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ABSTRACT

Foot traffic is a business term to describe the number of customers
that enter a point of interest (POI). This work aims to predict future
foot traffic: the number of people from each census block group
(CBG) that will visit each POI of a study region with potential ap-
plications in marketing and advertising. Existing techniques for
spatiotemporal prediction of foot traffic use location-based social
network data that suffer from sparsity, capturing only a handful
of visits per day. This study utilizes highly granular foot traffic
data from SafeGraph, a data company that collects mobility data
regarding hundreds of millions of visits per day in the United States
alone. Using this data, we explore solutions to predict weekly foot
traffic data at the POI level. We propose a collaborative filtering
approach using tensor factorization on the (POIs x CBGs x Weeks)
data tensor. This approach provides us with a de-noised estima-
tion of visits in previous weeks for all POI-CBG pairs. Using this
tensor, we explore various time series prediction models: weekly
rolling average, weighted weekly rolling average, univariate linear
regression, polynomial regression, and long short-term memory
(LSTM) recurrent neural networks. Our results show that of all
the prediction models, the collaborative filtering step consistently
improves prediction results. We also found that a simple weighted
average consistently performed better than the more sophisticated
approaches. Given this abundance of foot traffic data, this result
shows that we can improve the spatiotemporal prediction of foot
traffic data by harnessing collaborative filtering.
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1 INTRODUCTION

Spatiotemporal prediction, also known as spatiotemporal forecast-
ing, is the task of predicting the future value of variables across both
space and time. Applications of spatiotemporal prediction include
road-traffic (flow) prediction to predict future states of a traffic
network [15, 26, 27, 45], the prediction of future COVID-19 cases
and deaths [25, 29, 34], and the prediction of bike-sharing systems
to understand supply and demand at bike-rental stations [4, 18, 41],
to name a few.

This study focuses on the spatiotemporal prediction of human
foot traffic, that is, visits of individuals to public points of interest
(POIs), which has applications in local marketing, geoadvertising,
and location recommendation. For example, users who are predicted
to visit a sports stadium may be interested in sports merchandise.
Similarly, users who are predicted to visit bookstores regularly may
be interested in discount vouchers for themselves and their friends.

Existing solutions for spatiotemporal prediction of foot traffic
leverage location-based social network (LBSN) data or check-in
data. LBSN data, as detailed in Section 2, is sparse, having only a
few thousand check-ins per day distributed across the world. Such
sparse data makes it challenging to model, learn, and predict human
foot traffic patterns [12].

In order to overcome limitations associated with data sparsity,
we use large-scale foot traffic data from SafeGraph!, a data company
that shares anonymized foot traffic data that has been collected
through numerous smartphone applications. This data captures

!For detailed information, see https://docs.safegraph.com/docs/weekly-patterns.
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trips from census block groups (CBGs) to specific POIs. CBGs are
defined as spatial neighborhoods that contain between 600 and
3,000 people. "A point of interest is a specific physical location
which someone may find interesting. Restaurants, retail stores,
and grocery stores are all examples of points of interest" [30]. To
enhance privacy, SafeGraph excludes CBG information if fewer
than two devices visited an establishment in a month [31].

In this study, we tackle the problem of predicting foot traffic
one week into the future, for which data is not available. Towards
achieving this goal, this paper is organized as follows. Section 2
surveys related work for spatiotemporal prediction of foot traf-
fic data using check-ins in LBSN data. Then, Section 3 describes
foot traffic data, a tensor representation of the data, and formally
defines the problem of spatiotemporal foot traffic prediction. A
collaborative filtering-based approach using tensor factorization
to reduce noise in the data is presented in Section 4. Based on this
noise-reduce tensor, a range of prediction methods are described in
Section 5. Our experimental evaluation in Section 6 presents a case
study using Fairfax County, VA, USA, which has a population of
1.1 million people, providing a benchmark for spatiotemporal foot
traffic prediction using state-of-the-art solutions.

2 RELATED WORK

A large body of research established by the location-based social
network (LBSN) research community proposes the use of LSBN data
for spatiotemporal prediction of foot traffic, where visits to POIs
are captured as check-ins. The task of spatiotemporal prediction
using check-in data is often referred to as location prediction
[1, 5, 19, 21, 35, 42]. These predictions can be used for location
recommendation, which leverages check-ins of users and their
ratings in the user-location network to recommend new locations
to users (e.g., [10, 20, 24, 33, 38, 40, 43] for a survey see [2]).

While there has been a plethora of work for spatiotemporal
prediction of foot traffic in LBSN research, all existing work suffers
from a common shortcoming. LBSN data sets are trivially small [12].
The most commonly used LBSN dataset is the Gowalla dataset [22].
While this dataset captures more than 36 million check-ins, these
are distributed over 20 months, averaging 60,000 check-ins per day,
distributed globally. After removing users with less than 15 check-
ins and removing locations with less than ten visitors, more than
half of the visitors in the data are eliminated [23]. Thus, the Gowalla
dataset, publicly available at the Stanford Network Analysis Project
(SNAP) [7], only has 6 million check-ins total and only about 10,000
check-ins per day worldwide. That translates into only a dozen of
check-ins per major city per day.

Consequently, it has been observed in [16] that the lower bound
of predictability of the human spatiotemporal behavior, defined
in [16], is as low as 27% using LSBN data. [16] concludes that
“[r]esearchers working with LBSN data sets are often confronted
by themselves or others with doubts regarding the quality or the
potential of their data sets.” and that “it is reasonable to be skeptical”

3 PROBLEM DEFINITION

Foot traffic data obtained from SafeGraph [31] provides us with
weekly data on the number of visits to each POI grouped by CBG.
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Figure 1: A visual depiction of the tensor

This section formally defines such foot traffic data and the problem
of spatiotemporal prediction of foot traffic data.

Definition 3.1 (Foot Traffic Observation). Let = {P1,... Pjp|}
be a set of POIs, let R = {Ry, ...,R|R‘} be a set of spatial regions
such as census block groups, and let 7~ = {Ti, ..., Tj7|} be a set of
time intervals. A foot traffic observation (p € P,r € R,t € T)
denotes an observed visit of a user from region r at POI p during
time interval t.

We define a foot traffic database as a collection of foot traffic
observations.

Definition 3.2 (Foot Traffic Database). A foot traffic database D =
{01, ...,oN) is a collection of foot traffic observations where each
0; € D is a foot traffic observation 0; = (p; € P,ri € R,t; € T).

We note that D is a collection (or multiset), as it may contain
duplicates. That is, more than one individual from the same region
may be observed at the same POI during the same time interval. A
foot traffic database can be represented by three mode foot traffic
tensor formally defined as follows:

Definition 3.3 (Spatiotemporal Foot Traffic Tensor). Let D be a
foot traffic database, then X € NIFIXIRIXIT i 4 spatiotemporal
foot traffic tensor, where

(X)ijx =Ho € Dlo= (P, R}, Ty) }|

denotes the number of visits at POI P; coming from region R; during
time interval Tg.

An example of a spatiotemporal foot traffic tensor is shown in
Figure 1. Given a foot traffic database D, we define the problem of
spatiotemporal prediction of foot traffic as the problem of predicting
the number of observations, for each POI and for each region, for
the next time interval Tj7,;. We formally define:

Definition 3.4 (Spatiotemporal Prediction of Foot Traffic). Let D
be a foot traffic database that captures observed visits at POIs
from regions R during time intervals 7 = {Ty, ..., Ti7 }. The task
of spatiotemporal prediction of foot traffic is to predict the number
of foot traffic observations at times T}, for each POI p € # and
each regionr € R.

In the following, we propose solutions to the problem of spa-
tiotemporal prediction of foot traffic.
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4 COLLABORATIVE FILTERING

While SafeGraph data is denser and more comprehensive compared
to traditional LSBN data, we observed a different set of challenges
when applied collaborative filtering using tensors. The first chal-
lenge is related to tensor sparsity. Furthermore, there are additional
challenges associated with the heterogeneity of the data. We de-
scribe both challenges in detail here.

The first challenge of data sparsity is that, in practice, most cells
of a spatiotemporal foot traffic tensor with a value of zero are a
function of small POIs that are rarely frequented by faraway re-
gions. For example, it is rare that people will travel hundreds of
kilometers from their home region to visit a fast-food restaurant
chain (e.g., “McDonald’s”). This leads to a very sparse spatiotempo-
ral foot traffic tensor T. Yet, a simple solution of only considering
local foot traffic, thus ignoring POI-region pairs beyond a certain
distance will yield a loss in information. For example, for some
POIs, such as a specific brand of POI that is not found everywhere
(e.g., the Swedish furniture store “Ikea”), people may travel from far
away regions. The second problem of heterogeneity is that the data
varies substantially across each tensor mode, stemming from the
inherent properties of foot traffic data. First, POIs may have very
different visitor patterns. Some POIs may be small businesses with
only dozens of visitors per day, whereas other POIs may be large
stores with thousands of visitors per day. Second, different CBGs
may have very different visiting patterns due to their location (as
people tend to be likely to visit nearby POIs) and socioeconomic fac-
tors. For example, some areas may have a higher median per-capita
income and thus, may be able to visit POIs that people from other
regions do not visit. And third, visiting patterns may vary over time,
as some POIs may vary seasonally (for example, POIs selling ice
cream may have more foot traffic in summer), some POIs may close
temporarily, and there may be global trends due to the closure of
certain types of POIs due to pandemic prevention policies.

To capture the differences between POIs, spatial regions, and
time intervals in spatiotemporal foot traffic data, we propose to use
a tensor factorization approach to decompose the raw spatiotempo-
ral foot traffic tensor into a product of factor matrices that capture
the latent features of different POIs, spatial regions, and time in-
tervals. Capturing similarities (and dissimilarities) between POlIs,
spatial regions, and time intervals, we can retain only the latent
features that explain the most variance to create an approximated
spatiotemporal foot traffic tensor. Using this tensor, we can esti-
mate the expected number of visitors at each POI, from each spatial
region, at each time interval, informed by visitor numbers at similar
POlIs, from similar regions, and at similar time intervals.

Such an approach of estimating values based on information
about similar objects is also known as collaborative filtering, fre-
quently used in recommendation systems. Here, we use Tucker
tensor factorization [36] to factorize the spatiotemporal foot traffic
tensor X into 1) a matrix that captures K; latent features of each
POL 2) a matrix that captures K latent features of each spatial
region, and 3) a matrix that captures K3 latent features for each
time interval, such that the product X of these matrices (and a core
tensor that captures the singular values of X to capture the relative
weight of each latent feature) approximates the raw data tensor X.
This approach is formalized in the following.
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Definition 4.1 (Tucker Tensor Decomposition). Let X € NI XIRIXIT]
be a spatiotemporal foot traffic tensor. Tucker tensor decomposition
factorizes X having

X ~ G X1 Uy X2 Up X3 Us,

where G € RKXK2XKs g called the core tensor and U; € RIPIXK1,
Uy € RIRXK: 15 ¢ RITIXKs are factor matrices. The operator
X; denotes the mode-i tensor-matrix product, and Ki, K, K3 are
parameters that denote the degree of approximation of each factor.

Intuitively speaking, Tucker decomposition factorizes the spa-
tiotemporal foot traffic tensor X into three matrices. The first matrix
U; describes each of the || POIs with Kj latent features; the second
matrix U describes each of the |R] spatial regions with K3 latent
features, and the third matrix Us describes each of the |7| times
intervals with K3 latent features. These factor matrices are similar
to the factor matrices of (truncated) singular value decomposition
(SVD) [14] and eigenvalue decomposition [9], with the main differ-
ence of having three-factor matrices instead of two. The core tensor
G contains the 1-mode, 2-mode and 3-mode singular values of X,
and can be seen as equivalent to the diagonal eigenvalue matrix in
eigenvalue decomposition (but for three-mode tensors instead of
two-mode matrices).

Unlike SVD and eigenvalue decomposition, where the number of
latent features per mode is a single parameter, Tucker decomposi-
tion allows us to specify the number of latent features (or topics) for
each mode. Thus, we may choose the parameter Kj that specifies
the number of latent features representing each POI to be larger
than the number K of latent features of spatial regions and K3 of
time intervals.

By expanding the factorized representation back into a tensor,
we obtain an approximation of the data matrix X in which the
Kj, K, and K3 most important (explaining most variance) latent
features of POIs, spatial regions, and time intervals (respectively)
are retained, but less important components are omitted.

Definition 4.2 (Approximated Spatiotemporal Foot Traffic Tensor).
Let X ~ G X1 Uj Xz Uy X3 Us be the tensor factorization of spa-
tiotemporal foot traffic tensor X. We define

)2=G><1 Uy X2 Uy X3 Us
as the approximated spatiotemporal foot traffic tensor of X.

Intuitively, the resulting data tensor X will contain values )A(l-’ ik
that approximate the number of visitors at POI p; from spatial re-
gion r; during time interval t; by leveraging collaborative filtering
with similar POIs, similar spatial regions, and similar time inter-
vals while unexplained signal (noise) is removed. Our rationale is
that this noise-reduced representation of the original spatiotem-
poral foot traffic tensor X will improve spatiotemporal foot traffic
prediction.

Based on the approximated spatiotemporal foot traffic tensor X
of X we explore solutions for predicting future foot traffic. In the
following Section 5. By experimenting on the different periods and
different subset of the data, we then empirically show that the ap-
proximated representation (which leverages collaborative filtering
through tensor factorization) consistently improves predictions as
shown in Section 6.
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Figure 2: Spatiotemporal Foot Traffic Prediction Workflow

5 SPATIOTEMPORAL FOOT TRAFFIC
PREDICTION

From the raw data that has been provided by SafeGraph [31] to
the final prediction, a workflow consists of multiple steps is pre-
sented in Figure 2. First, the raw data obtained from SafeGraph is
preprocessed into the raw spatiotemporal foot traffic tensor. This
step groups all the raw data records by home CBG of the visiting
user, the POI visited by the user, and the week of this visit. The
resulting three-mode tensor having dimensions NIPIXIRIXIT] g
split into training and test data. A subset is sampled (and removed)
from the raw data tensor and called “RAW Subset” in Figure 2. This
sample is later used to evaluate the results. By default, we sample
10% of the raw data tensor for evaluation. The remaining data, up
to week T, which includes all of the raw data tensors without the
sampled evaluation data, is then factorized as described in Section 4
yielding a factorized tensor. This tensor is then used for predicting
the spatiotemporal foot traffic at time T + 1 as described in the fol-
lowing. Then, the predicted values at time T + 1 (using only data up
to the time T) is compared against the ground truth spatiotemporal
foot traffic data. Evaluation metric and corresponding results are
described in Section 6.

The following sections (Section 5.1-5.5) explain the prediction
approaches to predict the number of visits at POI p; from region r;
at time Tjq 41

S. Islam et al.

5.1 Previous Value

To predict the number of visits X; j 741 at POI p; from region r; at
time Tjq41, we first explore a naive baseline that simply predicts
the number of visits at the previous time interval, that is:

Prev _ v .

ij,T+1 ~— XijT

Intuitively, this value corresponds to the number of visits that the
collaborative filtering would expect if next week is identical to the

previous week.

5.2 Average Sliding Window

Instead of simply using the previous value to predict a future value,
a sliding window approach looks at a window of the previous k
observed time intervals and uses the mean of these observations
as a prediction. Formally, to predict the number of visits at POI p;
from region r; at time T|7 .1, this naive baseline simply predicts
the number of visits at the previous time interval, that is:

k-1

Slide _ 1
LT+ = L2y XA T-A

>
I

0

5.3 Weighted Sliding Window

Like subsection 5.2, here we use a sliding window approach but
with different weights for each of the historical values. Foot traffic
observations that are most recent will get the highest weight and
kth oldest observations will get the least weight. We use a linearly
decreasing weight to reduce the importance of older observations,
formally:

k-1

; k-A
X_W_Sllde X
. T+1 — . L T-A
P ;) %k(k 1)

5.4 Temporal Univariate Linear Regression

We also employ a linear regression model, which fits a linear model
to the previous k foot traffic observations of a given (POI, spatial
region) pair. The intuition is that this approach is better able to
capture a linear trend, such as increasing (or decreasing) foot traffic.
Modeling the foot traffic X; j 7 T as a function of time T, and using
ordinary least squares fitting to minimize the squared model error,
we obtain the slope f of a linear regression as:

§= ZZ;}) (Xi,jr-a = XijT-A)(T-A-T)
k=15 > ’
ZncoXijr-a = Xijr-n)?
where Xi,j,T—A = % Z’E;}) X,-,ij_A is the average foot traffic in the
last k time intervals,and T = T — %k is the average time interval

among the last k time intervals. We obtain the intercept of this
linear regression as:

o :)A(i,j,T—A —ﬂ T

This linear model allows us to predict the foot traffic at time T + 1
as:

reg _
Xi,j,T+1 =a+f-(T+1)
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Figure 3: CBGs in Fairfax County
5.5 Long Short-Term Memory Recurrent
Neural Network (LSTM)

Our problem resembles most of the classical time series forecast-
ing problems; since Long Short-Term Memory (LSTM) has a track
record of being successful in similar cases [6], [32], [3], we tried it
too. The LSTM model is a type of RNN (Recurrent Neural Network)
model, meaning, it reads each time step of an input sequence one
at a time. The LSTM has an internal memory to keep, forget, or
ignore previous data points based on a probabilistic model and to
accumulate an internal state as it reads across the steps of the input
data sequence. We tried to predict foot traffic from a spatial region
to a POI and since our data is comprised of such observations (how
many people visited a POI from a CBG), we have used a univariate
LSTM model to do the prediction. We focus on keeping 75 percent
of our data for training the model and the rest for testing.

6 EXPERIMENTAL EVALUATION: CASE
STUDY OF FAIRFAX COUNTY, VA, USA

Our experimental discussion starts by describing our dataset which
we obtained from SafeGraph [31] for our study region of Fairfax
County, Virginia, USA, in Section 6.1. Following that, we summarize
the prediction algorithms we use in Section 6.2 and describe our
used evaluation metric in Section 6.3. Our experimental results for
three subsets of the data are presented in Section 6.4.

6.1 Dataset Description

We use foot traffic data obtained from SafeGraph [31], which records
the weekly foot traffic between points of interest (POIs) and census
block groups (CBGs). This dataset is made available at no cost for
academic institutions and has been used in the past to understand
changes in mobility due to COVID-19 [8, 11] and to inform COVID-
19 simulation models with fine-grained human mobility [13, 28].
Thus, in our experimental evaluation, the set of regions R corre-
sponds to CBGs. We note that, this data does not report foot traffic
from CBGs having fewer than two individuals in the data to protect
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their privacy. Since SafeGraph data captures visits to millions of
POIs and the United States has more than 200,000 CBGs, we fo-
cus our experiments on the study area of Fairfax County, Virginia,
which has a population of 1.146 million people [37]. We obtain
weekly foot traffic data that captures trips between 649 CBGs and
15,197 POIs in this region from Jan 2018 to Jun 2021, giving us 1.7
billion observations to be used in our analysis. Thus, for our experi-
ments, we have a set of |P| = 15,197 POIs, a set of |R| = 649 CBGs,
and a total of | 77| = 182 weeks. The resulting 15197x 649X 182 tensor
has 1.7 billion cells, most of which are zero. Figure 3 presents a map
of Fairfax County and the CBGs that belong to it. Note that Fairfax
County does not include Fairfax City, explaining the donut-like
shape to the region. The large volume of data produces a relatively
large data tensor (refer to Section 4 for more information about the
tensor) which requires a significant amount of computational run
time to investigate the wide range of possible predictive algorithms.

6.2 Spatiotemporal Foot Traffic Prediction
Algorithms

We evaluated five algorithms (as described in Section 5) for spa-
tiotemporal prediction of foot traffic one week into the future:
e Previous Value (Prev) (see Section 5.1)
o Four weeks average sliding window (AVG) (see Section 5.2)
o Four weeks weighted sliding window (WSW) (see Section 5.3)
e Linear regression (LReg) (see Section 5.4) and a polynomial
regression of Degree 2 (PReg).
Long Short-Term Memory (LSTM) (see Section 5.5)

6.3 Evaluation Metric

To evaluate our spatiotemporal foot traffic prediction models, we
measure the one-week prediction accuracy in terms of Root Mean
Squared Error (RMSE) over all POI-CBG pairs, thus we measure:

Ziep,jeR(XﬁTH = Xi,j1+1)?

|P] - IRI |
where M € {Prev, Slide, wSlide, Reg, LST M} is the evaluated model
(see Section 5 for details on each model), X;};I',T 41 is the predicted
foot traffic at time T + 1 for POl i at CBG j, and X; j 741 is the
corresponding ground truth foot traffic.

RMSE(XM) = J

6.4 Experimental Results

In the following, we apply the five prediction approaches (see sec-
tion 6.2) to predict foot traffic in Fairfax County for each of the 178
weeks from Feb 2018 to Jun 2021. We exclude the first four weeks
in Jan 2018 from prediction as these weeks do not have sufficient
prior data to make prediction. We note that for each week T + 1
to be predicted, we use a separate factorized tensor that only in-
cludes data up to time T. This is to avoid overfitting by allowing
the collaborative filtering to extract information of the future to be
predicted. Due to the large number of POI-CBG-Week pairs to be
predicted, we evaluate our spatiotemporal foot traffic prediction
algorithms on three subsets of data, including:
o Single CBG: We select a single randomly selected CBG and
500 randomly selected POIs. The purpose of this experiment,
described in Section 6.4.1, is to evaluate how well we can
predict the spatiotemporal foot traffic of a single CBG;
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Figure 4: Predicting Foot Traffic from a Randomly Selected
CBG to 500 Randomly Selected POIs

o Clustered CBGs: We select a cluster of 50 CBGs and all
3052 POIs within these CBGs. Figure 5 shows the location
of the CBGs and POIs considered in this subset. Using this
subset, Section 6.4.2 shows how well we can predict the foot
traffic in a whole area having approximately 100,000 people.

e Most popular POIs: This dataset includes all CBGs of Fair-
fax County (c.f. Figure 3) but considers only the most visited
1670 POIs. Section 6.4.3 shows the spatiotemporal foot traffic
prediction results for this data set.

For each of these dataset subsets, we evaluate all five proposed
algorithms (note, however that there are two variants of univariate
regression) on both the raw spatiotemporal foot traffic data tensor
X and the approximated tensor X after factorization. For the tensor
factorization, we used Kj = 500, Kz = 50, and K3 = 20 as the ap-
proximation degree (rank) of the factor matrices, which correspond
to the number of latent features to describe POIs, CBGs, and time
intervals, respectively.

6.4.1  Prediction Results for a Single CBG. Figure 4 shows the pre-
diction results for the Single CBG foot traffic data subset. First, we
observe that the regression models and the LSTM model yield a
much larger error than the simple models. This is likely because
these approaches overfit outlier observations. As the number of
visitors from the selected CBG to a POI fluctuates between weeks,
the assumption of a linear (or even second-degree polynomial) rela-
tionship between time and number of visits yields to potential over
or underestimation. This is evident in the case of having outliers
that the models may overfit. For example, if a POI had a sequence of
(20,3,2,3) visitors from the selected CBG, then a linear relationship
will predict a negative number of visitors next week (at time T + 1)
by overfitting to the single outlier (and giving residuals a squared
week using simple least-squares minimization).

We also observe that the patterns learned by the LSTM do not
improve the prediction of foot traffic, which is again contributed to
overfitting. While the LSTM considers all weeks at time t > T + 1,
it may try to reproduce individual patterns observed in the past.
For example, if a pattern of (3,2,3,20) was observed in the past, and
in the three weeks before time T + 1 we observe a pattern of (3,2,3),
then the LSTM is likely to predict a very high number of visitors at
time T + 1. In summary, the problem is that we do not observe a
sufficiently large number of weeks for each (POI, CBG) pair for the
LSTM to converge into a stable model.
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Figure 5: Cluster of CBGs in Fairfax County.

We further observe that the three naive models, which simply
average previous observations, produce better results. Much of the
variance that we observe in weekly foot traffic is a function of
random noise rather than a trend. We observe that the approach
that simply uses the previous observation has a much higher RMSE
than the approach using the average of the previous four weekly
observations. What is interesting is that the weighted approach,
which gives more recent weeks a higher weight, does not improve
prediction, which again indicates that, for most POIs, the weekly
variance cannot be explained by trends.

What is interesting is that for all approaches, the use of the
approximate matrix X derived from the factorized model yields
better predictions. This shows that the collaborative filtering ap-
proach does indeed help prediction. We note that among all our
experiments using this data sample, the approach of using a simple
average of the last weekly observations on the factorized matrix X
yields the lowest RMSE.

6.4.2  Prediction Results on Clustered CBGs. Figure 6 shows the pre-
diction results for the clustered group of CBGs shown in Figure 5. In
addition to comparing spatiotemporal foot traffic prediction results
on the raw data tensor and the factorized model, we additionally
show results 1) using a non-negative tensor factorization (which
constrains the factorized matrix X to hold non-negative values) and
2) a simple improvement of the factorized model of Section 4 where
negative elements of X are simply set to zero. For this set of experi-
ments, we have omitted the results for the LSTM model which has
consistently shown worse results than the other approaches, and
we only show results of the linear regression model for the raw and
factorized model due to the long run time of fitting 3025 - 50 linear
models for each of the 178 weeks (we exclude the first four of 182
weeks from the evaluation since there is insufficient previous data).

Again, we observe that the approach using a simple average
of the previous four weeks yields the highest prediction accuracy
(the lowest RMSE). Interestingly, the non-negative factorization
approach does not improve the prediction results. We explain this
by the additional optimization constraint (of disallowing negative
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Figure 6: Predicting Foot Traffic from the orange-colored
CBGs of Figure 5 to 3052 POIs of that same location

values) which may yield a bias in the approximated spatiotemporal
foot traffic data tensor. We also note that the simple solution of sim-
ply truncating negative values in the (original, not non-negative)
matrix factorization yields a slight improvement in accuracy. This
is expected, as truncating negative approximations to zero is guar-
anteed to decrease the RMSE (i.e., ground truth observations are
guaranteed to be non-negative).

6.4.3 Prediction Results using popular POlIs. Figure 7 shows our
prediction results using all CBGs of Fairfax County and a subset
of POI data that includes 1670 of the most visited POIs only. We
note that this experiment covers the entire geographical location
of Fairfax County and minimizes the number of zeros (flat lines) of
(POLCBG) pairs.

Again, we omit the results of the regression and LSTM solutions
due to their high prediction error. For these highly visited POIs, we
observe similar prediction errors for the three naive approaches
of simply using the foot traffic of the previous week, using the
average of the previous four weeks, and using the weighted average
of the previous four weeks. We note that the approach that uses the
approximated value estimated for the previous week using tensor
factorization yields the lowest error. We also note that simply using
the average of the previous week without the tensor factorization
yields a substantially higher error. This error is reduce by averaging
over previous weeks.

We further note that for this experiment, using 1670 POIs, 649
CBGs, and 178 weeks our models took hours to produce the re-
sulting 193 million predictions. Since all models use an analytics
solution to compute results, their run-times are similar, such that
we did not evaluate. We that we were not able to run the regression
and LSTM algorithms due to run-time issues.

In summary, our experiments using three subsets of spatiotem-
poral foot traffic data obtained from SafeGraph shows that simple
time series prediction approaches are able to best predict the num-
ber of visitors between (POI, CBG) pairs. We also show that the
tensor factorization approach is able to reduce noise in the data to
improve prediction results for all prediction algorithms consistently.
However, we note that this study only applied straightforward so-
lutions for spatiotemporal prediction and that more sophisticated
solutions may promise better results.
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Figure 7: Predicting Foot Traffic from all the CBGs of figure
3 to the Most Visited 1670 POIs of the Fairfax County

7 DISCUSSION, CONCLUSIONS, AND FUTURE
WORK

An efficient and stable framework to predict foot traffic has a
plethora of applications in the fields of business, marketing, and
advertisement. Due to these applications, a wide range of exist-
ing works has studied the problem of spatiotemporal prediction
of check-ins using location-based social network data. However,
prior research suffered from a lack of available data. Before the
emergence of large sets of foot traffic data like those provided by
SafeGraph, the main bottleneck of researching and developing such
a system was the scarcity of data. With the current availability of
data, this limitation is reduced.

The goal of this workshop paper is to organize such large-scale
foot traffic data into a data representation that can be used to pro-
vide first benchmark results for spatiotemporal foot traffic predic-
tion. Therefore, we propose simple time series prediction solutions
to predict the foot traffic from a given region to a given point of
interest at a future time interval T + 1, based on observations at
previous time intervals. In addition to evaluating simple predic-
tion approaches, we observed that foot traffic data is very noisy.
To reduce the noise and find the signal in the data, we employed
a tensor factorization approach. This approach reduces the data
using latent features of POIs, spatial regions, and time intervals.
Our experiments show that factorization consistently improves
spatiotemporal foot traffic prediction results in all our evaluated
cases. Still, we observe that the foot traffic for a specific POI from
a specific spatial region is highly volatile, and our first attempts
of modeling the trend in this data using univariate regression and
using long short-term memory neural networks (LSTMs) do not
offer improved predictions. A further challenge that we observed
is run-time due to predicting each combination of point of interest,
spatial region, and time interval individual using a separate model.

For our future work, we aim to explore two additional research
directions. The first direction will focus on computing only a subset
of spatiotemporal foot traffic predictions for selected (POI, CBG)
pairs. This yields (for a given time T+1) a sparse matrix of predic-
tion having most (non-sampled) pairs missing. We want to explore
using a matrix factorization approach to estimate the missing (PO,
CBG) pairs. This approach may allow us to obtain accurate foot
traffic estimations for all (POI, CGB) pairs while only having to
evaluate a small sample of individual models. The second direction
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that we want to employ is to apply more advanced solutions for
the spatiotemporal prediction that have been recently proposed
for data-rich domains such as traffic prediction [39, 44], urban flow
prediction [27] and bike-rental prediction [17] which extract spatial
and temporal features from locations to predict future spatiotem-
poral observations. The main challenge working with foot traffic
data is that the number of locations, which is usually in the tens
to hundreds for these existing applications (traffic measurement
locations, metro station, bike rental stations), may now exceed tens
of thousands (points of interests). While this workshop paper only
presents benchmark solutions, we hope that our work will spur
interest in this new research direction of spatiotemporal prediction
of foot traffic.
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