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Vulnerability Assessment of 6G-Enabled Smart
Grid Cyber—Physical Systems

Muhammad Tariq
Faisal Naecem

Abstract—Next-generation wireless communication and
networking technologies, such as sixth-generation (6G) networks
and software-defined Internet of Things (SDIoT), make cyber—
physical systems (CPSs) more vulnerable to cyberattacks. In
such massively connected CPSs, an intruder can trigger a
cyberattack in the form of false data injection, which can
lead to system instability. To address this issue, we propose a
graphics-processing-unit-enabled adaptive robust state estimator.
It comprises a deep learning algorithm, long short-term memory,
and a nonlinear extended Kalman filter, and is called LSTMKEF.
Through an SDIoT controller, it provides an online parametric
state estimate. The reliability is improved by performing
two levels of online parametric state estimation for secure
communication and load management. The CPS under study is
a 6G and SDIoT-enabled smart grid, which is tested on IEEE
14, 30, and 118 bus systems. Compared to existing techniques,
the proposed algorithm is able to estimate the state variables of
the system even during or after a cyberattack, with lower time
complexity and high accuracy.

Index Terms—Cyber security, cyber—physical system (CPS),
sixth generation (6G), smart grids, software-defined Internet of
Things (SDIoT), vulnerability.

NOMENCLATURE

Parameters and Variables

f, F Power flow and information flow functions.
e Power state variables.

u, c Control variables and control command.

D Uncertainty in CPS.

Z Measurements variable.

¢, 0 Diagonal matrix.

Pf‘_‘j(t) Power loss function.

Pi;j(t), Q;j(t) Real and reactive power.

Vi(1), 9}’“5(0 Voltage and phase angle.

Xy State variable matrix.

g(pn;, g(mn,)) Predicted state and measurement noises.
PN;, MN;, S; Covariance matrix.
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Xty 2t Current estimates.

Xi—1 Predicted estimates.

A LW,V Jacobian matrix.

ex; Error in estimates.

K Kalman gain.

C‘,, hsi—q Proposed cell value and hidden state.

I. INTRODUCTION

HE SOFTWARE-DEFINED Internet of Things (SDIoT)
Tis enabling different industrial entities by sharing rele-
vant information for effective monitoring and control through
centralized controllers using advanced sensing and commu-
nication technologies [1]. For example, in the context of
smart grids, the performance of a grid can be affected by
cyberattacks and physical disturbances, such as symmetric
and asymmetric faults, which can lead a power system to
instability. The framework of a smart grid is an example of
a cyber—physical system (CPS), in which reliability of the
network is increased by incorporating advanced sensing, com-
munication and control infrastructure. For effective operation
of a smart grid network, a reliable and secured information
system is necessary from the perspective of cybersecurity. In
particular, if a smart grid is under cyberattack, the physi-
cal layer performance is also affected, which may result in
decreased reliability of the system [2].

In order to ensure safe and reliable operation of a power
network, secure communication networks must be established
so that energy management systems (EMSs) and wide area
measurement systems (WAMSs) can operate uninterruptedly.
One solution is to design robust routing algorithms among
heterogeneous networks that can deliver information with
minimum latency while satisfying Quality of Service (QoS)
requirements. However, in real power system operation, the
routing mechanism is based on the shortest path model, which
is designed based on the operator’s experience [3]. To over-
come this deficiency and to improve the QoS for information in
WAMS, an adaptive routing algorithm is proposed in [4]. One
of the major drawbacks associated with this proposed tech-
niques is that it addresses the security of the communication
network only without considering the affect of cyberattacks
on the physical system.

With the advent of artificial intelligence (Al) driven appli-
cations and Internet-of-Things (IoT)-enabled networks, such
as smart grids, smart healthcare, and intelligent transportation
systems (ITSs) etc., the fifth-generation (5G) communication
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architectures cannot satisfy the challenges brought by the real-
time requirement of services, such as ultra reliable low latency
communication (URLLC) [5]. For example, one of the require-
ments to prevent cyber—physical attacks in smart grids is to
achieve a minimum latency for countering the transients to
minimize the chances of cascading failures.

The envisioned sixth-generation (6G) communication archi-
tecture can address these challenges by improving the data
rate and achieving lower latency through use of a higher
frequency range and other advances compared to the previous
communication architectures. Preventive mechanism must be
employed with 6G to limit the impact of cyberattacks on
smart grids. Some preventive mechanisms include intrusion
detection and prevention systems, which serve as a primary
line of defense against multiple types of cyberattacks. From a
smart grid perspective, the initial line of defense is achieved
through circuit breakers or relays in order to stop the rip-
ple effects of faults from propagating throughout a power
system network [6]. However, in situations when a preventive
mechanism is unable to mitigate the disturbances, detection
algorithms must be employed to identify unexpected abnor-
malities in the network. Such detection mechanisms may
include algorithms to identify unseen system states [7], [8],
intruder or cyber—physical attacks [9], or the effects of both
attack variants when they are combined [10]. Another practical
approach was adopted in [11] where a linear state estimation
(SE) technique was employed based on readings recorded from
different phasor measurement units (PMUs) and a decentral-
ized robust controller, incorporated at the individual buses.
The robust controller monitors the state of the buses and also
compares the estimated state with the PMUs’ measurements.
When an abnormality is detected, the robust controller will
activate a distributed energy storage system (DESS), which
either injects or absorbs the power to provide transient stabil-
ity to the network [11]. A major drawback of this technique is
that it assumes the overall system is linear, but in practice, the
behavior of the system is highly nonlinear. By linearization
we are neglecting some important parameters, which can lead
to power system instability.

One of the many possible solutions to ensure stable and
secure operation of a power system network is to perform
accurate SE [12]. For better understanding of the system oper-
ation, SE is very important. Weighted least squares (WLSs) is
one of the traditional techniques that accurately estimates a
power system’s state by utilizing high quality readings, obtain
through PMUs [13]. However, the major drawback of WLS is
that it does not give a good approximation when there is a sig-
nificant nonlinearity in the power profile [14]. In [15], a fuzzy
logic approach was adopted for load estimation. However, the
major drawback associated with fuzzy logic is the tuning of
fuzzy membership functions and the complexity when large
numbers of nonlinear state parameters are approximated. To
address this deficiency, Kalman filter-based estimation was
proposed in [16]. A detailed analysis of the extended Kalman
filter (EKF) and unscented Kalman filter was presented in [17].
Furthermore, the training of neural networks based on the EKF
has shown promising results in SE [18]. The major drawback
associated with the Kalman filter and WLS is the creation of
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the Jacobian and error covariance matrices, which increases
complexity as the number of buses are increased. Moreover, if
there is significant nonlinearity observed in a network, WLS
or the Kalman filter cannot accurately estimate the cyberat-
tacks. Furthermore, these techniques need an accurate system
model to perform precise parametric SE.

One of the possible solutions to prevent cyberattacks is
the effective use of SDIoT in smart grids. Software-defined
networking (SDN) is a networking approach that decouples
the control plane from the data plane to simplify the man-
agement of a network [19]. In the SDIoT, the intelligent
control plane can monitor the network states globally in real-
time and security techniques can be implemented to detect
network threats [20]. 6G networks are expected to generate
massive traffic with stringent QoS requirements. The exist-
ing data-analytic techniques for vulnerability assessment of
cyber threats face scalability and delay issues while training on
data. One such approach to solve the issue of training time is
proposed in [21], where the authors adopted an SDN-enabled
framework that forwarded the path calculation task to a graph-
ics processing unit (GPU) for reducing the training time of the
algorithms. Thus, the centralized nature of the SDN control
plane can be effective for implementing the machine learning
tasks on a GPU.

In this work, we propose an algorithm to enhance the reli-
ability of 6G-enabled smart grids to ensure safe and secure
operations by estimating the actual state, such as voltages and
phase angles of the system even in the presence of cyber—
physical attacks. For solving the issue of massive connections
and states generated by the CPS, we propose a GPU-enabled
adaptive robust state estimator. It comprises a deep learning
algorithm, long short-term memory (LSTM), and a nonlinear
EKEF, called an LSTMKEF. It works on the SDN controller to
provide online parametric state estimates. The LSTM in the
LSTMKEF algorithm utilizes the measurements collected from
PMUs in order to accurately estimate the state of the system.
When an intruder attacks the communication network of
PMU, it causes mismatched-synchronization among different
renewable energy resources (RERs). The proposed LSTMKF
algorithm assigns higher priority to the LSTM-based state esti-
mate and gives an indication that an intruder has attacked
the network. Furthermore, if the input data is corrupted then
more weight will be given to the PMUs’ SE. Henceforth, it
enables two levels of online SE to counter cyber—physical
attacks on the system. To the best of the authors’ knowl-
edge, this is the first work that introduces LSTM in an EKF
for detecting cyberattacks in 6G and SDIoT-enabled smart
grids.

The key contributions of this article are as follows.

1) Proposing an SDIoT-enabled adaptive robust SE model,
implemented on a GPU to detect and prevent cyberat-
tacks in smart grids.

2) Improving reliability of envisioned 6G networks by per-
forming two levels of online parametric SE for secure
communication and load management.

3) Introducing LSTM-based time-series prediction that
enables a utility operator to observe unexpected non-
linearity in the load profile introduced by an intruder.
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Fig. 1. Real and estimated state of voltage magnitude using an EKF.

The remainder of this article is organized as follows.
The network architecture is explained in the Section II. The
problem of interest is then formulated in Section III. A detailed
analysis of the proposed algorithm is developed in Section IV,
while the proposed mechanism is validated through simulation
results in Section V. Finally, Section VI concludes this article.

II. NETWORK ARCHITECTURE

An envisioned SDIoT based 6G-enabled smart grid is shown
in Fig. 1. In this vision, IoT networks are incorporated into
the power system networks, and generate a massive volume of
traffic through smart devices, such as smart meters, sensors,
and actuators. In the smart grid, the communication network,
WAMS, PMUs, advance metering infrastructure (AMI) and
substation automation are embedded throughout the physical
grid for reliable and efficient transmission, generation and
distribution of the electric power. PMUs are installed at the
generation sources that generate real-time measurement values
of the loads, line power flows and the generation. The generation
sources have a communication line on which the states of the
network can be forwarded to the control center. The power
line is used for the transmission of the power. One of the key
challenges in the smart grid is that an intruder can interrupt
the states of the network as a cyber—physical attack that can be
seen in Fig. 1. The cyber—physical attack can corrupt the sensed
data that may result in the synchronization between different
generation sources that leads to the instability of the network.
The proposed architecture forwards the network states to the
SDN controller where the proposed algorithm can detect the
corrupt states of the network. Thus, stabilizing the network by
providing the accurate parametric information.

III. PROBLEM FORMULATION

In smart grids, a CPS is employed for uninterrupted flow
of information and electricity [2]. Following transformation
between energy and information flow occurs in four corre-
sponding steps.

Step 1: In this step, power/energy flow (f) of power state
variables e at discrete time step n of a system
model is observed over a complete control cycle,
which is

fle(n+1),u(n),D(n+ 1)) =0 (D
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where u and D represent control variables and
uncertainty in a CPS, respectively.

The energy flow computed at step 1 is now con-
verted to information flow (F), which helps the
utility operators to monitor the power system state
variables. This process corresponds to the mea-
surements of state variables in smart grids, which
is given as

Step 2:

e(n) - z(n) = ®-e(n) 2)

where z corresponds to a measurement variable
and & represents a diagonal matrix. Each diagonal
element shows a measurement state.

The converted information obtained from the
previous step is further utilized by a control cen-
ter to generate the control command ¢ in case of
cyberattacks, which can be calculated as

c(n)

Step 3:

= F(z(n)) = argminf(c, 2)|g(c, 2) < h(c, 2)
3)

where g(c, z) < h(c, z) is the optimization power
network constraint.

This step refers to the control process step, where
the control command c is converted to control sig-
nal and is fed to control variable u for practical
application. The control signal can be modeled as

Q-c(n) “4)

where Q is the diagonal matrix. The combined
equation for all of the four steps can be repre-
sented as

fle(n+1),0-F(®-e(n),D(n+1)) =0. (5)

Step 4:

c(n) — u(n) =

The objective of this work is to minimize the impact on
a power system due to cyber—physical attack by detecting
and preventing these disturbances while satisfying the power
network constraints. The main objective function O(¢) will be
as follows:

o) = ZP (1) (6)

where Pls (t) represents power loss between line i to j. The
mlnlmlzatlon function will be as follows:

min Z o). (7

Subject to the following constraints:

Pij® = Rel(VEOY; + Vi Vi exp™ O ) (8)
0i(1) = Tmg (V2 + ViV exp™® y;) - )

S3i(0) = P + OF (1) < Straijy (O (10)
Pi‘i‘; l(r) < Pge“a) < Prgf;‘x A0 (11)
05N (1) = 05" < 0% () (12)
VIS (1) < VPSS () < VIS (r) (13)
oo (1) < 0P (r) < 0D (1) (14)
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where P; (1), Q; (), Vi(t), and V;() show real, reactive power
flows, and voltages at corresponding buses, respectively. While

PE (0, P (0, 0550 (1), O, (0, VA% (1), and VA (1)
show maximum and minimum real, reactive powers and volt-
ages at the buses. S2 (t) shows apparent power in the power
lines and (10) shows hmlts on the injection of complex power
into the network. The real and reactive power injection limits
on the generator buses are presented in (11) and (12). The
voltage Vl-bus(t) and phase angle limit Gl.bus(t) at the buses are
shown in (13) and (14).

IV. DETAIL ANALYSIS OF THE MODEL

In this section, we get detailed intuitive of the proposed
algorithm in detecting and preventing cyber—physical attacks
through numerical analysis.

A. Extended Kalman Filter-Based State Estimation

The EKF is a SE process to obtain the optimal states through
a recursive process for nonlinear models. The model state
equation and measurement model can be represented as

15)
(16)

= f(x—1, u) + g(pn,)
7% = U(xy) + g(mny)

where x; is state variables vector and g(pn,) and g(mn,) are
predicted state noise and measurements noise, respectively.
They are completely independent from each other having zero
mean with PN; and MN; as covariance matrices, while u; is the
control vector. Measurement vector z; gives true value when
computed at actual state x;. By neglecting the noise variables
one can estimate true state variables. In that case, (15) and
(16) become

X :f()ACt—ls Mt)

= 1x).

a7
(18)

In order to solve the nonlinear equation, we begin by
linearizing the state equations (17) and (18), which are

X N -ft +A(Xt_1 - )’et_l) + anl‘
Zr & Zp + L(x¢ — X¢) + Vmn,

19)
(20)

where x; and z; are the current estimates, while X;_; is the
predicted estimate at an instant # — 1. Jacobian matrices are A,
L, W, and V. The error in estimated states ex; and measurement
residuals ez, are as follows:

ex; = Xy — X; 20
e =% (22)
exy = A(x—1 — %—1) + WPN, W’ (23)
¢z; = L(x; — X)) + VMN, W’ (24)
¢z; = Lex; + VMN, VT (25)

where (23)-(25) are achieved by manipulating (19)—(22),
respectively. If we can predict the estimated error ¢, and x;
then we can estimate new state at t — 1, such as

(26)

X—1 =X+ &
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Algorithm 1: Estimating Network Parameters

Input 1: Initial estimates x,, and P,
Input 2: System nonlinear model description
Input 3: Specified convergence tolerance €, and MEE
Output: Updated X, and Py
while (MEE > €) do
Predict Xj(_1, and Py_1 from (29), and (30);
Update Xg;—1, and Py—; with PMUs measurement;
if (MN; — increases) then
K; decreases, which means to give more weights to
‘ predicted estimates;
else
if (MN; — decreases) then
K; increases, which means to give more weights to
‘ measurement;
else
| Output the updated states from (34) and (35):
end
Send Xy, and Py as Xi—1, and Py as an input to
Algorithm 1 for next iteration;

end
end
where
e, = Kez, (27)
by manipulating (22) and (27), (26) becomes
X1 =X + Kz — %) (28)

where K is the Kalman gain. Overall EKF can be summarized

into two steps. They are state variables prediction step and

state update step with measurements received through PMUs.

Knowing the initial states x, and predicted process covariance

matrix P,, the prediction and update states are as follows.
Prediction:

X1 = f(Rizij—1, w) (29)
Pyi—1 = APiiji1Af + PNy (30)
Measurements-based state updating is given as

ez =z — I(JAth—l) (31

S, = LiPy—1 L] + MN, (32)

K; = Py LTS (33)

Xe = X1 + Kiez 34

Py = (I = KiLt) Py (35)

where S; stands for residuals covariance matrix, while (34)
and (35) are used to update estimated states Xy, and covari-
ance matrix Py At the end, mean estimation error (MEE) is
computed and if it is greater than the € then next iteration will
be conducted as shown in Algorithm 1.

B. Proposed LSTMKF Technique

In this study, we propose LSTMKF algorithm to estimate
the voltage (V) and phase angles (8) of a power system even in
case when a cyberattack occurs. The drawback associated with
EKEF is the accurate determination of the Jacobians, which gets
complex in case of a high nonlinear system. As a result, the
EKEF does not yield good approximation of the states variables.
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Algorithm 2: Estimating Network Parameters Under
Cyberattacks Using LSTMKF

Input 1: Initial estimation of x,, and P,
Input 2: Random initialization of hs;, weights, C;
Input 3: Data from sensor measurements
Input 4: Specified convergence tolerance €, MEE, LR, TD and
E;
Output: Updated X¢, and Py
while (MEE > ¢) do
Prediction of V and 6;
for (TD presented to network) do
the three prediction steps are performed using (36),
(37), (38), (39), (40), (41);
Compute E;;
if (E, > ¢) then
Update weights by back propagation through time
algorithm;

else
| Ouput the predicted V and 6;
end

end
State updation step %1, and Py_; with PMUs data;
if (MN; — increases) then

‘ K; decreases, so give more weights to predicted

estimates;
else

if (MN; — decreases) then
‘ K; increases, which means give more weights to

measurements;
else

Output the updated states X, and covariance
matrix Pyg.

end
Send V, 0 as input to Algo. 2 for more tuning;

end
end

In order to overcome that deficiency, LSTM is incorporated at
prediction step in EKF, which enables the system to observe
nonlinearity in the profile that is intentionally added in the
data by an intruder. LSTM utilizes current, voltage, frequency
and also statistical data, which are obtained through various
sensors to predict the state variables. Furthermore, the esti-
mates are updated with PMU measurements at the updation
step. Although PMU measurements are linear, we still use
nonlinear EKF estimation at the updation step. In case when
PMUs data are corrupted then nonlinear estimates and linear
estimates are compared. There will be error in both estimates
which will notify that some false data is injected. k is adjusted
through recursive manner, when there is more uncertainty in
PMU measurements in LSTMKF then more weights will be
given to LSTM base SE. However, if there is some sensor
noise at LSTM side then trust on the PMU measurement will
be increased and prediction step will be computed at another
time instant. The LSTMKF algorithm enables two level of
online estimation. One at prediction step through LSTM and
another at updation step. The proposed LSTMKF algorithm
comprised of two steps, i.e., state estimate prediction step and
state updation steps. At the prediction step, LSTM is adopted
because of its ability to model time-series data more accu-
rately due to its memory cell, which stores previous hidden
states and utilizes it for the training of LSTM. Moreover, the
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network contains IoT connections and PMUs so it generates
a massive amount of data. In that case, LSTMKF gives an
efficient approximation about the current state of the envi-
sioned 6G-enabled SDIoT even in case of cyberattacks. The
prediction in LSTMKEF consists of the following steps [22].

Prediction Step 1: This step is also called the forget step. In
this step LSTM will decide what information is unnecessary
and needs to be removed from memory cell and is decided by
using the following equation, which is

V= J(Wev.[hs,_l, x,] + biv). (36)

Prediction Step 2: This step is called cell update step. The
sigmoid layer o in single LSTM cell will decide what new
values will be added and tanh layer will create new vector
for the proposed cell values C;. It only depends upon current
input x; and hidden state As;—1, and will be added to old cell
state C;—1 as shown in the following equations, which are:

in; = o (Wein.[hsi—1, x¢] + biin) (37)
C; = tanh(Wec.[hs,—1, x;] + bic) (38)
Cr = vy * Croy +ing x C. (39)

Prediction Step 3: At this step, the filtered output will be
displayed. At first, hs;—1 and x; are passed through the sigmoid
layer and current cell state C; is passed through tanh to finally
compute what will be the final output As; of single LSTM cell
at the current time instant. Such as

ou; = o (Weou.[hsi—1, x| + biou) (40)

hs; = ou, * tanh(Cy) 41
1 n

Er=3 Xl:(actual — hs;)? (42)

where We,, Wei,, We., Weoy, biy biin, bi., and bi, are weights
and biases of neural network layer. While mean square error Er
is computed using (42). At the beginning, As; and C; are initial-
ized with zero vectors and then network weights and the matrix
vectors are updated using back propagation through time algo-
rithm (BPTT). As mentioned LSTM is adopted for time-series
analysis, so the error is computed at an individual time step.
After that the error is propagated backward through individual
time step and weights are updated through the gradient descent
algorithm in order to minimize the mean square error [22].
The predicted states are updated using measurements through
(31)—(35). The detailed framework of the proposed framework
is presented in Algorithm 2. Here, 7D, LR, and PL stand for
the training data, learning rate and predicted load, respectively.

C. Threat Model

Security threats to the 6G-enabled smart grid network can
be the adversarial sources within the network and outside.
Malicious sources can analyze the transit data to gather useful
information or eavesdrop on smart grid network entities like
smart meters and control center. Intruders or eavesdroppers
can attack or compromise a smart grid network entity through
components based, DoS, DDoS, IP spoofing, or MitM attacks.
For example, in a medium threat, in smart meters an intruder
can illegally install a monitoring software on a smart meter to

Authorized licensed use limited to: Princeton University. Downloaded on November 20,2021 at 22:05:02 UTC from IEEE Xplore. Restrictions apply.
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falsify billing report. A high threat can be when attackers fal-
sify data related to key devices, such as transformers, PMUs,
remote terminal units, or circuit breakers.

V. RESULTS AND DISCUSSION

In this section, the methodology that is proposed to estimate
the state parameters in case of cyberattacks in Section III is
validated using simulation results. These simulations show the
effectiveness and superiority of the proposed algorithm. The
system is tested under IEEE 14, 30, and 118 bus systems and
is compared with the algorithm presented in [11] that utilizes
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decentralized linear state estimator (DLSE). Here, 5 and 6
are generation buses, 8§ and 22 are load buses and 1 and 2
are intermediate buses in the IEEE 14 and 30 bus systems,
respectively. While in IEEE 118 bus system, there are 19 gen-
eration buses, 35 condensers, 177 power transmission lines, 9
transformer and 91 load buses. Moreover, PMUs are installed
at different buses to observe the state of the system. The
simulations were performed in both Python and MATLAB.

A. State Estimation Using EKF Under Cyberattack

At first, the network is operated under the estimated states
that is achieved through EKF as observed in Figs. 2 and 3.
For the prediction step, the network parameters are utilized,
while for state, PMU measurements are adopted as shown in
Figs. 2(a) and 3(a). The state where PMU measurements are
not corrupted, the EKF gives a good approximation of V and
0 states as shown in Figs. 2(b) and 3(b) from time 7 1 s to
20 s. However, when an intruder gets access to the control
center and corrupts the PMU’s (V and 6) measurements from
t = 20 s to 25 s as shown in Figs. 2(a) and 3(a). The devi-
ations between real and estimated states can be visualized in
Figs. 2(b) and 3(b). These results in a power system network
can be utilized where phase synchronization between various
sources is a crucial factor.

B. State Estimation Using LSTMKF Under Cyberattack

The parametric SE under cyberattacks using proposed algo-
rithm is discussed in this section. The sensor data and network
parameters are first presented to LSTMKEF to train itself. For
training of LSTMKEF, the Canadian data set of year 2012-
2014 [23] is used. Then for state updation, PMU are utilized.
Hence, it enables two levels of online estimation. The esti-
mated states V and 6 for IEEE 14, 30, and 118 bus systems
can be visualized from Figs. 4-6, respectively. For IEEE 14
bus system, the PMU measurements at buses 7, 8, 9, and 10
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Fig. 6. SE of IEEE 118 bus system under cyberattack. (a) Estimated voltage.
(b) Estimated phase angle.

show corrupted data due to an intruder attack. However, even
when the system is under cyberattacks, the proposed algo-
rithm is able to estimate the real V and 6 states correctly as
shown in Figs. 4(a) and (b). In case of IEEE 30, and 118 bus
systems, the PMU measurements at buses 7, 8, 9, 10, 11, and
12 also show corrupted data due to cyberattacks. However, the
proposed algorithm is able to estimate the V and 6 states cor-
rectly under cyberattacks and enable the utility operators to

IEEE INTERNET OF THINGS JOURNAL, VOL. 8, NO. 7, APRIL 1, 2021

[—e— LSTMKF

* —o— Real state

|— o~ Compromised states
|—— DLSE

1.04

1.03

AN

| N
\
A

val
All Mw’}"
i

1.02

N

5

Voltage magnitude (pu)
5

a
o
o

0.99

0.98

o 5 10 15 20 25 30
Number of buses

Fig. 7. Comparison of LSTMKF with DLSE.

detect attacks on the buses by an intruder as shown in Figs. 5
and 6. It can be clearly observed from the figures that the
approximation of the states variable becomes better when mea-
surement data is in excess. Hence, it proves that the proposed
algorithm is better in networks having massive connections.
In the above scenario, more priority is given to the prediction
step as shown in Algorithm 2. This ultimately increases the
reliability of the network and enhances QoS by reducing the
network instability.

C. Comparison of LSTMKF With DLSE-Based State
Estimation

The effectiveness of the proposed algorithm is verified by
comparing it with DLSE in [11]. The algorithms are tested
on IEEE 30 bus system and the estimated state V is compared
under a cyberattack. In case of a false data injection at buses 7,
8,9, 10, 11, and 12, the DLSE is unable to correctly estimate
the V state variables. As a result, the corresponding buses are
also deviated from real state as shown in Fig. 7. In contrast, the
proposed LSTMKEF algorithm is able to detect these variations
in V profile and performs SE more effectively even in case of
cyberattacks, as shown in Fig. 7.

VI. CONCLUSION

In this article, an SDIoT-enabled adaptive robust SE model
has been proposed to detect and prevent cyberattacks in
envisioned 6G-enabled smart grids. The idea is to improve reli-
ability by performing two levels of online parametric SE for
secure communication and load management. The proposed
algorithm works on LSTM-based time-series prediction, which
enables a utility operator to observe the unexpected non-
linearity introduced by an intruder in the load profile. To
showcase the effectiveness of the proposed algorithm, it has
been tested on IEEE 14, 30, and 118 bus systems. Simulation
results have shown that the proposed algorithm gives accurate
approximation of the state variables in case of cyberattacks in
SDIoT-enabled smart grids connected through the envisioned
next-generation technologies.
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