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Abstract

With the onset of COVID-19 and the resulting shelter in place guidelines combined with
remote working practices, human mobility in 2020 has been dramatically impacted. Existing
studies typically examine whether mobility in specific localities increases or decreases at
specific points in time and relate these changes to certain pandemic and policy events. How-
ever, a more comprehensive analysis of mobility change over time is needed. In this paper,
we study mobility change in the US through a five-step process using mobility footprint data.
(Step 1) Propose the Delta Time Spent in Public Places (ATSPP) as a measure to quantify
daily changes in mobility for each US county from 2019-2020. (Step 2) Conduct Principal
Component Analysis (PCA) to reduce the ATSPP time series of each county to lower-
dimensional latent components of change in mobility. (Step 3) Conduct clustering analysis
to find counties that exhibit similar latent components. (Step 4) Investigate local and global
spatial autocorrelation for each component. (Step 5) Conduct correlation analysis to investi-
gate how various population characteristics and behavior correlate with mobility patterns.
Results show that by describing each county as a linear combination of the three latent com-
ponents, we can explain 59% of the variation in mobility trends across all US counties. Spe-
cifically, change in mobility in 2020 for US counties can be explained as a combination of
three latent components: 1) long-term reduction in mobility, 2) no change in mobility, and 3)
short-term reduction in mobility. Furthermore, we find that US counties that are geographi-
cally close are more likely to exhibit a similar change in mobility. Finally, we observe signifi-
cant correlations between the three latent components of mobility change and various
population characteristics, including political leaning, population, COVID-19 cases and
deaths, and unemployment. We find that our analysis provides a comprehensive under-
standing of mobility change in response to the COVID-19 pandemic.

1 Introduction

Human mobility plays a crucial role in spreading an infectious virus such as SARS-CoV-2 and
has been instrumental in the onset of the COVID-19 pandemic. In response to this global
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crisis, non-pharmaceutical interventions (NPIs), including stay-at-home orders and social dis-
tancing guidelines, have been implemented [1], reducing physical contacts and resulting in sig-
nificant changes to normal mobility patterns [2]. These changes can be observed using
individual-level mobility data such as mobile phone data embedded with Bluetooth and global
positioning system (GPS), collected actively through Call Detail Records (CDRs) and passively
through the use of smartphone applications (apps).

Individual-level mobility data are typically anonymized and aggregated to various spatial
resolutions to produce a range of different mobility indicators (see Table 1). As part of their
COVID-19 Data Consortium efforts, SafeGraph Inc. [3] has made available a comprehensive
set of mobility indicators ranging from mean distance traveled to median dwell time at and
away from home for each census block group in the US. Descartes Labs Inc. [4] makes avail-
able the median of the maximum distance traveled by users at the national, state, and county
levels. Through the Data for Good [5, 6] effort, Facebook makes available the fraction of users
who stay put in a 60x60 meter tile.

By using indicators such as these, we can derive a mobility change measure by comparing
mobility as measured by an indicator for a specific point in time and place with a baseline rep-
resenting normal mobility as measured by the same indicator (see Table 1).

To preserve the privacy of users, many companies like Google and Apple have not made
available mobility indicators, but instead make available their mobility change measures, which
are based on some measured mobility indicator. Google [9] makes available the percent change
in minutes spent at various POI groups like parks, residential, workplace, retail, and public
transportation each day compared to a baseline. Similar mobility change measures based on
POI visits are produced by Foursquare [11], Safegraph [7], and Unacast [14]. Apple [10]
makes available the percent change in volume of direction requests. Unicast also makes avail-
able the absolute change in distance traveled compared to a baseline and the absolute change
in unique human encounters per sq km. Safegraph [8] makes available their own mobility
change measure, a shelter in place index which measures the change in percent in the popula-
tion that stays at home each day compared to a baseline. Descartes Labs Inc. [4] makes avail-
able the percent change in max distance traveled relative to a baseline. In all of the above
examples, the choice of baseline varies. In most cases, these baselines are static and usually
look at the average mobility measured by the indicator of choice over a short period represent-
ing normal mobility (usually January or February 2020).

Quantifying the spatial and temporal change in mobility has been critical for evaluating the
effectiveness of NPIs [15-17], explaining behavior related to mobility patterns [18], supporting
contact tracing efforts [19], and developing realistic models that predict trajectories of the dis-
ease [20]. However, due to the challenges associated with analyzing big data with both spatial
and temporal dimensions, mobility change measures are typically either 1) mapped to show the
increase or decrease in mobility at specific points in time [13] or 2) plotted to show the change
in mobility as a time series for a specific study area [21]. In either case, studies tend to associate
these changes at specific points in time with certain NPIs and furthermore attempt to deter-
mine the underlying explanations for the variation in the social distancing behaviors [17].
However, A more comprehensive understanding of mobility changes is needed.

Therefore, the objectives of this study are to (1) develop a novel mobility change measure
and (2) identify and describe common temporal and spatial trends that are observed across all
US counties over the period of a year during the COVID-19 pandemic. We aim to explore
three related hypotheses, as follows:

o Our first hypothesis is that mobility behavior during the pandemic varies spatially and tem-
porally, but we can quantify general mobility trends across counties. To evaluate this
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Table 1. Publicly available mobility indicators and mobility change measures.

Name

SafeGraph [7,
8]

Google [9]

Apple [10]

Foursquare
[11,12]

Descartes
Labs Inc [4,
13]

Facebook [5,
6]

Unacast [14]

Mobility Indicators

candidate device count, origin CBG and
POI destination, completely home
device count, home dwell time, non-
home dwell time, distance traveled from
home

N/A

N/A
N/A

number of samples, median of the max
distance

fraction of users that stay put in a region

N/A

https://doi.org/10.1371/journal.pone.0259031.t001

Geography | US Spatial

UsS

global

global
Us

us

global

Us

Granularity

census block
group

county

county, city

national and
select states
national, state,
and county level

national, state,
county, and city
level

county level

Mobility Change Measure

shelter in place index, relative foot traffic
index

relative time spent at various POI groups
compared to baseline

relative number of direction requests
compared to baseline

relative number of visits to different POIs
compared to baseline

relative median max distance compared
to baseline

relative number of trips to other 60m tiles
compared to baseline

relative distance traveled compared to
baseline, relative number of visits to non
essential retail and essential services
compared to baseline, relative number of
unique human encounters relative to
baseline

Baseline

average time spent at home/
foot traffic from Feb. 20-27,
2020

median value for the
corresponding day of the
week, during the 5 week
period Jan.3-Feb.6, 2020

volume of requests on Jan. 13,
2020

average number of visits from
Feb. 13-19, 2020

average median max distance
from Feb. 17-Mar. 7, 2020

average from Feb. 2-Mar. 29,
2020

average from Feb. 2-Mar. 29,
2020

hypothesis, we use principal component analysis (PCA) approach based on truncated Singu-
lar Value Decomposition (SVD) to decompose the mobility time series of all counties into
latent components of mobility behavior.

o Our second hypothesis is that geographically close counties have similar mobility change
trends. By representing each county as a linear combination of latent features of human
mobility, we can map these features into geographic space and measure their spatial
autocorrelation.

o Our third hypothesis is that the strength of mobility components correlate with other popu-
lation characteristics such as population density, income, and political leaning. To evaluate
this hypothesis, we test for a significant correlation between mobility components and these
explanatory variables for the same county.

By exploring these hypotheses, we aim to uncover hidden spatial and temporal patterns and
provide a concise summary of human mobility behavior.

2 Methods

In this paper, we analyze mobility change in the US using high-resolution foot traffic data

(Fig 1). We first propose the Delta Time Spent in Public Places (ATSPP), which measures
changes in mobility for each US county from 2019 to 2020 (Section 2.2). In this study, any geo-
graphical region that has a FIPs code including counties, cities, and boroughs is designated as
a county. Because of the high dimensionality of the data, we next use Principal Component
Analysis (PCA) to reduce the data into three latent components, where each component is
explained as a time series representing the change in mobility in US counties (Section 2.3).
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Fig 1. Overview of methodology.
https://doi.org/10.1371/journal.pone.0259031.g001

Third, we use clustering analysis to find which counties have similar weighted combinations of
the three components (Section 2.4). Fourth, we investigate local and global spatial autocorrela-
tion for each component (Section 2.5). And finally, we conduct correlation analysis to investi-
gate how various population characteristics and behavior correlate with mobility patterns
(Section 2.6).

2.1 Mobility data source

The data used in this study was obtained “from SafeGraph, a data company that aggregates
anonymized location data from numerous applications in order to provide insights about
physical places, via the Placekey Community. To enhance privacy, SafeGraph excludes census
block group information if fewer than five devices visited an establishment in a month from a
given census block group” [3, 22].

As part of SafeGraph’s Data for Academics [23], SafeGraph offers a Social Distancing Met-
rics Dataset [8] (archived on April 16, 2020). This dataset is available at no cost for academic
researchers for non-commercial work. In general, SafeGraph obtains precise device location
information from third-party data partners such as mobile application developers. This infor-
mation is collected through APIs where app developers provide information about their users
[24]. The device’s home census block group (CBG) is determined based on the nighttime loca-
tion of devices over six weeks so that Social Distancing Metrics including the CBG’s device
count, the complete at home device count, the median distance traveled from home, the
median home dwell time, median non-home dwell-time and more can be calculated. It should
be noted that SafeGraph’s Social Distancing Metrics are available from January 1, 2019,
through to April 16, 2021, and are no longer being updated. For this study, we use data from
SafeGraph’s Social Distancing Metrics from January 1, 2019, to December, 31st 2020.

2.2 Human mobility measures

As an indicator to assess changes in human mobility in the US, we selected SafeGraph’s mea-
sure of median non home dwell time from the Social Distancing Metrics dataset,
which is defined as the median time (minutes each day) that all devices in a census block
group (CBG) spend visiting public points of interest (POIs) located outside the boundaries of
their home geohash (using a 153m x 153m hash buckets). This includes minutes spent at
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public POIs such as grocery stores, restaurants, bars, and movie theaters. We note that this
measure only includes public POIs that are captured among the 6.5 million POIs in the Safe-
Graph Core Places database [7]. We aggregate this measure to the county level by averaging
themedian non home dwell time for each CBG in each county to give usan avera-
ge median non home dwell time for each county.

Our goal is to compare the average median non home dwell time foreach
county for each day in 2019 and the corresponding day in 2020. Weekly patterns strongly
affect mobility in the United States, where in general, lower mobility is observed on the week-
ends, especially on Sundays. Since corresponding days in 2019 and 2020 may not be corre-
sponding days of the week, we use the seven-day rolling average of the
average median non home dwell time for both 2019 and 2020. That is, we calcu-
late the mean average median non home dwell time for that day and the three
days before and after that day. We formally define this as Time Spent at Public Places (TSPP)
calculated for both 2019 and 2020 as follows:

Definition 1 (Time Spent at Public Places (TSPP)) Let R be a region, and let DF =
[dF, ..., dY] denote a time series of daily median non home dwell time for that region,
where N is the number of days of interest. We define our Time Spent at Public Places measure at
the i-th day as:

3 R
TSPP(D")[i] = Z"; i ,
where i is an index of D* and 4 < i < N — 3. For example, for a 365 day time series,
TSPP(D™)]i] is defined from Day 4 to Day 362, since for the first and last three days, there are
not enough day before and after, respectively, to compute the centered weekly average. The
denominator denotes the size of a sliding window, i.e., 7 days, used for calculating the mean.

Next, we look at the difference between the Time Spent at Public Places (TSPP) measure
calculated for the i-thday in the time series for each county in 2019 and the i-th day in the time
series for the same county in 2020. We define this as Change in Time Spent at Public Places
measure or ATSPP as follows:

Definition 2 (Time Spent at Public Places (ATSPP)) Let R be a region and let Df the time
series of 365 daily median non home dwell time valuesin R for all daysin yeary. We
define the daily change in TSPP as:

ATSPP(R, y1,y2) = TSPP(D};) — TSPP(D},),

where y1 and y2 are a target year and a reference year to compare, respectively. For short,
ATSPP is referred to ATSPP(R, 2020,2019) in this paper, where R is all counties of the US.

We consider an increase in ATSPP, where TSPP is higher in 2020 than in 2019, as a proxy
for increased mobility, thus increasing the risk of exposure. Although individual counties can
provide the spatial and temporal heterogeneity in the post-pandemic mobility behavior, there
are thousands of counties in the US, each with a unique mobility trend. Thus, we seek an
approach that can identify different mobility trends found commonly across all 3107 counties
while handling both the dimensionality and variance of the data.

2.3 Mobility feature extraction: Principal Component Analysis

Principal Component Analysis (PCA) [25] is a commonly used technique to reduce the
dimensionality, yet maintain the variation, present in large multivariate data and is a generali-
zation of eigendecomposition for non-square and non-maximum rank matrices. We define a
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data matrix R € IR™*" as a m x n matrix where m = 359 corresponds to days the number of
days of the year (except for the first three and last three days due to the seven-day sliding win-
dow) and where n = 3100 corresponds to the number of US counties (we remove seven outlier
counties—see Section 2 in S1 File). Using singular value decomposition (SVD), R is factorized
in the product of three matrices R = ULV where X is a diagonal matrix containing the square
roots of the eigenvalues of RR', and the columns of U (V) are the eigenvectors of RRT (RTR).

To reduce the dimensionality of R we truncate the SVD to obtain only the first K dimen-
sions. Thus, X is a K x K diagonal matrix containing the K largest eigenvalues, Ui is a m x K
matrix describing each of the m days with K latent features, and Vi is a K x n matrix describing
each county with K latent features.

The idea of using SVD in this context is to decompose the time series of each county into a
linear combination of K archetypal time series called principal components (PCs). SVD
assumes that the ATSPP is a linear combination of latent features. This assumption holds since
the average ATSPP that we observe is indeed derived from the mobility change of individual
people. By applying SVD to the set of ATSPP time-series of all counties of the US, we can find
components of individual human behavior as follows.

« Reduced mobility during the entirety of March-December 2020 corresponding to counties
with individuals who have the ability and obedience to stay at home for the remainder of
2020, such as people who worked remotely.

» Reduced mobility only during Summer 2020 corresponding to individuals who stop isola-
tion after the first wave of infections in the US, either due to having to go back to work or
due to growing weary of mobility restrictions.

« No reduced mobility, corresponding to individuals who cannot stay at home such as health
professionals or individuals who are not willing to follow stay-at-home directions.

In addition to finding these three latent PCs (see Section 3.3 in S1 File), SVD further allows
us to describe each county as a linear combination of these components, which can be inter-
preted as corresponding mobility behavior. In the case that some counties are not well
explained by any of the latent components, we calculate the coefficient of determination for
each county.

2.4 Clustering analysis

Due to a large number of counties, it is difficult to determine which counties exhibit similar
mobility trends. Therefore, we cluster counties into groups of counties that exhibit similar
latent features of change of exposure. We first plot each county into the PCA space where each
point represents a county, and each axis represents the weight of each PC in explaining the
county’s ATSPP, normalized from 0 to 1. For clustering, we compared the K-means algorithm
[26] against other clustering algorithms and determined K-means to be the most appropriate
(see Section 3.4 in S1 File). The K-means algorithm partitions # observations into k clusters by
randomly initializing k points (means or cluster centroids) and assigning each observation to
their closest point. The coordinate point is updated iteratively to reflect the mean center of
observations that belong to it. This approach requires the number of k points to begin with.
We choose k = 3 so that we can better visualize the counties that have similar weighted combi-
nations of PCs (see Section 3.4 in S1 File for more details).
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2.5 Spatial autocorrelation analysis

To test the impact of proximity in mobility change, we measure the spatial autocorrelation of
counties and their corresponding weights for each PC using both Global Moran’s I [27] and
Anselin’s Local Moran’s I [28]. The concept of spatial autocorrelation is based on Tobler’s First
Law of Geography which states that things that are closer to each other are more similar than
things that are far apart [29]. Moran’s I calculates the degree to which features in a dataset are
positively spatially autocorrelated (neighboring features are alike), negatively spatially autocor-
related (neighboring features are not alike), or not spatially autocorrelated (attributes of fea-
tures are independent of location).

First, we compute a matrix of spatial weights to define each counties’ neighbors mathemati-
cally. We used Queens-case, meaning counties are considered to be neighboring if their border
shares at least one common vertex. After building this matrix, we discovered that the only
neighboring county to Fairfax City is Fairfax County, Virginia, which was identified as an out-
lier in the PCA space and removed earlier in this analysis. To resolve this issue, Fairfax City
was also removed. Next, we calculate the fraction of the total variation that is attributed to
counties that are close together across the entire study area to give us a measure of global spa-
tial autocorrelation (Moran’s I) and then decompose the measure for each feature to give us
local spatial autocorrelation (Anselin’s Local Moran’s I).

2.6 Correlation analysis

We have covered both the spatial and temporal variation of mobility trends across all of the
counties in the US in response to the COVID-19 pandemic. Next, we aim to identify some
population variables that may explain the variation. Thus, we use the Pearson’s R coefficient to
calculate the correlation between the weight of each PC and a variety of explanatory variables,
including income, political leaning, employment, percent age over 65, and COVID-19 cases
and deaths for each county. Pearson’s R is a statistical measure of linear association that
returns a value between -1 and 1 that defines how strong the correlation is, where the further
away that value is from 0, the stronger the correlation. We test for significance using a p-value.
Since we hypothesize that there is a linear relationship between the strength of the PCs in
explaining county mobility and different county variables, we did not investigate non-linear
relationships.

3 Results
3.1 General mobility trends

We calculate the TSPP for each of the 3107 counties to produce a time series representing
mobility in each county in 2019 and 2020. This can be aggregated to the US. Fig 2 shows the
Time Spent in Public Places TSPP(D") for the region R corresponding to all counties aggre-
gated to the United States level, excluding Alaska, Hawaii, and US territories, and for the
sequence of days D" ranging from Jan to Dec. for 2019 and 2020. The boxplots for the 2019
and 2020 TSPP can be found in the Section 3.1 in S1 File.

We observe anomalously high mobility in January and February 2020. This is likely a com-
bined effect due to higher-than-average temperatures, 50% less snow depth, and panic buying
behaviors (see S1 File). Starting March 2020, we observe a rapid drop in mobility due to the
COVID-19 pandemic. Interestingly, we also observe that these drops swing back to normal by
June 2020 and even exceeds 2019 mobility overall.

Next, we look at the Change in Measure of Public Exposure. Fig 3 shows the ATSPP mea-
sure for the US and for three counties. We can visually observe radically different mobility
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Fig 2. TSPP calculated for the United States in 2019 and 2020.
https://doi.org/10.1371/journal.pone.0259031.9002

behavior among these counties. Arlington County, VA, exhibits a large drop in mobility in
March 2020 than other counties. We also observe that this reduction in mobility persists
throughout the year 2020. In contrast, the mobility of Cambria County, PA, exhibits a less
extreme drop in mobility and quickly returns to and exceeds normal mobility after June 2020,
where ATSPP is greater than or equal to 0. Tulare County, California, exhibits a much less
extreme drop in mobility, but in general, maintains this reduction of mobility.

3.2 Principal components of ATSPP

A TSPP

3.2.1 Qualitative interpretation. We find that K = 3 principal components explain 59%
of the variation in all of the included time series where PC1 explains 35.6%, PC2 explains

75
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Fig 3. ATSPP calculated for the US, Arlington County (VA), Tulare County (CA), and Cambria County (PA).
https://doi.org/10.1371/journal.pone.0259031.g003
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Fig 4. Three latent features describing mobility in the US mapped back into the temporal space.
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15.3%, and PC3 explains 8.8% of the variance. Thus, using Matrix Vi, each county in the U.S.
is described as a linear combination of three PCs, with a loss of 1-59% = 41% of explained vari-
ance (see Section 3.3 in S1 File). This result shows that by describing each county by only three
archetypal behaviors, we can explain more than half of the variance across the 359 dimensions
that each county is described by in the full space.

Towards explainable machine learning, Fig 4 shows the three latent principal components

describing each county in the U.S. mapped back into the full 359-day space.

The mobility trend captured by PC1 (in red) begins with slightly higher mobility in January
and February 2020 compared with 2019. In March 2020, there is a sharp deviation from the
mobility observed in March 2019 as mobility declines in response to the pandemic. For the
remainder of 2020, mobility remains consistently lower than mobility in 2019. We explain
PC1 by individuals who reduced their mobility in March 2020 and then maintained this
stay-at-home and social distancing behavior for the rest of the year. Counties that are well
explained by PC1 may be composed of individuals who are able to work from home in April
and continued working from home throughout the year.

The mobility trend captured by PC2 (in green) begins with a slightly lower mobility in Janu-
ary and February 2020 than in comparison with 2019. In the spring, mobility steadily
increases until April 2020, when mobility declines slightly in response to the COVID-19 pan-
demic. For the remainder of 2020, mobility remains higher than mobility in 2019. The only
time mobility is lower than in comparison to 2019 is before the pandemic. Counties that are
well explained by PC2 may be composed of individuals who can’t or won’t comply with stay-
at-home orders (such as health care workers, essential workers, and other individuals).

Finally, the mobility trend captured by PC3 (in blue) begins with more mobility in January
and February 2020 than in 2019. In response to the pandemic, there is a sharp drop in mobil-
ity in March 2020 until it returned to normal mobility in June 2019. Mobility then increases
in late summer and remains higher for the remainder of the year than in 2019. We explain
PC3 by individuals who have reduced mobility directly after the pandemic (March-June
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2020) but then return to normal mobility. Counties that are well explained by PC3 may be
composed of individuals who were unable to work due to a shutdown in March 2020, but
returned to work in June 2020. Counties that are well explained by PC3 may also be com-
posed of individuals who were fearful during the onset of the pandemic but experienced pan-
demic fatigue and became less compliant with stay-at-home orders as the pandemic
continued.

Abstractly speaking, we can interpret these three latent components as “Long term mobility
reduction” (PC1), “No mobility reduction” (PC2), and “Short term mobility reduction” (PC3).

In the Singular Value Decomposition, Matrix V provides us with the K = 3 weights of these
latent features for each county. In the following, Section 3.2.1 provides a qualitative spatial
analysis of these three principal components to understand which parts of the United States
exhibit strong weights for each of these latent features. We provide quantitative analysis to
show that the weights of these latent features are strongly spatially auto-correlated with a num-
ber of significant spatial clusters.

3.2.2 Spatial analysis. We provide a spatial analysis of the principal components of
change of exposure across all counties in the United States. Section 3.4 shows the spatial distri-
bution of each principal components, Section 3.2.2 analyses clusters of counties having similar
principal components, and Section 3.5 explores which counties are well-modeled by these
components and which counties still exhibit large unexplained variance using three principal
components only.

Matrix V describes each county as a linear combination of the three components. For exam-
ple, Arlington County’s ATSPP (See Fig 3) is described as 98% PC1, 20% PC2, and 21% PC3,
thus having a dominant first component. In contrast, Tulare County’s ATSPP (See Fig 3) is
described as 51% PC1, 16% PC2, and 33% PC3, thus having a stronger weight on PC3 than
Fairfax.

Fig 5A to 5C maps the strength of each PC in explaining the mobility trend of all 3100
counties. Based on visual analysis of the results, we find that the counties on the east and west
coast have a higher weight in PC1, counties in the south-west and south-east have a higher
weight in PC2, and counties in the mid-west have a higher weight in PC3. Stacking these three
figures creates a Red-Green-Blue (RGB) composite map to show the linear combination of the
components for each county where red is PC1, green is PC2, and blue is PC3 (see Section 3.5
in S1 File).

Since the three principal components only explain 59% of the variation among the
358-dimensional representation of counties as a sequence of daily changes in mobility, an
important and open question is to ask which counties of the U.S. are explained well by these
components and which ones are not. That is, which counties may be better explained by the
remaining 355 components that we truncated to reduce the dimensionality. Fig 6 shows the
explained and unexplained variance using the coefficient of determination. The counties with
positive values (green) are well explained by the three PCs. The counties with negative values
(red) are not well explained by the three PCs and would be better explained by taking the sim-
ple average of the counties ATSPP.

3.3 Clustering of latent features of ATSPP

Fig 7 depicts the resulting feature vectors for all counties in the K = 3 dimensional latent fea-
ture space from two angles (Fig 7A and 7B) for easier interpretation. The colors in Fig 7 repre-
sent the result of the K-means clustering analysis. We map the results of K-means analysis to
see the spatial distributions of the counties related to each cluster (Fig 8).
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Fig 5. Spatial distribution of the three principal components of change of public exposure. (A) Principal
Component 1: Reduced ATSPP March-December (B) Principal Component 2: Increased ATSPP March-December (C)
Principal Component 3: Reduced ATSPP March-June. Maps produced in QGIS [30] using SafeGraph [3] derived data,
shapefiles from data.gov [31].

https://doi.org/10.1371/journal.pone.0259031.9005
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Fig 6. Spatial distribution of the explained variance (R?) for all counties across the US using three principal components. Map produced in QGIS
[30] using SafeGraph [3] derived data, shapefile from data.gov [31].
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We can see that counties in the southwest and southwest, excluding Arizona, New Mexico,
Virginia, and West Virginia, belong primarily to Cluster 1 (in green) and thus have similar
weighted combinations of PCs. Counties along the west and northeastern coast, as well as the
Florida coast and southern Texas, belong primarily to Cluster 2 (in pink). Counties that belong
to the Rocky Mountain region of the US as well as Maine, Vermont, much of New York, West

(A) (B)
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Fig 7. Counties plotted in PCA space. (A) Angle 1. (B) Angle 2.
https://doi.org/10.1371/journal.pone.0259031.g007
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Fig 8. K-means analysis mapped geographically. Map produced in QGIS [30] using SafeGraph [3] derived data, shapefile from data.gov [31].
https://doi.org/10.1371/journal.pone.0259031.9g008

Virginia, Minnesota, and Wisconsin belong primarily to Cluster 3 (in purple). Counties in
many states in the midwest and southeast are a mix of belonging to different clusters.

3.4 Spatial autocorrelation of mobility behavior between counties

The results of the Global Moran’s I analysis for each of the three latent features are presented
in Table 2. We found a strong positive spatial autocorrelation for all three features. The spatial
autocorrelation of PC1 and PC2 at 0.556 and 0.544, respectively, is higher than the spatial auto-
correlation of PC3 at 0.489. For all three components, the positive spatial autocorrelation is
highly significant at p-values < 10~>® having Z-scores of 46 and greater. As we suspected from
our qualitative analysis, this result confirms that the patterns of ATSPP that we observed in Fig
5 are indeed strongly positively spatially autocorrelated.

Next, we calculate Anselin’s Local Moran’s I [28] to help visualize clusters of counties with
similar neighbors and outlier counties with dissimilar neighbors (Fig 9). The results of Anse-
lin’s Local Morain’s I for PC1 are presented in Fig 9A. We can identify clusters of counties
with high weights corresponding to PC1 that have neighbors with high weights. We refer to
these patterns as High-High (HH) clusters that are positively spatially autocorrelated. In addi-
tion, we can identify the counties with low weights corresponding to PC1 that have neighbors

Table 2. Global Moran’s I measure of spatial autocorrelation for each principal component.

Component Moran’s 1 Z-score
PC1 0.556 52.4
PC2 0.544 51.3
PC3 0.489 46.1

https://doi.org/10.1371/journal.pone.0259031.t002
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Fig 9. Anselin’s Local Moran’s I (LISA) results. (A) LISA for PCI. (B) LISA for PC2. (C) LISA for PC3. Maps
produced in QGIS [30] using SafeGraph [3] derived data, shapefiles from data.gov [31].

https://doi.org/10.1371/journal.pone.0259031.9009
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with low weights. We refer to these patterns as Low-Low(LL) clusters that are positively spa-
tially autocorrelated. Anselin’s Local Moran’s I also uncover outliers, where we find counties
with high or low weights corresponding to PC1 that have oppositely weighted neighbors. We
refer to these patterns as Low-High(LH) outliers and High-Low (HL) outliers that are nega-
tively spatially autocorrelated. Counties with a p-value of greater than.05 are considered insig-
nificant. We present the results of Anselin’s Local Moran’s I for PC2 and PC3 in Fig 9B and
9C.

3.5 Explaining variation in mobility patterns

We examine the correlation between the weight of each PC and other variables for each
county. The results are presented in Table 3. PC1 captures the mobility trends in US counties
that maintain decreased mobility from the onset of the pandemic and beyond. We find that
there is a strong positive correlation between counties with a higher income (median house-
hold income and per capita income) and a higher weight corresponding to PC1. This has been
supported in the literature in other studies that find that higher-income counties and states are
able to follow social distancing guidelines better and stay-at-home orders [32].

We find a strong positive correlation between counties that are democratic leaning and
have a higher weight corresponding to PC1. In contrast, we find a strong negative correlation
between counties that are republican leaning in the 2020 and 2016 election and have a higher
weight corresponding to PC1. This has been supported in the literature where it has been
found that counties and states that are democratic leaning better follow social distancing
guidelines and stay-at-home orders [33]. Interestingly, we find that the strength of the correla-
tions between PC1 weight and political leaning decrease as we use political data from 2012,
2008, 2004, and 2000.

Table 3. Correlation analysis results showing Pearson’s correlation and respective p-values between each principal component (PC1-PC3) and other population
characteristics.

Correlation Variable PC1 PC1 P-value PC2 PC2 P-value PC3 PC3 P-value
Median Household Income 0.63 0.00e+00 -0.11 1.84e-09 0.22 2.39¢-36
Per Capita Income 0.55 1.02e-244 -0.15 2.02e-16 0.19 5.13e-26
2020 Rep Vote Percent -0.45 8.12e-152 0.38 2.90e-104 -0.02 3.34e-01
2020 Dem Vote Percent 0.44 3.61e-150 -0.37 4.56e-99 -3.23e-02 5.14e-01
2016 Rep Vote Percent -0.42 5.79e-133 0.39 7.45e-112 0.02 1.72e-01
2016 Dem Vote Percent 0.41 5.40e-125 -0.33 1.93e-81 -0.03 7.25e-02
ACS 2019 Pop Est 0.38 4.50e-106 -0.18 3.32e-25 -0.02 2.32e-01
Percent Pop Over 65 -0.34 1.23e-84 -0.025 0.16 -0.078 1.50e-05
2012 Dem Vote Percent 0.28 2.42e-56 -0.39 1.11e-115 0.02 3.38e-01
2012 Rep Vote Percent -0.28 4.62e-55 0.42 1.07e-130 -0.02 3.55e-01
2008 Dem Vote Percent 0.26 2.18e-47 -0.44 2.48e-143 0.05 5.09e-03
2008 Rep Vote Percent -0.24 1.03e-41 0.45 1.32e-157 -0.05 4.78e-03
2000 Rep Vote Percent -0.19 7.16e-27 0.30 1.99e-64 0.03 1.01e-01
2004 Dem Vote Percent 0.19 1.01e-25 -0.35 2.06e-89 -1.49e-02 4.07e-01
2004 Rep Vote Percent -0.18 3.74e-25 0.36 1.65e-97 0.02 3.41e-01
2000 Dem Vote Percent 0.17 1.95e-21 -0.23 4.50e-40 -0.03 9.62e-02
Unemployment Rate 0.11 1.42e-10 -0.31 1.28e-69 -0.02 2.65e-01
Deaths Per Thousand 0.09 1.36e-07 0.15 2.64e-16 -0.17 1.31e-21
Cases Per Thousand -0.05 1.18e-02 0.25 5.15e-44 -0.16 6.41e-20

https://doi.org/10.1371/journal.pone.0259031.t003
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We also find moderate positive correlations between counties with high population and a
higher weight corresponding to PC1. We find moderate negative correlations between coun-
ties with high percentage of population over 65 and a higher weight corresponding to PC1. We
do not find strong correlations between counties with a higher weight corresponding to PC1
and normalized numbers of cases and deaths corresponding to COVID-19. In any case, it is
difficult to properly quantify the relationship between total and normalized COVID-19 cases
and deaths and PC weight based on the uncertainty inherent to the data due to inconsistent
reporting.

PC2 captures the mobility trends in US counties that increase their mobility. We find that
the correlations between counties with a high weight of PC2 and the variables are opposite that
of PCI. Thus, there is a strong positive correlation between counties that are republican lean-
ing in the 2020 and 2016 election with a higher weight corresponding to PC2. PC3 captures
the average mobility trends in US counties. There does not appear to be nearly as strong corre-
lations between counties with a high weight corresponding to PC3 and the variables.

4 Discussion and conclusions

In this study, we calculate a novel indicator of mobility change which we call the Time Spent at
Public Places (TSPP) using Safegraph data [3]. We quantify the change of mobility by calculat-
ing the running difference of this measure between 2019 and 2020 for each county to estimate
a measure of mobility change (ATSPP) that describes each county as a time series of mobility
change of 365 days.

Confirming our first hypothesis, we find that mobility behavior during the pandemic varies
spatially and temporally, but that there are three main mobility trends uncovered by our PCA
analysis. PC1 captures the mobility trends of counties that drop their mobility at the onset of
the pandemic and maintain reduced mobility through to the end of the year, the behavior of
which we refer to as “Long term mobility reduction”. PC2 captures the mobility trends of
counties that increase their mobility in 2020 or, in other words “No mobility reduction”. PC3
captures the mobility trends of counties that drop their mobility at the onset of the pandemic
and then quickly return to normal mobility, which we call “Short term mobility reduction”.
PC3 can be considered the average mobility trend across all counties. Confirming our second
hypothesis, we find that mobility trends are positively spatially autocorrelated, meaning that
counties that are geographically close exhibit similar mobility trends. Finally, we partly con-
firmed our third hypothesis is that we find some correlations between the variation in mobility
trends and underlying population behavior and characteristics.

While we obtained interesting results, there are certain limitations of the data relevant to
this study including sparse documentation of data collection, data completeness, bias, geo-
graphic coverage, and open-access. First, although SafeGraph has gone to unprecedented
lengths to make the data public, perhaps unsurprisingly as a corporate data provider, their
methods and sources for collecting device data and POI data are sparse. Detailed methods,
sources of data, and truth datasets are not available and thus cannot be independently evalu-
ated [34].

Data completeness is also difficult to assess. Our mobility indicator is based on the med-
ian non home dwell time which measuresthe median time that devices in the same
CBG spend at public POIs that are included in SafeGraph’s Core Places database. SafeGraph
represents the location of over 6300 distinct brands as POIs and this number changes over
time as new brands are added. These are chains of commercial POIs that include all major
brands in the United States (McDonald’s, AMC, Macy’s, Chevrolet, Whole Foods Market). Of
the brands that SafeGraph includes, they capture close to 100% of the brands’ locations [35].
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About 80% of SafeGraph POIs have no brand associated as they are single commercial loca-
tions (local restaurants, museums). It is not possible to assess the actual completeness of Safe-
Graph’s POIs; specifically, the total number of all POIs in the US versus the total number of
POIs represented in the Safegraph Core Places Dataset.

SafeGraph’s Social Distancing Metrics dataset is based on device users that make up
approximately 10% of the United States population, which is significantly larger than typical
household mobility surveys. Although there are concerns that the sample is not a perfect repre-
sentative of the population, SafeGraph reports that their sample correlates very highly with
true census populations [36]. SafeGraph finds a Pearson’s R Correlation Coefficient of 0.966
and a Sum Absolute Bias of 24.77 between the real county population and the number of
devices in the county counted by SafeGraph. SafeGraph finds little to no race-level sampling
bias, educational attainment-level sampling bias, and household income-level bias with Pear-
son’s R Correlation Coefficients of 1, 0.999, and 0.997 and Sum Absolute Biases of 3.70, 3.43,
and 1.75, respectively. The code to run independent sampling bias analysis on SafeGraph data
is provided by SafeGraph [37].

We found that the geographic coverage of the data was complete at the county level with
100% coverage. There were no counties that were excluded from the dataset as a result of few
POIs or lower device counts (see the Section 3.6 in S1 File). As part of SafeGraph’s Data for
Academics, academic researchers have no-cost access to SafeGraph data for non-commercial
work. The reliance on commercial data means that there are limited safeguards to the data,
and changes to data and data access may occur beyond our control. For example, SafeGraph
recently stopped updating the Social Distancing Metrics dataset. However, SafeGraph pro-
vided ample notice, and the archived data is still available for academic researchers, ensuring
the reproducibility of this study. Furthermore, we have made available ATSPP on this project’s
GitHub Repository (see the Section 1 in S1 File).

Our results are only applicable to the United States. Application of the same methodology
to other countries is yet to be conducted. Finally, our PCA components capture ~59% of the
movement patterns, and the rest 41% is unexplained with our approach. Additional work is
needed to cover a better percentage of variation without significantly increasing the PCA
space. Future work will also focus on exploring the correlation between the PCs and additional
variables, including commute, weather, and policy guidelines. This study provides a more
comprehensive and data-driven approach to examining how human mobility has changed in
response to the pandemic.
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