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A Bayesian Approach to Sequential Change
Detection and Isolation Problems

Jie Chen, Wenyi Zhang

Abstract—The problem of sequential change detection and
isolation under the Bayesian setting is investigated, where the
change point is a random variable with a known distribution.
A recursive algorithm is proposed, which utilizes the prior
distribution of the change point. We show that the proposed
decision procedure is guaranteed to control the false alarm
probability and the false isolation probability separately under
certain regularity conditions, and it is asymptotically optimal
with respect to a Bayesian criterion.

Index Terms— Asymptotic behavior, average detection delay,
Bayesian change detection, change detection and isolation,
decision procedures.

I. INSTRUCTION

HE problem of sequential change detection and isolation

is concerned with situations in which there is an abrupt
change of the underlying probability distribution of a stochas-
tic system’s state at some unknown time, in a stochastic system
that is monitored in real time, and the post-change distribution
is uncertain and belongs to a set of possible distributions.
It is of importance for many applications, including fault
diagnosis in dynamical systems and industrial processes, envi-
ronment surveillance and monitoring, and target identification
in radar and sonar signal processing; see, e.g., [1]-[6].

The theory of change detection has long received extensive
attention. Change detection focuses on methods for sequen-
tially detecting the occurrence of a change point in the
statistics of observed data, and the goal is to minimize the
delay between the actual change point and the time at which
a change is declared, subject to a constraint on the risk of false
alarms [7] [8]. The study of change detection has been initi-
ated in two different directions: Bayesian and non-Bayesian
(minimax). In the Bayesian formulation, it is assumed that the
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change point is a random variable independent of the observa-
tions with some known prior distribution. But in the minimax
formulation, the change point is an unknown fixed number.
An optimal solution to the Bayesian change point detection
has been obtained in [9]. Regarding the non-Bayesian change
detection problem, a minimax approach has been proposed
in [10], where the cumulative sum (CUSUM) detection proce-
dure [11] is shown to be asymptotically optimal. Subsequently,
it was shown that the CUSUM procedure is exactly optimal
with respect to a minimax criterion [12].

Compared with change detection, the theory of change
diagnosis is relatively less developed. The change detection-
isolation problem is concerned with situations in which, after
the change of a stochastic system, there are multiple distinct
post-change distributions, only one of which is true, and
the goal is to detect the change and identify the correct
post-change distribution as soon as possible after the change
occurs, subject to certain constraints on false alarms and false
isolations [13]. The sequential change detection and isolation
problem has been formulated in a general form in [14], where
the average run length to a false alarm and the average run
length to a false isolation are proposed as constraints, and Lor-
den’s “worst case” mean delay is minimized. Alternatively, the
maximum probabilities of false isolation has been proposed as
the false isolation constraint and Pollak’s maximum expected
detection delay [15] is minimized; see, e.g., [16], [17]. These
approaches belong to the non-Bayesian formulation. As for
the Bayesian formulation, in [18], an alternative constraint has
been proposed which consists of the maximum probabilities
of false alarms and false isolations within a time window
of a prescribed length after the change point, respectively.
Therein a recursive algorithm is designed and proved to be
asymptotically optimal with respect to a criterion that is
uniform for any possible change point. The Bayesian formu-
lation is treated with a weighted sum of the false alarm and
false isolation probabilities. However, the solution proposed
in [18] does not use the prior knowledge of the change point,
and the formulation in [18] does not control the false alarm
probability and the false isolation probability separately. Thus
it is natural to expect that exploiting the prior knowledge of
the change point in the Bayesian formulation may improve
the performance of decision procedures. Also, it will be more
convenient in practice to have false alarms and false isola-
tions controlled separately. In [19], an asymptotically optimal
Bayesian change detection and isolation procedure has been
proposed with the average probabilities of false alarms and
false isolations controlled respectively, for the geometric prior
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of the change point. In our work, we consider the situation in
which the distribution of the change point is general, and the
constraint of false alarms is the global false alarm probability
which is more stringent than the average probability of false
alarms.

The primary goal of this paper is to provide a decision
procedure for sequential change detection and isolation in the
Bayesian setting in which the prior distribution of the change
point is utilized. In Section II of this paper, we formulate
the problem of Bayesian sequential change detection and
isolation, and propose new criteria of optimality. In Section III,
we develop the corresponding decision procedure, which is
motivated by the algorithm in [20], and analyze its statistical
properties, for which we establish upper bounds on the prob-
abilities of false alarm and false isolation, and an asymptotic
upper bound on the average detection delay. In Section IV,
we derive an asymptotic lower bound on the average detection
delay of all decision procedures that satisfy the proposed error
constraints. Thus we prove that our proposed decision proce-
dure is asymptotically optimal. Section V presents numerical
simulations in which we compare the statistical properties of
our proposed decision procedure and the procedure in [18].
The numerical results confirm that our proposed decision
procedure exhibits good performance. Finally, Section VI
concludes this paper.

II. MODEL AND CRITERION

Consider a sequence of  random variables
X1, X2, ..., X¢—1, X¢, ..., in which there exists a time epoch
t > 1 called its change point. In particular, t = oo means
that the underlying probability distribution of the sequence
never changes, and thus the sequence does not possess
any (finite) change point. In a Bayesian setting, the change
point ¢ is assumed to be random with a prior distribution
. = Pt = k},k = 1,2,.., and 7o = P{t = o0}
We consider a finite family of distributions

H={H;,j=0,1,..,J}

with densities {hj,j :O,l,...,]}. We denote [J] =
{1, ..., J}. Note that no prior statistical structure of j € [J]
is assumed here.

For a measurable space (L, F), consisting of a sample
s‘pace Q and a o-field F of events, consider a family

P,{ | jelJ ]} of probability measures to describe the distrib-

ution of {X,|n = 1,2, ...} conditioned upon ¢ = k. Under P,ﬁ,
X1, X2, ..., Xr—1 are independent and identically distributed
(i.i.d.) with a (pre-change) distribution kg, and Xy, Xg+1, ...,
are i.i.d. with another (post-change) distribution %, j € [J]
and independent of X1, X»,..., X¢—1. In what follows, P’
stands for an average probability measure, which is defined
as PL(-) = > e, ﬂkP]{(-), and E/, E} denote the expectation
with respect to P/, P}, respectively.

A change detection and isolation algorithm aims to com-
pute a terminal pair J = (T, j) based on the observations

X1, X2, ..., where T is the alar;n time at which a f—type
change is detected/isolated and j, j € [J] is the final decision.
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Now we propose to measure the speed of detection/isolation
with the aid of the average delay for detection/isolation

D;() =EL [T —1|T >1]. (1)

We impose the levels of false alarms and false isolations by
the following inequalities:
Poo{T < oo} 2

max PL{j# T =1) < . )

A
B

A

and define the class of terminal pairs which satisfy the above
constraints as A(a, ). The criteria (2) and (3) have also been
considered in [20] and [16], respectively. A Bayesian problem
for the continuous-time Brownian motion has been considered
in [21], with the false alarm measured by Poo{7T < oo}. Also,
there is an another criterion. In [19], the authors considered
an average false alarm probability P, {7 < ¢} in the Bayesian
change detection and isolation problem and proposed an
asymptotically optimal procedure. Because of the complexity
of the statistic in their procedure, this work only established
asymptotic optimality under the situation in which the prior
distribution of the change point is geometric. Controlling
Poo{T < oo} = sup; Poo{T < k} is equivalent to controlling
P {T < k} for all k > 1. Note that Poo{T < o0} <a,a <1
implies Eo[T] = oo, which is a desired behavior for practical
applications.

We can formulate the optimal trade-off between (1)-(3) as
in the following problem:

For fixed o, f € (0, 1), find a procedure with a terminal

pair dopt = (T, j)
infa‘eA(a,ﬁ) Dj 0).

€ A(a, f) that attains the minimum

III. DETECTION-ISOLATION ALGORITHM
AND ITS STATISTICAL PROPERTIES

A. Detection-Isolation Algorithm

We propose a Bayesian statistic G,(j, g) used for the
change detection and isolation problem, which is a recursive
statistic similar to that in [20] as follows:

Gn(j,8)
= L 710.0)

= > =] + Tt )
e 1090

= > i [[LiG. &) + Tt
k=1 =k
n—1 n—1

= [Z o ] Li(j,g)} Ln(js )+ T - Lu(, &) + Tt
k=1 i=k

= Gu-1(,8)Ln(j,8) — W —mn) - Ln(j, &) + Tnt1

== Gn—l(j;g)Ln(j,g)+q[n+l (1_Ln(.]5g))’ (5)

where J41 = P{t > n+ 1}, Ly(j,8) = hj (Xn) /hg (Xn),
Go(j,e)=1,j=1,..,J,g=0,1,..,J, g # J.

Authorized licensed use limited to: Princeton University. Downloaded on November 20,2021 at 22:05:25 UTC from IEEE Xplore. Restrictions apply.



1798

Statistics

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 67, NO. 3, MARCH 2021

Statistics

A
cd / | | D ion Threshold C_d /I | D T
ci | I ion Threshold  C_i I I Tt
I I
I I
| Gn(1,2 [
I I
Gn(1,2) n(1,0)
I N
I I
— > — >
T t Time, n T t Time, n
(a) false alarms
Statistics Statistics
I Gn(2,0] Gn(1,0)
cd S | n (7, / ! Detection Threshold ~ C_d ' /l /G"(z’o) D Threshold
’
. i en(1,2) jon Threshold  ¢_i len(r,2) /" | T
| | n(2,1) |
I Gn(2,1)
| I I
| I
| I
| | | |
| | > ! ! >
t T Time, n t T Time, n
(b) correct detections but false isolations
Statistics Statistics
h h
cd S | A 0;"7)' Detection Threshold  ¢_d ! G"(Z/O)' }'(1'0) Detection Tt
Ci "( fon(z,1) ion Threshold  _j | o2/ | ion T
| | n(1,2)
Gn(2,1) |
| |
| |
| |
| | | |
| ' > ! ! >
t T Time, n t T Time, n

Fig. 1.

Thus we can have an alarm time-final decision pair

(c) correct detections and correct isolations

Possible results in the detection and isolation process with J = 2.

B. Upper Bound on Global Probability of False Alarm

The following theorem gives an upper bound for the global

Theorem 1: For any c¢g > 1, we have
Poo{T, < o0} < cgl.

probability of false alarm with our proposed decision rule.

)

5* = (T, j.), where
J oo . X . .
T; —-rmnInzl.0§£5%¢jﬂh(bg)—cg]20],
T, = min {ch} ,
I<j=<J
je = arg min {ch} . (6)
1<j<J
The thresholds ¢, are chosen as:
Cd, if g = 0,
Co = . . 7
§ ’ ci, if gelJl.g#], @

where ¢y is called the detection threshold and ¢; the isolation
threshold. Note that if 7, = oo, fc = 0. Fig. 1 illustrates
possible results of the detection-isolation algorithm in the
detection and isolation problem with J = 2. It is assumed
that the change point is ¢ and the true post-change distribution
is Hp. T is the alarm time. Fig. 1(a) presents the results of
false alarms, T < ¢. In Fig. 1(b), we have a correct detection
with T > ¢, but the decision result is H;, which is a false
isolation. In Fig. 1(c), we have a correct detection with 7 > ¢
and a correct isolation with f = 2. For each kind of results,
we consider two situations, including G,(J, g), g # j € [J]
hitting ¢; later and G,(J,0), j € [J] hitting ¢, later, which
are both possible.

Proof: By the definition of 7., we know there always
exists some j* such that G7,(j*, g) —c, = 0 for 0 <
g < J,g # j* hold on the set {T, < oo}. Thus we have
Gr.(j*,0) > ¢4 hold on the set {T. < oo} according to (7).

n

hj(X;)

Noting that
n
2 =[]

Gn (.]5 0)
k=1 i=k

22:1 mi [ 1

k—1
i=1

+ (][n+l

ho(X;)

ho(Xi) [ Tieg hj(Xi)

7 +
[Tizi ho(X)) T

AP} (F)

: dPoc(Fy)’ :
and using the Wald likelihood ratio identity, we obtain

Poo {Te < o0} = Eoo [1{T0<oo}]
1n;<aﬁ}

dPwo(Fr,)
dP} (Fr,)

E/ [GTC(j*sO)_ll {

—1

©)

j*
Eﬂf

/'*
T,=T/ ,Tc<oo}

=<

cy -
Theorem 1 is proved.

(10)
O
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C. Asymptotic Upper Bound on Average Detection Delay
Define

Ij,gZ/log (Z;g;) hj(x)P(dx),1<j<J,0<g#j<J,

as the Kullback-Leibler (KL) divergence between densities
hj(x) and hg(x), and

j( l)

ko -
Z,(j,8) = Y (X)

(1)

Zlo

For ¢ = {cg, ¢;} with cpin = min{cy, ¢;} > 1, we denote
log cyq log ¢;

Ijo

], j=1..,J.
(12)
The following theorem establishes the asymptotic performance
of 0* in terms of average detection delay, which will be used in
the proof of its asymptotic optimality as cpin — 00. We have
remarked that in [19] the authors derived the asymptotic
decision delay of their decision procedure with the geometric
prior distribution. In our work, we obtain the asymptotic
performance for a more general prior distribution of the change
point. In the proof of Theorem 2, we basically compare the
statistic G, (j, g) with the log-likelihood ratio Zf,( j>g), and
utilize results in random walk to deduce an asymptotic upper
bound on the average detection delay of the decision rule.
Theorem 2: Let0 < Ij s <00,1<j<J,0<g#j=<J,
and assume that the prior distribution satisfies

¢j(e) = max {

b .
mini<gj<J Ijg

o0
> logmilmi < oo,
k=1

then for all 1 < j < J, we have
EL[T. —|Te > 1] < ¢j(©)(1 +o(1)), as cmin — 00. (13)

Proof: According to the definition of G,(j, g), we have
that forany k > 1,0 < g # j < J,

n
i .
Tyt + z wie“n-8)
i=1
ko
rrelni-8),

Gn(j’ g) =

v

(14)

Now we complete the proof in two parts. First, for g = 0,

we define a stopping time
Ty =min{n > 1:G,(j,0) > cq}.

Thus for all k£ > 1, according to the definition of the stopping
time 77 and (14), T1 does not exceed the stopping time

5)

vi(cg) = min {n >k: Zﬁ(j, 0) > 10g(cd7zk_1)} ) (16)
We have (T} — k)™ < vi(cq) — k, and hence
E[[(T1 — k)*] < B{[ok(ca) — (17)

According to the proof of [20, Thm. 4.2], we then have the
following result for g = O:

. log ¢,
EL[T) —1|T) = 1] < —2%
J,0

(1+o0(1)), as cq — oco. (18)
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Second, for 1 < g # j < J, we define a stopping time

T, =min{n >1:G,(j,g) >ci}. (19)

Thus for all £ > 1, according to the definition of the stopping
time 75 and (14), 7> does not exceed the stopping time
oe(e) = min [n = k2 75, 0) = logeimg D). 20)

Similarly, we have the following result for 1 < g # j < J:

BT — 1T = 1] < —=— (14 0(1)), as ¢ — 0. (1)
Jj-8
Finally, according to the definition of 7, in (6),
T, = max{Ty, Tr},V1 < g # j < J, so we have
. lo logc;
E{,[Tc—nTczr]fmaxi S 084 ]+o(1),
Tjo minj<gzj<yljg
as Cmin —> 0. (22)

Note that (22) holds for all 1 < j < J, and thus Theorem 2
is proved. m|

D. Upper Bound on Probability of False Isolation

In this subsection, we present the following theorem about
the control of false isolations which correspond to the illus-
tration in Fig. 1(b). Define

max max (23)

j =E L .’ b =
Pj.g oo [L1(j, &)1, px 192 1<gotf<]

Pj.g-
In the proof of the following result, we start from the defi-
nition of the false isolation probability, and then analyse the
construction of statistic G, (j, g). Based on some calculations
and regularity conditions on the prior distribution 7y and py,
we have an upper bound for the false isolation probability.

Theorem 3: For the proposed detection-isolation procedure
5 = (T, jo) in (6), suppose the following regularity condition
is fulfilled:

o0
fzzm{pjf < 00.

(24)
k=1
Then as ¢g — 00,
max P’ {JC £ j|T. = t} YZDEFD Loy, 2s)
1<j=<J Ci

Moreover, if there exists some 0 < ¢ < 1 to satisfy nkpjf <ok

for all sufficiently large k, then as ¢; — oo,
(1+o0(1)).

max P’ {Jc £ j|T. = z} (26)

1<j<J

J—-1
ci(l—o0)
Furthermore, if p, < 1, then as ¢4 — 00,

max P] {]c £ j|T. > t} < (=D 1 +0(1). @7

1<j

Proof: By the definition of T, we have Gr.(g, j) > ci,
1 < g# j<J,hold on the event {T, = Tf}. Then for any
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1<j<J,ascq— 00,
P/ {fc=g|Tczt}

= B} (1T 2 1]
G

- B [ 7.(85 J) T >t}
Gr.(g,j) "~

< ¢ 'E] [GTC(g,j)l{TL:T;}ITC > t]
_1E’j; [GTC(g’j)l{Tc:Tf,Tczr}]
- P (T. > 1)
= "B} [Gr(8 Mg oy | (1 + 0(D)
< ¢ "Bl [Gr.(g. N] (1 +0(1))

_ 1Z7TkE’ [z H’;g;wml](wo(l»

=1 i=l

= 12@[2%1/) +2m}(1+0(1)) 29)
k=

< ¢! [Z Tepy 1] (14 0(1))
k=1

where the first inequality is due to Gr.(g, j) > ¢; holding
on the event {T. = TS}, (28) is due to PL{T, > 1} —
1 —o(l) as ¢g — o0, and the second inequality is due to
the indicator function. As for (29), it is calculated according
to the definitions of expectation E,’( [-]and pg, ;. There are only
some basic integral operations involved, so we omit the tedious
calculations. Then we have

P/ {jc#j|Tch}E(J—l)ci_l(f—f-l), as c¢g — 0o.
(3D
The above result holds for all 1 < j < J, so (25) is

proved. Similarly, (26) and (27) can be proved. The proof
of Theorem 3 is completed. m|

(28)

(30)

IV. ASYMPTOTIC OPTIMALITY

The proof of the asymptotic optimality of the proposed
decision rule 0* is split into two steps. We first derive some
asymptotic lower bounds for infsca(q,p) D;(9), j € [J] in the
class A(a, B), and then make use of the results in Section III
to show that these bounds are sharp for the proposed decision
procedure J*.

A. Asymptotic Lower Bounds for Average Detection Delay

Define L}, = [logal/Ij0. L} = [logfl/ljs.1 < g #
j<J,andforany 0 <¢ < 1,

vl (1) =

A =

P/ {t§T<t+(1—g)Lg},
P/ {I§T<t+(l—8)L£’g}.

The following lemma will be used to derive asymptotic lower
bounds for the average detection delay.
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Lemma 4: Let0 < Ij, <o00,1 <j<J,0<g#j=</J,
then forall0 <e < 1,1 <j#g <J,

lim sup 1/, (T)=0, (32)
0=>07eA(a, B

and
lim sup y; bg(T) =0. (33)

B—0 TeA(a,p)

Proof: Via changing the measure Py, — P,{, we obtain
that forany # > 0 and 0 < ¢ < 1,

oo{ka <k+(1—g)L,§}

k<n<k+(1—¢)L,

_p o= 2530
=E [l{kgr<k+(1ﬂc)Lg}e ! ]
J . —Z5(j,0)
= E [l{ksr<k+(1—s)Lé,z§<j,0)<n1e ' ]
> e*”P,{ [k§T<k+(l—s)L{;, max AZﬁ(j,0)<77}

v

e—”[P,{ {k <T <k+(1 —g)Lg'}

—P,{{ max zk+n(1,0)>n”, (34)
0<n<(1— s)L’

where the last inequality follows from the fact that for any
events A and B, P(AN B) > P(A) — P(B°).
Setting 5 = (1 — £2)| log a|, we obtain

P/ {k§ T <k+(1—g)L,§}
< e(l—g2)\loga\Poo {k <T <k+(1- €)L£}
+P) max  ZF,.(j,0) = (1 — &%) logal
0<n<(1— s)L’
< o(1=eD)llogal

j [ max
+P;

= o + 5,{(0:, €),

.7k ;
0<n<(1—g)L} Zin (75 0)
(1—e)Ly

> +€)Ij,0}

(35
max0§n<(lfa)L‘(£ Z’€+" (/:0)
(1-e)Lg
as o — 0 forany 0 < ¢ < | and all £k > 1| because by the
condition 0 < I < oo, Z],:Jrnfl(j,O)/n converges almost
surely to /; o (The details of proving this result can be found
in the proof of [22, Lem. 2.1]).

Then we have

where 5,{ (a,&) =P| =(1+e)ljor—0

o0
> P {k <T <k+d —g)Lg}
k=1

o0
at’ + Z nkéli (a, &).

k=1

vl (T) =

IA

(36)

The first term goes to 0 as ¢ — 0 for any 0 < ¢ < 1.
The second term goes to zero as o — 0 because for any k > 1,
5; (a0, &) — 0 as a — 0. Since the right side in (36) does not
depend on 7', this completes the proof of (32).
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Changing the measure P,‘f — P,{, we obtain that for any Proof: By the Chebyshev inequality, for any
n>0and 0 <& <1, O<e<l,l<j<lJ,
P {k <T <k+(I-eL}* ] # g} El[(T -] =1 —e)LiP) {T —t>(l —e)Lé} :

Zkr(j,g)i| where PL1T — 1> (1 —e)LZ,} = P%{T >t} — ygj;a(T).

— R/ )
= Ep [1{k5T<k+(1—g)L;;g,f¢g}e By (). weh
y (2), we have

> |1 e e~ 2108)
= Tk | k=T <k+(1-e)Ly*, j#8. 25 (j.g) <n) SupPi{T < k} = supPoo(T < k} =Poo{T < 00} < a. (40)
k>1 k>1
= e”P,i[k =T <k+(l- ‘9)L;3’g’j # 8 Thus for any 6 € A(a, ), we have
PUT >1)=1—-P (T <t} >1—a. (41)

max  Zk(j,g) < '7]

ksn<k+(1-e)Ly" So for any § € A(a, ),

> e"[P,{ {k <T <k+(1- g)ng} —P/{j=g.k<T) E} [(T — )]

E/ [T —1|T >1] =

. . PL{T > 1)
—P’[ max  Zp,(j,8) = nH 37) j
Pr{T =1}
Setting 5 = (1 — £2)|log /3|, we obtain S U—eLi|1- ygj;a(T)
y 5 () ) ' e
&,
00 _ _ Since ¢ can be arbitrary, and by (32), we have
J .8
:anPk{k§T<k+(l—e)Lﬂ } ; |log a|
k=1 E/ [T —t|T >t] > ——( +o0(1)) as a — 0. (42)
00 o0 . Ljo
< e"ZEkP}f {k <T,j 7&8} +Z7TkP/i{j =g, k=<T} Forany 0 <e < 1,1 < j # g < J, we also have
k=1 k=1 . . :
~ E.[(T —1)*] = (1 - o)L}*P] {T—t > —g)ng}.
P; ZE L Grg)= (=Dl -
+;ﬂk k OSMIEEE)LZ‘@ k+”(]’ g) = (1=eT)[log | By (33), similarly, we have
A, ; 1
< el=Dlleflp L pIif £ 1 < T) BT -7 > 0= P20 oay) as g0 @)
ad | max,_, <(1—e)L%* Z]k(+n (. &) e
+Z ”kpli = b_ >(1+e)lj, To satisfy both constraints in A(a, ff), we need to combine
k=1 (1 - €)L2’g (42) and (43), and the asymptotic lower bound (39) follows.
00 Hence Theorem 5 is proved. m|
&2 Js8
< B+ B+ D mdlE (B o), (38)
k=1 B. Asymptotic Optimality
; cmax s Zen(8) Now we are ready to prove the asymptotic optimality of the
where 5;{"(5(,3 . €) = P;{{ — £ = procedure 0* with appropriately chosen thresholds in the class

(1—e)L}* :
(1+eljgl — 0Oas B—0forany 0 < ¢ < 1 and A(a, f). Forall 1 < j < J, define

all k£ > 1 by the condition 0 < [, < o0. [log a| [log 3|
Similarl ded 78 ¢j(a, ) = max ;= (44)
y, we can deduce that oy (T)y - 0 as f — O for Lo “minj<gzj<yljg
any 0 < ¢ < 1, and the proof is completed. O o

Theorem 6: Let the conditions of Theorems 2 and 3 be

Now, we can derive lower bounds for the detection delay .
satisfied, and let ¢; and ¢; be

of any procedure in the class A(a, f) using Lemma 4 and

Chebyshev’s inequality. ca=a"", (45)
Theorem 5: Suppose 0 < [;, < 00,1 <j<J,0=<g#
j<J,thenforl<j<J, ci=U =D+ (46)
inf  E. [T —¢T > 1] Then forall 1 < j < J,
deA(a,p) -
1 1 _inf  D;(0) = D; (") = jla, (1 +0(1)), (47)
> max [ | ;)gal , — [log /] 7 ] +o(1), (39) seAap) / g
- min - -
S0 I=s7I=l s where o(1) — 0 as a, f — 0.
where o(1) — 0 as a, f — 0. Proof: Combine Theorems 1, 2, 3 and 5. O
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TABLE I
CHANGE FROM H( TO Hj

p2,1 | Procedure @ B2, 1) D1 (5)
R 5" 0.0144 | 6301073 | 6.43
5 0.0185 0 16.69

| 2 5" 0.0061 | 8201073 | 7.29
& 0.0109 | 2.51%107% | 19.40

| o o 0.0138 | 1.31%1072 | 6.64
& 0.0162 | 451107 | 16.67

pa | 2 5" 0.0495 | 520%107° | 7.99
& 0.0160 | 1.13%107° | 16.43

TABLE 11
CHANGE FROM H( TO Hy

p12 | Procedure @ B(1,2) D> (6)

Pl | 2 5 0.0190 | 220+ 1073 | 6.82
& 0.0149 0 16.74

P | e o 0.0090 | 382101 | 3.26
5 0.0048 0 5.02

P | o2 o 0.0134 | 9.19%107% | 1.51
5 0.0158 0 2.50

p1| 2 5" 0.0454 | 4.00% 1073 | 7.90
5 0.0140 0 16.43

V. SIMULATION RESULTS

In this section, we compare the statistical properties of the
proposed detection-isolation procedure 6* and the procedure
in [18] which we call ', using Monte Carlo simulation. For the
prior distribution of the change point, we set the probability of
no finite change point as 7o, = 0.1, and assume that the finite
change point follows a (conditional) geometric distribution
with success probability p. We consider i.i.d N(u, 1) data
stream with pre/post-change distributions:

Hy:u=0 vs. Hj:u=upuj.

We consider four configurations for comparison as follows:

Pl : p=09,[u1, pu2]=11,-1],
P2 : p=0.9,[u1,u21=11731,

P3 : p=009,[p1, u2l=11,-3],
P4 p=02,[u1, u2l =[1, —1].

Define f(g, j) as:
Bla. i) =P {] =g #JIT =1},

which is the probability of incorrectly identifying the true
post-change distribution H; as Hg. We set constraints for
0% and & as a = B = 0.05. Then the thresholds ¢y and
¢; of 6% are chosen according to (45) and (46), respectively.
Under P1, & = 3.45 is finite. However, under the other three
settings, since the value of p; . is large, there is no finite
value of &, and we simply set & = 1 in (46). The thresholds
of ¢ are set according to the proof of [18, Thm. 7]. The
procedure &' controls o and B simultaneously at the same
level with only one threshold. The simulation results are listed
in Tables I and II, wherein each setting is based on 10°
simulations.

In Table I, the detection of the change from Hp to H;
shows that the statistical characteristics of both procedures
satisfy the prescribed constraints on o and . Furthermore,

(48)
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Fig. 2. Performance of §* with different values of ¢ under P2.

the average detection delay of 0* is evidently lower than that
of ¢'. Under each setting, the false isolation rate is controlled
even if we set & = 1. In Table II, however, we see that under
setting P2, the false isolation rate of J* is greater than the
prescribed constraint and is thus not controlled. According to
Theorem 3, a large value of p, ; may lead to a large value of
false isolation rate, due to the uncontrolled growth of G, (1, 2).
But under settings P3 and P4, the false isolation rates of *
are still controlled. This is an interesting phenomenon, and the
reason appears to be that when p; > and p> | are both greater
than one, the growths of G, (1,2) and G, (2, 1) are both very
quickly so that with high probability the decision is determined
by G,(1,0) and G,(2,0), corresponding to the results with
G,(j,0), j € [2] hitting ¢4 later in Fig. 1, and we may thus
have a good control of false isolation. Comparing settings P 1
and P4, we see that decreasing p, i.e., increasing the average
change point, has a negative influence on the control of false
alarm.

To further explore the impact of &, we plot in Fig. 2
the performance of 0* with different values of ¢ under set-
ting P2. We can see that as ¢ increases (i.e., the threshold
¢; increases proportionally), the false isolation rate SB(1,2)
decreases quickly while the average detection delays increase
slowly. Thus, if ¢ is sufficiently large, the false isolation
rate may be eventually controlled with a relatively moderate
penalty on the average detection delay.

In Table II, under settings P2 and P3, the average detection
delays are much smaller than those in Table I. This confirms
the result of Theorem 2 that the average detection delay is only
related to the KL divergence between the true post-change
distribution H, and pre-change distribution Hy.

According to the experimental results, our proposed pro-
cedure 0* has a better delay performance compared with
¢ under the same constraints on false alarm rate and false
isolation rate. We see that Theorem 3 is sometimes overly
conservative in predicting the false isolation rate performance.
Therefore, finding more effective performance guarantees on
the false isolation rate beyond Theorem 3 is an interesting
future research topic.

VI. CONCLUSION
In this work, we have investigated a general sequential
change detection and isolation problem under the Bayesian
setting in which the change point is a random variable with
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a known distribution, and defined new error and decision
delay measures as the performance criteria of optimality. We
have proposed a Bayesian recursive algorithm that can control
the false alarm probability and the false isolation probability
separately. We have further proven that the proposed procedure
is asymptotically optimal under certain regularity conditions
in the class of decision procedures that satisfy the error
constraints. Simulation results have corrobrated our theoretical
findings.

There remain some issues for future research in this
area. Although we have presented a reasonably simple detec-
tion and isolation procedure that is asymptotically optimal
under the Bayesian setting, the constraint of the global false
alarm probability is sometimes too stringent to be useful in
practical applications. The conditional decision delay E,’( [T —
k|T > k] of the proposed decision procedure grows quickly
with k according to [20], so the procedure may not be suitable
for situations with large change points. Thus, it is desirable to
investigate such problems under the classical setting based on
decision delay as well.
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