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Abstract— Stochastic unit commitment is an efficient method
for grid operation in the presence of significant uncertainties. An
example is an operation during a predicted hurricane with uncer-
tain line out-ages. However, the solution quality comes at the cost
of substantial computational burden, which makes its adoption
challenging. This paper evaluates some possible ways that machine
learning can be used to reduce this computational burden. First, a
set of feasibility studies is conducted. Results suggest that using
machine learning as an assistant to the stochastic unit commitment
solver is more advantageous than using it as a standalone solver.
In particular, the machine learning model is trained to facilitate
solving the problem by determining the unnecessary constraints
that can be removed from the original problem without affecting
the final accuracy. The variables that can be used as input fea-
tures/predictors or outputs for the machine learning model are de-
termined through feasibility studies. Then, an algorithm to train
and utilize a machine learning model is proposed. The method is
tested on a 500-bus synthetic South Carolina system. Various test
cases show an average reduction in solution time by more than
90% by using the trained machine learning model to assist the sto-
chastic unit commitment solver.

Index Terms— Large-scale systems, load shedding, machine
learning, ML-assisted power system operation, power outage,
power system resiliency, preventive operation, stochastic unit
commitment, severe weather, transmission line outage.

NOMENCLATURE
A. Sets

g Index of the generator, g € G

n Index of the bus, n e N

k Index of the transmission line and transformer, k € K
m Index of the monitored transmission line, m € M

s Index of the scenario, s € S

0 Index of the line outage, o0 € O

t Index of the time interval, t € T

Set of starting bus of lines

to Set of ending bus of lines

B. Parameters

c Cost of generation
¢ No-load cost for generator
cSY  Start-up cost for generator

SD
lsh

c Shut-down cost for generator

c Load shedding cost (penalty)

T Scenario possibility

PG™%* Maximum generation power by generator
PG™™ Minimum generation power by generator
F™a*  Maximum thermal capacity of the line
PTDF Power transfer distribution factor matrix

C. Variables

F Line flow vector

FC Flow canceling transactions vector

P Net nodal injected power vector

PG Generated power of a generator

pe Power demand at bus

PB"  Load shedding

u Unit commitment binary variable

v Generator start-up binary variable

x Generator Shut down binary variable

I. INTRODUCTION

nit commitment (UC) is widely used in power system
Uoperation for generation scheduling, risk analysis, and
planning in power systems [1], [2]. Simplified unit commitment
formulations, based on DC power flow, take advantage of var-
ious techniques to solve the problem [3]. While UC, even in its
simplest form, is difficult to solve, it becomes more challenging
when additional uncertainties are considered. This is the case
when a severe weather condition is predicted to hit the grid and
cause damage to the transmission network.

Stochastic Unit Commitment (SUC) is among the most effi-
cient methods for addressing uncertainties in the UC problem
[4], [5]. Solving the SUC problem with explicit modeling of
uncertainties, even with simplifying techniques, is challenging.
Over the years, researchers and system operators have made
progress in SUC problem modeling and developing solution al-
gorithms [6]. Scenario-based SUC is among the most common
approaches for modeling uncertainties within a stochastic
framework [7]. In scenario representation, a set of scenarios
over the uncertain future are defined and used to model the sto-
chastic nature of uncertainties as a set of discrete futures. To
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achieve quality results, scenario generation, reduction, and ag-
gregation must be properly performed. Generally, the higher the
number of scenarios, the better the quality of the solution; this,
however, comes at the cost of heavier computation [8]. Sce-
nario-based SUC has the primary advantage of explicitly mod-
eling the uncertainties into the problem, thus offering a reliable
solution [7]. However, its main disadvantage that limits its ap-
plications is the demanding calculation time.

SUC based on scenario representation is also linked to fore-
casting [9]. A vast literature can be found on using scenario-
based SUC to represent forecasting and the related uncertainties
in the network. As examples, [9]-[12] address the uncertainties
related to the renewable generation forecast, while [13], [14]
focus on demand forecast uncertainties. While modeling new
uncertainties into the SUC adds to the complexity of the prob-
lem, studies such as [15] claim that by using high-performance
computing systems and utilizing parallelization, it is possible to
solve the problem within an acceptable time for online and of-
fline applications with uncertainties related to generation, trans-
mission failures and demand. However, given the need for mod-
ern power systems to consider more and more uncertainties, it
is desirable to develop SUC computational approaches further.
The modern network also requires multiple sources of uncer-
tainties to be modeled to achieve an efficient solution [16]-[18].
Enhancement of modeling the SUC problem is necessary when
the scope of the target uncertainties is beyond the operation of
the system under normal conditions. An example of such an ap-
plication is when a severe weather event, such as a hurricane, is
predicted to impact the network [8], [19]. Hurricanes can cause
tens or even hundreds of transmission outages over the course
of their impact, often within a few hours. Considering possible
outages, the optimal scheduling of generators that minimizes
load shedding and enhances power system resilience can be
beneficial [15], [20]-[22]. Although these outages can be pre-
dicted in advance, the predictions include uncertainties [23].
While scenario selection for preventive stochastic unit commit-
ment during hurricanes is difficult, solving the problem within
a sufficient time can be challenging as well.

Despite having different well-known techniques for scenario
generation, reduction, and aggregation with applications in
power systems such as [7], [24]-[26], they may not be fit for
extreme cases, such as operation during a hurricane. This is due
to the probabilistic nature of line failures and that the set of pos-
sible network topologies might be extremely large [8]. An effi-
cient method to generate scenarios, called multidimensional
scenario selection (MDSS), is introduced in [8], where multiple
aspects of information regarding each uncertainty are used to
produce the preferred number of scenarios. In [27], [28], an en-
hanced formulation capable of handling multiple line outages is
introduced to model the problem as a preventive SUC problem.
While a combination of the MDSS and the formulation intro-
duced in [27] and [28] delivers a high-quality solution, the over-
all required time can still be very long for large networks. In
this paper, we evaluate the feasibility of using Machine Learn-
ing (ML) algorithms to reduce the calculation time of the SUC
problem.

ML techniques have been successfully used for more than a
decade to solve security-constrained UC problems in order to
determine dynamic security constraints, e.g. [29], or to solve

dynamic security problems, such as in [30], [31]. Reference
[32] reviews the applications of ML in energy system reliability
management, including assistance in solving the SUC problem.
Ref. [32] mentions eight studies, each proposing a model to use
ML algorithms in energy systems. References [33] and [34]
claim that it is possible to estimate the final solution when
planned outages are evaluated by utilizing ML with long offline
training time. However, with a lower quality of the final solu-
tion in SUC In [35], authors suggest that instead of solving the
complete form of transmission-constrained UC, it is possible to
use an ML model to learn about congestions in the network and
reduce the unnecessary constraints from the problem. In the
mentioned study, it is assumed that the network topology re-
mains unchanged, and the congestion patterns do not change
over the study horizon of their data-driven method. In [36], the
same authors of [33] and [34] model the UC problem as a Mar-
kov decision process and solve it by approximating the results
through reinforcement learning. Finally, [37] and [38] model
the UC as a multi-objective optimization problem and evaluate
system reliability.

This paper is different since it investigates how ML can im-
prove solution time without sacrificing accuracy and without
the need for historical data of network operation. Moreover, as
this paper's main application is the SUC when severe weather
is predicted to hit the grid, unlike most of the literature, the net-
work topology is not assumed constant. Additionally, this paper
investigates the sensitivity of a feasible solution to the error,
when an imperfect ML model is trained and used.

The general idea can be summarized as follows: The objec-
tive of the paper is to reduce the calculation time when solving
the SUC problem with multiple probabilistically predicted line
outages by using ML methods. Section II reviews the original
SUC problem and explains the use of ML to reveal the chal-
lenges of the original problem and the capabilities and limita-
tions of ML. Considering that there are different possible ways
that ML can be utilized, a feasibility study is performed in Sec-
tion III to determine how ML can help to solve the problem
faster. In Section IV, a suitable algorithm is proposed to train
the ML model(s) and use the trained model(s) to solve the SUC.
To demonstrate the quality and efficiency of the proposed
method, different numerical simulations are conducted in Sec-
tion V, and the results are discussed and evaluated, confirming
the supremacy of the proposed method. Finally, Section VI con-
cludes the paper.

II. BACKGROUND

This section explains the original SUC problem, the chal-
lenges of solving the model, and the potentials for using ML to
facilitate its solution.

A. Original SUC Problem

The goal of SUC is to minimize the expected value of the
objective function, usually operation cost, subject to physical
and reliability constraints. With high levels of uncertainties, the
objective function should include not only the generation costs
but also penalized load shedding. The failure of many transmis-
sion lines during hurricanes, and hence possible disconnection
of operating generation unit(s) or load(s), may lead to inevitable



load shedding. The objective function is defined as:
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Expression (1) is the objective function to be minimized over
all the defined scenarios in the study period. It includes the fuel
cost, no-load cost, start-up and shut-down cost related to each
generation unit, and the penalized load shedding cost. Note that
load shedding is defined as an expensive generation unit (or
negative load) at any bus with a defined load.

Equation (2) applies generation maximum and minimum
limits, (3) calculates the nodal net injection power with load
shedding modeled as a generator. G, represents the set of
generators connected at bus n. Constraint (4) keeps line flows
within the acceptable range for each transmission line. Note
that, while M) can include all lines, it can be any subset of lines
that are selected to be monitored. To be sure that the results stay
accurate, the constraints of the removed lines from M) must be

inactive or redundant. However, the quasi-active constraints
may be removed by the proposed method, as will be explained
later. Executing a post-processing step, described in Section I11-
E, the quasi-active constraints are detected and added to the
SUC. Note that quasi-active constraint refers to those not
binding constraints when they are included in the problem but
removing them will affect the results as their corresponding
variables violate their limits.

For the set of line outages, noted by O, (5) and (6), calculate
the power flow for monitored lines of the set M(y), taking into
account the effects of line outages. In (5), the first term on the
right-side of the equation calculates line power flow concerning
the normal network (without line outages) by using the power
transfer distribution factor (PTDF) concept [39], while the
second term, which is based on flow-canceling transaction
concepts [28], considers the effect of outages of lines in Oy
on the power flow of each line in m € M. FC5; ) in (5), is
an imaginary power flow variable in flow-canceling transaction
method and its calculation depends on the operation point of the
system. Note that, at the same time, the solution of the SUC
problem depends on the effect of line outages through FCs,
while for the calculation of each FC the system operation point
should be known. Hence, it is not possible to calculate the
FC(s,t,0y outside the SUC problem. To overcome this challenge,
a system of equations and unknowns is added to the SUC as a
constraint which is presented by (6). In (6), the variables FC
depends to each other through arrays of PTDF matrix. In
accordance with flow-canceling transaction methodology
which assumes a pair of imaginary buses each with its
imaginary power injection (FC), constraint (6) adds two
equations to the problem regarding each line outage.

Constraint (7) applies power balance in the network.
Constraint (8) forces the commitment status to be the same
within all the defined scenarios (commitment variables are
modeled as first-stage variables). It should be mentioned that
(2) to (8) represent the constraints of interest in this study, while
other standard constraints, such as ramping up/down, minimum
up/down times for generators, constraints regarding allowed
values of load shedding and other network constraints are
considered as well. Those equality and inequality constraints
are modeled through (9) and (10), respectively. Readers are
referred to [27] for the complete formulation and algorithm
description.

When the abovementioned set of equations is used for large-
scale networks with multiple outages, the number of variables
and constraints becomes extremely large. Notably, (5) and (6)
are the main equations responsible for growing constraints in
numbers and complexity, as they combine standard power flow
calculations considering the effects of outages. In some studies,
such as in [40], the authors suggest combining (5) and (6) into
one simpler equation based on detecting parallel lines and lines
with power flows within their acceptable limits. However, these
techniques consider only one outage and are not applicable for
multiple line outages considered in this paper.

A promising fact in solving the SUC problem is that, while
the original problem includes many variables and constraints,



not all variables must be calculated within the optimization
process, nor all the constraints reach their limits. This suggests
that if it is possible to distinguish between the essential
variables and constraints to be included in the optimization
problem and those that are not, the problem can be solved faster.
It is worth mentioning that variables and constraints excluded
from the optimization problem can be calculated outside the
optimizer to verify the complete set of results (post-processing

step).
B. Machine Learning Concept

Machine learning has been widely adopted across various ap-
plications, over the recent past, due to the advancements both
in computational power and algorithms [41], [42]. It is expected
that increasing amounts of data, analyzed by ML methods, can
provide solutions of high accuracy and increased speed in
power system problems, such as UC [43].

Supervised machine learning algorithms can learn through
examples known as observations. Each observation consists of
inputs paired with the corresponding output(s) [44]. The train-
ing algorithm searches for patterns and correlations between in-
puts and outputs. After training, a supervised learning algorithm
for any new unseen inputs predicts the outputs. In its basic form,
a supervised learning algorithm can be formulated as:

Y= f(x),

where Y represents the predicted output(s) that is determined by
a mapping function, f, over the value of x. The mapping func-
tion used to connect inputs/features to a predicted output(s) is
created during the training process. Ideally, with enough train-
ing data to cover the whole operating spectrum of the SUC
problem, it is possible to train a perfect supervised mapping
function, f, as shown in (11). If such an ideal model existed and
could be trained, providing the input data, such as network in-
formation, expected uncertainties, and demand data, any de-
sired Y would be acquired rapidly with no need to run SUC
again. However, as repeatedly shown in the literature, achieving
such an ideal model would be very challenging, if not impossi-
ble.

(In

III. FEASIBILITY STUDY

This section aims to evaluate different possible ML applica-
tions to solve or to assist in solving the SUC problem with the
formulation as described in (1)-(10). As ML is defined based on
inputs and output(s) pairs, this section evaluates different inputs
and outputs variables to discover the most suitable candidates
for consideration as input features and outputs for the ML
model. As a feature engineering process, some candidates are
rejected, and the list is narrowed down to a few primary candi-
dates. Next, a feasibility analysis is performed for each candi-
date to determine the best options.

A. SUC cannot be Replaced by Machine Learning

As the ML model must be trained with a set of solved SUC
cases, the accuracy of the trained ML can never be better than
the original SUC solution. Hence, the primary motivation for

using a trained ML model can be only to reduce the calculation
time and/or hardware requirements while maintaining the same
accuracy as the original SUC. As a nature of an ML training
process, a large number of variables require a large number of
solved cases (known as observations) to train the ML model.
Since the solution time of SUC is long, obtaining a large enough
data set to train the ML becomes a bottleneck. On the other
hand, if the SUC problem's solution time is short enough, there
is no reason to use ML.

Due to strict SUC constraints, and because it is unlikely to
train an ML model to perfectly predict the optimal solution of
SUC, a potential alternative is to use machine learning as an
assistant to SUC to facilitate the solution process. This way, the
result is accurate as of the original SUC, but perfect ML perfor-
mance is unnecessary. This would translate into a reduced train-
ing dataset. Hence, the objective is to use the trained ML to
guess/predict the entire or a part of the final solution.

The predicted solution by ML can then be implemented into
the SUC as a warm-start (also known as advanced start or
MIP-start) to solve the case accurately and at increased speed.
However, before making it possible to use trained ML to predict
the output, one more question should be answered: what inputs
can be used as input features, and what outputs should be pre-
dicted to help solve the SUC problem, if possible at all? The
next subsections offer some insights into this question. While it
is not suggested to train a perfect ML model to predict the SUC
solution accurately in this paper, training ML to estimate opti-
mal power flow (OPF) to be used as a warm-start without in-
cluding binary variables is suggested by other studies as well,
such as [45], [46].

B. Candidate Inputs and Outputs

In SUC, the desired outputs are the commitment status (bi-
nary), the scheduled generated power (continuous) and line
flow (continuous). As the power network topology changes
slowly over time, it is probably best to train the ML model(s)
for a network structure covering the network topology and gen-
erators' data. In such a model, data expressing uncertainties are
the main input features used to train ML models. For example,
assume that 100 lines in the network are vulnerable to failure
due to a hurricane. To train the ML model, thousands of SUC
problems, known as observations, should be defined and
solved, each of which represents a possible hurricane affecting
the failure probabilities of those 100 lines. Then, the trained
model can predict the SUC solution in response to any unseen
hurricane.

In preventive operation, in case of an imminent hurricane,
continuous variables are defined as second-stage variables.
Since second-stage variables are scenario dependent, there are
many more continuous variables compared to binary variables.
Thus, considering the nature of ML, continuous variables are
harder to predict, requiring more solved cases for training.
Moreover, second-stage variables such as generation dispatch
can be easily calculated once the first-stage variables are
known. Hence, ML can predict the binary commitment varia-
bles, while an economic dispatch can be employed to calculate



generated power and line flow quickly with known commit-
ment variables. Note that other binary variables, such as start-
up and shut-down, can be derived from the commitment solu-
tion.

Alternatively, it is also possible to define another set of fic-
tional binary variables that determine whether each constraint
(such as line flow limits) is binding or not. Using these binary
variables, it is possible to reduce the number of applied con-
straints to the problem. As a reduced number of constraints
translates into lower calculation time, these binary variables are
assumed as candidate outputs for the trained ML model(s). It is
worth mentioning that when working with binary variables, the
supervised ML classification seems to be a good fit, as binary
variables can be translated into two classes, 0 and 1.

C. Test Cases and Software Selection

In this study, a synthetic grid on the footprint of South Caro-
lina with 500 buses, 597 lines, and 90 generation units is used
as the test-case. The complete system information can be found
in [47], [48]. For the load profile, we use a daily load profile, as
in [49].

The main code that handles the MIP-SUC problem is devel-
oped on the Java platform through ECLIPSE IDE [50] and uses
IBM CPLEX optimization studio ver. 12.10 [51] as the solver.
The whole software-package runs on a system with 128 GB of
memory and AMD 3900X as the processor unit.

D. Commitment Status as Output

This subsection investigates the computational time savings
if generator commitment variables could be predicted. The fea-
sibility test assumes that a trained ML exists that predicts the
commitment status at different accuracy levels from perfectly
accurate to partly inaccurate. Then, the predicted commitment
is implemented as a warm-start to SUC, and the accuracy of the
results and solution time are compared with cold-start SUC. In
this paper, cold-start SUC refers to the original SUC problem
when the solver starts from its default values to solve the prob-
lem, and no variable is predicted and applied to the solver. This
way, it is possible to evaluate how much time can be saved by
predicting commitment status with various error levels.

In general, a larger number of scenarios may result in a better
quality of the solution. As determined in [8], however, when
line outages are the main source of uncertainty, increasing the
number of scenarios from 10 to 17 for a 2,000 bus network does
not significantly improve the quality, although it substantially
increases the calculation time and hardware requirements.
Moreover, the authors found out that the number of scenarios
does not change the feasibility study's general conclusion.
Hence, as the base case, it is assumed that the original SUC
consists of 10 scenarios, ten lines with failure chance. This
takes 169 seconds to solve. Next, by using the commitment ob-
tained by solving the original SUC (serves as the perfect pre-
diction), a certain percentage of generator statuses is randomly
changed to simulate errors in predictions by the trained ML.
Next, different prediction accuracies of commitment status are
used to solve the SUC problem as warm-start models. While all
cases result in accurate optimal value for the objective function,

the solution time is highly sensitive to errors in the predicted
commitment variables. For each level of accuracy in prediction,
ten random cases are solved, and the solution times are reported
in Table L. If commitment status could be predicted with 100%
accuracy, the solution time would be reduced by 4.7%, which
is not significant.

On the other hand, even small errors in status prediction
(more than 0.3%) increase the solution time compared to the
original SUC. This can be justified considering the time
CPLEX needs to implement warm-start, verify if the solution is
feasible, and then calculate the other variables of the problem.
In case the provided warm-start solution is not accurate,
CPLEX will try to fix the solution. The overall time for imple-
mentation, verification, and repairing the solution in cases with
errors, is longer than required to calculate a first feasible solu-

tion with cold-start.
TABLE 1
SOLUTION TIME OF SUC CONSIDERING DIFFERENT LEVELS OF
ERROR IN THE PREDICTION OF THE COMMITMENT VARIABLES

Case Solution Time
(Sec.)

Original SUC 169

IAssisted with commitment variable with 0.0% error 161

|Assisted with commitment variable with 0.1% error 161~163
IAssisted with commitment variable with 0.2% error 163~167
|Assisted with commitment variable with 0.3% error 176~180
|Assisted with commitment variable with 0.5% error 182~188
IAssisted with commitment variable with 1.0% error 188~193
|Assisted with commitment variable with 5.0% error 194~201
IAssisted with commitment variable with 10.0% error|  194~202
IAssisted with commitment variable with > 10% error]  197~205

E. Suspected Limit Violating Lines as Output

As mentioned before, if the trained ML can predict con-
straints that are not binding, those constraints can be removed
from the model without impacting the final solution. Note that
as mentioned in [35], the final solution must be checked for
quasi-active constraints removed from the problem. Equations
(4) to (6) enforce constraints to the problem that are more com-
plex than others. Hence, a trained ML that removes unnecessary
constraints in these three equations can reduce calculation
times. In the following, it is assumed that a trained ML model
can predict which line violates its thermal limit, represented by
M in the formulation. The feasibility study is done in the fol-
lowing steps:

1- SUC is solved with only suspected lines included in
(4) to (6). The effect of the accuracy of these suspected
lines is discussed later.

2- Using results from step-1, power flows are calculated,
and all line flows are compared with their correspond-
ing limits to find if any violation exists. Note that vio-
lations also may include quasi-active constraints that
may have been removed from the subset of lines.

3- In case of violation, lines with flows exceeding their
thermal limits are added to M (constraints (4)-(6) re-
lated to these lines are added to the optimization prob-
lem).



4-  Steps 1 to 3 are done iteratively until there are no lines
with flows exceeding their thermal limits.

Like the previous part, to simulate trained ML models with
different accuracy levels, random lines are added to or removed
from the perfectly predicted lines to be monitored. Table II pre-
sents the average times over ten simulations. Note that, original
SUC problem is the same as the one used in Table I. In Table
II, FN is the abbreviation for False-Negative (FN) and means
that lines that should have been predicted as suspected to violate
their limits have not been predicted. In cases with FN, the SUC
model should be solved at least one additional time, as at least
one line violates its limitation in the first iteration.

According to Table II, predicting suspected lines with good
accuracy can save significant computational time, while the
quality of the final solution is the same as the original solution.
Moreover, saving is not as sensitive to errors as it was with the
commitment variables. Thus, predicting lines suspected to vio-
late their limits seems to be an appropriate candidate output of
the trained ML. Table II also suggests that the ML training pro-
cess should be tuned to prevent FN predictions even at the cost
of more FP (False-Positive) errors. As an example, in Table II,
25% of error, including FN, is worse than 50% error without
FN. It is worth mentioning that this finding is consistent with
industry practices. Industry implementations of unit commit-
ment take a list of monitored lines as their input. If such a list is
not available or not comprehensive, the solver uses heuristics to
quickly identify the binding constraints [27]. However, the ma-
jor difference between a regular unit commitment and the SUC
is that the set of binding constraints cannot be straightforwardly
identified. This is because many transmission lines may fail,
and their failure can only be predicted in a probabilistic manner.

TABLE I
SOLUTION TIME OF SUC CONSIDERING DIFFERENT LEVELS OF
ERROR IN THE PREDICTION OF SUSPECTED LINES

Case Solution Time (Sec.)
without FN| with FN
Original SUC 169
|Assisted, suspected lines with 0.0% error 8
|Assisted, suspected lines with 10% error 25 48
IAssisted, suspected lines with 25% error 51 98
|Assisted, suspected lines with 50% error 87 187
|Assisted, suspected lines with 60% error 104 197
IAssisted, suspected lines with 75% error 134 256
|Assisted, suspected lines with 100% error 308

F. Input Features

As explained before, the input features for ML training in-
clude data related to uncertainties. In SUC, uncertainties are
represented by scenarios. As the prime goal is to assist in solv-
ing the SUC problem, the input features should be scenarios or
data derived from them.

Note that the part of data that is the same for all scenarios
carries no useful information for predictions. For example, if
100 lines out of 597 lines in a network are considered vulnera-
ble to extreme weather, some of these 100 lines will have a non-

zero failure probability in different conditions. If any of these
conditions are modeled in the SUC problem, the only difference
between scenarios should be related to those 100 lines and not
all the 597 lines. Hence, scenarios regarding different condi-
tions should be worked out before used as input features.

IV. MACHINE LEARNING TRAINING AND PREDICTION
ALGORITHMS

Training ML models: The previous section determined that
predicting the set of suspected lines to violate their capacity
limit is an appropriate output of the ML model, and scenarios
should be used to form input features. To train any ML model,
a set of observations should be created. In this study, each ob-
servation represents inputs and corresponding outputs related to
a possible hurricane that affects the network, for which tem-
poral line failure probabilities can be calculated. Each observa-
tion can be defined as a multi-scenarios SUC problem. How-
ever, it seems impractical and inefficient to train ML models
based on multi-scenarios SUC. This is because the number of
engaged variables increases with the number of scenarios,
translating into a larger number of required observations.

Moreover, solving each observation takes a long time. Also,
if an ML model is trained for a specific number of scenarios, it
might not be effective for SUC with any other number of sce-
narios in its original form. For example, authors estimated that
with a network as large as 2,000 buses and 3,200 transmission
lines, and assuming less than 10% of lines are vulnerable to fail-
ure, the number of required observations for SUC with ten sce-
narios is more than 100,000 and considering that each SUC
takes 20 minutes to be solved (tested on an advanced work-
station with 128GB of memory and CPU with 24 Cores), the
total required time is four years.

Here, an alternative method to train ML models is suggested
to reduce the calculation time and make it practical for SUC
with any number of scenarios. The idea comes from the fact that
when multiple scenarios are created representing a single hurri-
cane, scenarios represent different possible damage levels pro-
voked by that hurricane. The minimum number of scenarios can
be one in which that single scenario is the worst-possible case.
For a larger number of scenarios, the level of damage modeled
within each scenario is between no damage to maximum possi-
ble damage. While scenarios represent different levels of dam-
age by a single hurricane, it is possible to assume that each sce-
nario represents maximum damage by a different hurricane. For
example, the worst possible scenario of one hurricane can be
the second-worst or n™-worst possible scenario of another hur-
ricane of higher intensity. With this assumption, it is possible to
train ML models based on single scenario problems, represent-
ing the worst-possible case of each observation, and later use
the trained models to predict suspected lines for each scenario
of the SUC to be solved individually. This is also consistent
with the provided formulation, (1)-(10), as, in the formulation,
each scenario has its own set of suspected lines that violate their
capacities.

To create a set of observations, the following steps are im-
plemented:



1. For each hurricane (observation), create the worst-case
scenario, i.e., the one with the highest possible number
of failures. The solution of a deterministic UC for this
worst-case scenario will identify the lines that reach their
capacity.

2. Determining Input: For the selected scenario in step 1,
any failed element at any time is marked. The input cor-
responding to the observation is a vector with entries set
as 1 if the element is marked, and 0 if not. The size of the
input vector is equal to the number of vulnerable ele-
ments.

3.Determining the Corresponding Output: Solve the UC
problem with the worst-case scenario from step 1, and
mark those lines that reach their capacity at any time of
the examined horizon. The output corresponding to the
observation is a vector with a size equal to the total num-
ber of lines. In this vector, any line marked as congested
will be assigned a value of 1, and 0 if not marked. While
this procedure removes the dependency of output on time
(i.e., load profile) as a capacity violation of any line at
any time triggers the corresponding variable, it will au-
tomatically consider the worst possible condition (in
term of lines reaching their capacity) and reduces the
chance of FN error.

4.Repeat steps 1 to 3 for all observations. Each observation
includes input and its corresponding output vectors.

5. Size-Reduction: As mentioned before, if any of the vari-
ables does not change over different observations, it does
not carry any useful information in ML training. Hence,
if a line never reaches its capacity over all the observa-
tions, it should be removed from the outputs. Similarly,
if an element never fails, it should be removed from the
input set.

After the abovementioned steps, the input matrix with rows
as observations and columns as features, and output matrix with
rows as observations and each column as output are created.

It should be mentioned that the ML model used falls in the
category of supervised classification. It receives multiple inputs
and predicts only one output for each observation. Hence, it is
necessary to train one ML model for each output (line included
in the outputs after applying size-reduction described in step 5),
which means the number of trained models is equal to the num-
ber of columns in the reduced form of the output matrix.

Prediction Through the trained ML models: To predict the
desired outputs for an unseen event/hurricane, the SUC problem
should be formed with its scenario set. Next, for each scenario,
the input vector should be created, as explained in step 2. Then,
this vector of features should be deployed into the trained ML
models. The predicted output of each model is either 1 (line
should be monitored) or 0 (line does not need to be monitored).
After repeating the same process for all the scenarios, My is
predicted. Finally, the SUC problem is solved by following the
steps presented in Section III-E.

V. SIMULATION STUDIES
To demonstrate the efficiency of the proposed ML-assisted

SUC algorithm, the same network as in the feasibility study is
used in this section to simulate 24 hours. In this paper, 40 out
of 597 transmission lines are considered vulnerable to failure
due to extreme weather events. While a larger number of lines
was included in the vulnerable set, this would divide the net-
work into islands.

Training ML Models: The ML models should be trained with
as many as possible different combinations of the status of those
40 vulnerable lines as observations. Equation (12) provides the
number of possibilities to select X items out of Y possible op-
tions when order does not matter.

Y!

= NT= (12)

N
Even without considering when each failure happens, there
are more than 10E+12 different combinations of outages. Ob-
viously, it is not possible to solve all these possible combina-
tions to train the ML models. Hence, a limited number of ob-
servations should be selected efficiently. To increase the effi-
ciency of the training set, the number of observations regarding
the number of outages should follow the normal distribution, as
in (12) (as shown in Fig. 1). For example, observations with 20
outages should have the highest number.
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Fig. 1. Graphical representation of (12) when Y equals 40 and X changes from
0 to 40.

To enhance the efficiency further, some exceptions are made,
i.e., forty of the selected observations are reserved for an outage
of a single line, one observation is reserved for the case with no
outage, and one observation for the case of all 40 outages. After
the number of observations for each value of X is determined,
the outages and their time of failure are generated randomly
based on their failure probabilities. Next, a single scenario SUC
is solved to create the output corresponding to each observation.

An adequate number of observations is identified as the min-
imum number of observations, for which the accuracy of the
trained model reaches saturation. For the test-case, the accuracy
of the trained ML model reaches a satisfactory performance
with 5,000 observations. However, to ensure high accuracy,
20,000 observations are used.

The problem is modeled as a supervised classification ML
model, defined as "Ensemble Method: Bagged Trees," with the
number of learners equal to 100 and the maximum number of
splits of 8,999. 10% of the observations are used for validation
to prevent over-fitting, and 5% of observations are kept to as-
sess the accuracy of the model after training. The total accuracy



of the trained model when it was used for 1,000 unseen cases is
99.3%. Detailed accuracy results are shown in Fig. 2. As is
shown, only 3 FN (0.3%) and 4 FP (0.4%) predictions were ob-
served. It is worth mentioning that 2 out of 3 FN predictions
were related to the same line, line “183”, which is a line that
violates its capacity only in 5 out of 20,000 observations used
for ML training; thus, it has a high chance of FN prediction.

It is worth mentioning that after the dataset is created (in 5 hours
of computational time), the overall training time is less than 180
seconds, and most of it is spent on loading the large dataset of
observations from the hard drive into the trainer.

True Class

99.6%

1
Predicted Class
Fig. 2. Confusion matrix for the trained ML model. Black represents correct
prediction and white incorrect prediction.

Using the Trained Model to Assist Unseen SUC Problem:
Once the training process is complete, the trained models are
ready to assist in solving any unseen SUC problem. To evaluate
the effectiveness of the proposed method, different SUC prob-
lems are created and solved with both methods: Original SUC
and ML-Assisted SUC.

The SUC problems are created with different numbers of line
outages (i.e., different hurricane intensities). They cover zero to
30 possible outages, where each outage may happen at any ran-
dom time of the examined horizon. The scenario set regarding
each SUC problem consists of ten scenarios. The optimization
problem is formulated as described briefly in Section II and ex-
plained in detail in [27]. Fig. 3 illustrates the solution time for
both methods and different SUC problems (for every possible
number of line-outages, ten randomly generated problems are
solved). As shown, the solution time with the ML-Assisted
method is significantly reduced compared to the original SUC
solution.

More specially, the ML-Assisted model reduces the calcula-
tion time by 90% on average (within 75% minimum and 97%
maximum time reductions) for the different SUC problems.
Simultaneously, the value of the objective function, commit-
ment status, and line flows are similar in both methods within a
defined MIP gap of 1% in CPLEX.

Another measure of the performance of the proposed algo-
rithm is the accuracy of trained ML in predicting suspected
lines to violate their capacity. Among different SUCs, the
trained ML model perfectly predicted the suspected lines for all
scenarios. While no FN was observed within the simulations in
this section, even for cases with FN, when post-processing re-
veals a line violates its capacity, the total calculation time is still

much less than the original SUC. Moreover, to show the effect
of predicting suspected lines on the complexity of SUC, the
number of implemented constraints is shown in Table III for the
original and ML-Assisted models. This clearly shows the rea-
son for the significant reduction in computation time with the
proposed method.
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Fig. 3. Solution time for the original SUC and the proposed ML-Assisted SUC
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TABLE III
COMPARISON OF ORIGINAL SUC AND ML-ASSISTED SUC:
NUMBER OF IMPLEMENTED CONSTRAINTS CORRESPONDING TO

TRANSMISSION LINES
Number of Line Out- Number of Constraints.Regarding Transmission
ages — Lines -
Original SUC ML-Assisted SUC
0 143,280 720
5 143,574 1,014
10 144,084 1,524
20 144,608 2,888
30 145,416 3,936

Effect of Load Profile: The ML model is trained based on the
default/predicted load profile. To investigate the impacts of dif-
ferent load profiles on the efficiency of trained models, a new
load profile is used, with a maximum demand all the time. Sim-
ilar to Fig. 3, solution times for both methods and all test cases
are shown in Fig. 4. The ML-Assisted SUC is superior in all
cases. Moreover, even in this extreme case, the accuracy of pre-
dicting suspected lines remains the same. Thus, the proposed
method can be trained with load earlier forecasts and used with
near-landfall forecasts. This way, the changes in the load profile
will be minimal. Note that fluctuations in Fig. 4 are results of
randomly selected times that lines fail.

Effect of Congestion: The effect of different congestion lev-
els is evaluated by derating the capacity of all lines to 90% of
their original capacity. Using the reduced transmission capaci-
ties, the ML training process is repeated. With the original op-
erating limits, 63 lines reached their capacity during the entire
training process. From 63 observed lines, 31 reach their capac-
ities in more than 1% of observations and 17 in less than 0.1%
of the observations. When the line capacities were reduced to
90%, the total number of suspected lines increased to 88 lines,
with 42 of them in more than 1% and 16 lines in less than 0.1%
of observations. Fig. 5 represents a histogram of the first 25
highly observed lines in both normal and congested networks.
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Fig. 4. Solution time for the original SUC and the ML-Assisted SUC when de-
mand is at its maximum all times.

Solution Time (Sec.)
I
S

wn
(=3

100%

3

2 £ 80%

g &

S a

8 o0

53 60%

2=

S8 40%

g

o O

B2 20%

m
L L e e e e S s

Line Number

m Congested Network ~ =Normal Network = Difference

Fig. 5. Histogram of the first 25 highly observed lines reaching their capacities
for normal operation and increased congestion cases.

As expected, the number of observations of lines that reached
their capacity increases in the congested network. There are two
lines, ‘229’ and 283’, that never reach their capacities in nor-
mal operation, contrary to the congested network. Finally, the
average accuracies of the trained models are almost the same,
with 99.3% accuracy for the original network and 99.0% for the
congested network. This indicates that the proposed method
keeps its performance when network congestions are increased.

A possible solution to reduce the chance of FN error is to
train the MLs with lower line capacity limits and use them for
the original network. This is evaluated by using two sets of
trained MLs, one trained with normal and the other with lower
capacity limits. Both are used to solve the same 1,000 unseen
problems with normal network conditions (no increase in con-
gestion). While the overall accuracy stays almost the same
(99.2% with the congested network in comparison with 99.3%
accuracy of the original model), the FN error rate reduced to
0.2%, and FP error rate increased to 0.6%. As the effect of FN
on solution time is much higher than FP, this practice can be
recommended, especially if the accuracy of the trained ML
models is relatively low.

Final Remarks: The rest of this section clarifies a few poten-
tial questions and remarks.

Remark 1: Since the ML model is trained based on single
scenario UCs, why not solving that single scenario UC before
the original SUC to determine the violations instead of predict-
ing them through ML? To address this question, the authors

have tested the same cases with both methods: one with ML-
assisted SUC and the other with detecting the violations by
solving a single scenario UCs before solving the main SUC.
Fig. 6 demonstrates that ML-assisted SUC is always faster. The
difference between the methods increases as the number of out-
ages increases. The reason for the faster solution of the ML-
assisted SUC is that although the ML model is trained based on
a single scenario UC, it can predict the lines for all individual
scenarios of SUC. We would like to clarify that the same set of
suspected lines is not used for all the scenarios within the sce-
nario set; rather, each scenario independently obtains its own
set of estimated binding constraints using ML.
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Fig. 6. Comparison between ML-assisted SUC and SUC with single, worst-case
UC solved before the main SUC.

On the other side, pre-solving single scenario UCs to deter-
mine the suspected lines regarding all the scenarios in the set
requires solving the single scenario UCs as many times as the
number of scenarios in the SUC problem. While it is possible
to solve the UC for only the scenario with the highest number
of outages within the scenario set, this will apply an unneces-
sarily large number of suspected lines to the rest of the scenarios
and increase the overall solution time of SUC. While pre-solv-
ing the single UCs can reduce the total solution time in compar-
ison with the original SUC problem, it is always inferior to the
ML-assisted SUC, with its near-instantaneous predictions.

Remark 2: An alternative method to the proposed ML-
assisted model may be to solve the SUC problem by consider-
ing only the worst-case scenario and then use the calculated
commitment variable as the first stage variable to serve as
warm-start values to solve the original SUC problem. The mo-
tivation is that while solving a single scenario UC needs its own
additional time, solving SUC with a feasible solution as warm-
start can save more time to compensate that additional time and
reduces the total calculation time.

The authors used the same test cases as in the previous sec-
tions to evaluate this idea. It was shown that using commitment
variables obtained from the worst-case as a warm-start for the
SUC increases the total calculation time significantly. As an ex-
ample of the calculations, solving the original SUC problem
with 20 outages needs 205 seconds. The UC, with only the
worst-case scenario, needs 26 seconds to be solved. After that,
the warm-start SUC needs another 276 seconds to be solved.
The total calculation time is increased significantly from 205



seconds to 302 seconds. The same pattern was observed with
any other case with outages. The calculation time with warm-
start is increased in comparison with the original SUC because
the commitment corresponding to worst-case is too conserva-
tive for other scenarios. As a result, the objective value is far
from its optimal value. CPLEX tries to fix the provided solu-
tion. However, fixing a solution far from the optimal one takes
more time than cold start.

Remark 3: In the dataset production, (12) was used to deter-
mine the maximum number of outages for each observation,
while the rest of the dataset was generated randomly for time,
location, and the possibility of each outage. A possible question
is if any improvement of the proposed method can be achieved
by a totally random generated dataset of observations.

To assess this, two sets of observations, one based on the
proposed algorithm presented and one randomly generated. The
same supervised classification is used to train both ML models.
A comparison of the results shows that the same set of sus-
pected lines is determined. However, for some of the lines, the
number of observations in which they reached their capacity is
slightly different.

To compare the two trained MLs, two factors are compared;
the average accuracy of prediction and accuracy of prediction
related to important lines. Important lines are lines that will
most probably reach their capacity in the highest number of un-
seen cases. These are shown in descending order in the histo-
gram of Fig. 5. The average accuracy of MLs for all the sus-
pected lines with the proposed method is 99.3%, and the accu-
racy with random observations is 97.2%. In terms of individual
accuracies related to each line, Fig. 7 represents the results for
20 of the most observed lines to reach their capacity (left side
of the histogram). The proposed method enhances the total av-
erage accuracy of the trained model in comparison with ran-
domly generated observations.
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Fig. 7. Accuracy of trained MLs when predicting each individual line

Remark 4: There are not many papers in the literature ad-
dressing the problem of this paper. In order to prove the superi-
ority of the proposed method, results are compared with the
most relevant method proposed in [35]. In [35], the authors sug-
gest the use of historically recorded information to analyze the
operation of the network and exclude inactive and redundant
constraints corresponding to thermal violations from the SUC
formulation. The historical data includes the system state (e.g.,

power flows) under several scenarios of known net demand.
They determine (predict) lines with active constraints in the UC
problem by the K-nearest neighbors (KNN) technique to find
the closest historical system states that best represent the current
system state in terms of load demand. The distance between the
historical system states and the current state is calculated based
on the net demand of each bus, using the PTDF as weighting
factors.

The main difference with the method proposed in this paper
is that the method in [35] does not consider any change in the
network topology (line outages are not considered) over the
study period, and the K neighbors are determined in terms of
nodal demand. In the proposed method in the current paper, the
network topology changes dramatically, and the K-nearest
neighbors should be determined by the lines’ status (online or
damaged). Another assumption in [35] is that data about the sta-
tus of the network are available, which for the application of the
current paper, not enough data is normally available. There-
fore, in order to make a fair comparison between the two meth-
ods, it is assumed that data are available for the different net-
work topologies. These are generated through simulations of
different possible hurricanes and are the same as the ones used
in this study to train the ML model.

To implement the method of [35], the following steps are
taken:

1. A vector d with a dimension of L is defined for each
historical system state. In general, L is the number of
lines, and in compact form, it can be the number of at-
risk lines to a hurricane. Each array of d, d,, is 1 if line
[ is online and 0 otherwise. For each historical system
state, the non-congested lines are also recorded. Note
that, historical system state for this method is the same
as observation for the ML model.

2. For each simulated historical state of the system, a unit
commitment problem is solved, and statuses of all lines
(congested or not) are determined. Line statuses vector,
S, is the same as in [35].

3. Pairs of (d, S) are used in the KNN method to determine
the closest historical state when S should be predicted
for an unseen case (hurricane), d.

4. The K-nearest neighbors of each scenario are deter-
mined based on the Euclidean distance between d and
d. As the outages of lines are the main uncertainty var-
iable instead of net demand, the Line Outage Distribu-
tion Factor (LODF) is used as a weight factor (instead
of PTDF).

5. Note that, as the outage of lines and also the congestion
status of lines are modeled as binary variables, the de-
pendency of the model to time is removed from all
equations in [35].

Fig. 8 is used to compare the accuracy of both methods when
predicting suspected lines to reach their capacities. Ten differ-
ent unseen hurricanes are applied to the network, and the origi-
nal SUCs are solved to determine the true lines that reach their
capacities. Then the same hurricanes are used in both methods,
and each method predicts its own set of suspected lines. Results



are compared in terms of total average accuracy, FN and FP
error rates. In Fig. 8, lines on the horizontal axis are sorted
based on their probabilities to reach their capacities (going from
left to right, the chance of violating capacity goes lower by each
line). For example, line ‘144’ was observed to reach its capacity
in almost all the observations (within 20,000 randomly gener-
ated), while line ‘183’ only reaches its capacity in 4 observa-
tions (rate of 0.02%).

The proposed method in this paper predicted 37 out of 38
occasions correctly, with 1 FP (line 395°, hurricane ‘9°), and 1
FN (line ‘183’, hurricane ‘1’). The modified version of the
method in [35] predicted 26 out of 38 correctly and had 1 FP
and 12 FN. As seen, the rate of FP is the same, however, the FN
error which significantly affects the solution time of the SUC is
much higher with [35]. This is the main advantage of the pro-
posed method for the under-study problem with severe weather
conditions. It should be mentioned that, as recommended in
[35], larger values for K parameter in KNN reduce the rate of
FN errors, however, this comes at the cost of a higher FP rate.
In any case, for K=[5-100], the method in [35] never reached
the accuracy of the proposed method in the current study. Over-
all, within 1,000 unseen hurricanes, the total accuracy of pre-
diction by [35] was 95.9%, with 0.4% of FP rate and 3.7% of
FN rate.

It should be noted that for a high number of outages, the pro-
posed method will be much faster than the method in [35] be-
cause of the much lower FN rate. Note that normally, as the
number of outages increases, the chance of violating thermal
capacity for lines increases, which means an increase in FN rate.
As an example, the average calculation times for SUC with 5
outages are 5 seconds with the proposed method and 5.5 sec-
onds with the method of [35], while for 30 outages, the corre-
sponding times are 62 seconds and 132 seconds, respectively.
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Fig. 8. Comparison of accuracy of the proposed method in this study with a
modified version of the proposed method in [35]

VI. CONCLUSION

For solving the unit commitment problem in modern power
systems, multiple sources of uncertainties must be considered.
Stochastic unit commitment can effectively tackle uncertainties
and offer an efficient solution, but at a high computational cost.
This computational burden limits the applicability of stochastic
unit commitment. This paper develops a novel method based on
machine learning to reduce the computational time associated
with preventive stochastic unit commitment. In particular, the
trained model predicts the constraints that can be removed from
the original problem, thus speeding up the solver. The proposed
method offers the same accuracy as the original stochastic
method while significantly reducing the calculation time. Sim-
ulation studies show that the reduction in calculation time is
93% on average, compared to the original stochastic method,
demonstrating the effectiveness of the proposed method.
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