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Abstract: Trade-offs between privacy and cost are studied for a smart grid consumer, whose electricity consumption is
monitored in almost real time by the utility provider (UP) through smart meter (SM) readings. It is assumed that an electrical
battery is available to the consumer, which can be utilised both to achieve privacy and to reduce the energy cost by demand
shaping. Privacy is measured via the mean squared distance between the SM readings and a target load profile, while time-of-
use pricing is considered to compute the cost incurred. The consumer can also sell electricity back to the UP to further improve
the privacy-cost trade-off. Two privacy-preserving energy management policies (EMPs) are proposed, which differ in the way
the target load profile is characterised. A more practical EMP, which optimises the energy management less frequently, is also
considered. Numerical results are presented to compare the privacy-cost trade-off of these EMPs, considering various privacy
indicators.

1௑Introduction
Smart meters (SMs) are pivotal components of the smart grid,
because they enable two-way communication between each
household and the utility provider (UP), the entity that sells energy
to consumers. Benefits include having more accurate electricity
bills, detecting energy theft and outages faster, introducing time-of-
use (ToU) tariffs to match demand with available resources,
integrating microgeneration systems, e.g. photovoltaic panels and
wind farms, and residential energy storage solutions, and the
possibility for the consumers to sell energy to the grid. For these
reasons, the SM roll-out is proceeding rapidly and is attracting
considerable investments. However, an SM's ability to monitor a
user's electricity consumption in almost real-time entails serious
implications about consumer privacy. In fact, non-intrusive
appliance load monitoring techniques can distinguish the power
signatures of specific appliances from aggregated household SM
measurements, revealing sensitive information about a consumer's
life, such as her presence at home, religious beliefs and disabilities
[1, 2]. SM privacy is also critical for businesses, e.g. factories and
data centres, as power consumption data may reveal information
about the state of their businesses.

1.1 Privacy-aware SM techniques

Privacy-preserving methods for SMs can be classified into two
families. First, the SM data manipulation (SMDM) family [3],
encompasses methods that modify SM measurements before
reporting them to the UP, and includes data obfuscation [4],
aggregation [5], anonymisation [6], down-sampling [7], and data-
sharing prevention [8] approaches. However, these techniques
suffer from several shortcomings [3]. First, obfuscation approaches
add noise to the SM readings, causing a mismatch between the
reported values and the real energy consumption, which prevents
distribution systems operators (DSOs), i.e. the entities that operate
and manage the grid, and UPs from accurately monitoring the grid
state. Second, anonymisation and aggregation techniques that
include the presence of a trusted third party (TTP) only shift the
problem of trust from one entity (UP/DSO) to another (TTP).
Third, DSOs, UPs, or more generally, any eavesdropper can embed
additional sensors right outside a household or a business to
monitor the energy consumption, without fully relying on SM

readings. The second family of privacy-preserving approaches,
called the user demand shaping (UDS) family [3], overcomes these
issues by modifying the consumer's actual electricity consumption,
called the user load, rather than the data sent to the UP. This is
achieved by exploiting physical resources, e.g. rechargeable
batteries (RBs) or renewable energy sources (RESs), making the
user load as different as possible from the SM measurements,
called the grid load [9–11]. However, UDS techniques may require
an initial investment by the user as physical resources need to be
installed at the user's premises. Using RBs for privacy preservation
may also lead to a quicker physical degradation of RBs [12].
Moreover, the cost of energy may increase when providing privacy
via some UDS approaches. Hence, it is important to consider these
aspects when considering UDS techniques for privacy
preservation.

In this paper, we adopt UDS techniques because they report the
energy taken from the grid accurately, and employ physical
resources, e.g. RBs and RESs, which are becoming increasingly
available to the consumers. Our aim is to jointly minimise the
information leaked about a user and the cost of electricity. While a
widely accepted definition of privacy is elusive, privacy is
achieved when it is not possible to distinguish a specific appliance
load from the aggregated household energy consumption [9].
Statistical techniques measure privacy loss by the mutual
information between the user and the grid loads [10, 11, 13–17], or
by computing approximations of it [18]; however, this requires the
knowledge of the underlying statistics, and the results are typically
valid under various simplifications, e.g. assuming independent and
identically distributed user load, and over sufficiently long time
horizons. An alternative approach is based on the idea that a high
degree of privacy can be achieved by flattening the power
consumption around a target load profile, e.g. minimising the
distance from a completely private profile [10, 19–21]. The target
load profile can be set to be a constant value over time, typically
equal to the average consumption [10, 19, 20]. In this model, it is
assumed that the energy management unit (EMU), i.e. the system
that implements the privacy-preserving energy management policy
(EMP) at the user's premises, knows, or, accurately predicts, the
load profile for the time period of interest, and obtains the optimal
EMP by solving an optimisation problem. On the other hand, a
completely constant consumption may not be practically viable or
desirable, since the energy cost may vary greatly during the system
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operation due to ToU tariffs. Hence, in [21], the EMU is allowed to
target a different fixed power value for each price period. The
flexibility of the latter approach leads to a better overall privacy-
cost trade-off; however, such a piecewise constant target profile
implies also an inherent information leakage compared to a
constant target profile. We follow up on [10, 19–21], and measure
the privacy leakage as the squared distance between the grid and
target load profiles; however, differently from those works, we
consider a more general target load profile, and assume that the
consumer has only a partial knowledge of her future energy
consumption and energy cost. We note that privacy leakage may be
measured as the distance between the grid and user loads.
However, if the aim is to increase such distance, this might lead to
a potentially deterministic strategy for the EMU, e.g. produce a low
grid load when the user load is high and vice-versa. Since we also
assume that the UP knows the optimal strategy implemented by the
EMU, such a strategy would result in a better estimate of the user
load by the UP. On the contrary, trying to match the grid load to a
specific target profile would make it harder to estimate the user
load, e.g. flattening the grid load independent of the user load
reveals only the average energy consumption.

The main contributions of this paper are as follows:

i. While full information about the future electricity consumption
is assumed to be available at the EMU in [10, 21], which we
call the long horizon model (LHM), here we consider a more
realistic scenario whereby the consumer's future consumption
profile is only partially known to the EMU in a receding
horizon manner, which we call the short horizon model
(SHM). The optimal solution at any time is computed only
based on the currently available information within the
prediction horizon by adopting a model predictive controller,
recently implemented in an SM setting in [14]. We present a
detailed comparison of the results for SHM and LHM.

ii. We introduce a target load profile computed as a low-pass
filtered version of the user load, since higher-frequency
components of a user's consumption profile leak more
information about her behaviour, compared to lower-frequency
components. To the authors’ knowledge, this is the first time
that such a target profile has been studied in the SM privacy-
preservation literature.

iii. We propose a more practical EMP that updates the optimal
strategy less frequently. The optimal solution is computed in
batch, reducing the computational load at the expense of the
privacy-cost trade-off. Finally, we compare the privacy-cost
trade-offs for all the schemes using real consumption and
pricing data.

The remaining of this paper is organised as follows. In Section 2,
we present the system model, while in Sections 3 and 4, we
consider the SHM for a constant and a filtered target load profile,
respectively. A more practical EMP with less regular policy
updates is analysed in Section 5, while conclusions are drawn in
Section 6.

1.2 Notation

For integers 0 < a < b, Ua
b denotes the sequence [Ua, Ua + 1, …, Ub],

while Ub ≜ U1
b. The positive part [x]+ is equal to x if x > 0, and 0

otherwise. When solving optimisation problems, we denote the
optimal value of a variable with a star, e.g. G∗ denotes the optimal
value of the parameter G.

2௑System model
We consider the discrete-time system depicted in Fig. 1, where t
represents one-time slot (TS) of duration D seconds, for 1 ≤ t ≤ N,
where N is the time horizon of interest. For TS t, the user load, i.e.
the total power requested by all the household appliances within
TS t, is denoted by Ut ∈ U, while the grid load is Gt ∈ G. We
remark that the TSs in our model correspond to time instants when
the electricity is actually requested by the user and drawn from the
grid, rather than the typically longer sampling interval used for
sending SM measurements to the UP. We assume that the SM
measures and records the output power values at each TS because
our aim is to protect consumers’ privacy not only from the UP, but
also from the DSO or any other attacker that may deploy a sensor
on the consumer's power line recording the electricity consumption
in almost real time. An RB of capacity Bmax is installed at the user's
premises, which is used to both filter the user load to provide
privacy, and to shift energy intake from the grid to minimise
electricity costs. The EMU computes the amount of energy to draw
from the grid, Gt, and to exchange with the RB, Ut − Gt. Let
Bt ∈ [0, Bmax] denote the amount of energy in the RB at the end of
TS t, and we set B0 = 0. The RB is charging if Gt − Ut > 0, and
discharging if Gt − Ut < 0. The user's electricity consumption and
the electricity price are assumed to be known for HF TSs beyond
the current TS, naming HF as the prediction horizon. Additionally,
we assume that the EMU keeps memory about the past HP TSs,
which we call the past horizon. At each TS t, the EMU computes
an EMP for the following HF TSs, using its knowledge of Ut and
the electricity cost within the prediction horizon, and its knowledge
of the user load, grid load, and the RB level of energy within the
past horizon.

Instead of the LHM scenario, where full information about a
consumer's future energy consumption is assumed to be known
over the whole time period of interest, in this paper, we consider a
more realistic scenario and assume that only partial knowledge of
the consumer's future energy consumption is available to the EMU.
The SHM assumption is motivated by the difficulty in obtaining
reliable longer-term predictions of a consumer's energy
consumption.

2.1 System constraints

Let t + HF ≜ min {t + HF, N}. We do not allow wasting grid
energy; that is, there are no battery overflows, i.e. we impose
Bt − 1 + (Gt − Ut)D ≤ Bmax, ∀t. This means that, at any time t and

Fig. 1௒ System model. Ut, Gt and Ut − Gt are the user load, the grid load, and the energy drawn from the RB at the time t, respectively. The dashed line
represents the meter readings being accurately reported to the UP
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considering a prediction horizon of HF TSs, the EMU has to satisfy
the following constraint:

Bt − 1 + ∑
s = t

τ

(Gs − Us)D ≤ Bmax, (1)

where t ≤ τ ≤ t + HF.
While additional energy can be stored in the RB for future use,

we do not allow demand rescheduling, so that the user's energy
demands are always satisfied at the time of request, i.e. we impose:
GtD ≥ UtD − Bt − 1, ∀t. This leads to the following constraint for
the EMU at the time t:

∑
s = t

τ

(Us − Gs)D ≤ Bt − 1, (2)

where t ≤ τ ≤ t + HF. This constraint is also implicitly verified by
the equation expressing the evolution of the energy level in the
battery

0 ≤ Bt + 1 = Bt + Gt + 1D − Ut + 1D . (3)

The power the RB can be charged or discharged at is constrained
by P^

c and P^

d, respectively. Thus, ∀t we have

Gt − Ut ≤ P
^

c, (4)

Ut − Gt ≤ P
^

d . (5)

The model could be made more accurate by introducing further
constraints, e.g. battery charging and discharging efficiency
parameters, which we leave for future research focusing on the
practical implications of the proposed UDS techniques.

We study and compare the two scenarios in which energy can or
cannot be sold to the UP. The price of energy sold to the grid is set
equal to the price of energy bought from it, i.e. we adopt the net
metering approach, in which the SM can measure bi-directional
energy flows [22]. If energy cannot be sold, then

Gt ≥ 0, ∀t, (6)

whereas if energy can be sold, we have

Gt:
≥ 0, if energy is purchased from the UP,

< 0, if energy is sold to the UP .
(7)

Given (Ut, Bt) = (ut, bt), Bmax and the constraints (4)–(6), the set of
feasible energy requests at a time t is given by

Ḡt(ut, bt) ≜ gt ∈ G: ut − min
bt

D
, P

^

d

+

≤ gt

≤ ut + min P
^

c,
Bmax − bt

D
.

(8)

If selling energy to the UP is allowed, then the feasible set is as in
(8), but without the [ ⋅ ]+ operator.

The EMP computes the grid load at each TS while satisfying
the above constraints. We consider a model predictive control
approach, whereby the user load and the cost of energy are known
beforehand within the prediction horizon [t + 1, …, t + HF], and
the goal is to jointly minimise the information leaked about a user's
energy consumption as well as the cost the user incurs to purchase
energy from the UP. While non-causal knowledge of the electricity
price for the typical range of interest is a realistic assumption in
today's energy networks, non-causal knowledge of power
consumption is appropriate for appliances whose activity can be
accurately predicted, e.g. refrigerators, boilers, heaters and electric
vehicles. We note that the setting studied in [21], which assumes all

future energy consumption and cost information to be known
beforehand, is a lower bound on the setting studied in this paper, as
more information leads to a better privacy-cost trade-off.

Let the target load at time t be denoted by Wt. We measure the
privacy leakage as the average variance of the grid load GN from
the target load profile WN:

P ≜
1
N

∑
t = 1

N

(Gt − Wt)
2, (9)

according to which, perfect privacy is achieved when Gt = Wt, ∀t.
We adopt squared distance in (9) not to discriminate between
negative and positive deviations of Gt from Wt. The average cost
incurred by the user is given by

C ≜
1
N

∑
t = 1

N

GtCt, (10)

where Ct is the cost of energy at the time t, which is determined by
the specific ToU tariff employed by the UP.

2.2 Simulation settings

We use real SM consumption traces from the UK Dale dataset [23].
We convert the original resolution of 6 seconds to 10 minutes to
reduce the computational complexity. We consider a Tesla
Powerwall 2 [24] as RB, for which Bmax = 13.5 kWh, and
P
^

c = P
^

d = 5 kW. We consider a ToU tariff that was offered in the
UK [25], in which the off-peak price is 4.99 p/kWh during 23:00 to
6:00, the medium price is 11.99 p/kWh during 6:00 to 16:00 and
during 19:00 to 23:00, and the peak price is 24.99 p/kWh during
16:00 to 19:00. All the simulation results are obtained for a time
interval spanning 14 consecutive days, to average over a
considerably large amount of data. For simplicity, we will mostly
present numerical results when selling energy to the grid is not
allowed, unless energy selling leads to significantly different
results.

3௑Target load as a constant value
In this section, following up on [9, 10, 20], we assume that the goal
of the EMU is to keep the grid load as constant as possible. In [11],
it is assumed that all the future user load and energy cost values are
known, and the EMU can fix a target value for the whole duration,
e.g. one whole day. In our model the information available to the
EMU on Ut and Ct is limited to the prediction horizon, and changes
over time; thus, the target load cannot be constant, and its
variability depends on the length of the past and prediction
horizons. In this section, given the knowledge of the cost of energy
and the user's power consumption, the aim is to characterise both
the optimal target load W

∗ and the optimal grid load G
∗ so as to

optimise the overall privacy-cost trade-off.
Given the nature of the objective functions and the constraints,

pairs of (P, C) form a convex region and the optimal points can be
characterised by the Pareto boundary of this region. Hence, the
objective can be cast as a weighted sum of privacy leakage (9) and
cost (10):

min
Gt

t + HF, Wt

α ∑
τ = t − HP

t + HF

(Gτ − Wt)
2 + (1 − α) ∑

τ = t

t + HF

GτCτ, (11)

where 0 ≤ α ≤ 1 is the weighting parameter, i.e. if α = 0 only cost
of energy is minimised, whereas if α = 1 only information leakage
is minimised; and t − HP ≜ max {t − HP, 0}. We remark that
setting the value of α is up to the consumer, who is in charge of
deciding whether to focus more on protecting her privacy or on
saving costs. The result of the minimisation in (11) is the grid load
for the current TS and the entire duration of the prediction horizon
Gt

t + HF, and the target load Wt. Equation (11) characterises the target
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load value Wt for the finite prediction horizon, which leads to the
optimal privacy-cost trade-off over this horizon, based on the
available information. At TS t + 1, the minimisation (11) is carried
out again based on the additional information that becomes
available, i.e. Gt + HF + 1 and Ct + HF + 1, and Gt + 1 and Wt + 1 are
determined. The past horizon ∑τ = t − HP

t − 1 (Gτ − Wt)
2 is considered

when optimising for the privacy objective, since it ensures
smoother variations of the overall target load profile. We note that,
since privacy and cost in (11) may have significantly different
magnitudes, they need to be further normalised to get the Pareto
optimal solution consistent with α [26].
 

Remark 1: Differently from [21], here we do not impose the RB
to be emptied at the end of each time window [t − HP, t + HF],
since here the end of the prediction horizon does not typically
coincide with the end of the time horizon of interest, and the
energy remaining in the RB can be utilised in the following TSs.
Since the algorithm jointly minimises privacy leakage and cost, the
RB is normally emptied at the end of the time horizon of interest N,
unless α is high. If α → 1 and the RB is large, a sustained demand
of energy may take place in the short term, which is ultimately
constrained by Bmax and P^

c.
Fig. 2 shows the load profiles of SHM and LHM over one day. 

As expected, the LHM provides better performance as the resultant
profile is much flatter and hides most of the consumption spikes,
which typically reveal more information about the user's behaviour.
However, also the SHM leads to a reasonable suppression of
consumption peaks, despite relying on much less data. Also, the
SHM reveals more information about the low-frequency variation
of user's energy consumption, which, however, is common across
households, and thus provides only a limited amount of personal
information. Moreover, Figs. 2a and 2c show that the peaks of the
grid load generated by SHM are not necessarily aligned with those
of the user load.

3.1 Solution to the optimisation problem (11)

In the following, we consider the optimisation problem (11) for
α ≠ {0, 1}. We analyze first the optimal solution when selling of
energy is allowed, i.e. (6) does not hold. Based on (11) and the
constraints (1), (2) and (4), (5), we define the Lagrangian function
in (12) at the bottom of this page, where λτ

( j) ≥ 0, for 1 ≤ j ≤ 4, are
the Lagrange multipliers, and t ≤ τ ≤ t + HF. Denoting the vectors
in bold, we have λ = [λ(1), λ

(2), λ
(3), , λ

(4)]. The slackness conditions
are imposed on the inequality constraints, for
τ = t, t + 1, …, t + HF:

(see (12)) 

λτ
(1)

D∑
s = t

τ

(Gs − us) − Bmax + Bt − 1 = 0, (13)

λτ
(2)

D∑
s = t

τ

(Us − Gs) − Bt − 1 = 0, (14)

λτ
(3)(Gτ − Uτ − P

^

c) = 0, (15)

λτ
(4)(Uτ − Gτ − P

^

d) = 0. (16)

Let aτ ≜ D∑s = τ
t + HF (λs

(2) − λs
(1)) − λτ

(3) + λτ
(4), and C

~
τ ≜ ((1 − α)/2α)Cτ.

Applying the Karush–Kuhn–Tucker (KKT) conditions and setting
the gradient of the Lagrangian to zero, we obtain the following
expressions:

Gτ
∗ =

aτ

2α
− C

~
τ + Wt

∗, for τ = t, …, t + HF, (17)

Wt
∗ =

∑τ = t − HP

t + HF
Gτ

∗

1 + min {HP, t} + min {HF, N − t}
. (18)

The optimal solution for the grid load given in (17) resembles the
classical water-filling algorithm [27]. However, differently from
the classical water-filling formulation, here the water level,
Gτ

∗ + C
~

t = (aτ/2α) + Wt
∗, is not constant, but varies over time due to

the instantaneous power constraints. The optimal solutions given
by (17) and (18) depend on the values of the Lagrangian
multipliers and can be determined numerically.

When α = 0, the only objective is to minimise the cost, and (11)
reduces to a linear program, which can be solved using standard
linear programming solvers. On the other hand, when the user is
not concerned about the cost, i.e. α = 1, (11) leads to a quadratic
program analogous to the general case.

When energy selling is not allowed, the constraint (6) holds,
and the Lagrangian in (12) is modified accordingly. The slackness
conditions are given in (13)–(16), as well as, for τ = t, …, t + HF:
λτ

(5)
Gτ = 0, and λ

(6)
Wt = 0. Let a

~
τ ≜ D∑s = τ

t + HF (λs
(2) − λs

(1)) −λτ
(3) +λτ

(4)

+λτ
(5). Then, we obtain the following expressions, counterparts of

(17) and (18):

Gτ
∗ =

a
~

τ

2α
− C

~
τ + Wt

∗
+

, for τ = t, …, t + HF, (19)

Wt
∗ =

∑τ = t − HP

t + HF
Gτ

∗ + λ
(6)

1 + min {HP, t} + min {HF, N − t}

+

. (20)

Fig. 2௒ Power profiles for α = 0.5 and HF = HP = 2 h. In the figures, the
arrows of green, orange, and red colours denote time intervals
characterised by off-peak, medium, and peak price for the electricity cost,
respectively
(a) SHM, no energy selling, (b) LHM, no energy selling, (c) SHM, energy selling, (d)
LHM, energy selling

 

ℒ(Gt
t + HF, Wt, λ) = α ∑

τ = t − HP

t + HF

(Gτ − Wt)
2 + (1 − α) ∑

τ = t

t + HF

GτCτ + ∑
τ = t

t + HF

λτ
(1)

D∑
s = t

τ

(Gs − Us) − Bmax + Bt − 1

+ ∑
τ = t

t + HF

λτ
(2)

D∑
s = t

τ

(Us − Gs) − Bt − 1 + ∑
τ = t

t + HF

λτ
(3)(Gτ − Uτ − P

^

c) + ∑
τ = t

t + HF

λτ
(4)(Uτ − Gτ − P

^

d) .

(12)
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3.2 Illustration of the water-filling solution

Here we present the solution for some simple scenarios to acquire
an intuition on the solution of the optimisation problem (11), and
on its water-filling interpretation. Assume energy selling is not
allowed, N = 6, and D = 1, i.e. power and energy can be used
interchangeably. Consider u

6 = [1, 2, 6, 5, 2, 4] and
c

6 = [1, 2, 5, 3, 1, 3], HP = HF = 2 TSs, and an RB with Bmax = 4

and P
^

c = P
^

d = 2. Fig. 3a shows the optimal solution for α = 0,
G

∗ , 6 = [3, 4, 4, 3, 4, 2]. Since the electricity is cheaper for
t = {1, 2}, more energy is requested from the grid at these TSs and
stored in the RB to satisfy the demand at later TSs. However, such
energy is limited by Bmax and P^

c. At t = 1, P^

c limits the grid load,
since G1

∗ = u1 + P
^

c = 3, and the level of energy in the RB at the end
of the first TS is B1 = P

^

c = 2. At t = 2, the grid load is limited by
P
^

c and Bmax simultaneously, and G2
∗ = u2 + P

^

c = 4, and
B2 = Bmax = 4. Note that, although the third TS is the most
expensive, G3

∗ = 4 because the RB cannot be discharged by more
than 2 units of energy (P^

d = 2). For the same reason, G4
∗ = 3, while

the remaining energy was stored in the second TS. Similar

considerations hold for the last two TSs. Fig. 3b illustrates the
optimal solution for α = 1, G

∗ , 6 = [3, 3.5, 4, 3.75, 3.88, 3.81]. In
this scenario, the EMP tries to match Gt to the target load Wt, even
at the cost of asking more energy than needed. The energy demand
at t = 1 is the same as the case α = 0, whereas at t = 2 less energy
is stored in the battery to be used at t = 4, so that the water level
matches the target load in this TS (at the expense of a higher cost at
t = 4). It is noteworthy that more energy than needed is requested
at t = 4, and used to satisfy the demand at t = 5, which is cheaper.
Finally, more energy than needed is requested at t = {5, 6}
(depicted in yellow), allowing the EMP to match the target and the
grid load. Such energy is stored in the RB for future use.

Fig. 4 shows the same scenario with Bmax = 20, P
^

c = P
^

d = 10,
and when energy can be sold. When α = 0, Fig. 4a shows that
energy is bought when it is cheaper and sold back to the grid when
it is more expensive, maximising the user's profit. C

~
3 and C

~
4 are

plotted as negative since energy is sold in these TSs. In fact, the
RB is emptied of the energy stored during the first two TSs at the
end of the fourth TS, and it is emptied again of the energy stored
during the fifth TS at the end of the sixth TS. When α = 1, Fig. 4b
shows that a larger RB permits greater flexibility but also boosts
the amount of energy requested. This is not necessarily a
disadvantage, as such energy can be used at a later TS.

3.3 Impact of the duration of prediction and past horizons

Fig. 5 shows the load profiles for various combinations of HF and
HP. As expected, a larger HF produces flatter target and grid loads
(see Fig. 5c), compared to a smaller HF (see Fig. 5a). However,
when HF is larger the resulting grid load is more distant from the
target load, thus resulting in a higher information leakage
according to our definition of privacy leakage in (9). In fact, when
HF is small, the grid load values that are compared to the target
load are few, and the EMP can determine a target load that is close
to the grid load within the analysed time window. On the contrary,
when HF is large, the EMP needs to find a single target load that
matches a longer interval of grid load values; as a result, the target
load may be less representative for some periods. A larger HP leads
to a flatter target load (see Fig. 5b), however, the grid load is
spikier compared to considering a larger HF.

Fig. 6 shows the average information leakage P, average cost
C, and average target load variance with respect to HF. The
average target load variance, which can be considered as another
privacy indicator, is defined as

V ≜
1
N

∑
t = 1

N

(Wt − μW)2, (21)

where μW is the mean of W overtime. When α is small, i.e. the
main focus is to minimise the cost, a larger HF reduces the average
cost up to a certain extent, beyond which it cannot be further

Fig. 3௒ Optimal grid and target load profiles, for Bmax = 4, P
^

c = P
^

d = 2,
when energy selling is not allowed
(a) α = 0, (b) α = 1

 

Fig. 4௒ Optimal grid and target load profiles, for Bmax = 20, P^c = P
^

d = 10,
when energy selling is allowed
(a) α = 0, (b) α = 1

 

Fig. 5௒ Comparison between various past and prediction horizons for α = 0.5, when energy selling is not allowed
(a) HP = HF = 1 h, (b) HP = 12 h, HF = 1 h, (c) HP = 1 h, HF = 12 h
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reduced (see Fig. 6b); whereas for α = 1 the cost does not change
considerably with HF. Opposite considerations hold for the
information leakage, which even slightly increases when α ≠ 1
(see Fig. 6a). This is due to the fact that a longer prediction horizon
generates a grid load that is more distant from the target load,
except for α = 1, when the focus is on privacy only. Fig. 6c shows
that increasing HF induces a smaller variance on the target load.

Fig. 7, which shows P, C, and V with respect to HP, exhibits
similar behaviours to those in Fig. 6, with some notable
differences. The y-axis ranges are more limited here, confirming
that the knowledge of past consumption is less critical for the EMP
compared to the knowledge of future consumption and costs. This
explains the far smaller reduction in cost in Fig. 7b, as compared to
Fig. 6b, and the increase in the information leakage when α = 1 in
Fig. 7a. Fig. 7c shows that the target variance is higher and more
variable when α = 1; however, this corresponds to the case in
which the grid load is closer to the target load, i.e. the most private
scenario according to our original privacy measure. This
contradiction of the two privacy indicators shows that evaluating
the variance of the target load does not fully reflect the level of
privacy achieved, as defined in (9).

3.4 Alternative privacy measures

As opposed to the LHM studied in [10], where Wt is fixed
throughout the operation time, here Wt is allowed to vary over
time. Therefore, the squared distance between Gt and Wt may not
be sufficient as a privacy measure on its own. Accordingly, we
consider alternative measures of privacy to see the impact of the
proposed model predictive control framework on those measures.
One of the objectives of privacy-preserving algorithms for SM data

is to mask the difference between successive power measurements,
called features, which non-intrusive appliance load monitoring
algorithms exploit to identify appliances’ switch-on/off events [28].
Thus, it is possible to evaluate an EMP's performance against such
algorithms by computing the number of features present in the grid
load [20]. We classify as features those differences that are larger
or equal to 50 W, which represent a typical household electricity
consumption of lights. Fig. 8 shows the number of features with
respect to HF and HP. A larger HF leads to a reduction in the
number of features in the grid load (Fig. 8a); however, HP does not
seem to have any influence on this (Fig. 8b).

Another way of assessing the performance of privacy-
preserving algorithms is by analysing the power spectrum of the
resulting grid load. In fact, the higher-frequency components of the
grid load spectrum correspond typically to more sensitive
information about a user's energy consumption [29]. Fig. 9 shows
the grid load spectra corresponding to using different values of HF

and HP. Larger values of HF lead to better suppression of higher-
frequency components when α = 1 (Fig. 9b), whereas for α = 0
even additional high-frequency components are introduced
(Fig. 9a). When α = 1, increasing HP also attenuates the higher-
frequency components (Fig. 9c), but less markedly compared to
increasing HF. As the spectral analysis of the grid load better
captures the information leaked, in the following section, we
consider a privacy-preserving approach whose aim is to filter out
directly the higher-frequency components of the user load.

4௑Target load as filtered user load
When the target load is set to a constant value, one can consider
this as the DC component of the Fourier transform of the user load
profile. If the grid load can be maintained at the average value of
the user load at all times, this is equivalent to filtering out all the
positive frequency components of the user load profile. However,
as shown in Section 3, this is not always possible due to the RB
capacity and power constraints, and the information leakage is
measured as average squared error distance from this constant DC
component. In this section, we consider a more general target load
profile, obtained by low-pass filtering the user load, which is
equivalent to removing only the high-frequency variations. The
motivation for this is two-fold: First, the EMU is able to better
approximate the target load profile by keeping the low-frequency
components; and secondly, the high-frequency components are the
ones that leak more information about user behaviour. Low-
frequency devices are those that typically have a continuous
periodic operation, e.g. the fridge, and are not particularly privacy
sensitive. We would like to remark that, differently from the

Fig. 6௒ Impact of the prediction horizon HF on leakage, cost, and target load variance (HP = 2 h)
(a) Energy selling, (b) Energy selling, (c) No energy selling

 

Fig. 7௒ Impact of the past horizon HP on leakage, cost and target load variance (HF = 2 h)
(a) Energy selling, (b) Energy selling, (c) No energy selling

 

Fig. 8௒ Number of features versus HF and HP, no energy selling
(a) HP = 2 h, (b) HF = 2 h
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previous section, here W is not an optimisation variable but it is
determined based only on the user load. The optimisation problem
is expressed as

min
Gt

t + HF

α ∑
τ = t

t + HF

(Gτ − Wτ)
2 + (1 − α) ∑

τ = t

t + HF

GτCτ, (22)

where Wt, Wt + 1, …, Wt + HF
 are obtained as low-pass filtered

versions of the user load, subject to the same constraints of the
constant target scenario, i.e. (1), (2) and (4), (5). The target load at
time t, Wt, is computed as follows. The EMU selects the only
available user load, i.e. that one within [t − HP, t + HF], and
computes its spectral representation by means of the discrete
Fourier transform. Then, a low-pass filter with a predefined cut-off
frequency is applied. Finally, the inverse transform provides the
target load profile Wt. We note that, although HP does not appear
explicitly in (22), the target load computed at time t is determined
by low-pass filtering the user load within the time window
[t − HP, t + HF] to prevent the target load from varying
dramatically over different TSs. When α = 0, (22) reduces to the
linear program of the previous section. The optimal solutions to
(22) can be characterised by following the same steps of Section 3,
apart from Wt, which here is not an optimisation variable. The
optimal solutions are given in (17) and (19) for the scenarios where
selling energy is allowed and not allowed, respectively. Fig. 10
compares the SHM and the LHM, showing that SHM generates
profiles that are smooth and similar to that of the LHM, despite
relying only on the knowledge of 2 h of future electricity
consumption. 

5௑More practical EMP
In the previous sections, it is assumed that the EMU solves the
optimisation problem at each TS. However, in practice it may not
be feasible to obtain the future predictions at each TS, and may be
impractical to compute the target profile so often. Thus, in this

section, we consider a more practical EMP where the optimisation
problem is solved once every TS TSs. The optimisation problems at
time t are still given by (11) and (22) for the constant and filtered
target load scenarios, respectively, such that the sequences Gt

t + TS

and Wt
t + TS are obtained at time t on the basis of the available

information for TSs [t − HP, t + HF], where HF ≥ TS.
Fig. 11 shows that the practical EMP for a constant and a

filtered target load creates a piecewise target and grid loads, similar
to the piecewise target load profile approach [21]. Due to the
discontinuities introduced in the grid load profile, spikes at high
frequencies may appear in the spectrum of the grid load produced
by this strategy, leading to a higher privacy loss. When α = 1,
Fig. 12 shows that the practical EMP reaches virtually the same
performance of the SHM, despite computing the grid load six times
less often than the LHM. 

Finally, in Fig. 13, we present the privacy-cost trade-offs for the
various scenarios we have discussed when energy selling is
allowed. This figure clearly highlights the increasing loss in
performance due to the decreasing amount of information available
to the EMU when moving from the LHM to the SHM and to the
more practical EMP.

6௑Conclusions
We have studied the joint optimisation of privacy and cost for an
SM system equipped with an RB. Privacy is measured via the
mean squared-error between the SM measurements and a target
load profile, which is set to be either a constant function or a low-
pass filtered version of the user load. We assume that only partial
information about the user's future electricity consumption and
electricity cost is known to the EMU, and we cast the joint privacy
and cost optimisation as a model predictive control problem. The
scenario in which the user is allowed to sell excess energy to the
UP is studied, which is shown to achieve a better privacy-cost
trade-off. The optimal solutions for the constant and filtered target
load profiles have been characterised, highlighting their water-
filling interpretation. The privacy-cost trade-off has been

Fig. 9௒ Power spectra versus HF and HP, and no energy selling
(a) α = 0, HP = 2 h, (b) α = 1, HP = 2 h, (c) α = 1, HF = 2 h

 

Fig. 10௒ Filtered target load scenario with a cut-off frequency of 0.1 mHz,
α = 1, and HF = HP = 2 h
(a) SHM, (b) LHM

 

Fig. 11௒ Practical EMP for α = 0.5, HF = HP = 2 h, TS = 1 h, and cut-off
frequency set to 0.1 mHz
(a) Constant target, (b) Filtered target
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characterised for the various scenarios, and detailed numerical
simulations and alternative privacy measures have been presented.
As a future extension of this study, one can consider a
generalisation of the SHM and LHM models by introducing errors
in the predictions of the future energy consumption profile at the
EMU. It is reasonable to assume that the prediction error will
increase gradually for more distant time instants in the future.
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