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A B S T R A C T

Demand response is an emerging application of smart grid in exploiting timely interactions between utilities
and their customers to improve the reliability and sustainability of power networks. This paper investigates
the joint coordination of demand response and AC optimal power flow with curtailment of renewable energy
resources to not only save the total amount of power generation costs, renewable energy curtailment costs and
price-elastic demand costs but also manage the fluctuation of the overall power load under various types of
demand response constraints and grid operational constraints. Its online implementation is very challenging
since the future power demand is unpredictable with unknown statistics. Centralized and distributed model
predictive control (CMPC and DMPC)-based methods are respectively proposed for the centralized and
distributed computation of the online scheduling problem. The CMPC can provide a baseline solution for
the DMPC. The DMPC is quite challenging that invokes distributed computation of a nonconvex optimization
problem at each time slot. A novel alternating direction method of multipliers (ADMM)-based DMPC algorithm
is proposed for this challenging DMPC. It involves an iterative subroutine computation during the update
procedure of primal variables that can efficiently handle the difficult nonconvex constraints. Comprehensive
experiments have been conducted to test the proposed methods. Simulation results show that the gap in
objective values between the DMPC and its baseline counterpart (CMPC) are all within 1%, further verifying
the effectiveness of the proposed ADMM-based DMPC algorithm.
1. Introduction

Smart grid is termed as the next-generation energy networks, which
integrate distributed generators (DGs), renewable energy resources
(RES), controllable loads, smart sensors and advanced metering infras-
tructure to enable two-way digital communications between utilities
and their customers [1,2]. It is expected to provide sufficient and
significant technology support for demand response (DR), in which
the customers adapt their patterns of energy consumption in response
to the fluctuation of electricity price or incentives provided by the
utilities [3]. DR is widely accepted as a viable solution to promote
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interactions between the utilities and customers in reducing the overall
power load at peak hours or during system contingency for the sys-
tem reliability and sustainability improvement [4]. Furthermore, by
integrating DR, the overall plant cost and capital investment can be
reduced and the upgrade of power networks can be flexibly postponed
in the long term [5]. For example, integrating DR and energy storage in
combined cooling, heating, and power systems can reduce system total
cost by 14.66% [6]. Nowadays, DR is an indispensable component of
the smart grid so it is certainly an attractive research topic.
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Nomenclature

Abbreviations

ADMM Alternating direction method of multipli-
ers.

DMPC Distributed model predictive control.
DR Demand response.
RES Renewable energy resources.
SDR Semidefinite relaxation.
AC-OPF Alternating current optimal power flow.
DC-OPF Direct current optimal power flow.
DR-OPF Coordination between demand response

and AC optimal power flow.

Constants

𝜂 Weighting factor to trade-off the cost
minimization and load fluctuation.

𝜃𝑘𝑚 Voltage phase balance limitation of power
line (𝑘, 𝑚) ∈ .

𝑃
𝑔
𝑘(𝑡) Upper bound of the active power gen-

eration of node 𝑘 ∈  at time slot
𝑡.

𝑃
𝑟
𝑘(𝑡) Active RES generation of node 𝑘 ∈  at

time slot 𝑡.
𝑄

𝑔
𝑘(𝑡) Upper bound of the reactive power gen-

eration of node 𝑘 ∈  at time slot
𝑡.

𝑄
𝑟
𝑘(𝑡) Reactive RES generation of node 𝑘 ∈  at

time slot 𝑡.
𝑃 𝑔
𝑘(𝑡) Lower bound of the active power gen-

eration of node 𝑘 ∈  at time slot
𝑡.

𝑄𝑔
𝑘(𝑡) Lower bound of the reactive power gen-

eration of node 𝑘 ∈  at time slot
𝑡.

ℎ𝑡 Elastic supply capacity at time 𝑡.
𝑃𝑎𝑣𝑔 Average power demand during the time

period  .
𝑟𝑘 Minimal power needed to complete the

daily task of node 𝑘 ∈  .
𝑆𝑘𝑚 Power capacity of line (𝑘, 𝑚) ∈ .
𝑦𝑘𝑚 Admittance of line (𝑘, 𝑚).
𝑉 𝑘 Upper bound of the amplitude of voltage

injection at node 𝑘 ∈  .
𝑉 𝑘 Lower bound of the amplitude of voltage

injection at node 𝑘 ∈  .
𝑃
𝑐
𝑘(𝑡) Upper bound of the curtailable demand of

node 𝑘 ∈  at time slot 𝑡, respectively.
𝑃
𝑓
𝑘 (𝑡) Upper bound of the flexible demand of

node 𝑘 ∈  at time slot 𝑡, respectively.
𝑃 𝑙
𝑘(𝑡) Critical demand of node 𝑘 ∈  at time slot

𝑡.

Sets

 Set of nodes with RES.

DR to improve energy efficiency and stabilize electricity price has
een widely studied over the past few years. In [7], an incentive price
echanism was proposed for DR to ensure the users’ truthfulness.
problem of residential energy consumption scheduling under price
2

 Set of nodes with generator.
 Set of subsystems.
 Set of power flow lines.
 Set of nodes.
 Set of time period.

Variables

𝐖(𝑡) Semidefinite matrix variable introduced
to transfer the nonconvex power flow
constraints with voltage product.

𝑃 𝑔
𝑘 (𝑡) Active power generation by generator bus

𝑘 ∈  at time 𝑡.
𝑃 𝑟
𝑘 (𝑡) RES curtailment of node 𝑘 ∈  at time slot

𝑡.
𝑄𝑔

𝑘(𝑡) Reactive power generation by generator bus
𝑘 ∈  at time 𝑡.

𝑉𝑘(𝑡) Complex voltage variable of node 𝑘 ∈  at
time 𝑡.

𝑃 𝜙
𝑘 (𝑡) Auxiliary variable that collects the flexible

demand, thermal demand and curtailable
demand of node 𝑘 ∈  at time slot 𝑡,
respectively.

𝑃 𝑐
𝑘 (𝑡) The curtailable demand of node 𝑘 ∈  at

time slot 𝑡.
𝑃 𝑑
𝑘 (𝑡) Auxiliary variable that represents the total

demand of node 𝑘 ∈  at time slot 𝑡.
𝑃 𝑓
𝑘 (𝑡) The flexible demand of node 𝑘 ∈  at time

slot 𝑡.
𝑃 ℎ
𝑘 (𝑡) The thermal demand of node 𝑘 ∈  at time

slot 𝑡.

uncertainty and game interaction together with temporally-coupled
DR constraints was studied in [8,9]. DR under spatially and tempo-
rally coupled constraints was addressed in [10] by a fast distributed
algorithm, which is based on dual decomposition. In [11], a home
energy management controller was proposed to minimize the daily
curtailed energy in response to dynamic electricity pricing. This control
problem is mathematically formulated by a mixed integer nonlinear
optimization problem, which is then computed iteratively by an outer
approximation algorithm. An incentive-based DR model for multiple
energy carriers considering uncertainty of renewables and consumers
was proposed in [12]. It should be emphasized that all the aforemen-
tioned works do not address the power grid operational constraints such
as power balance, line capacity, and voltage and phasor bound in the
DR, limiting the proliferation of DR in practical applications.

Recently, coordinations between DR and economic dispatch were
initialized in [13], where the social welfare is maximized under the
power balance constraints. Sharma et al. [14] investigated the co-
ordination between DGs, battery energy storage systems and DR in a
distribution network. This problem was formulated as a multi-objective
optimization, which was solved by a genetic algorithm of centralized
computation. A hierarchical control framework for the coordination
between distributed energy resources and DR in a distribution net-
work was proposed by Wu et al. [15]. A consensus-based distributed
method was employed to handle the coordination problem. However,
the important nodal voltage and its corresponding constraints were
ignored in the model formulation of [15]. The authors in [16] examined
DR in a time scheduling DC optimal power flow (DC-OPF) frame-
work, which aims to minimize the total costs of generation and elastic
power demand under the power grid operational and demand response
constraints. An alternating direction method of multipliers (ADMM)
approach in distributed computation is then employed to address this
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problem of convex optimization. The important issue of compensating
the system error due to the DC approximation was not analyzed. In
addition, DC-OPF is particularly unsuitable for distribution networks
due to relatively low line X/R ratio [17,18]. Therefore, DR in an AC-
OPF framework, which involves nonconvex but practical power flow
constraints is more desirable compared to DR in the DC-OPF one in
distribution networks. For simplification, coordination between DR and
AC-OPF in this paper is abbreviated as DR-OPF.

As another important component in smart grid, RES should be taken
into account for the DR-OPF. The output of RES is uncertain due to
the random nature of meteorological factors [19]. To maintain a real-
time balance between power demand and generation in smart grid,
abundant renewable energy may have to be curtailed. Although con-
ventional DGs can be scheduled to address the uncertainty issue when
the RES is integrated to grid, it may not possible to provide sufficient
support for high penetration of RES, which may trigger the likelihood
of grid overvoltage conditions in smart grid [20]. RES curtailment by
adjusting the real and reactive powers from renewable sources is thus
needed to maintain the voltage stability. Therefore, RES curtailment
should be considered in the DR-OPF coordination problem. As a recent
work [20] showed, with the integration of high penetration of RES,
the existing semidefinite relaxation (SDR) methods [21] for AC-OPF
problem became inexact and thus lead to infeasible solution even for
radial distribution networks.

DR-OPF coordination with RES curtailment can be driven either by
centralized or distributed controllers. Central controller coordinates the
whole system operation by using the full information access [22]. The
system is prone to disruption once the centralized controller is in out-
age. Additionally, the computational and communication cost increases
dramatically with the increase of system size since the centralized
controller has to exchange the information with all the participants.
Distributed controller of local controllers in each subsystem has at-
tracted a serious attention [23,24]. Its first advantage is the reduction
of computation power and communication bandwidth especially for
large-scale systems. Moreover, it is capable of improving the system
robustness and reliability even when contingency occurs. Importantly,
unlike the centralized controller, which relies on gathering users’ pri-
vate data such as load profiles, the distributed controller can alleviate
the potential concerns of privacy and security problems.

Nowadays, model predictive control (MPC) has emerged as a natural
tool for online scheduling in power systems. A centralized MPC for
power allocation in a plug-in electric vehicle with energy storage
system was presented in [25]. A distributed MPC (DMPC) for energy
systems was presented in [26], where a decomposition method was
proposed to solve the large scale problem. In [27], a DMPC framework
was developed to handle a combined environmental and economic dis-
patch problem. To the best of the authors’ knowledge, there is no work
on MPC for the joint coordination of DR-OPF with RES curtailment to
not only minimize the total social costs consisting of power generation
costs and RES curtailment costs and price-elastic demand costs but also
manage the fluctuation of load demand under various demand response
constraints and grid operational constraints. Its online implementation
is very challenging because the future demand by appliances such
as washing machines, dish washers, tumble dryers, electrical vehicles
(EVs), etc. is unpredictable with unknown statistics, preventing the
application of the conventional MPC [28]. Worse, the joint DR-OPF
coordination with RES curtailment is inherently a difficult nonconvex
optimization problem, which also raises computational intractability.
Only very recently, a nonsmooth optimization algorithm was proposed
in [29] for efficient computation of this type of nonconvex problems.
To tackle the challenge in online computation for this problem, this
paper proposes a novel DMPC, which does not require to predict future
elastic power demand. Distributed computation is proposed to provide
accurate coordination for the whole system and secure coordination
3

with respect to users’ privacy. a
The main contribution of this paper is four-fold:

• This paper investigates online scheduling for joint coordination of
demand response and AC-OPF problem, which considers various
types of DR constraints, comprehensive power grid requirements
and high penetration of RES curtailment. This problem is prac-
tical and attractive for smart grid although it is computationally
intractable due to the nonconvex power flow constraints.

• In addition to minimization of the total operational costs, fluc-
tuation of the overall load demand consisting of both baseline
demand and price-elastic demand is flatted by regulating the total
violation between real-time power demand and average power
demand during the whole time horizon.

• The DR-OPF coordination is tackled in a distributed way, which
can reduce computation and communication bandwidth espe-
cially for large-scale systems, improve system robustness and
reliability, and alleviate the potential concerns of privacy and
security issues.

• A novel ADMM-based DMPC algorithm is proposed for the online
and distributed computation the DR-OPF coordination problem. It
involves an iterative subroutine computation during the update
procedure of primal variables that can efficiently handle the
difficult nonconvex matrix rank-one constraint. A basic ADMM
algorithm without this subroutine procedure may not even locate
a feasible solution for this problem.

The rest of the paper is organized as follows. Section 2 is devoted
to modeling of the multi-objective DR-OPF coordination with RES
curtailment. Section 3 proposes a DMPC for its online implementation
to maintain the network reliability and preserve users’ privacy. A
comprehensive simulation is conducted in Section 4 to confirm the
viability of the proposed DMPC. Conclusions are drawn in Section 5.

Notation. 𝑗 denotes the imaginary unit; 𝑀 ⪰ 0 means that 𝑀 is a
Hermitian symmetric positive semi-definite matrix; 𝗋𝖺𝗇𝗄(𝑀) is the rank
of the matrix 𝑀 ; ℜ(⋅) and ℑ(⋅) denote the real and imaginary parts
f a complex quantity; 𝑎 ≤ 𝑏 for two complex numbers 𝑎 and 𝑏 is
omponentwise understood, i.e. ℜ(𝑎) ≤ ℜ(𝑏) and ℑ(𝑎) ≤ ℑ(𝑏); ⟨., .⟩ is
he dot product of matrices, while 𝖽𝗂𝖺𝗀{𝐴𝑖} denotes the matrix with
iagonal blocks 𝐴𝑖 and zero off-diagonal blocks; the cardinality of a set
is denoted by ||.

. System model and problem formulation

A smart grid that integrates a power grid, demand response, renew-
ble energy resource and other interconnected smart grids, is shown in
ig. 1. This paper considers a distribution network with a set of buses
≜ {1, 2,… , 𝑁} connected through a set of lines  ⊆  × . Bus 𝑘

s connected to bus 𝑚 if and only if (𝑘, 𝑚) ∈ . Denote by  (𝑘) the set
f other buses connected to bus 𝑘.  ⊆  and  ⊆  are the sets of
hose buses that are connected to DGs and RESs, respectively. Each bus
s connected with active power demand 𝐸𝑘 and reactive power demand
𝑙
𝑘.

.1. Demand response

Electrical appliances can be generally classified into four categories:
ritical appliances, flexible appliances, thermal appliances and curtail-
ble appliances. Critical appliances usually come from appliances such
s refrigerators, electric cookers, etc. The power demand of critical
ppliances should be fixed without intervention during the specific time
nterval. Flexible appliances include the appliances whose power pro-
iles can be controlled in response to electricity price variations whilst
chieving their required energy usage during the period of operation.
or example, EVs need to be charged to users’ preferred status but the
harging rate can be managed flexibly. Thermal appliances are those

ppliances that are used to maintain the indoor temperature within a
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Fig. 1. The structure of a smart grid.
preferred range. Curtailable appliances include the appliance that can
be turned off by operators to meet power demand requirements.

Different types of appliances will lead to different types of power
demands in smart grid, i.e. critical demand, flexible demand, thermal
demand and curtailable demand. Thus, we can divide the time period
into 𝑇 time slots  ≜ {1, 2,… , 𝑇 }, and denote by 𝑃 𝑑

𝑘 (𝑡), 𝑃 𝑙
𝑘(𝑡), 𝑃 𝑓

𝑘 (𝑡),
𝑃 ℎ
𝑘 (𝑡) and 𝑃 𝑐

𝑘 (𝑡) the total demand, critical demand, flexible demand,
thermal demand and curtailable demand of node 𝑘 at time slot 𝑡,
respectively.

The critical demand is independent of electricity price and can be
predicted according to the historical data. In this paper, the critical
demand 𝑃 𝑙

𝑘(𝑡) is assumed to be known beforehand.
The flexible demand is managed based on electricity price, provid-

ing that its accumulation must exceed a given threshold in order to
complete the corresponding tasks each day. Accordingly, the flexible
demand 𝑃 𝑓

𝑘 (𝑡) is subject to the following constraints:
∑

𝑡∈
𝑃 𝑓
𝑘 (𝑡) ≥ 𝑟𝑘, 𝑘 ∈  , (1)

0 ≤ 𝑃 𝑓
𝑘 (𝑡) ≤ 𝑃

𝑓
𝑘 (𝑡), 𝑘 ∈  , 𝑡 ∈  , (2)

where 𝑟𝑘 is the minimum power needed to complete the daily task
of node 𝑘 and 𝑃

𝑓
𝑘 (𝑡) represents the upper bound of the flexible power

demand of node 𝑘 at time slot 𝑡.
The thermal power demand is consumed to preserve the indoor

temperature within the user preferred settings. Following [11], the
dwelling temperature 𝑇 𝑖𝑛 at each time slot 𝑡 + 1 at node 𝑘 can be
calculated by

𝑇 𝑖𝑛
𝑘 (𝑡 + 1) = 𝜖ℎ𝑇

𝑖𝑛
𝑘 (𝑡) + (1 − 𝜖ℎ)(𝑇 𝑜𝑢𝑡

𝑘 (𝑡) + 𝛼𝑃 ℎ
𝑘 (𝑡)), 𝑘 ∈  , (3)

where 𝑇 𝑖𝑛(𝑡) and 𝑇 𝑜𝑢𝑡(𝑡) respectively represent the indoor and outdoor
temperature, 𝜖ℎ ∈ (0, 1) is an inertia factor of the system and 𝛼 is
a parameter related to the thermal conductivity and the coefficient
of performance. To maintain the indoor temperature within the user
preferred interval, the following constraint is imposed:

𝑇 ≤ 𝑇 𝑖𝑛(𝑡) ≤ 𝑇 , 𝑘 ∈  , 𝑡 ∈  , (4)
4

𝑙 𝑘 𝑢
where 𝑇𝑙 and 𝑇𝑢 are respectively the lower and upper bound of pre-
ferred temperature. If 𝑇 𝑜𝑢𝑡(𝑡) < 𝑇𝑙, then 𝛼 is a positive parameter; if
𝑇 𝑜𝑢𝑡(𝑡) > 𝑇𝑢, then 𝛼 is a negative parameter; otherwise, 𝛼 and 𝑃 ℎ

𝑘 (𝑡) will
be 0.

The curtailable demand represents the demand that is interruptible
during the operation period. Denoting by 𝑃

𝑐
𝑘(𝑡) the upper bound of the

curtailable demand, 𝑃 𝑐
𝑘 (𝑡) should be bounded by

0 ≤ 𝑃 𝑐
𝑘 (𝑡) ≤ 𝑃

𝑐
𝑘(𝑡), 𝑘 ∈  , 𝑡 ∈  . (5)

Suppose 𝑃 𝑑
𝑘 (𝑡) is the total power demand of node 𝑘 at time slot 𝑡.

Obviously,

𝑃 𝑑
𝑘 (𝑡) = 𝑃 𝑙

𝑘(𝑡) + 𝑃 𝑓
𝑘 (𝑡) + 𝑃 ℎ

𝑘 (𝑡) + 𝑃
𝑐
𝑘(𝑡) − 𝑃 𝑐

𝑘 (𝑡), 𝑘 ∈  , 𝑡 ∈  . (6)

It should be noted that 𝑃 𝑙
𝑘(𝑡) and 𝑃

𝑐
𝑘(𝑡) are known values while 𝑃 𝑓

𝑘 (𝑡),
𝑃 ℎ
𝑘 (𝑡) and 𝑃 𝑐

𝑘 (𝑡) are control variables.

2.2. Curtailment of renewable energy resource

With the increase of RES penetration in smart grid, the curtailment
of RES has emerged as a natural way to maintain the balance between
power demand and generation. Transmission limitation and generation
flexibility are two main reasons for RES curtailment when high pene-
tration of RES is integrated to grid. On the one hand, if the transmission
capacity is limited, high penetration of RES will possibly result in
a grid overvoltage condition. On the other hand, if the flexibility
of generation output is constrained, the redundant renewable energy
cannot be used locally and should be curtailed. Suppose the active and
reactive powers of RES curtailment of node 𝑘 at time slot 𝑡 are 𝑃 𝑟

𝑘 (𝑡) and
𝑄𝑟

𝑘(𝑡), respectively. At each time slot 𝑡, the following bound constraints
should be imposed:

0 ≤ 𝑃 𝑟
𝑘 (𝑡) ≤ 𝑃

𝑟
𝑘(𝑡), 𝑘 ∈ , (7)

−𝑄
𝑟
𝑘(𝑡) ≤ 𝑄𝑟

𝑘(𝑡) ≤ 𝑄
𝑟
𝑘(𝑡) 𝑘 ∈ , (8)

where 𝑃
𝑟
𝑘(𝑡) and 𝑄

𝑟
𝑘(𝑡) are the known RES active and reactive power

generation.
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2.3. Power grid operation

At time slot 𝑡, let 𝑉𝑘(𝑡) be the complex voltage at bus 𝑘 and let
𝑔
𝑘 (𝑡)+ 𝑗𝑄𝑔

𝑘(𝑡) and 𝑃 𝑟
𝑘 (𝑡)+ 𝑗𝑄𝑟

𝑘(𝑡) respectively denote the complex power
supplied by DGs and RES at bus 𝑘. Suppose that if a bus 𝑘 ∈  ⧵, then
𝑃 𝑔
𝑘 (𝑡) = 𝑄𝑔

𝑘(𝑡) = 0. In addition, if a bus 𝑘 ∈  ⧵, then 𝑃 𝑟
𝑘 (𝑡) = 𝑄𝑟

𝑘(𝑡) = 0.

𝑉 (𝑡) = (𝑉1(𝑡),… , 𝑉𝑁 (𝑡))𝑇 ∈ C𝑁 ,

𝑃 𝑔(𝑡) = (𝑃 𝑔
1 (𝑡),… , 𝑃 𝑔

𝑁 (𝑡))𝑇 ∈ R𝑁 ,

𝑄𝑔(𝑡) = (𝑄𝑔
1(𝑡),… , 𝑄𝑔

𝑁 (𝑡))𝑇 ∈ R𝑁 ,

Denote

𝑌 = [𝑌𝑘𝑚](𝑘,𝑚)∈× ∈ C𝑛×𝑛

as the admittance matrix such that 𝐼 = 𝑉 𝑌 , where 𝐼(𝑡) = (𝐼1(𝑡),… ,
𝑁 (𝑡))𝑇 ∈ C𝑁 is the vector of current injection. For 𝑡 ∈  , the following
onstraints associated with the active and reactive power generation
𝑔
𝑘 (𝑡) and 𝑄𝑔

𝑘(𝑡) and node voltage 𝑉𝑘(𝑡) must be fulfilled (see e.g. [21]
and references therein):

𝑃 𝑔
𝑘(𝑡) ≤ 𝑃 𝑔

𝑘 (𝑡) ≤ 𝑃
𝑔
𝑘(𝑡), 𝑘 ∈ , (9)

𝑄𝑔
𝑘
(𝑡) ≤ 𝑄𝑔

𝑘(𝑡) ≤ 𝑄
𝑔
𝑘(𝑡), 𝑘 ∈ , (10)

𝑉 𝑘(𝑡) ≤ |𝑉𝑘(𝑡)| ≤ 𝑉 𝑘(𝑡), 𝑘 ∈  , (11)

|𝑉𝑘(𝑡)𝑉𝑚(𝑡)∗𝑦∗𝑘𝑚| ≤ 𝑆𝑘𝑚, (𝑘, 𝑚) ∈ , (12)

|arg(𝑉𝑘)(𝑡) − arg(𝑉𝑚)(𝑡)| ≤ 𝜃𝑘𝑚, (𝑘, 𝑚) ∈ , (13)

here (9) and (10) are respectively the active and reactive power
ounds of DGs with 𝑃 𝑔𝑘

(𝑡), 𝑃 𝑔𝑘 (𝑡) and 𝑄
𝑔𝑘
(𝑡), 𝑄𝑔𝑘 (𝑡) denoted as the cor-

responding limitations; (11) represents the voltage magnitude bounds
while 𝑉 𝑘(𝑡) and 𝑉 𝑘(𝑡) denote the corresponding lower and upper
bounds, respectively; (12) is the constraint of line capacity limitation
with 𝑆𝑘𝑚(𝑡) denoted as the upper limit of capacity for line (𝑘, 𝑚); (13)
guarantees the voltage balance in terms of the phase angle with 𝜃𝑘𝑚(𝑡)
enoted as the maximum voltage phase violation. Constraints (11)–
13) are indefinite quadratic inequality constraint, thus they are not
onvex.

.4. Joint coordination of DR-OPF with RES curtailment

At any time slot 𝑡, the power supply and demand must be bal-
nced for each bus 𝑘. Thus, the AC power flow equation involving
ower generated by DGs 𝑃 𝑔

𝑘 (𝑡) + 𝑗𝑄𝑔
𝑘(𝑡), curtailed power of RES 𝑃 𝑐

𝑘 (𝑡) +
𝑄𝑐

𝑘(𝑡), demand response 𝑃 𝑒
𝑘 (𝑡) and nodal voltage 𝑉𝑘(𝑡) for all 𝑡 ∈  is

ormulated as:

𝑘(𝑡) =
∑

𝑚∈ (𝑘)
𝑉𝑘(𝑡)𝑉𝑚(𝑡)∗𝑦∗𝑘𝑚, 𝑘 ∈  . (14)

here

𝑘(𝑡) = 𝑃 𝑔
𝑘 (𝑡) + 𝑃

𝑟
𝑘(𝑡) − 𝑃 𝑟

𝑘 (𝑡) − 𝑃 𝑑
𝑘 (𝑡)

+𝑗(𝑄𝑔
𝑘(𝑡) +𝑄

𝑟
𝑘(𝑡) −𝑄𝑟

𝑘(𝑡) −𝑄𝑙
𝑘(𝑡)). (15)

(14) is an quadratic equality constraint, thus it is not convex.
For  = {𝑉 (𝑡)}𝑡∈ , 𝐏𝑓 = {𝑃 𝑓

𝑘 (𝑡)}𝑘∈ ,𝑡∈ , 𝐏ℎ = {𝑃 ℎ
𝑘 (𝑡)}𝑘∈ ,𝑡∈ ,

𝐏𝑐 = {𝑃 𝑐
𝑘 (𝑡)}𝑘∈ ,𝑡∈ , 𝐏𝜙 = {𝐏𝑓 ,𝐏ℎ,𝐏𝑐} and 𝐏𝑟 = {𝑃 𝑟

𝑘 (𝑡)}𝑘∈ ,𝑡∈ , the
first objective is to minimize the cost function constituting of power
generation costs by the utilities, costs of curtailed power of RES and
price-elastic demand costs by the customers, i.e.

𝑓 ( ,𝐏𝑟,𝐏𝜙) =
∑

𝑡∈
(
∑

𝑘∈
𝑓 𝑔(𝑃 𝑔

𝑘 (𝑡))

+
∑

𝑘∈
𝑓 𝑟(𝑃

𝑟
𝑘(𝑙) − 𝑃 𝑟

𝑘 (𝑡)) +
∑

𝑘∈
𝛽𝑡𝑃

𝑑
𝑘 (𝑡)). (16)

Here, 𝑓 𝑔(𝑃 𝑔
𝑘 (𝑡)) and 𝑓 𝑟(𝑃

𝑟
𝑘(𝑙)−𝑃 𝑟

𝑘 (𝑡)) are respectively the cost function
of real power generation by DGs and RES curtailment, which are linear
5

e

or quadratic in 𝑃 𝑔
𝑘 (𝑡) and 𝑃 𝑟

𝑘 (𝑡), respectively; and 𝛽𝑡 is the known energy
rice related to demand response during the time slot 𝑡.

The second objective is to manage the power demand fluctuation
y regulating the total violation between real time power demand and
verage power demand during the whole time horizon. The objective
unction of the multi-objective optimization is thus

( ,𝐏𝑟,𝐏𝜙) = 𝑓 ( , 𝑃 𝑟, 𝑃 𝜙) + 𝜂
∑

𝑡∈
(
∑

𝑘∈
𝑃 𝑑
𝑘 (𝑡) − 𝑃𝑎𝑣𝑔)2,

where 𝑃𝑎𝑣𝑔 is the average power demand during the time period 
nd is assumed to be known in advance, and 𝜂 is a weighting factor
o trade-off these two objectives. The average power demand 𝑃𝑎𝑣𝑔
s dependent on the total values of flexible demand, critical demand,
hermal demand and curtailable demand. The total value of flexible
emand is 𝑟𝑘 as shown in (1), the critical demand is known beforehand,
he thermal demand can be predicated according to a local weather
orecast, the average curtailable demand is assumed to be 1

2𝑃
𝑐
𝑘. There-

fore, we can obtain an approximated average power demand. Thus, the
task of the multi-objective DR-OPF coordination with RES curtailment
is mathematically formulated by the following optimization problem:

min ( ,𝐏𝑟,𝐏𝜙) s.t. (1)–(14), ∀𝑡 ∈  . (17)

One can see that (12) in (17) is a nonconvex inequality constraint while
(14) is nonconvex equality constraints, which pose a real computational
challenge.

We now introduce the matrix variables

𝐖(𝑡) = 𝑉 (𝑡)𝑉 (𝑡)𝐻 ∈ C𝑁×𝑁 , (18)

which must satisfy

𝐖(𝑡) ⪰ 0, (19)
rank(𝐖(𝑡)) = 1 (20)

o be qualified as the self-outer-product of vectors 𝑉 (𝑡) [29,30]. By
eplacing 𝑊𝑘𝑚(𝑡) = 𝑉𝑘(𝑡)𝑉𝑚(𝑡)∗ in (11)–(13) and (14), the optimization
roblem (17) for ∀𝑘 ∈  , ∀𝑡 ∈  and ∀(𝑘, 𝑚) ∈  is reformulated as

min ( ,𝐏𝑟,𝐏𝜙)

s.t. (1)–(8), (21a)
𝐸𝑘(𝑡) =

∑

𝑚∈ (𝑘)
𝑊𝑘𝑚(𝑡)𝑦∗𝑘𝑚, (21b)

(𝑉 𝑘(𝑡))
2 ≤ 𝑊𝑘𝑘(𝑡) ≤ (𝑉 𝑘(𝑡))2, (21c)

|𝑊𝑘𝑚(𝑡)𝑦∗𝑘𝑚| ≤ 𝑆𝑘𝑚(𝑡), (21d)

(𝑊𝑘𝑚(𝑡)) ≤ ℜ(𝑊𝑘𝑚(𝑡)) tan 𝜃𝑘𝑚(𝑡), (21e)
𝐖(𝑡) ⪰ 0, (21f)

𝗋𝖺𝗇𝗄(𝐖(𝑡)) = 1, (21g)

here  = {𝐖(𝑡)}𝑡∈ ;  ( ,𝐏𝑟,𝐏𝜙) is defined by substituting

𝑘(𝑡)𝑉𝑚(𝑡)∗ = 𝑊𝑘𝑚(𝑡), (𝑘, 𝑚) ∈ 

n the definition of  ( ,𝐏𝑟,𝐏𝜙); and (21c)–(21e) are respectively
ransformed from (11)–(13). More details can be referred to [29,30]
nd references therein. The problem difficulty is now concentrated on
he matrix rank-one constraint (21g) as all other constraints in (21) are
ither linear or convex and thus computationally tractable. A recent
ork [20] showed that semi-definite relaxation (SDR) by dropping the

ank-one constraint (21g) is inexact due to the penetration of RES,
.e. the SDR solution is not of rank-one and cannot be served even as a
easible point for the nonconvex problem (21). The simulation results
f this paper also confirm this phenomenon.

emark. Although DR-OPF coordination has been considered in some
xisting works, there is little work studying its online scheduling with
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RES curtailment under the requirements of various types of DR con-
straints and comprehensive power grid operation constraints. In ad-
dition, the distributed computation for such a difficult nonconvex
problem (21a) remains quite open. For instance, [31] studied a DR-
OPF coordination problem with both elastic and inelastic demands in
radial distribution networks and [32] investigated a DR-OPF coordi-
nation problem to improve voltage stability in transmission networks.
However, neither [31] nor [32] considers the comprehensive demand
response constraints and RES curtailment, limiting their applications in
practice. The authors in [16] developed a distributed computation for
DR-OPF coordination. Nevertheless, this method works only in a convex
DC-OPF framework, which is not practical for distribution networks. To
the best our knowledge, this paper is the first to develop distributed and
online scheduling for DR-OPF coordination with RES curtailment under
various DR and power grid constraints.

3. DMPC for DR-OPF coordination with RES curtailment

To address the online scheduling problem of DR-OPF coordination
with RES curtailment, this section first provides a centralized MPC
(CMPC) method and then proposes a consensus-based DMPC method
based on the well-known ADMM method. The former will provide a
baseline solution for the latter on this problem.

3.1. CMPC for the DR-OPF coordination with RES curtailment

Considering 𝐏𝑓 and (𝐏ℎ,𝐏𝑐 ,𝐏𝑟,) as the system state and control,
qs. (2) provides state behavior with the end constraint (1) while the
qs. (3)–(14) provide control constraints. The problem (17) is thus seen
s a multi-objective control problem over the finite horizon [1, 𝑇 ]. How-
ver, the flexible power demand 𝑃 𝑓 such as EV’s charging demand is
npredictably fluctuated in general, making the conventional MPC [28]
napplicable. As a matter of fact, the conventional MPC relies on two
ey steps at time 𝑡: predicting future events and minimizing a reference-
ased cost function by considering the plant over a short receding
orizon [𝑡′, 𝑇 ]. Even though the flexible demand 𝐏𝑓 can be predicted
y some possible methods, the prediction error is still unavoidable. We
ow follow the idea of [29,33] to address (17), which does not rely on
ny predictions of such information. We believe the new MPC method
an even work under more uncertainties over the DGs as it does not
equire an exact prediction for future events.

At each time 𝑡′, let 𝜑𝑘(𝑡′) be the minimal remaining demand for the
lastic demand of node 𝑘, i.e. the cumulative elastic demand of node 𝑘
uring [𝑡′, 𝑇 ], which must satisfy the following constraints:
𝑇
∑

𝑡=𝑡′
𝑃 𝑓
𝑘 (𝑡) ≥ 𝜑𝑘(𝑡′), 𝑘 ∈  . (22)

efine

[𝑡′ ,𝑇 ] =
∑

𝑡∈[𝑡′ ,𝑇 ]
(
∑

𝑘∈
𝑓 𝑔(𝑃 𝑔

𝑘 (𝑡)) +
∑

𝑘∈
𝑓 𝑟(𝑃

𝑟
𝑘(𝑡) − 𝑃 𝑟

𝑘 (𝑡))

+
∑

𝑘∈
𝛽𝑡𝑃

𝑑
𝑘 (𝑡) + 𝜂(

∑

𝑘∈
𝑃 𝑑
𝑘 (𝑡) − 𝑃𝑎𝑣𝑔)2). (23)

At each time 𝑡′, we aim to solve the following optimization problem
(24) over the prediction horizon [𝑡′, 𝑇 ] but only take the solution at
current time slot 𝑡′, i.e. 𝑃 𝑟(𝑡′), 𝐖(𝑡′) and 𝑃 𝜙(𝑡′) for online updating of
problem (17),

min[𝑡′ ,𝑇 ] s.t. (2)–(8), (21b)–(21g), (22). (24)

Note that (24) is still a very difficult optimization problem due to the
nonconvex matrix rank-one constraint (21g). However, it is not neces-
sary to assure (21g) satisfied for all 𝑡 ∈ [𝑡′+1, 𝑇 ] since only the solution
at time slot 𝑡′ is used for online update in the MPC implementation.
Thus, we consider the following simplified optimization problem (25)
at time slot 𝑡′ for saving the computation time:
6

min[𝑡′ ,𝑇 ] s.t.

(21a)–(21f), (22), 𝑡 ∈ [𝑡′, 𝑇 ], (25a)
𝗋𝖺𝗇𝗄(𝐖(𝑡′)) = 1. (25b)

The optimization problem (25) is nonconvex due to the matrix rank-
one constraint (25b), which can be computed by a nonsmooth optimiza-
tion algorithm [30]. To make the paper self-contained, this algorithm
is briefly recalled. Under the semidefinite condition (21f), it is clear
𝖳𝗋𝖺𝖼𝖾(𝐖(𝑡′)) − 𝜆̄(𝐖(𝑡′)) ≥ 0, where 𝜆̄(𝐖(𝑡′)) is the maximal eigenvalue
f the matrix 𝐖(𝑡′). Accordingly, the matrix rank-one constraint (25b)
s equivalent to 𝖳𝗋𝖺𝖼𝖾(𝐖(𝑡′)) − 𝜆̄(𝐖(𝑡′)) = 0. As such 𝖳𝗋𝖺𝖼𝖾(𝐖(𝑡′)) −
̄(𝐖(𝑡′)) can be used to measure the satisfaction of the matrix rank-
ne constraint 𝗋𝖺𝗇𝗄(𝐖(𝑡′)) = 1. We thus incorporate this term into the
bjective function to transform it into the following exactly penalized
ptimization problem with convex constraints:

min 𝐹𝜇 ∶= 𝐹[𝑡′ ,𝑇 ]

𝜇(𝖳𝗋𝖺𝖼𝖾(𝐖(𝑡′)) − 𝜆̄(𝐖(𝑡′))) s.t. (39b), (26)

ith a penalty parameter 𝜇 > 0. The optimization (41) can be solved
teratively by the following convex problem:

min 𝐹 (𝜈)
𝜇 ∶= 𝐹[𝑡′ ,𝑇 ] + 𝜇(𝖳𝗋𝖺𝖼𝖾(𝐖(𝑡′))

(𝑤̄(𝜈)(𝑡′))𝐻𝐖(𝑡′)𝑤̄(𝜈)(𝑡′)) s.t. (39b). (27)

here 𝑤̄(𝜈)(𝑡′) is the normalized eigenvector corresponding to the eigen-
alue 𝜆̄(𝜈)(𝑡′) at time slot 𝑡′. Note that

̄(𝐖𝑖(𝑡′)) ≥ (𝑤̄(𝜈)(𝑡′))𝐻𝐖(𝑡′)𝑤̄(𝜈)(𝑡′). (28)

t is clear that we obtain 𝐹 (𝜈)
𝜇 ≥ 𝐹𝜇 and 𝐹 (𝜈+1)

𝜇 ≤ 𝐹 (𝜈)
𝜇 . Therefore,

(𝑡′)(𝜈+1) is a better feasible point of (41) than 𝐖(𝑡′)(𝜈).

.2. Consensus-based DMPC for DR-OPF coordination with RES curtail-
ent

Consensus-based method is widely used for distributed computation
n smart grid. A consensus algorithm is an interaction that specifies
nformation exchange between each agent and its neighbors, and it will
each an agreement between these agents after convergence [34]. In
his paper, we follow the consensus-based strategy to decompose the
riginal problem (25) into several subproblems, each of which will
e handled by an agent. Each agent solves the subproblem and then
xchanges some information with its neighboring agents. The whole
ystem will eventually reach a consensus solution between these agents.

In this paper, the whole system is first decomposed into 𝐾 small
nterconnected subsystems, where a DMPC is formulated for each one.
ig. 2 presents the block diagram of the proposed DMPC for the
nterconnected subsystems, where each subsystem communicates with
thers based on a consensus strategy.

For 𝑖 ∈  = {1,… , 𝐾}, define 𝑖 = {𝑖1,… , 𝑖𝑅𝑖
}, which is the set of

uses assigned to subsystem 𝑖. These bus sets must not be overlapped,
.e.

𝑖 ∩𝑗 = ∅, ∀𝑖 ≠ 𝑗. (29)

et

̄ 𝑖 ∶= 𝑖 ∪ {𝑗|(𝑗, 𝑖) ∈ , 𝑗 ∈ 𝑗 , 𝑖 ∈ 𝑖, 𝑖 ≠ 𝑗} (30)

e an augmented subsystem to collect all the buses in 𝑖 and those
uses in neighboring regions that are directly connected to the buses
n 𝑖. The vectors

𝑖(𝑡) ∶= (𝑉𝑖1 (𝑡),… , 𝑉𝑖𝑅̄𝑖
(𝑡))𝑇 , (31)

𝜙
𝑖 (𝑡) ∶= (𝑃 𝜙

𝑖1
(𝑡),… , 𝑃 𝜙

𝑖𝑅̄𝑖
(𝑡))𝑇 , (32)

𝑟(𝑡) ∶= (𝑃 𝑟 (𝑡),… , 𝑃 𝑟 (𝑡))𝑇 . (33)
𝑖 𝑖1 𝑖𝑅̄𝑖
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Fig. 2. The DMPC structure.

stack the complex voltages, elastic power demand, curtailed power of
RES of buses in subsystem ̄𝑖. Let 𝑖𝑗 be the set of buses shared by
̄𝑖 and ̄𝑗 . Per Fig. 3 for illustrative purpose, the original system is
decomposed into three subsystems. Then 12 = {1, 5}, 13 = {1, 9}, and
23 = {5, 9}, which collect the duplicate nodes by 𝑅̄1

⋂

̄2, ̄1
⋂

̄3,
and ̄2

⋂

̄3, respectively. Note that the information exchange of
DMPC denoted by the arrows in Fig. 3 is quite light compared with
that of the centralized algorithm. Furthermore, there is only limited
information is shared between the regions to alleviate the potential
privacy and security concerns. For the sake of simplicity, we assume
that each augmented subsystem does not have overlapped nodes con-
nected with RES, i.e.  ∩ 𝑖𝑗 = ∅. To facilitate the proposed DMPC,
the power network is decomposed by duplicating the voltage 𝐕(𝑡) and
demand 𝐏𝜙(𝑡) at bus 𝑘 ∈ 𝑖𝑗 of each subsystem. Accordingly, consensus
constraints are added to make sure that the duplicated voltage in a
subsystem is equal to the one in its neighboring subsystem. Define
𝐖𝑖(𝑡) = 𝐕𝑖(𝑡)𝐕𝑖(𝑡)𝑇 and 𝐖𝑖𝑗 (𝑡) as submatrix of 𝐖𝑖(𝑡) collecting the
rows and columns of 𝐖𝑗 (𝑡) corresponding to the indexes in 𝑖𝑗 and
define 𝐏𝜙

𝑖𝑗 (𝑡) as the subvector of 𝐏𝜙
𝑖 (𝑡) collecting the entries of 𝐏𝜙

𝑗 (𝑡)
corresponding to the indexes in 𝑖𝑗 . Then, the consensus constraints
are given by

𝐖𝑖𝑗 (𝑡) = 𝐖𝑗𝑖(𝑡), 𝑖, 𝑗 ∈ , 𝑡 ∈ [𝑡′, 𝑇 ] (34)

𝐏𝜙
𝑖𝑗 (𝑡) = 𝐏𝜙

𝑗𝑖(𝑡), 𝑖, 𝑗 ∈ , 𝑡 ∈ [𝑡′, 𝑇 ]. (35)

For each subsystem 𝑖 ∈ , define

 𝑖
[𝑡′ ,𝑇 ] =

𝑇
∑

𝑡=𝑡′
(
∑

𝑘∈𝑖

𝑓 (𝑃 𝑔
𝑘 (𝑡)) +

∑

𝑘∈𝑖

𝑓 (𝑃 𝑟
𝑘 (𝑡)) +

∑

𝑘∈𝑖

𝛽𝑡𝑃
𝜙
𝑘 (𝑡)).

At time 𝑡′, we solve the following optimization problem (36) over the
prediction horizon [𝑡′, 𝑇 ] but only take the solution at current time slot
𝑡′, i.e. 𝐖𝑖(𝑡′), 𝐏

𝜙
𝑖 (𝑡

′) and 𝐏𝑟
𝑖 (𝑡

′) for online update

min
𝐖𝑖 ,𝐏

𝜙
𝑖 ,𝐏

𝑟
𝑖∈𝑖 , 𝑖∈

𝐾
∑

𝑖=1
 𝑖
[𝑡′ ,𝑇 ] s.t. (36a)

𝐖𝑖𝑗 (𝑡′) = 𝐖𝑗𝑖(𝑡′), 𝑖, 𝑗 ∈ , (36b)

𝐏𝜙
𝑖𝑗 (𝑡

′) = 𝐏𝜙
𝑗𝑖(𝑡

′), 𝑖, 𝑗 ∈ , (36c)

𝐖𝑖(𝑡) ⪰ 0, 𝑖 ∈ , (36d)

𝗋𝖺𝗇𝗄(𝐖𝑖(𝑡′)) = 1, 𝑖 ∈ , (36e)

where 𝑖 is the convex domain corresponding to subsystem 𝑖 such that
the variables 𝐖 (𝑡), 𝐏𝜙(𝑡) and 𝐖 (𝑡) satisfy the constraints (21a)–(21e)
7

𝑖 𝑖 𝑖
Fig. 3. Information exchange between subsystems.

with the respective replacement of the sets  , , , and  by the
subsets 𝑖, 𝑖, 𝑖, and 𝑖, which are associated with the subsystem 𝑖.
It is worth noting that, the consensus constraints (36b) and (36c) and
the matrix rank-one constraints (36e) are only imposed at the current
time slot 𝑡′ during the MPC implementation. It is not worthy to assure
them for the whole time horizon.

The DMPC problem (36) is seen nonconvex due to the multiple
matrix rank-one constraints (36e). We now develop its distributed
computations. Particularly, ADMM method [35–37] serves as the basis
of the proposed distributed algorithm.

Let 𝛤𝑖𝑗 (𝑡) ∈ C2×2 and 𝛾𝑖𝑗 (𝑡) ∈ R2×1 respectively denote the multipliers
associated with constraint (36b) and constraint (36c). Let 𝑿 collect
({𝐖𝑖(𝑡)}, {𝐏

𝜙
𝑖 (𝑡)}, {𝐏

𝑟
𝑖 (𝑡)}, {𝐖𝑗𝑖(𝑡)},

{𝛤𝑖𝑗 (𝑡)}, {𝐏
𝜙
𝑗𝑖(𝑡)}, {𝛾𝑖𝑗 (𝑡)}). Consider the following partial augmented La-

grangian of (36)

(𝑿) ≜
𝐾
∑

𝑖=1
𝐹 𝑖
[𝑡′ ,𝑇 ](𝑿) =

𝐾
∑

𝑖=1
 𝑖
[𝑡′ ,𝑇 ] + AuL, (37)

where

AuL =
𝐾
∑

𝑖=1

𝑇
∑

𝑡=𝑡′
(𝖳𝗋𝖺𝖼𝖾(𝛤𝐻

𝑖𝑗 (𝑡)⊗ (𝐖𝑖𝑗 (𝑡) −𝐖𝑗𝑖(𝑡)))

+𝛾𝐻𝑖𝑗 (𝑡)(𝐏
𝜙
𝑖𝑗 (𝑡) − 𝐏𝜙

𝑗𝑖(𝑡)) +
𝛿
2
‖𝐖𝑖𝑗 (𝑡) −𝐖𝑗𝑖(𝑡)‖2

+ 𝛿
2
‖𝐏𝜙

𝑖𝑗 (𝑡) − 𝐏𝜙
𝑗𝑖(𝑡)‖

2), (38)

where 𝛤 𝑇
𝑖𝑗 (𝑡) ⊗ (𝐖𝑖𝑗 (𝑡) − 𝐖𝑗𝑖(𝑡)) = ℜ(𝛤𝐻

𝑖𝑗 (𝑡)ℜ(𝐖𝑖𝑗 (𝑡) − 𝐖𝑗𝑖(𝑡)))
+ ℑ(𝛤𝐻

𝑖𝑗 (𝑡)ℑ(𝐖𝑖𝑗 (𝑡) − 𝐖𝑗𝑖(𝑡))), 𝛿 > 0 is a penalty parameter and ‖ ⋅ ‖
represents the Frobenius norm operator.

At each region 𝑖 ∈ , we solve the following subproblem at time
slot 𝑡′,

min 𝐹 𝑖
[𝑡′ ,𝑇 ](𝑿), (39a)

s.t. 𝐖𝑖(𝑡),𝐏
𝜙
𝑖 (𝑡),𝐏

𝑟
𝑖 (𝑡) ∈ 𝑖, 𝑡 ∈ [𝑡′, 𝑇 ] (39b)

𝗋𝖺𝗇𝗄(𝐖𝑖(𝑡′)) = 1. (39c)

Algorithm 1 is the pseudo-code for implementing the proposed
ADMM. The sub-problem (39) in Step 2 of Algorithm 1 is nonconvex
due to the matrix rank-one constraints (39c). Similar to the analysis in
Section 3.1, we can transform (39) into the following exactly penalized
optimization problem with convex constraints:

min 𝐹𝜇𝑖 ∶= 𝐹 𝑖
[𝑡′ ,𝑇 ](𝑿)

+𝜇 (𝖳𝗋𝖺𝖼𝖾(𝐖 (𝑡′)) − 𝜆̄ (𝐖 (𝑡′))) s.t. (39b), (41)
𝑖 𝑖 𝑖 𝑖
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Fig. 4. The flowchart of the proposed ADMM-based DMPC.
with a penalty parameter 𝜇𝑖 > 0. The optimization (41) can be solved
iteratively by the following convex problem:

min 𝐹 (𝜈)
𝜇𝑖

∶= 𝐹 𝑖
[𝑡′ ,𝑇 ](𝑿) + 𝜇𝑖(𝖳𝗋𝖺𝖼𝖾(𝐖𝑖(𝑡′))

−(𝑤̄(𝜈)
𝑖 (𝑡′))𝐻𝐖𝑖(𝑡′)𝑤̄

(𝜈)
𝑖 (𝑡′)) s.t. (39b). (42)

where 𝑤̄(𝜈)
𝑖 (𝑡′) is the normalized eigenvector corresponding to the eigen-

value 𝜆̄(𝜈)𝑖 (𝑡′) at time slot 𝑡′. Algorithm 2 provides the pseudo-code of the
implementation to solve the sub-problem (39).

Fig. 4 illustrates the proposed DMPC. It is worth noting that we
do not just apply a basic ADMM to solve the DMPC (36). Instead, we
develop a new ADMM-based DMPC algorithm (Algorithm 1) for the
distributed solution of this challenge DR-OPF coordination problem.
Algorithm 1 involves an iterative subroutine computation (Algorithm 2)
during the update procedure of primal variables in order to cope with
8

the difficult nonconvex matrix rank-one constraint (36e). Without this
subroutine procedure, the ADMM-based DMPC algorithm (Algorithm 1)
may not even locate a feasible solution for (36).

4. Simulation results

In this section, we discuss numerical simulations designed to test
the proposed CMPC and DMPC algorithms, which could respectively
provide a centralized and distributed solution for the joint DR-OPF
coordination problem. Note that the former will provide a baseline
solution for the latter on this problem. The optimality of the DMPC can
be easily verified by checking the gap in objective values between the
CMPC and DMPC. Since the DMPC algorithm is the main contribution
of this paper, we will examine the optimal solutions obtained by the
DMPC, including several types of demand response, nodal voltage and
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Algorithm 1 ADMM-based DMPC (36)

1) Initialization: Set 𝜅 = 0 and initialize 𝐖(𝜅)
𝑗𝑖 (𝑡), (𝐏

𝜙
𝑗𝑖(𝑡))

(𝜅), 𝛤 (𝜅)
𝑖𝑗 (𝑡) and

𝛾 (𝜅)𝑖𝑗 (𝑡) for all 𝑖 ∈ .
2) Update the primal variables: For each region 𝑖, input 𝐖(𝜅)

𝑗𝑖 (𝑡),
(𝐏𝜙

𝑗𝑖(𝑡))
(𝜅), 𝛤 (𝜅)

𝑖𝑗 (𝑡) and 𝛾 (𝜅)𝑖𝑗 (𝑡) and update 𝐖(𝜅+1)
𝑖 (𝑡), (𝐏𝜙

𝑖 (𝑡))
(𝜅+1) and

(𝐏𝑟
𝑖 (𝑡))

(𝜅+1) concurrently by solving the sub-problem (39).
3) Update the auxiliary variables: Input 𝐖(𝜅+1)

𝑖 (𝑡), (𝐏𝜙
𝑖 (𝑡))

(𝜅+1) and
(𝐏𝑟

𝑖 (𝑡))
(𝜅+1) and update 𝐖(𝜅+1)

𝑗𝑖 (𝑡) and (𝐏𝜙
𝑗𝑖(𝑡))

(𝜅+1) by solving the
unconstrained problem:

minAuL. (40)

4) Update the dual variables: For each region 𝑖, update 𝛤 (𝜅+1)
𝑖𝑙 and

𝛾 (𝜅+1)𝑖𝑙 by the following procedure,

𝛤 (𝜅+1)
𝑖𝑗 (𝑡′) = 𝛤 (𝜅)

𝑖𝑗 (𝑡′) + 𝛿(𝐖(𝜅+1)
𝑖𝑗 (𝑡′) −𝐖(𝜅+1)

𝑗𝑖 (𝑡′)),

𝛾 (𝜅+1)𝑖𝑗 (𝑡′) = 𝛾 (𝜅)𝑖𝑗 (𝑡′) + 𝛿((𝐏𝜙
𝑖𝑗 (𝑡

′))(𝜅+1) − (𝐏𝜙
𝑗𝑖(𝑡

′))(𝜅+1)).

5) Stopping criterion: If ||𝐖(𝜅+1)
𝑖𝑗 (𝑡′) − 𝐖(𝜅+1)

𝑗𝑖 (𝑡′)|| ≤ 𝜖 and
||(𝐏𝜙

𝑖𝑗 (𝑡
′))(𝜅+1) − (𝐏𝜙

𝑗𝑖(𝑡
′))(𝜅+1)|| ≤ 𝜖, stop the algorithm and out-

put 𝐖(𝜅+1)
𝑖 (𝑡′), (𝐏𝜙

𝑖 (𝑡
′))(𝜅+1) and (𝐏𝑐

𝑖 (𝑡
′))(𝜅+1) as the solution of (36);

otherwise 𝜅 = 𝜅 + 1, go to step 2.

Algorithm 2 Subroutine computation for the sub-problem (39)
Initialization: Set 𝜈 = 0, solve the problem (39) by dropping the rank-
one matrix constraints (39c) and output its solution 𝐖(𝜈)

𝑖 (𝑡), (𝐏𝜙
𝑖 (𝑡))

(𝜈)

and (𝐏𝑟
𝑖 (𝑡))

(𝜈).
if 𝗋𝖺𝗇𝗄(𝐖(𝜈)

𝑖 (𝑡′)) = 1 then terminate Algorithm 2 and accept 𝐖(𝜈)
𝑖 (𝑡),

(𝐏𝜙
𝑖 (𝑡))

(𝜈) and (𝐏𝑟
𝑖 (𝑡))

(𝜈) as the solution of (39);
elseSet 𝜈 = 𝜈 + 1. Solve the optimization problem (42) to
find its solution 𝐖(𝜈+1)

𝑖 (𝑡) and (𝐏𝜙
𝑖 (𝑡))

(𝜈+1), until 𝖳𝗋𝖺𝖼𝖾(𝑊 (𝜈+1)
𝑖 (𝑡′)) −

(𝑤̄(𝜈+1)
𝑖 (𝑡′))𝐻𝑊 (𝜈+1)

𝑖 (𝑡′)𝑤̄(𝜈+1)
𝑖 (𝑡′) ≤ 𝜖 is satisfied for a given tolerance

𝜖 > 0 and output 𝐖(𝜈+1)
𝑖 (𝑡), (𝐏𝜙

𝑖 (𝑡))
(𝜈+1) and (𝐏𝑟

𝑖 (𝑡))
(𝜈+1) as a found

solution for (39).
end if

the fluctuation of power demand. Moreover, as the DMPC involves
some penalized/weighting parameters, such as 𝜂 and 𝛿, we will also
test the DMPC with different values of these parameters and analyze
the corresponding results.

The simulation is tested on a simplified distribution network from
the standard IEEE-123 test feeder. As shown in Fig. 5, there are three
interconnected subsystems with 56 nodes, where 3 nodes are connected
to DGs and 17 nodes are connected to RES. Its specific data of physical
limits and cost function of the generation can be found in [38]. All
simulations are implemented on a Core i7-8665 processor, while the
convex optimization problems (41) and (42) are computed by the com-
mercial solver Sedumi [39] interfaced by CVX [40]. The convergence
criteria of ADMM procedure in the proposed algorithms is set as 𝜖 =
10−3.

The time period is one day with one-hour time slot, i.e. 𝑇 = 24. The
time-varying electricity price and baseline demand are plotted in Figs. 6
and 7. The data of time-varying electricity price and baseline demand
used in this paper are based on the residential data of New South Wales
(NSW) state, Australia on the 13th of November 2018 from [41]. The
daily task required power demand 𝑟𝑘, 𝑘 ∈  is randomly generated
as shown in Fig. 8, where nodes 7, 21, 33, 56 have zero load demand
according to the setting in [38]. The upper bound of flexible demand
and curtailable demand of each node at each time slot are set to 100
kW and 50 kW, respectively. The thermal parameters are set as 𝜖 = 0.8
9

ℎ

Fig. 5. Three subsystems in a simplified IEEE-123 test feeder.

Fig. 6. Time-varying electricity pricing.

Fig. 7. Critical demand.
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Fig. 8. The daily task required power demand 𝑟𝑘 at each node.

Fig. 9. Time-varying active PV generation 𝑃
𝑟
(𝑡) and outdoor temperature 𝑇 𝑜𝑢𝑡(𝑡).

nd 𝛼 = ±0.1 ◦C/kW. The indoor temperature is preferred to maintain
ithin [20 ◦C, 24 ◦C]. Photovoltaic (PV) power is used as the RES

n this paper. The PV inverters are assumed to be located at the pink
uses in Fig. 5. For each bus, the PV generation and real-time outdoor
emperature are based on the real data from NSW on the 6th of January
018 from [42] and [43]. Fig. 9 presents the time-varying active PV
eneration and outdoor temperature.

The simulation results are summarized in Table 1. Its first column
ontains various value of 𝜂. Obviously, the power load fluctuates less
ith larger 𝜂 but at a higher total generation cost. The second column
rovides the corresponding value of the penalty parameter 𝜇𝑖 ≡ 𝜇 in

Algorithm 2. It is noted that the SDR for the subproblem (39) is inexact
during time slot 𝑡′ ∈ {11, 12, 13, 14, 15} due to the high penetration
of PV generation. Thus, Algorithm 2 must be implemented at these
time slots in order to obtain the solution of (39). For all the tested
cases at these time slots, Algorithm 2 converges within five iterations.
The third column in Table 1 provides the total power generation costs
of DGs, RES and price-elastic demand costs to customers using the
CMPC for DR-OPF coordination problem (25). The average simulation
time of online implementation of the CMPC at each time slot during
the whole time period is given in the fourth column. The last two
columns respectively provide the total costs and average simulation
time obtained from the DMPC. Note that the total costs of the DMPC
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are lower bounded by the CMPC’s. It can be seen that the difference
Table 1
Simulation results of CMPC and DMPC with various 𝜂 and fixed 𝛿 = 100.
𝜂 𝜇 CMPC ($) Avg. T (s) DMPC ($) Avg. T (s)

1 1 13 236.5 174.6 13 290.5 280.6
10 10 13 833.7 145.8 13 898.2 320.2
100 100 14 065.9 182.5 14 125.5 335.4
1000 1000 14 457.8 167.4 14 540.3 317.4

between these two values in all these cases are within 1%, verifying
the effectiveness of the proposed DMPC method. Although the DMPC
costs more simulation time than the CMPC, its superiority concentrates
on better privacy preservation and less communication bandwidth.

Fig. 10 presents the total power demand of the whole system with
various values of 𝜂 with fixed 𝛿 = 100. It can be seen in Fig. 10,
the best performance of demand management is obtained by setting
𝜂 = 1000. However, a larger 𝜂 leads to a higher total generation cost
as Table 1 shows. Thus, we recommend to set 𝜂 = 100 to trade-off
the generation cost and demand fluctuation. From Fig. 10 we can see
that 𝜂 = 100 leads to much better performance of demand management
than 𝜂 = 1 and 𝜂 = 10 does while it achieves only slightly worse
ower fluctuation compared to the result corresponding to 𝜂 = 1000.

Therefore, we present the following simulation results based on the
DMPC with 𝜂 = 100 and 𝛿 = 100 unless otherwise specified.

Figs. 11 and 12 show the flexible demand and voltage (unit p.u.)
profile with 𝜂 = 100. The obtained flexible demand intends to fill in
the valley of Fig. 7, while the obtained value of voltage magnitude are
bounded well within the range of [1.01,1.05]. In Fig. 13, we present
the power generation 𝑃 𝑔 by DG, power generation 𝑃

𝑟
by PV and power

curtailment 𝑃 𝑟 of PV for subsystem 1 solved by implementing the DMPC
ethod with 𝜂 = 100 and 𝛿 = 100. It can be seen that the obtained

values of DG generation and PV curtailment are all well bounded. In
addition, the DG generation remains low around noon time when the
PV generation is quite high. Clearly, PV can be a very good supplement
for DG. Fig. 14 shows the indoor temperature with and without control
of the thermal appliances. We can see the indoor temperature increases
with the outdoor one and reaches its peak value 26.4 ◦C at 19:00
pm without the control of thermal appliances. However, the indoor
temperature with the control of thermal appliances is well bounded
within the user preferred interval.

The convergence speed of the proposed DMPC method is investi-
gated by using various value of ADMM parameter 𝛿 in the implemen-
tation. The convergence performance is shown in Fig. 15 by fixing
𝜂 = 100. It can be observed that large value of ADMM parameter 𝛿
does accelerate the convergence speed of the DMPC method. However,
we still suggest to take proper value of ADMM parameter 𝛿 since larger
𝛿 lead to higher total costs.

5. Conclusion

This paper has considered an online scheduling for the joint DR-
OPF coordination with high penetration of RES. Under comprehensive
grid operational constraints, demand response constraints and RES
curtailment constraints, not only the system overall operational cost
is minimized but also the fluctuation of the overall power load is flat-
tened. It should be noted that, with the integration of high penetration
of RES, the SDR methods for AC-OPF problem becomes inaccurate even
for radial distribution networks. Thus, the nonsmooth optimization
Algorithm 2 should be employed to locate a feasible solution for this
problem.

CMPC and DMPC have been developed in this paper respectively for
the centralized and distributed computation of the online scheduling
problem. The results for CMPC can serve as baselines for the DMPC’s.
Note that the DMPC is quite challenging as it requires distributed com-
putation of a nonconvex optimization problem at each time slot. This
paper has proposed a novel ADMM-based DMPC algorithm for its online
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Fig. 10. Total demand with 𝜂 = 1, 10, 100, 1000 from left-to-right then top-to-bottom.
Fig. 11. Flexible demand with 𝜂 = 100 and 𝛿 = 100.

and distributed computation. It is worth noting that a basic ADMM
cannot handle the DMPC problem due to the difficult nonconvex matrix
rank-one constraint. The ADMM-based DMPC algorithm involves an
iterative subroutine computation during the update procedure of primal
variables to handle the difficult nonconvex matrix rank-one constraint.
Without this subroutine procedure, the ADMM-based DMPC algorithm
may not even locate a feasible solution. Moreover, the novel DMPC does
not require to predict the future flexible power demand, increasing the
11
Fig. 12. Voltage (unit p.u.) profile with 𝜂 = 100 and 𝛿 = 100.

model practicability. The simulation results have shown that the objec-
tive values of the CMPC and DMPC are all within 1% of each other,
further verifying the effectiveness of the proposed DMPC algorithm.
The influence of some parameters on the model performance have also
been investigated. It is quite intuitive to extend the developed ADMM-
based DMPC method to various smart grid applications for distributed
computation. An interesting topic for future work in this area is a
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Fig. 13. Power generation by DG and PV and power curtailment of PV for subsystem
1 with 𝜂 = 100 and 𝛿 = 100.

Fig. 14. Indoor temperature with and without control of the thermal demand.

Fig. 15. The convergence performance under 𝜂 = 100.

istributed online scheduling based on the DMPC method for electric
ehicle charging/discharging in smart grid.
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