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Abstract—Protection devices are extensively utilized in
direct current (DC) systems to ensure their normal operation
and safety. However, series arc faults that establish current
paths in the air between conductors introduce arc impedance
to the system. Consequently, they can result in a decrease
of current, and thus conventional protection devices may
not be triggered. Undetected series arc faults can cause
malfunctions and even lead to fire hazards. Therefore, a series
arc-fault detection system is essential to DC systems to
operate reliably and efficiently. In this paper, a series arc-fault
detection system based on arc time-frequency signatures
extracted by a modified empirical mode decomposition (EMD)
technique and using a support vector machine (SVM) algo-
rithm in decision making is proposed for DC systems. The oscillatory frequencies from the arc current are decomposed
by the EMD with an analysis of the Hurst exponent (H) to reject interference from the power electronics noise. H analyzes
the trend of a signal and the intrinsic oscillations of the signal are those with values of H larger than 1/2. Comparing
to traditional filters or wavelet transforms, this method does not require knowledge of the frequency range of the
interference which varies from system to system. The capability and applicability of the proposed technique are validated
in a photovoltaic system. The effectiveness of arc-fault detection is significantly improved by this technique because it
can acquire sufficient and accurate arc signatures and it does not need to predefine various thresholds.

Index Terms— Arc fault, arc time-frequency signatures, empirical mode decomposition, support vector machine.

I. INTRODUCTION

D IRECT current (DC) systems are prevalent since they
have the characteristics of higher efficiency, better
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sustainability, less complication, and lower cost compared
to alternating current (AC) systems [1], [2]. The continuous
development of distributed renewable energy sources, electri-
cal vehicles, storage devices, and DC loads are contributing to
the widespread industrial and residential applications of DC
systems. Although DC systems are widely used and benefit
power systems, the safety, reliability, and efficiency of DC
systems are challenged by electrical faults [3]. Line-line faults,
ground faults, overcurrent faults, and arc faults impede the
normal operation of DC systems [2]. In particular, accidental
arc faults can cause malfunctions and even lead to fire hazards
in DC systems [4]. Arc faults can be classified into two types:
series arc faults and parallel arc faults. A series arc fault is
induced by the failure of the intended continuity of a conductor
or connector while a parallel arc fault is due to the insulation
breakdown between the parallel conductors. To prevent DC
systems from arc hazards, arc-fault detection techniques and
devices are indispensable. According to National Electrical
Code 2011 section 690.11 of the United States, arc fault
protection is required for photovoltaic (PV) systems with a
maximum voltage higher than 80 V. The standard of PV arc-
fault-circuit interrupters (AFCI) is stipulated by Underwriters
Laboratories (UL) in UL 1699B and an AFCI must detect
arc faults with powers larger than 300 W [5]. However,
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the randomness and complexity of arc faults make it difficult
to extract arc signatures and define their characteristics for
arc-fault detection.

Generally, parallel arc faults provoking extra current paths
and dramatic increase of current can be terminated by over-
current protection devices such as fuses. Nevertheless, series
arc faults introduce arc impedance into the system leading
to the decline of current, and as a result, the conventional
protection devices operated by excitation current may not be
triggered [6]. Therefore, methodologies to detect series arc
faults are of considerable interest and numerous studies have
been carried out to investigate the characteristics of series arc
faults for detection.

Currently, series arc-fault detection techniques are mainly
based on the extraction and analysis of arc frequency sig-
natures from the variations of current caused by arcing. Arc
frequency signatures can be obtained from the arc current by
the Fast Fourier Transform (FFT) to achieve discrimination
between normal operation and arc faults [7], [8]. However,
the FFT does not reflect time-domain information and thus the
exact time of the occurrence of an arc fault cannot be found.
The Short-Time Fourier Transform (STFT) has been adopted
to obtain the arc signatures in the time-frequency domain [9].
A proper window length should be determined for the STFT to
achieve a compromise between the resolution in the time and
frequency domains, as otherwise the effectiveness of arc-fault
detection may be impacted [10]. To ensure the high resolution
of arc signatures in the time-frequency domain, the wavelet
transform (WT) has been widely exploited [11]–[14]. There
are also other arc-fault detection techniques. Arc features
from the quantum probability model [15], cross-correlation
function [16], and principal components of arc voltage and
current [17] can be calculated to detect arc faults. In the time
domain, voltage drop [18] and current fluctuation [19] can be
utilized in arc-fault detection by using predefined thresholds.
Antennas are used to capture the electromagnetic radiation
emitted by arcing to identify the series arc faults [20]–[22],
but the appearance of arc signatures varies from several MHz
to 800 MHz.

Although the widely adopted methods based on arc-
frequency signatures have been extensively studied, they may
be susceptible to environmental noises and power electronics
noise in a power system [10]. It is important to segregate
the arc signatures and noises. A bandpass filter and WT can
be used for denoising the arc signatures, but they require
knowledge of the frequency range of interfering noises [11],
[12]. Furthermore, methods such as the FFT, STFT, and WT
detect arc faults by comparing arc signatures with predefined
thresholds [10], [23], [24]. These thresholds vary with the
operating conditions of the system, and thus they must be
preset for each specific operating condition.

In this paper, a method based on empirical mode decom-
position (EMD) with the analysis of the Hurst exponent (H )
is developed to acquire arc time-frequency signatures despite
the effects of power electronics noise. A high-pass filter with
a cutoff frequency of 0.5 kHz is used to eliminate the DC
component. The support vector machine (SVM) algorithm
is adopted for decision making in arc-fault detection. It is

Fig. 1. An experimental setup for the generation of arc faults in DC
systems.

verified that the proposed technique with EMD analysis can
decompose the arc signatures from interfering noises by
extracting the intrinsic frequency-energy oscillations with H
of the intrinsic mode functions (IMFs) larger than 1/2. Unlike
the arc-fault detection method based on the variational mode
decomposition with analysis of Shannon entropy (Ep) which
needs to predefine the threshold values of Ep [25], H being
larger than 1/2 is used as a fixed selection criterion and does
not vary with the operating conditions of the system. Though
other machine learning tools have been applied in arc-fault
detection [14], [26], the SVM performs better in solving a
binary classification task [27] and it is shown here that the
SVM can differentiate between normal operation and arc fault
with higher accuracy than a decision tree or k-Nearest Neigh-
bors. This proposed technique does not require knowledge of
the frequency range of interference or predefining of different
thresholds. An off-grid PV system as a typical DC system was
implemented to test the proposed technique experimentally
under various conditions. This proposed technique can detect
arc faults effectively using the EMD based method and a
simply trained SVM without suffering the effects of noises,
load transient conditions, or the need for predefined thresholds.

This paper is organized as follows. In Section II, the
extraction of arc signatures based on EMD is explained.
In Section III, the algorithm based on SVM for dis-
tinguishing normal operation and arc faults is proposed.
In Section IV, the experimental testing and validation of
the proposed technique with the DC arc generator integrated
with PV systems are discussed. Our conclusions are drawn
in Section V.

II. ARC-SIGNATURE EXTRACTION

A. DC Arc Generator
To investigate the characteristics of DC arc faults, a DC arc

generator is developed as shown in Fig. 1. It can be series
connected with a DC system and a resistive load to emulate
the arc faults in a DC system. A voltage of 48 V is tested
since 48 V is widely used in automotive, telecommunication,
low-power loads, and DC-DC converter systems [28]–[30].
When the supply is around 48 V and 6 A, the minimum gap
length to generate the arc fault is 0.4 mm and the gap length
of 1 mm is too large to sustain an arc fault. The gap lengths
of 0.4, 0.6, and 0.8 mm between the two copper electrodes
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are created by operating the stepper motor to induce series
arc faults. The load current is measured by the magnetic
sensor (TMR2001, MultiDimension) and the output of the
TMR2001 is amplified by the preamplifier (SR560, Stanford
Research Systems). The oscilloscope (MDO3014, Tektronix)
is used to display the load current with a sampling rate
of 250 kS/s. The frequency information up to 125 kHz of the
load current can be acquired. The TMR sensor measures the
current based on the magnetoresistance effect of a magnetic
tunnel junction. The target current can be determined by the
phenomenon that the electrical resistance of the TMR sensor
changes as a function of the magnetic field generated from the
current [31]. The TMR2001 is compact (less than 15 mm3),
low cost (approximately 1 USD per each), extremely low in
power consumption (typically less than 0.4 mW) [32]. Hence,
the TMR2001 is an excellent choice for detecting arc faults
non-invasively and cost-effectively.

B. Characteristics of Arc Fault
Initially, a DC power supply was utilized as the power

source of the arc generator for emulating arc faults. The
TMR2001 sensor was pre-calibrated with the assistance of
the current probe. The TMR2001 was fixed horizontally on
the surface of the cable in diameter of 4 mm during the pre-
calibration and experiments. The TMR2001 were tested with
the current up to 10 A. The output voltage of the sensor varied
linearly with the current and could be modeled by Eq. (1).

IT M R = aT M R · VT M R + bT M R (1)

where IT M R is the calibrated current, aT M R and bT M R depend
on the features of TMR2001, VT M R is the output voltage of
TMR2001.

In this case, aT M R and bT M R were 4.01 and 1.59 respec-
tively. The load current containing arc fault with a gap length
of 0.6 mm was measured by the TMR2001 as shown in Fig. 2.
The DC arc generator was operating in normal mode from 0 to
1.5 s and the load current was constant as Fig. 2 (a) depicts.
The arc fault occurred at 1.5 s introducing arc impedance
and noises to the system [33], [34]. Hence, the load current
decreased and oscillated during the arcing. A selection window
of 0.4 s was used to select the data of load current for analysis
as shown in Fig. 2 (a). The power spectral density (PSD) of
the current in normal operation and sustained arc was extracted
by the FFT from the selected data as shown in Fig. 2 (b).
In the presence of an arc fault, the PSD of the current increased
apparently in the range from 0 to 125 kHz due to the noises
generated by arcing. Thus, the arc faults can be detected by
using this phenomenon [7], [8]. However, there are no time-
domain signatures from the FFT. Therefore, the exact time
of the occurrence of an arc fault could not be found causing
difficulties in detecting arc faults simultaneously.

A bandpass filter, passing frequencies from 0.5 kHz to
100 kHz, could be used to obtain the frequency signatures of
the arc current. Since the environmental noises are typically
lower than 100 Hz [10], [26], the lower cutoff frequency of
0.5 kHz was high enough to exclude the environmental noises.
In this way, the magnitude of arc signatures (IArc) can be

Fig. 2. The characteristics of the arc current measured by the TMR
sensor. (a) Arc current in the time domain. (b) PSD of the current in
normal operation and sustained arc. (c) Arc signatures from bandpass
filter from 0.5 kHz to 100 kHz.

accurately determined and presented in the time domain as
Fig. 2 (c) depicts. When the arc fault occurred at 1.5 s, the
IArc increased dramatically. Therefore, the oscillatory behavior
of the IArc induced by arcing from 0.5 kHz to 100 kHz can
be utilized to distinguish the normal operation and arc faults
in real-time.

C. Arc Signatures Decomposed by EMD
Though the arc frequency signatures from 0.5 kHz to

100 kHz can be used in arc fault detection, the operational
frequencies of most power electronics are within this range
and the electronic noises generated by power electronics can
cause nuisance tripping to the arc fault detection. For example,
the power electronics noise from the power supply and motor
drive of the stepper motor existed in the arc current as shown
in Fig. 3. The arc current at a gap length of 0.6 mm in the
time domain is shown in Fig. 3 (a). In this case, the power
electronics noise and arc signatures cannot be separated by
using the FFT as depicted in Fig. 3 (b). The arc signatures
interfered by the power electronics noise can lead to nuisance
tripping. According to Fig. 3 (c), the power electronics noise
is interfering with the arc signatures even after bandpass
filtering from 0.5 kHz to 100 kHz.

To solve this problem, instead of using the bandpass filter or
wavelet transform which requires knowledge of the frequency
range of interfering noises, the method based on EMD is
developed to decompose the arc signatures. The EMD treats a
signal at the level of its local oscillations and can decompose
the signal into a number of IMF and residual functions using
the sifting process to obtain the local trends [35], [36]. The
EMD analyzes the evolution of a signal X (t) by tracing the
local maxima and minima to construct an upper envelope
X+(t) and a lower envelope X−(t). Then, the EMD computes

Authorized licensed use limited to: Princeton University. Downloaded on November 20,2021 at 22:03:44 UTC from IEEE Xplore.  Restrictions apply. 



MIAO et al.: DC ARC-FAULT DETECTION BASED ON EMD OF ARC SIGNATURES AND SVM 7027

Fig. 3. The arc current with power electronics noise. (a) Current in the
time domain. (b) PSD of the current. (c) Arc signatures after bandpass
filtering from 0.5 kHz to 100 kHz. (d) Arc signatures decomposed by EMD
analysis.

the mean envelope mk,i (t) by Eq. (2),

mk,i = [
X+(t) + X−(t)

]
/2 (2)

where i is the number of the iteration, k is the number of IMF
and residual functions.

Subtract the mean envelope from the ck(t) and ck(t) = X (t)
for the first iteration,

ck(t) = ck(t) − mk,i (t) (3)

When zero mean is extracted from the signal, the ck(t) can be
regarded as an IMF.

When an IMF occurs, a new residual function is computed,

rk(t) = rk−1(t) − ck(t) (4)

where rk(t) is the residual function.
Repeat Eq. (2) to (4) with the new residual function to find

all IMFs. Finally, the signal X (t) can be represented as,

X(t) =
k∑

i=1

ci (t) + rk(t) (5)

To eliminate the interfering noises, the H of each IMF can
be calculated by analyzing the variance progression of IMFs
[36]. The H can be obtained by calculating the slope of log(R)
against log(S).

H = (log(R) − C)/ log(S) (6)

where R is the standard deviation (std) of the IMF c(t), S
is the function of the IMF number which is using [20, 21,
22…2k] in this case, C is a constant.

Fig. 4. The arc current generated at the gap length of 0.4, 0.6, and
0.8 mm and their signatures decomposed by the EMD analysis. (a) Arc
current in the time domain. Arc signatures at (b) 0.4, (c) 0.6, and (d)
0.8 mm.

The interfering noises can be denoised from the arc signa-
tures by subtracting the IMFs with H lower than 1/2 from
the arc signatures [36], [37]. The IMFs with H larger than
1/2 indicate the trend of intrinsic oscillations and most arc
features can be retained in the IMFs. Thus, having an H larger
than 1/2 is used as a fixed selection criterion in the EMD
analysis for the extraction of arc signatures. This selection
criterion does not vary with the operating conditions of the
system. As shown in Fig. 3 (d), the arc signatures can still
be successfully extracted by the EMD despite the effects
of interfering noises. The DC component is filtered by the
high-pass filter with a cutoff frequency of 0.5 kHz.

Although the noise level of an arc fault decreases with the
gap length [38], the discrepancy between arcing and normal
operation is typically unambiguous. This is confirmed by the
arc faults at around 48 V with the gap lengths of 0.4, 0.6, and
0.8 mm as shown in Fig. 4. It can be seen from Fig. 4 (a)
that the current decreased when the arc fault occurred and
the arc current decreased with the gap length due to the
increase of arc impedance. The arc time-frequency signatures
at the gap length of 0.4, 0.6, and 0.8 mm are depicted in
Fig 4 (b), (c), and (d) respectively. Though the magnitudes of
the arc signatures decreased with the gap length, the oscillatory
frequencies of arc fault at 0.4 mm decomposed by the EMD
analysis were still large enough for detection.

The arc signatures in different current levels were also
evaluated. The arc current and current noise in different
current levels at a gap length of 0.6 mm are shown in Fig. 5.

Authorized licensed use limited to: Princeton University. Downloaded on November 20,2021 at 22:03:44 UTC from IEEE Xplore.  Restrictions apply. 



7028 IEEE SENSORS JOURNAL, VOL. 21, NO. 5, MARCH 1, 2021

Fig. 5. The arc current at different current levels. (a) Arc current in the
time domain. (b) Arc signatures decomposed by the EMD analysis.

The DC system was in normal operation until 1.39 s when
the arc fault appeared. The resistance of load increased during
arcing at 3.2 s resulting in the decrease of current as shown in
Fig. 5 (a). It was confirmed that the arc signatures of different
current levels can be effectively obtained by the proposed
method based on EMD and the effectiveness would not be
affected by the variation of arc current as shown in Fig. 5 (b).
Therefore, the proposed method can facilitate the extraction
of arc signatures despite the influences of load transients and
power electronics noise.

D. Evaluation of EMD Analysis
The boundary effect, stopping criteria, and computational

complexity of the EMD analysis are analyzed. In the pro-
posed EMD analysis, the extrema are set close to edges by
symmetry quality to reduce the errors due to the boundary
effect. The sifting process is stopped satisfactorily only when
the difference between the number of extrema and zero-
crossings is less than 1 and the mean envelope close to
zero [35], [39]. The amplitude of mean envelop are evalu-
ated by comparison with the amplitude of the corresponding
mode. In the EMD analysis, the stopping criteria based on
two thresholds θ1 and θ2 are adopted to ensure the mean
envelope has the globally small fluctuations and the locally
large excursions are considered [39]. The mode amplitude
is ak,i (t) = (X+(t) − X−(t))/2 and the evaluation function
is σk,i (t) = |mk,i (t)/ak,i (t)|. The sifting is stopped when
σk,i (t) < θ1 for the fraction (1-α) of total duration and
σk,i (t) < θ2 for the rest fraction. In this case, the θ1 of 0.05,
θ2 of 0.5, and α of 0.05 are used. The time complexity of
EMD is 41·Ns ·n ·nm where Ns is the number of siftings, n is
the data length, nm is the number of IMFs, and nm = log2n.
Since 41·Ns · n·(log2n) = O(n·logn), the complexity of EMD
is of the same order of FFT [40].

III. ALGORITHM BASED ON SVM
A. Feature Selection and Extraction for SVM

In this paper, instead of predefining thresholds for each
operating condition of a system, the SVM was implemented
for classifications of arc features and detections of arc faults.
The arc features were analyzed and extracted by calculating

Fig. 6. The basic operational theory of SVM.

the energy (Eg), Ep, root-mean-square (RMS), and std of the
arc signatures obtained by the proposed method. The Eg of
the arc signatures can be calculated from Eq. (7).

Egi =
n∑

i=1

|Shi |2 (7)

where Sh is the arc signal obtained from the proposed method.
The Ep indicating the uncertainty and complexity of the

arc-noise signal can be expressed by Eq. (8).

Ep(Sh) = −
∑

i

S2
hi log(S2

hi ) (8)

The RMS of the arc signatures (NRM S) is given in Eq. (9).

NR M S =
√√√√ 1

N

N∑
i=1

|Shi |2 (9)

The std of the arc signatures (Nstd) is calculated by Eq. (10)
as,

Nst d =
√√√√ 1

N − 1

N∑
i=1

|Shi − µ|2

µ = 1
N

N∑
i=1

Shi (10)

where μ is the mean of Sh .
The arc features are utilized to train an SVM model so

that the model can discriminate between normal operation
and arc fault. The SVM algorithm can learn from data and
solve classification and regression problems [27]. In particular,
the SVM is useful for binary classification problems [27].
A linear SVM for two-class learning can separate the data
by an optimal hyperplane as illustrated in Fig. 6. The optimal
hyperplane realizes the largest margin between the two classes
of data ‘+’ and ‘−’. The margin means the maximal width
of the parallel-to-hyperplane slab with no interior data points.
The data points on the boundary of the slab are regarded as
support vectors. The equation of the hyperplane is express
in Eq. (11).

W T xi + b = 0 (11)

where W is the adjustable weight vector, xi is the input
features, and b is the bias of hyperplane. The separable case
can be represented as Eq. (12).

W T xi + b ≤ 0 for di = −
W T xi + b > 0 for di = + (12)

where di is the classification output.
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Fig. 7. The procedures of arc-fault detection.

Fig. 8. The confusion matrix of the training results.

B. Proposed Detection Methodology
An online arc-fault detection system was developed as

Fig. 7 depicts. As explained in Section II, magnetic field
sensing can be carried out by magnetoresistive sensors such as
the TMR2001 to sense the current for arc-fault detection. The
proposed method based on EMD can acquire the arc signatures
from the arc current of the target DC system to train the SVM
model. The training data could be collected from the typical
potential arc faults of the DC system. The background and
intrinsic power electronics noise of the DC system can be
eliminated by the proposed method based on EMD analysis
to prevent the nuisance tripping. Therefore, in the occurrence
of an arc fault, the arc signatures can be obtained accurately
using the proposed method. The arc fault can be detected by
identifying the arc signatures with the trained SVM model.
The training results of the arc signatures from the arc current
with power electronics noise in the DC arc generator are shown
in Fig. 8. The confusion matrix verifies that the arc signatures
can be exactly classified by the linear SVM with an accuracy
of 100%. The arc faults at various current levels and during
load transient conditions were also emulated in the DC arc
generator to test the trained linear SVM model. The testing
results demonstrated that the linear SVM model discriminated
between the normal operations and arc faults with accuracies
larger than 99.4%. The linear SVM can be used for decision
making in arc-fault detection. Therefore, a reliable arc-fault
detection system can be developed by using the TMR sensor,
EMD analysis, and SVM.

IV. VALIDATION IN PV SYSTEM

To test and validate the proposed method in a typical DC
system, an off-grid PV system was developed. A PV simu-
lator was used to emulate the operation of PV panels under
various irradiance and temperature conditions. The arc-fault
detection system was used to determine arc faults at different
gap lengths, current levels, and also during load transient

Fig. 9. The experimental setup of an off-grid PV system.

Fig. 10. The schematic of the PV system integrated with the DC arc
generator.

conditions. The influence of the power electronics noise from
the maximum power point tracking (MPPT) controller and
inverter to the detection system was also studied and analyzed.

A. Experimental Setup
The off-grid PV system integrated with the DC arc generator

consists of a computer, a PV simulator, an MPPT controller,
batteries, an inverter, an AC load, and resistive loads as
presented in Fig. 9. The schematic of the system is illustrated
in Fig. 10. The PV simulator (62020H-150S, Chroma) emu-
lated the PV system in different irradiance and temperature
levels. The MPPT controller harvested the maximal power to
charge the batteries and supply the resistive loads. The inverter
inverted the power from DC to AC for the consumption of the
AC load. To investigate the capability of the arc-fault detection
system, the arc generator was placed between the MPPT and
resistive loads. The TMR2001 measured the load current and
the output of TMR2001 was amplified by the preamplifier. The
load current measured by TMR2001 could be obtained from
the oscilloscope to the computer through the LabVIEW. The
proposed method extracted the arc signatures for the SVM to
differentiate between normal operations and arc faults.

B. Experimental Results and Discussion
The real-world irradiance and temperature levels of a day

in Hong Kong provided by the Hong Kong Observatory
were imported to the PV simulator as depicted in Fig. 11.
It emulated the operation of a PV system with the voltage
of 100 V. The AC load was switched to the resistive mode
of 100 W. The arc faults were induced by the arc generator
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Fig. 11. The irradiance and temperature levels of a typical day in
Hong Kong.

Fig. 12. Arc current at the gap length of 0.4 mm in the PV system.
(a) Current in the time domain. (b) Arc signatures extracted by the
bandpass filter from 0.5 kHz to 100 kHz. (c) Arc signatures decomposed
by the EMD analysis.

which was supplied by the MPPT controller. Initially, the arc
fault was generated at the load current of around 10 A during
the normal operation at a gap length of 0.4 mm as shown in
Fig. 12 (a). The arc signatures extracted by the bandpass filter
from 0.5 kHz to 100 kHz are shown in Fig. 12 (b). Since
the MPPT controller operating at 50 kHz and the inverter
at 20 kHz introduced power electronics noise to the system,
the clarity of arc signatures from 0.5 kHz to 100 kHz was
deteriorated. Moreover, there was power electronics noise from
the motor driver and power supply. The proposed method
based on EMD could acquire the arc signatures successfully
as depicted in Fig. 12 (c). Then, the arc features were calcu-
lated and applied as training data for linear SVM built with
MATLAB.

In each test, the current of 4 s was captured and 100 k points
were selected for analysis. For the arc signatures, 200 points
of the current in 8 ms were used to calculate each sample
and there were 500 samples per test. Since four parameters
of arc features were calculated, there were 2000 features in
the training data set. The training results verified that the arc
features of the PV system could be classified by the linear
SVM with an accuracy of 98.8% as depicted in Fig. 13. It was

Fig. 13. The classifications of the training data by the linear SVM model.

Fig. 14. The classification accuracies of the decision tree, k-Nearest
Neighbors, and linear SVM.

Fig. 15. The predicted condition of the PV system with the arc fault at
a gap length of 0.4 mm. (a) Arc current in the time domain from 0 to 4 s.
(b) Predicted conditions of the PV system from 0 to 4 s in a step of 8 ms
and (c) zoomed-in results from 1.5 to 2.5 s.

found that the SVM could achieve a higher classification
accuracy than other tools such as the decision tree (93.8%)
and the k-Nearest Neighbors (95.0%) as shown in Fig. 14.

To test the trained SVM model, another arc fault with
a gap length of 0.4 mm at 10 A was generated as shown
in Fig. 15 (a). The trained SVM model could output the
condition of the PV system in a step of 8 ms as depicted
in Fig. 15 (b) and (c). The misjudgments did not continu-
ously occur twice and could be avoided by checking the
prediction results of three consecutive intervals. An arc fault
could be determined when the condition of the PV system
was predicted as ‘arc’ in two consecutive intervals or ‘arc’
was predicted twice in three consecutive intervals. Besides,
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TABLE I
TESTING RESULTS WITH ARC FAULT AT A GAP LENGTH OF 0.4 mm

TABLE II
TESTING RESULTS WITH ARC FAULT AT A GAP LENGTH OF 0.6 mm

Fig. 16. The predicted condition of the PV system in load transient con-
dition. (a) Current during load transient in the time domain. (b) Predicted
conditions.

the computational time was approximately 15.6 ms for each
prediction. Thus, the arc fault could be determined within three
consecutive intervals in about 70.8 ms.

The SVM model was further examined with arc faults in
the current levels of about 5 A and also arc faults during
the current decreased from 10 to 5 A. The testing results of
the three cases based on three consecutive prediction results
are provided in Table I. In each case, a group of 50 arc
faults was emulated for testing and the minimum accuracy
was 96%. Similarly, the arc faults of the three cases at a
gap length of 0.6 and 0.8 mm were tested. The results are
presented in Table II and III respectively. The experimental
results verified that the minimum accuracy of all the tests was
96%. Besides, the performance of the trained model under load
transient condition in normal operation was studied as depicted
in Fig. 16 (a) and (b). There was only one misjudgment that
occurred when the load transient started. Therefore, it can be
concluded that the proposed arc-fault detection system based
on the EMD analysis and SVM can identify arc faults in the
PV system with a minimum accuracy of 96% and a detection
speed of 70.8 ms at different gap lengths and current levels
despite the effects of power electronics noise and transient
conditions.

Since the arc-fault detection methods may be impacted by
the power electronics noise and postponed arc-fault detection
can cause malfunction to the system, numerous investigations

TABLE III
TESTING RESULTS WITH ARC FAULT AT A GAP LENGTH OF 0.8 mm

have been carried out to develop a reliable and high-speed arc-
fault detection technique. The method based on WT can detect
the arc faults emulated from a simplified DC system with an
accuracy of 100% excluding the high power level [11].

However, it requires knowledge of the bandwidth of inter-
fering noises and the detection time is about 100 ms. Besides,
it takes approximately 0.5 s for a guaranteed detection of an
arc fault based on the arc current entropy calculated by the
quantum probability model [15]. The detection accuracy based
on the Wigner-Ville distribution with the interference of power
electronics noise is 87.19% and the data in a period of 40 ms
is needed [6]. Therefore, the proposed method based on EMD
analysis and SVM is a competitive candidate for DC arc-fault
detection.

C. Implementation and Future Work
Since the proposed method is based on magnetic-field sens-

ing of the arc current, only one magnetic sensor is required for
the target branch of a DC system. For instance, in a PV system,
the arc time-frequency signatures can be captured by placing
a magnetic sensor on the power cable of each PV string.
Within the PV string, there is no particular requirement for
the location of the magnetic sensor as the arc time-frequency
signatures are contained in the current flowing through the
entire PV string. Besides, the PV strings are merged inside the
PV array combiner box and magnetic sensors can be installed
inside the combiner box for better protection. The expense of
installing a magnetic sensor for each PV string is low by using
the TMR2001. However, in other DC systems, the interfering
noises may vary with branches and the typical arc signatures
from different branches should be obtained to train the SVM
model. In future work, a digital signal processor (DSP) or
a field-programmable gate array (FPGA) can be adopted to
realize the decomposition of arc signatures by the proposed
EMD analysis [41]. The FPGA can also be used for the
hardware implementation of SVM [42]. Therefore, a DC arc-
fault detection system can be developed by installing the
TMR2001 on each branch of a DC system to sense the current
and using the FPGA and DSP to achieve the proposed EMD
analysis and SVM. The reliability and efficiency of the arc-
fault detection system will be examined in other DC systems.

V. CONCLUSION

In this paper, a series DC arc-fault detection system based
on the EMD analysis and using SVM in decision making
has been developed. The proposed technique was tested at
48 V with a gap length of 0.4, 0.6, and 0.8 mm. The testing
current was higher than 6 A in constant and also transient
conditions. It was verified that the EMD method can acquire
the arc signatures during these conditions and despite the effect
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of power electronics noise. The technique test experimentally
in an off-grid PV system, and the results demonstrated that
the technique was capable of series arc-fault detection at gap
lengths of 0.4, 0.6, and 0.8 mm and current levels of 10 A,
5 A, and from 10 A to 5 A despite the interference of power
electronics noise. According to the experimental results, the
lowest detection accuracy of the technique was 96% for a
testing group of 50 arc faults. In practical implementations,
the compact, non-invasive and low-cost magnetic sensors
such as TMR2001 can be used for sensing the arc current
non-invasively.
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