝐺𝑚𝑖𝑛  Minimum generation power by generator 
𝐹𝑚𝑎𝑥  Maximum thermal capacity of the line 
PTDF Power transfer distribution factor matrix  

C. Variables 
𝐅 Line flow vector 
𝐅𝐂 Flow canceling transactions vector 
𝐏 Net nodal injected power vector 
𝑃𝐺 Generated power of a generator 
𝑃𝑑 Power demand at bus 
𝑃𝑙𝑠ℎ Load shedding 
𝑢 Unit commitment binary variable 
𝑣              Generator start-up binary variable 
𝑥              Generator Shut down binary variable 

I. INTRODUCTION 
nit commitment (UC) is widely used in power system 
operation for generation scheduling, risk analysis, and 

planning in power systems [1], [2]. Simplified unit commitment 
formulations, based on DC power flow, take advantage of var-
ious techniques to solve the problem [3]. While UC, even in its 
simplest form, is difficult to solve, it becomes more challenging 
when additional uncertainties are considered. This is the case 
when a severe weather condition is predicted to hit the grid and 
cause damage to the transmission network. 
 Stochastic Unit Commitment (SUC) is among the most effi-
cient methods for addressing uncertainties in the UC problem 
[4], [5]. Solving the SUC problem with explicit modeling of 
uncertainties, even with simplifying techniques, is challenging. 
Over the years, researchers and system operators have made 
progress in SUC problem modeling and developing solution al-
gorithms [6]. Scenario-based SUC is among the most common 
approaches for modeling uncertainties within a stochastic 
framework [7]. In scenario representation, a set of scenarios 
over the uncertain future are defined and used to model the sto-
chastic nature of uncertainties as a set of discrete futures. To 
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achieve quality results, scenario generation, reduction, and ag-
gregation must be properly performed. Generally, the higher the 
number of scenarios, the better the quality of the solution; this, 
however, comes at the cost of heavier computation [8]. Sce-
nario-based SUC has the primary advantage of explicitly mod-
eling the uncertainties into the problem, thus offering a reliable 
solution [7]. However, its main disadvantage that limits its ap-
plications is the demanding calculation time.  
 SUC based on scenario representation is also linked to fore-
casting [9]. A vast literature can be found on using scenario-
based SUC to represent forecasting and the related uncertainties 
in the network. As examples, [9]–[12] address the uncertainties 
related to the renewable generation forecast, while [13], [14] 
focus on demand forecast uncertainties. While modeling new 
uncertainties into the SUC adds to the complexity of the prob-
lem, studies such as [15] claim that by using high-performance 
computing systems and utilizing parallelization, it is possible to 
solve the problem within an acceptable time for online and of-
fline applications with uncertainties related to generation, trans-
mission failures and demand. However, given the need for mod-
ern power systems to consider more and more uncertainties, it 
is desirable to develop SUC computational approaches further.  
The modern network also requires multiple sources of uncer-
tainties to be modeled to achieve an efficient solution [16]–[18]. 
Enhancement of modeling the SUC problem is necessary when 
the scope of the target uncertainties is beyond the operation of 
the system under normal conditions. An example of such an ap-
plication is when a severe weather event, such as a hurricane, is 
predicted to impact the network [8], [19]. Hurricanes can cause 
tens or even hundreds of transmission outages over the course 
of their impact, often within a few hours. Considering possible 
outages, the optimal scheduling of generators that minimizes 
load shedding and enhances power system resilience can be 
beneficial [15], [20]–[22]. Although these outages can be pre-
dicted in advance, the predictions include uncertainties [23]. 
While scenario selection for preventive stochastic unit commit-
ment during hurricanes is difficult, solving the problem within 
a sufficient time can be challenging as well.  
 Despite having different well-known techniques for scenario 
generation, reduction, and aggregation with applications in 
power systems such as [7], [24]–[26], they may not be fit for 
extreme cases, such as operation during a hurricane. This is due 
to the probabilistic nature of line failures and that the set of pos-
sible network topologies might be extremely large [8]. An effi-
cient method to generate scenarios, called multidimensional 
scenario selection (MDSS), is introduced in [8], where multiple 
aspects of information regarding each uncertainty are used to 
produce the preferred number of scenarios. In [27], [28], an en-
hanced formulation capable of handling multiple line outages is 
introduced to model the problem as a preventive SUC problem. 
While a combination of the MDSS and the formulation intro-
duced in [27] and [28] delivers a high-quality solution, the over-
all required time can still be very long for large networks. In 
this paper, we evaluate the feasibility of using Machine Learn-
ing (ML) algorithms to reduce the calculation time of the SUC 
problem. 
 ML techniques have been successfully used for more than a 
decade to solve security-constrained UC problems in order to 
determine dynamic security constraints, e.g. [29], or to solve 

dynamic security problems, such as in [30], [31]. Reference 
[32] reviews the applications of ML in energy system reliability 
management, including assistance in solving the SUC problem. 
Ref. [32] mentions eight studies, each proposing a model to use 
ML algorithms in energy systems. References [33] and [34] 
claim that it is possible to estimate the final solution when 
planned outages are evaluated by utilizing ML with long offline 
training time. However, with a lower quality of the final solu-
tion in SUC In [35], authors suggest that instead of solving the 
complete form of transmission-constrained UC, it is possible to 
use an ML model to learn about congestions in the network and 
reduce the unnecessary constraints from the problem. In the 
mentioned study, it is assumed that the network topology re-
mains unchanged, and the congestion patterns do not change 
over the study horizon of their data-driven method. In [36], the 
same authors of [33] and [34] model the UC problem as a Mar-
kov decision process and solve it by approximating the results 
through reinforcement learning. Finally, [37] and [38] model 
the UC as a multi-objective optimization problem and evaluate 
system reliability. 
 This paper is different since it investigates how ML can im-
prove solution time without sacrificing accuracy and without 
the need for historical data of network operation. Moreover, as 
this paper's main application is the SUC when severe weather 
is predicted to hit the grid, unlike most of the literature, the net-
work topology is not assumed constant. Additionally, this paper 
investigates the sensitivity of a feasible solution to the error, 
when an imperfect ML model is trained and used. 
 The general idea can be summarized as follows: The objec-
tive of the paper is to reduce the calculation time when solving 
the SUC problem with multiple probabilistically predicted line 
outages by using ML methods. Section II reviews the original 
SUC problem and explains the use of ML to reveal the chal-
lenges of the original problem and the capabilities and limita-
tions of ML. Considering that there are different possible ways 
that ML can be utilized, a feasibility study is performed in Sec-
tion III to determine how ML can help to solve the problem 
faster. In Section IV, a suitable algorithm is proposed to train 
the ML model(s) and use the trained model(s) to solve the SUC. 
To demonstrate the quality and efficiency of the proposed 
method, different numerical simulations are conducted in Sec-
tion V, and the results are discussed and evaluated, confirming 
the supremacy of the proposed method. Finally, Section VI con-
cludes the paper.  

II. BACKGROUND 
This section explains the original SUC problem, the chal-

lenges of solving the model, and the potentials for using ML to 
facilitate its solution. 

A. Original SUC Problem  
 The goal of SUC is to minimize the expected value of the 
objective function, usually operation cost, subject to physical 
and reliability constraints. With high levels of uncertainties, the 
objective function should include not only the generation costs 
but also penalized load shedding. The failure of many transmis-
sion lines during hurricanes, and hence possible disconnection 
of operating generation unit(s) or load(s), may lead to inevitable 



 
 
 

load shedding. The objective function is defined as: 
 

Minimize∑ {𝜋(𝑠)𝑠∈𝑆 ∑ [∑ (𝑐(𝑔)𝑃𝐺(𝑠,𝑔,𝑡) +𝑔∈𝐺𝑡∈𝑇

𝑐(𝑔)
𝑁𝐿 𝑢(𝑠,𝑔,𝑡) + 𝑐(𝑔)

𝑆𝑈 𝑣(𝑠,𝑔,𝑡) + 𝑐(𝑔)
𝑆𝐷 𝑥(𝑠,𝑔,𝑡)) +

∑ 𝑐𝑙𝑠ℎ𝑃(𝑠,𝑛,𝑡)
𝑙𝑠ℎ

𝑛∈𝑁 ]} 

(1) 

 subject to:  

𝑃𝐺(𝑔)
𝑚𝑖𝑛𝑢(𝑠,𝑔,𝑡) ≤ 𝑃𝐺(𝑠,𝑔,𝑡) ≤ 𝑃𝐺(𝑔)

𝑚𝑎𝑥𝑢(𝑠,𝑔,𝑡) ∀ 𝑠 𝜖 𝑆, g 𝜖 𝐺, 
t 𝜖 𝑇 

(2) 

𝑃(𝑠,𝑛,𝑡) = [∑ 𝑃𝐺(𝑠,𝑔,𝑡)
𝑔∈𝐺𝑛

+ 𝑃(𝑠,𝑛,𝑡)
𝑙𝑠ℎ ]

− [𝑃(𝑠,𝑛,𝑡)
𝑑 ] 

∀ 𝑠 𝜖 𝑆, n 𝜖 𝑁, 

t 𝜖 𝑇 
(3) 

−𝐹(𝑚)
𝑚𝑎𝑥 ≤ 𝐹(𝑠,𝑚,𝑡) ≤ 𝐹(𝑚)

𝑚𝑎𝑥  ∀ 𝑠 𝜖 𝑆, t 𝜖 𝑇,  
𝑚 ∈ 𝑀(𝑠) 

(4) 

𝐹(𝑠,𝑚,𝑡)

= (𝑷𝑻𝑫𝑭(𝑚) × 𝑷(𝑠,𝑡))

+ ∑ [(𝑃𝑇𝐷𝐹(𝑚,𝑓𝑟𝑚(𝑜))
𝑜∈𝑂(𝑠,𝑡)

− (𝑃𝑇𝐷𝐹(𝑚,𝑡𝑜(𝑜))) 𝐹𝐶(𝑠,𝑡,𝑜)] 

∀ 𝑠 𝜖 𝑆, t 𝜖 𝑇,  
𝑚 ∈ 𝑀(𝑠) 

(5) 

(𝑷𝑻𝑫𝑭(𝑜) × 𝑷(𝑠,𝑡)) − 𝐹𝐶(𝑠,𝑡,𝑜)

+ ∑ [(𝑃𝑇𝐷𝐹
(𝑜,𝑓𝑟𝑚(𝑜′))𝑜′∈𝑂(𝑠,𝑡)

− (𝑃𝑇𝐷𝐹
(𝑜,𝑡𝑜(𝑜′))

) 𝐹𝐶(𝑠,𝑡,𝑜′)] =  0 

∀ 𝑠 𝜖 𝑆, 𝑡 𝜖 𝑇, 
𝑜 ∈ 𝑂(𝑠,𝑡) 

(6) 

∑ (𝑃𝐺(𝑠,𝑔,𝑡))𝑔 + ∑ (𝑃(𝑠,𝑛,𝑡)
𝑙𝑠ℎ − 𝑃(𝑠,𝑛,𝑡)

𝑑 )𝑛  = 0 ∀ 𝑠 𝜖 𝑆, g 𝜖 𝐺, 
t 𝜖 𝑇 

(7) 

𝑢(𝑠,𝑔,𝑡) = 𝑢(𝑠′,𝑔,𝑡) ∀ 𝑠, 𝑠′ ∈  𝑆 (8) 

𝐴𝑠,𝑡(𝑥𝑠,𝑡 , 𝑣𝑠,𝑡 , 𝑢𝑠,𝑡) ≤  0, ∀ 𝑠 𝜖 𝑆, t 𝜖 𝑇  (9) 

𝐵𝑠,𝑡(𝑥𝑠,𝑡 , 𝑣𝑠,𝑡 , 𝑢𝑠,𝑡) =  0, ∀ 𝑠 𝜖 𝑆, t 𝜖 𝑇  (10) 
 

Expression (1) is the objective function to be minimized over 
all the defined scenarios in the study period. It includes the fuel 
cost, no-load cost, start-up and shut-down cost related to each 
generation unit, and the penalized load shedding cost. Note that 
load shedding is defined as an expensive generation unit (or 
negative load) at any bus with a defined load. 

Equation (2) applies generation maximum and minimum 
limits, (3) calculates the nodal net injection power with load 
shedding modeled as a generator. 𝐺𝑛 represents the set of 
generators connected at bus 𝑛. Constraint (4) keeps line flows 
within the acceptable range for each transmission line. Note 
that, while 𝑀(𝑠) can include all lines, it can be any subset of lines 
that are selected to be monitored. To be sure that the results stay 
accurate, the constraints of the removed lines from 𝑀(𝑠) must be 

inactive or redundant. However, the quasi-active constraints 
may be removed by the proposed method, as will be explained 
later. Executing a post-processing step, described in Section III-
E, the quasi-active constraints are detected and added to the 
SUC. Note that quasi-active constraint refers to those not 
binding constraints when they are included in the problem but 
removing them will affect the results as their corresponding 
variables violate their limits. 

For the set of line outages, noted by 𝑂, (5) and (6), calculate 
the power flow for monitored lines of the set 𝑀(𝑠), taking into 
account the effects of line outages. In (5), the first term on the 
right-side of the equation calculates line power flow concerning 
the normal network (without line outages) by using the power 
transfer distribution factor (PTDF) concept [39], while the 
second term, which is based on flow-canceling transaction 
concepts [28], considers the effect of outages of lines in 𝑂(𝑠,𝑡) 
on the power flow of each line in 𝑚 ∈ 𝑀(𝑠). 𝐹𝐶(𝑠,𝑡,𝑜) in (5), is 
an imaginary power flow variable in flow-canceling transaction 
method and its calculation depends on the operation point of the 
system. Note that, at the same time, the solution of the SUC 
problem depends on the effect of line outages through 𝐹𝐶𝑠, 
while for the calculation of each 𝐹𝐶 the system operation point 
should be known. Hence, it is not possible to calculate the 
𝐹𝐶(𝑠,𝑡,𝑜) outside the SUC problem. To overcome this challenge, 
a system of equations and unknowns is added to the SUC as a 
constraint which is presented by (6). In (6), the variables 𝐹𝐶 
depends to each other through arrays of 𝑷𝑻𝑫𝑭 matrix. In 
accordance with flow-canceling transaction methodology 
which assumes a pair of imaginary buses each with its 
imaginary power injection (𝐹𝐶), constraint (6) adds two 
equations to the problem regarding each line outage.  

Constraint (7) applies power balance in the network. 
Constraint (8) forces the commitment status to be the same 
within all the defined scenarios (commitment variables are 
modeled as first-stage variables). It should be mentioned that 
(2) to (8) represent the constraints of interest in this study, while 
other standard constraints, such as ramping up/down, minimum 
up/down times for generators, constraints regarding allowed 
values of load shedding and other network constraints are 
considered as well. Those equality and inequality constraints 
are modeled through (9) and (10), respectively. Readers are 
referred to [27] for the complete formulation and algorithm 
description. 
 When the abovementioned set of equations is used for large-
scale networks with multiple outages, the number of variables 
and constraints becomes extremely large. Notably, (5) and (6) 
are the main equations responsible for growing constraints in 
numbers and complexity, as they combine standard power flow 
calculations considering the effects of outages. In some studies, 
such as in [40], the authors suggest combining (5) and (6) into 
one simpler equation based on detecting parallel lines and lines 
with power flows within their acceptable limits. However, these 
techniques consider only one outage and are not applicable for 
multiple line outages considered in this paper.  
  A promising fact in solving the SUC problem is that, while 
the original problem includes many variables and constraints, 



 
 
 

not all variables must be calculated within the optimization 
process, nor all the constraints reach their limits. This suggests 
that if it is possible to distinguish between the essential 
variables and constraints to be included in the optimization 
problem and those that are not, the problem can be solved faster. 
It is worth mentioning that variables and constraints excluded 
from the optimization problem can be calculated outside the 
optimizer to verify the complete set of results (post-processing 
step). 

B. Machine Learning Concept 
Machine learning has been widely adopted across various ap-

plications, over the recent past, due to the advancements both 
in computational power and algorithms [41], [42]. It is expected 
that increasing amounts of data, analyzed by ML methods, can 
provide solutions of high accuracy and increased speed in 
power system problems, such as UC [43]. 

Supervised machine learning algorithms can learn through 
examples known as observations. Each observation consists of 
inputs paired with the corresponding output(s) [44]. The train-
ing algorithm searches for patterns and correlations between in-
puts and outputs. After training, a supervised learning algorithm 
for any new unseen inputs predicts the outputs. In its basic form, 
a supervised learning algorithm can be formulated as: 

Y = f(x), (11) 

where Y represents the predicted output(s) that is determined by 
a mapping function, f, over the value of x. The mapping func-
tion used to connect inputs/features to a predicted output(s) is 
created during the training process. Ideally, with enough train-
ing data to cover the whole operating spectrum of the SUC 
problem, it is possible to train a perfect supervised mapping 
function, f, as shown in (11). If such an ideal model existed and 
could be trained, providing the input data, such as network in-
formation, expected uncertainties, and demand data, any de-
sired Y would be acquired rapidly with no need to run SUC 
again. However, as repeatedly shown in the literature, achieving 
such an ideal model would be very challenging, if not impossi-
ble.  

III. FEASIBILITY STUDY 
This section aims to evaluate different possible ML applica-

tions to solve or to assist in solving the SUC problem with the 
formulation as described in (1)-(10). As ML is defined based on 
inputs and output(s) pairs, this section evaluates different inputs 
and outputs variables to discover the most suitable candidates 
for consideration as input features and outputs for the ML 
model. As a feature engineering process, some candidates are 
rejected, and the list is narrowed down to a few primary candi-
dates. Next, a feasibility analysis is performed for each candi-
date to determine the best options.  

A. SUC cannot be Replaced by Machine Learning 
As the ML model must be trained with a set of solved SUC 

cases, the accuracy of the trained ML can never be better than 
the original SUC solution. Hence, the primary motivation for 

using a trained ML model can be only to reduce the calculation 
time and/or hardware requirements while maintaining the same 
accuracy as the original SUC. As a nature of an ML training 
process, a large number of variables require a large number of 
solved cases (known as observations) to train the ML model. 
Since the solution time of SUC is long, obtaining a large enough 
data set to train the ML becomes a bottleneck. On the other 
hand, if the SUC problem's solution time is short enough, there 
is no reason to use ML.  

Due to strict SUC constraints, and because it is unlikely to 
train an ML model to perfectly predict the optimal solution of 
SUC, a potential alternative is to use machine learning as an 
assistant to SUC to facilitate the solution process. This way, the 
result is accurate as of the original SUC, but perfect ML perfor-
mance is unnecessary. This would translate into a reduced train-
ing dataset. Hence, the objective is to use the trained ML to 
guess/predict the entire or a part of the final solution.  

The predicted solution by ML can then be implemented into 
the SUC as a warm-start (also known as advanced start or 
MIP-start) to solve the case accurately and at increased speed. 
However, before making it possible to use trained ML to predict 
the output, one more question should be answered: what inputs 
can be used as input features, and what outputs should be pre-
dicted to help solve the SUC problem, if possible at all? The 
next subsections offer some insights into this question. While it 
is not suggested to train a perfect ML model to predict the SUC 
solution accurately in this paper, training ML to estimate opti-
mal power flow (OPF) to be used as a warm-start without in-
cluding binary variables is suggested by other studies as well, 
such as [45], [46] . 

B. Candidate Inputs and Outputs 
In SUC, the desired outputs are the commitment status (bi-

nary), the scheduled generated power (continuous) and line 
flow (continuous). As the power network topology changes 
slowly over time, it is probably best to train the ML model(s) 
for a network structure covering the network topology and gen-
erators' data. In such a model, data expressing uncertainties are 
the main input features used to train ML models. For example, 
assume that 100 lines in the network are vulnerable to failure 
due to a hurricane. To train the ML model, thousands of SUC 
problems, known as observations, should be defined and 
solved, each of which represents a possible hurricane affecting 
the failure probabilities of those 100 lines. Then, the trained 
model can predict the SUC solution in response to any unseen 
hurricane.  

In preventive operation, in case of an imminent hurricane, 
continuous variables are defined as second-stage variables. 
Since second-stage variables are scenario dependent, there are 
many more continuous variables compared to binary variables. 
Thus, considering the nature of ML, continuous variables are 
harder to predict, requiring more solved cases for training. 
Moreover, second-stage variables such as generation dispatch 
can be easily calculated once the first-stage variables are 
known. Hence, ML can predict the binary commitment varia-
bles, while an economic dispatch can be employed to calculate 



 
 
 

generated power and line flow quickly with known commit-
ment variables. Note that other binary variables, such as start-
up and shut-down, can be derived from the commitment solu-
tion.  

Alternatively, it is also possible to define another set of fic-
tional binary variables that determine whether each constraint 
(such as line flow limits) is binding or not. Using these binary 
variables, it is possible to reduce the number of applied con-
straints to the problem. As a reduced number of constraints 
translates into lower calculation time, these binary variables are 
assumed as candidate outputs for the trained ML model(s). It is 
worth mentioning that when working with binary variables, the 
supervised ML classification seems to be a good fit, as binary 
variables can be translated into two classes, 0 and 1.  

C. Test Cases and Software Selection 
In this study, a synthetic grid on the footprint of South Caro-

lina with 500 buses, 597 lines, and 90 generation units is used 
as the test-case. The complete system information can be found 
in [47], [48]. For the load profile, we use a daily load profile, as 
in [49]. 

The main code that handles the MIP-SUC problem is devel-
oped on the Java platform through ECLIPSE IDE [50] and uses 
IBM CPLEX optimization studio ver. 12.10 [51] as the solver. 
The whole software-package runs on a system with 128 GB of 
memory and AMD 3900X as the processor unit. 

D. Commitment Status as Output 
This subsection investigates the computational time savings 

if generator commitment variables could be predicted. The fea-
sibility test assumes that a trained ML exists that predicts the 
commitment status at different accuracy levels from perfectly 
accurate to partly inaccurate. Then, the predicted commitment 
is implemented as a warm-start to SUC, and the accuracy of the 
results and solution time are compared with cold-start SUC. In 
this paper, cold-start SUC refers to the original SUC problem 
when the solver starts from its default values to solve the prob-
lem, and no variable is predicted and applied to the solver.  This 
way, it is possible to evaluate how much time can be saved by 
predicting commitment status with various error levels. 

In general, a larger number of scenarios may result in a better 
quality of the solution. As determined in [8], however, when 
line outages are the main source of uncertainty, increasing the 
number of scenarios from 10 to 17 for a 2,000 bus network does 
not significantly improve the quality, although it substantially 
increases the calculation time and hardware requirements. 
Moreover, the authors found out that the number of scenarios 
does not change the feasibility study's general conclusion. 
Hence, as the base case, it is assumed that the original SUC 
consists of 10 scenarios, ten lines with failure chance. This 
takes 169 seconds to solve. Next, by using the commitment ob-
tained by solving the original SUC (serves as the perfect pre-
diction), a certain percentage of generator statuses is randomly 
changed to simulate errors in predictions by the trained ML. 
Next, different prediction accuracies of commitment status are 
used to solve the SUC problem as warm-start models. While all 
cases result in accurate optimal value for the objective function, 

the solution time is highly sensitive to errors in the predicted 
commitment variables. For each level of accuracy in prediction, 
ten random cases are solved, and the solution times are reported 
in Table I. If commitment status could be predicted with 100% 
accuracy, the solution time would be reduced by 4.7%, which 
is not significant. 

On the other hand, even small errors in status prediction 
(more than 0.3%) increase the solution time compared to the 
original SUC. This can be justified considering the time 
CPLEX needs to implement warm-start, verify if the solution is 
feasible, and then calculate the other variables of the problem. 
In case the provided warm-start solution is not accurate, 
CPLEX will try to fix the solution. The overall time for imple-
mentation, verification, and repairing the solution in cases with 
errors, is longer than required to calculate a first feasible solu-
tion with cold-start. 

TABLE I 
SOLUTION TIME OF SUC CONSIDERING DIFFERENT LEVELS OF 

ERROR IN THE PREDICTION OF THE COMMITMENT VARIABLES 

Case Solution Time 
(Sec.) 

Original SUC 169 
Assisted with commitment variable with 0.0% error 161 
Assisted with commitment variable with 0.1% error 161~163 
Assisted with commitment variable with 0.2% error 163~167 
Assisted with commitment variable with 0.3% error 176~180 
Assisted with commitment variable with 0.5% error 182~188 
Assisted with commitment variable with 1.0% error 188~193 
Assisted with commitment variable with 5.0% error 194~201 
Assisted with commitment variable with 10.0% error 194~202 
Assisted with commitment variable with > 10% error 197~205 
  

E. Suspected Limit Violating Lines as Output 
As mentioned before, if the trained ML can predict con-

straints that are not binding, those constraints can be removed 
from the model without impacting the final solution. Note that 
as mentioned in [35], the final solution must be checked for 
quasi-active constraints removed from the problem. Equations 
(4) to (6) enforce constraints to the problem that are more com-
plex than others. Hence, a trained ML that removes unnecessary 
constraints in these three equations can reduce calculation 
times. In the following, it is assumed that a trained ML model 
can predict which line violates its thermal limit, represented by 
𝑀 in the formulation. The feasibility study is done in the fol-
lowing steps:  

1- SUC is solved with only suspected lines included in 
(4) to (6). The effect of the accuracy of these suspected 
lines is discussed later. 

2- Using results from step-1, power flows are calculated, 
and all line flows are compared with their correspond-
ing limits to find if any violation exists. Note that vio-
lations also may include quasi-active constraints that 
may have been removed from the subset of lines. 

3- In case of violation, lines with flows exceeding their 
thermal limits are added to 𝑀 (constraints (4)-(6) re-
lated to these lines are added to the optimization prob-
lem).  



 
 
 

4- Steps 1 to 3 are done iteratively until there are no lines 
with flows exceeding their thermal limits.  

Like the previous part, to simulate trained ML models with 
different accuracy levels, random lines are added to or removed 
from the perfectly predicted lines to be monitored. Table II pre-
sents the average times over ten simulations. Note that, original 
SUC problem is the same as the one used in Table I. In Table 
II, FN is the abbreviation for False-Negative (FN) and means 
that lines that should have been predicted as suspected to violate 
their limits have not been predicted. In cases with FN, the SUC 
model should be solved at least one additional time, as at least 
one line violates its limitation in the first iteration.   

According to Table II, predicting suspected lines with good 
accuracy can save significant computational time, while the 
quality of the final solution is the same as the original solution. 
Moreover, saving is not as sensitive to errors as it was with the 
commitment variables. Thus, predicting lines suspected to vio-
late their limits seems to be an appropriate candidate output of 
the trained ML. Table II also suggests that the ML training pro-
cess should be tuned to prevent FN predictions even at the cost 
of more FP (False-Positive) errors. As an example, in Table II, 
25% of error, including FN, is worse than 50% error without 
FN. It is worth mentioning that this finding is consistent with 
industry practices. Industry implementations of unit commit-
ment take a list of monitored lines as their input. If such a list is 
not available or not comprehensive, the solver uses heuristics to 
quickly identify the binding constraints [27]. However, the ma-
jor difference between a regular unit commitment and the SUC 
is that the set of binding constraints cannot be straightforwardly 
identified. This is because many transmission lines may fail, 
and their failure can only be predicted in a probabilistic manner.  

 
TABLE II 

SOLUTION TIME OF SUC CONSIDERING DIFFERENT LEVELS OF 
ERROR IN THE PREDICTION OF SUSPECTED LINES  

Case Solution Time (Sec.) 
without FN with FN 

Original SUC 

 

Assisted, suspected lines with 0.0% error 
Assisted, suspected lines with 10% error 
Assisted, suspected lines with 25% error 
Assisted, suspected lines with 50% error 
Assisted, suspected lines with 60% error 
Assisted, suspected lines with 75% error 
Assisted, suspected lines with 100% error 

 

F. Input Features 
As explained before, the input features for ML training in-

clude data related to uncertainties. In SUC, uncertainties are 
represented by scenarios. As the prime goal is to assist in solv-
ing the SUC problem, the input features should be scenarios or 
data derived from them.  

 Note that the part of data that is the same for all scenarios 
carries no useful information for predictions. For example, if 
100 lines out of 597 lines in a network are considered vulnera-
ble to extreme weather, some of these 100 lines will have a non-

zero failure probability in different conditions. If any of these 
conditions are modeled in the SUC problem, the only difference 
between scenarios should be related to those 100 lines and not 
all the 597 lines. Hence, scenarios regarding different condi-
tions should be worked out before used as input features. 

IV. MACHINE LEARNING TRAINING AND PREDICTION 
ALGORITHMS 

Training ML models: The previous section determined that 
predicting the set of suspected lines to violate their capacity 
limit is an appropriate output of the ML model, and scenarios 
should be used to form input features. To train any ML model, 
a set of observations should be created. In this study, each ob-
servation represents inputs and corresponding outputs related to 
a possible hurricane that affects the network, for which tem-
poral line failure probabilities can be calculated. Each observa-
tion can be defined as a multi-scenarios SUC problem. How-
ever, it seems impractical and inefficient to train ML models 
based on multi-scenarios SUC. This is because the number of 
engaged variables increases with the number of scenarios, 
translating into a larger number of required observations. 

Moreover, solving each observation takes a long time. Also, 
if an ML model is trained for a specific number of scenarios, it 
might not be effective for SUC with any other number of sce-
narios in its original form. For example, authors estimated that 
with a network as large as 2,000 buses and 3,200 transmission 
lines, and assuming less than 10% of lines are vulnerable to fail-
ure, the number of required observations for SUC with ten sce-
narios is more than 100,000 and considering that each SUC 
takes 20 minutes to be solved (tested on an advanced work-
station with 128GB of memory and CPU with 24 Cores), the 
total required time is four years.  

Here, an alternative method to train ML models is suggested 
to reduce the calculation time and make it practical for SUC 
with any number of scenarios. The idea comes from the fact that 
when multiple scenarios are created representing a single hurri-
cane, scenarios represent different possible damage levels pro-
voked by that hurricane. The minimum number of scenarios can 
be one in which that single scenario is the worst-possible case. 
For a larger number of scenarios, the level of damage modeled 
within each scenario is between no damage to maximum possi-
ble damage. While scenarios represent different levels of dam-
age by a single hurricane, it is possible to assume that each sce-
nario represents maximum damage by a different hurricane. For 
example, the worst possible scenario of one hurricane can be 
the second-worst or nth-worst possible scenario of another hur-
ricane of higher intensity. With this assumption, it is possible to 
train ML models based on single scenario problems, represent-
ing the worst-possible case of each observation, and later use 
the trained models to predict suspected lines for each scenario 
of the SUC to be solved individually. This is also consistent 
with the provided formulation, (1)-(10), as, in the formulation, 
each scenario has its own set of suspected lines that violate their 
capacities. 

To create a set of observations, the following steps are im-
plemented: 

25 48
51 98
87 187
104 197
134 256

169
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308



 
 
 

1. For each hurricane (observation), create the worst-case 
scenario, i.e., the one with the highest possible number 
of failures. The solution of a deterministic UC for this 
worst-case scenario will identify the lines that reach their 
capacity.  

2. Determining Input: For the selected scenario in step 1, 
any failed element at any time is marked. The input cor-
responding to the observation is a vector with entries set 
as 1 if the element is marked, and 0 if not. The size of the 
input vector is equal to the number of vulnerable ele-
ments.  

3. Determining the Corresponding Output: Solve the UC 
problem with the worst-case scenario from step 1, and 
mark those lines that reach their capacity at any time of 
the examined horizon. The output corresponding to the 
observation is a vector with a size equal to the total num-
ber of lines. In this vector, any line marked as congested 
will be assigned a value of 1, and 0 if not marked. While 
this procedure removes the dependency of output on time 
(i.e., load profile) as a capacity violation of any line at 
any time triggers the corresponding variable, it will au-
tomatically consider the worst possible condition (in 
term of lines reaching their capacity) and reduces the 
chance of FN error. 

4. Repeat steps 1 to 3 for all observations. Each observation 
includes input and its corresponding output vectors. 

5. Size-Reduction: As mentioned before, if any of the vari-
ables does not change over different observations, it does 
not carry any useful information in ML training. Hence, 
if a line never reaches its capacity over all the observa-
tions, it should be removed from the outputs. Similarly, 
if an element never fails, it should be removed from the 
input set. 

After the abovementioned steps, the input matrix with rows 
as observations and columns as features, and output matrix with 
rows as observations and each column as output are created.  

It should be mentioned that the ML model used falls in the 
category of supervised classification. It receives multiple inputs 
and predicts only one output for each observation. Hence, it is 
necessary to train one ML model for each output (line included 
in the outputs after applying size-reduction described in step 5), 
which means the number of trained models is equal to the num-
ber of columns in the reduced form of the output matrix.  

Prediction Through the trained ML models: To predict the 
desired outputs for an unseen event/hurricane, the SUC problem 
should be formed with its scenario set. Next, for each scenario, 
the input vector should be created, as explained in step 2. Then, 
this vector of features should be deployed into the trained ML 
models. The predicted output of each model is either 1 (line 
should be monitored) or 0 (line does not need to be monitored). 
After repeating the same process for all the scenarios, 𝑀(𝑠) is 
predicted. Finally, the SUC problem is solved by following the 
steps presented in Section III-E.  

V. SIMULATION STUDIES 
To demonstrate the efficiency of the proposed ML-assisted 

SUC algorithm, the same network as in the feasibility study is 
used in this section to simulate 24 hours. In this paper, 40 out 
of 597 transmission lines are considered vulnerable to failure 
due to extreme weather events. While a larger number of lines 
was included in the vulnerable set, this would divide the net-
work into islands.  

Training ML Models: The ML models should be trained with 
as many as possible different combinations of the status of those 
40 vulnerable lines as observations. Equation (12) provides the 
number of possibilities to select 𝑋 items out of 𝑌 possible op-
tions when order does not matter. 

𝑁 =
𝑌!

𝑋! (𝑌 − 𝑋)!
 (12) 

Even without considering when each failure happens, there 
are more than 10E+12 different combinations of outages. Ob-
viously, it is not possible to solve all these possible combina-
tions to train the ML models. Hence, a limited number of ob-
servations should be selected efficiently. To increase the effi-
ciency of the training set, the number of observations regarding 
the number of outages should follow the normal distribution, as 
in (12) (as shown in Fig. 1). For example, observations with 20 
outages should have the highest number. 

 
Fig. 1. Graphical representation of (12) when Y equals 40 and X changes from 
0 to 40. 

To enhance the efficiency further, some exceptions are made, 
i.e., forty of the selected observations are reserved for an outage 
of a single line, one observation is reserved for the case with no 
outage, and one observation for the case of all 40 outages.  After 
the number of observations for each value of 𝑋 is determined, 
the outages and their time of failure are generated randomly 
based on their failure probabilities. Next, a single scenario SUC 
is solved to create the output corresponding to each observation.  

An adequate number of observations is identified as the min-
imum number of observations, for which the accuracy of the 
trained model reaches saturation. For the test-case, the accuracy 
of the trained ML model reaches a satisfactory performance 
with 5,000 observations. However, to ensure high accuracy, 
20,000 observations are used. 
 The problem is modeled as a supervised classification ML 
model, defined as "Ensemble Method: Bagged Trees," with the 
number of learners equal to 100 and the maximum number of 
splits of 8,999. 10% of the observations are used for validation 
to prevent over-fitting, and 5% of observations are kept to as-
sess the accuracy of the model after training. The total accuracy 
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of the trained model when it was used for 1,000 unseen cases is 
99.3%. Detailed accuracy results are shown in Fig. 2. As is 
shown, only 3 FN (0.3%) and 4 FP (0.4%) predictions were ob-
served. It is worth mentioning that 2 out of 3 FN predictions 
were related to the same line, line “183”, which is a line that 
violates its capacity only in 5 out of 20,000 observations used 
for ML training; thus, it has a high chance of FN prediction. 
It is worth mentioning that after the dataset is created (in 5 hours 
of computational time), the overall training time is less than 180 
seconds, and most of it is spent on loading the large dataset of 
observations from the hard drive into the trainer. 
 

 
Fig. 2. Confusion matrix for the trained ML model. Black represents correct 

prediction and white incorrect prediction. 

Using the Trained Model to Assist Unseen SUC Problem: 
Once the training process is complete, the trained models are 
ready to assist in solving any unseen SUC problem. To evaluate 
the effectiveness of the proposed method, different SUC prob-
lems are created and solved with both methods: Original SUC 
and ML-Assisted SUC. 
 The SUC problems are created with different numbers of line 
outages (i.e., different hurricane intensities). They cover zero to 
30 possible outages, where each outage may happen at any ran-
dom time of the examined horizon. The scenario set regarding 
each SUC problem consists of ten scenarios. The optimization 
problem is formulated as described briefly in Section II and ex-
plained in detail in [27]. Fig. 3 illustrates the solution time for 
both methods and different SUC problems (for every possible 
number of line-outages, ten randomly generated problems are 
solved). As shown, the solution time with the ML-Assisted 
method is significantly reduced compared to the original SUC 
solution.  
 More specially, the ML-Assisted model reduces the calcula-
tion time by 90% on average (within 75% minimum and 97% 
maximum time reductions) for the different SUC problems. 
Simultaneously, the value of the objective function, commit-
ment status, and line flows are similar in both methods within a 
defined MIP gap of 1% in CPLEX. 
 Another measure of the performance of the proposed algo-
rithm is the accuracy of trained ML in predicting suspected 
lines to violate their capacity. Among different SUCs, the 
trained ML model perfectly predicted the suspected lines for all 
scenarios. While no FN was observed within the simulations in 
this section, even for cases with FN, when post-processing re-
veals a line violates its capacity, the total calculation time is still 

much less than the original SUC. Moreover, to show the effect 
of predicting suspected lines on the complexity of SUC, the 
number of implemented constraints is shown in Table III for the 
original and ML-Assisted models. This clearly shows the rea-
son for the significant reduction in computation time with the 
proposed method. 
 

 
Fig. 3. Solution time for the original SUC and the proposed ML-Assisted SUC 

TABLE III 
COMPARISON OF ORIGINAL SUC AND ML-ASSISTED SUC: 

NUMBER OF IMPLEMENTED CONSTRAINTS CORRESPONDING TO 
TRANSMISSION LINES 

Number of Line Out-
ages 

Number of Constraints Regarding Transmission 
Lines 

Original SUC ML-Assisted SUC 
0 143,280 720  
5 143,574 1,014 

10 144,084 1,524 
20 144,608 2,888 
30 145,416 3,936 

 
Effect of Load Profile: The ML model is trained based on the 

default/predicted load profile. To investigate the impacts of dif-
ferent load profiles on the efficiency of trained models, a new 
load profile is used, with a maximum demand all the time. Sim-
ilar to Fig. 3, solution times for both methods and all test cases 
are shown in Fig. 4. The ML-Assisted SUC is superior in all 
cases. Moreover, even in this extreme case, the accuracy of pre-
dicting suspected lines remains the same. Thus, the proposed 
method can be trained with load earlier forecasts and used with 
near-landfall forecasts. This way, the changes in the load profile 
will be minimal. Note that fluctuations in Fig. 4 are results of 
randomly selected times that lines fail.  

Effect of Congestion: The effect of different congestion lev-
els is evaluated by derating the capacity of all lines to 90% of 
their original capacity. Using the reduced transmission capaci-
ties, the ML training process is repeated.  With the original op-
erating limits, 63 lines reached their capacity during the entire 
training process. From 63 observed lines, 31 reach their capac-
ities in more than 1% of observations and 17 in less than 0.1% 
of the observations. When the line capacities were reduced to 
90%, the total number of suspected lines increased to 88 lines, 
with 42 of them in more than 1% and 16 lines in less than 0.1% 
of observations. Fig. 5 represents a histogram of the first 25 
highly observed lines in both normal and congested networks. 
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Fig. 4. Solution time for the original SUC and the ML-Assisted SUC when de-
mand is at its maximum all times. 

 
Fig. 5. Histogram of the first 25 highly observed lines reaching their capacities 
for normal operation and increased congestion cases. 

As expected, the number of observations of lines that reached 
their capacity increases in the congested network. There are two 
lines, ‘229’ and ‘283’, that never reach their capacities in nor-
mal operation, contrary to the congested network. Finally, the 
average accuracies of the trained models are almost the same, 
with 99.3% accuracy for the original network and 99.0% for the 
congested network. This indicates that the proposed method 
keeps its performance when network congestions are increased. 

A possible solution to reduce the chance of FN error is to 
train the MLs with lower line capacity limits and use them for 
the original network. This is evaluated by using two sets of 
trained MLs, one trained with normal and the other with lower 
capacity limits. Both are used to solve the same 1,000 unseen 
problems with normal network conditions (no increase in con-
gestion). While the overall accuracy stays almost the same 
(99.2% with the congested network in comparison with 99.3% 
accuracy of the original model), the FN error rate reduced to 
0.2%, and FP error rate increased to 0.6%. As the effect of FN 
on solution time is much higher than FP, this practice can be 
recommended, especially if the accuracy of the trained ML 
models is relatively low.  
 Final Remarks: The rest of this section clarifies a few poten-
tial questions and remarks. 
 Remark 1: Since the ML model is trained based on single 
scenario UCs, why not solving that single scenario UC before 
the original SUC to determine the violations instead of predict-
ing them through ML? To address this question, the authors 

have tested the same cases with both methods: one with ML-
assisted SUC and the other with detecting the violations by 
solving a single scenario UCs before solving the main SUC. 
Fig. 6 demonstrates that ML-assisted SUC is always faster. The 
difference between the methods increases as the number of out-
ages increases. The reason for the faster solution of the ML-
assisted SUC is that although the ML model is trained based on 
a single scenario UC, it can predict the lines for all individual 
scenarios of SUC.  We would like to clarify that the same set of 
suspected lines is not used for all the scenarios within the sce-
nario set; rather, each scenario independently obtains its own 
set of estimated binding constraints using ML.  
 

 
Fig. 6. Comparison between ML-assisted SUC and SUC with single, worst-case 
UC solved before the main SUC. 

 On the other side, pre-solving single scenario UCs to deter-
mine the suspected lines regarding all the scenarios in the set 
requires solving the single scenario UCs as many times as the 
number of scenarios in the SUC problem. While it is possible 
to solve the UC for only the scenario with the highest number 
of outages within the scenario set, this will apply an unneces-
sarily large number of suspected lines to the rest of the scenarios 
and increase the overall solution time of SUC. While pre-solv-
ing the single UCs can reduce the total solution time in compar-
ison with the original SUC problem, it is always inferior to the 
ML-assisted SUC, with its near-instantaneous predictions. 

Remark 2: An alternative method to the proposed ML-
assisted model may be to solve the SUC problem by consider-
ing only the worst-case scenario and then use the calculated 
commitment variable as the first stage variable to serve as 
warm-start values to solve the original SUC problem. The mo-
tivation is that while solving a single scenario UC needs its own 
additional time, solving SUC with a feasible solution as warm-
start can save more time to compensate that additional time and 
reduces the total calculation time.  

The authors used the same test cases as in the previous sec-
tions to evaluate this idea. It was shown that using commitment 
variables obtained from the worst-case as a warm-start for the 
SUC increases the total calculation time significantly. As an ex-
ample of the calculations, solving the original SUC problem 
with 20 outages needs 205 seconds. The UC, with only the 
worst-case scenario, needs 26 seconds to be solved. After that, 
the warm-start SUC needs another 276 seconds to be solved. 
The total calculation time is increased significantly from 205 
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seconds to 302 seconds. The same pattern was observed with 
any other case with outages. The calculation time with warm-
start is increased in comparison with the original SUC because 
the commitment corresponding to worst-case is too conserva-
tive for other scenarios. As a result, the objective value is far 
from its optimal value. CPLEX tries to fix the provided solu-
tion. However, fixing a solution far from the optimal one takes 
more time than cold start. 

Remark 3: In the dataset production, (12) was used to deter-
mine the maximum number of outages for each observation, 
while the rest of the dataset was generated randomly for time, 
location, and the possibility of each outage. A possible question 
is if any improvement of the proposed method can be achieved 
by a totally random generated dataset of observations. 

 To assess this, two sets of observations, one based on the 
proposed algorithm presented and one randomly generated. The 
same supervised classification is used to train both ML models. 
A comparison of the results shows that the same set of sus-
pected lines is determined. However, for some of the lines, the 
number of observations in which they reached their capacity is 
slightly different. 

To compare the two trained MLs, two factors are compared; 
the average accuracy of prediction and accuracy of prediction 
related to important lines. Important lines are lines that will 
most probably reach their capacity in the highest number of un-
seen cases. These are shown in descending order in the histo-
gram of Fig. 5. The average accuracy of MLs for all the sus-
pected lines with the proposed method is 99.3%, and the accu-
racy with random observations is 97.2%. In terms of individual 
accuracies related to each line, Fig. 7 represents the results for 
20 of the most observed lines to reach their capacity (left side 
of the histogram). The proposed method enhances the total av-
erage accuracy of the trained model in comparison with ran-
domly generated observations. 

 
Fig. 7. Accuracy of trained MLs when predicting each individual line 

Remark 4: There are not many papers in the literature ad-
dressing the problem of this paper. In order to prove the superi-
ority of the proposed method, results are compared with the 
most relevant method proposed in [35]. In [35], the authors sug-
gest the use of historically recorded information to analyze the 
operation of the network and exclude inactive and redundant 
constraints corresponding to thermal violations from the SUC 
formulation. The historical data includes the system state (e.g., 

power flows) under several scenarios of known net demand. 
They determine (predict) lines with active constraints in the UC 
problem by the K-nearest neighbors (KNN) technique to find 
the closest historical system states that best represent the current 
system state in terms of load demand. The distance between the 
historical system states and the current state is calculated based 
on the net demand of each bus, using the PTDF as weighting 
factors.  

The main difference with the method proposed in this paper 
is that the method in [35] does not consider any change in the 
network topology (line outages are not considered) over the 
study period, and the K neighbors are determined in terms of 
nodal demand. In the proposed method in the current paper, the 
network topology changes dramatically, and the K-nearest 
neighbors should be determined by the lines’ status (online or 
damaged). Another assumption in [35] is that data about the sta-
tus of the network are available, which for the application of the 
current paper, not enough data is normally available.  There-
fore, in order to make a fair comparison between the two meth-
ods, it is assumed that data are available for the different net-
work topologies. These are generated through simulations of 
different possible hurricanes and are the same as the ones used 
in this study to train the ML model.  

To implement the method of [35], the following steps are 
taken: 

1. A vector 𝒅̂ with a dimension of 𝐿 is defined for each 
historical system state. In general, 𝐿 is the number of 
lines, and in compact form, it can be the number of at-
risk lines to a hurricane. Each array of 𝒅̂, 𝑑̂𝑙, is 1 if line 
𝑙 is online and 0 otherwise. For each historical system 
state, the non-congested lines are also recorded. Note 
that, historical system state for this method is the same 
as observation for the ML model. 

2. For each simulated historical state of the system, a unit 
commitment problem is solved, and statuses of all lines 
(congested or not) are determined. Line statuses vector, 
𝑺, is the same as in [35]. 

3. Pairs of (𝒅̂, 𝑺) are used in the KNN method to determine 
the closest historical state when 𝑺 should be predicted 
for an unseen case (hurricane), 𝒅. 

4. The K-nearest neighbors of each scenario are deter-
mined based on the Euclidean distance between 𝒅 and 
𝒅̂. As the outages of lines are the main uncertainty var-
iable instead of net demand, the Line Outage Distribu-
tion Factor (LODF) is used as a weight factor (instead 
of PTDF). 

5. Note that, as the outage of lines and also the congestion 
status of lines are modeled as binary variables, the de-
pendency of the model to time is removed from all 
equations in [35].  

Fig. 8 is used to compare the accuracy of both methods when 
predicting suspected lines to reach their capacities. Ten differ-
ent unseen hurricanes are applied to the network, and the origi-
nal SUCs are solved to determine the true lines that reach their 
capacities. Then the same hurricanes are used in both methods, 
and each method predicts its own set of suspected lines.  Results 
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are compared in terms of total average accuracy, FN and FP 
error rates. In Fig. 8, lines on the horizontal axis are sorted 
based on their probabilities to reach their capacities (going from 
left to right, the chance of violating capacity goes lower by each 
line). For example, line ‘144’ was observed to reach its capacity 
in almost all the observations (within 20,000 randomly gener-
ated), while line ‘183’ only reaches its capacity in 4 observa-
tions (rate of 0.02%).  

The proposed method in this paper predicted 37 out of 38 
occasions correctly, with 1 FP (line ‘395’, hurricane ‘9’), and 1 
FN (line ‘183’, hurricane ‘1’). The modified version of the 
method in [35] predicted 26 out of 38 correctly and had 1 FP 
and 12 FN. As seen, the rate of FP is the same, however, the FN 
error which significantly affects the solution time of the SUC is 
much higher with [35]. This is the main advantage of the pro-
posed method for the under-study problem with severe weather 
conditions. It should be mentioned that, as recommended in 
[35], larger values for K parameter in KNN reduce the rate of 
FN errors, however, this comes at the cost of a higher FP rate. 
In any case, for K=[5-100], the method in [35] never reached 
the accuracy of the proposed method in the current study. Over-
all, within 1,000 unseen hurricanes, the total accuracy of pre-
diction by [35] was 95.9%, with 0.4% of FP rate and 3.7% of 
FN rate. 

It should be noted that for a high number of outages, the pro-
posed method will be much faster than the method in [35] be-
cause of the much lower FN rate. Note that normally, as the 
number of outages increases, the chance of violating thermal 
capacity for lines increases, which means an increase in FN rate. 
As an example, the average calculation times for SUC with 5 
outages are 5 seconds with the proposed method and 5.5 sec-
onds with the method of [35], while for 30 outages, the corre-
sponding times are 62 seconds and 132 seconds,  respectively. 

 

 
Fig. 8. Comparison of accuracy of the proposed method in this study with a 

modified version of the proposed method in [35] 

VI. CONCLUSION 
For solving the unit commitment problem in modern power 

systems, multiple sources of uncertainties must be considered. 
Stochastic unit commitment can effectively tackle uncertainties 
and offer an efficient solution, but at a high computational cost. 
This computational burden limits the applicability of stochastic 
unit commitment. This paper develops a novel method based on 
machine learning to reduce the computational time associated 
with preventive stochastic unit commitment. In particular, the 
trained model predicts the constraints that can be removed from 
the original problem, thus speeding up the solver. The proposed 
method offers the same accuracy as the original stochastic 
method while significantly reducing the calculation time. Sim-
ulation studies show that the reduction in calculation time is 
93% on average, compared to the original stochastic method, 
demonstrating the effectiveness of the proposed method. 
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