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Abstract: AsmalllibraryofnovelfluorinatedN-benzamideenaminonesweresynthesizedand

evaluatedinabatteryofacutepreclinicalseizuremodels.Threecompounds(GSA62,TTA35,

and WWB67) werefoundtohavegoodanticonvulsantactivityinthe6-Hz‘psychomotor’

44-mArodent model. Thefocusofthisstudywastoelucidatetheactiveanalogs’ modeof

actiononseizure-relatedmoleculartargets.Electrophysiologystudieswereemployedtoevaluate

thecompounds’abilitytoinhibitneuronalactivityincentralolfactoryneurons, mitralcells,

andsensory-likeND7/23cells,whichexpressanassortmentofvoltageandligand-gatedionchannels.

Wedidnotfindanysignificanteffectsofthethreecompoundsonactionpotentialgenerationin

mitralcells.ThetreatmentofND7/23cellswith50µMofGSA62,TTA35,andWWB67generateda

significantreductionintheamplitudeofwhole-cellsodiumcurrents.SimilartreatmentofND7/23

cellswiththesecompoundshadnoeffectonT-typecalciumcurrents,indicatingthatfluorinated

N-benzamideenaminoneanalogsmayhaveaselectiveeffectonvoltage-gatedsodiumchannels,

butnotcalciumchannels.

Keywords: anticonvulsant;brain;calciumchannel;drugdiscovery;epilepsy;enaminones;

electrophysiology;GABA;neuron;sodiumchannel

1.Introduction

Epilepsyisachronicandoftenprogressiveneurologicaldisorder.Itaffectsapproximatelythree

millionpeopleintheUnitedStatesand65millionworldwide[1].Aboutoneinevery26Americans

willbediagnosedwithepilepsyatsomepointintheirlifetime[1].Epilepsyischaracterizedbybrief

spontaneousrecurrent,convulsive,andnon-convulsiveseizurescausedbyabnormalsynchronous

neuronaldischargesinthebrain[2]. Epilepticseizuresaredividedintotwo maincategories:

(a)generalizedseizuresand(b)focalseizures.Generalizedseizuresbeginwiththeelectricalneuronal

dischargeaffectingtheentirebrain,whereasinfocalseizures,theabnormalneuronaldischargeis

limitedtooneareaofthebrain.Themanagementofepilepsycanbechallengingduetotheinherently

complexnatureofthedisorder[3].Thegoalfortreatmentoftheepilepsiesiscompleteseizurefreedom

withoutmajordrug-inducedsideeffects.Despitetheoptimaluseofavailableantiepilepticdrugs

(AEDs),25%–30%ofpatientsareconsideredtohaverefractoryordrug-resistantepilepsy(DRE)[4].

AccordingtotheInternationalLeagueAgainstEpilepsy,DREisdefinedasthe“failureofapatient’s

seizurestorespondtoatleasttwoantiepilepticmedicationsthatareappropriatelychosenandused
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foranadequateperiodtoachieveandmaintainseizurefreedom”[5]. DREisbecomingmoreof

anincreasingburdenintheepilepsycommunitywithnoknowntreatments.Asaresult,thereis

aneedforthedevelopmentofnoveltherapeuticsforthemanagementofDRE.Duetotheclinical

needfortherapiestoaddressDRE,ouraimistodesign,synthesize,andbiologicallyevaluatenovel

benzamideenaminonesaspotentialanticonvulsantagents. Weelucidatethemechanism(s)ofaction

onseizure-relatedmoleculartargetsoftheactiveanalogs.

Inourpreviousstudies,wefoundtheenaminonesystemtobeanexcellentpharmacophorefor

anticonvulsantactiveanalogs[6–12].Enaminones,theenamineofβ-dicarbonylcompounds,arewell

knownasversatilebuildingblocksforthesynthesisofvariousheterocycles[12].Theenaminone

scaffold,whichisthecorecomponentofallofourcompounds,isasystemcomprisedofaconjugated

systemwiththegeneralformulaof:−NH−CH=CH−(CH2)x−C=O.Theextensiveresearchwith

anticonvulsantenaminonederivativeshasshownthattheanalogsappeartoactthroughtwomodesof

action:(a)inhibitionofthesodiumchanneland(b)viatheGABAergicpathway[6,7].

Previousworkby Wangetal.[8]showedtheneuronalactivityofparaandmeta-substituted

anticonvulsantanilineenaminonederivatives(Figure1)onmitralcellsinanolfactorybulbbrain

slicepreparationusingwhole-cellpatch-clamprecordings.Datafromourelectrophysiologystudies

revealedthattheleadanalogKRS−5Me−4−OCF3(1)showedactivityasapositiveallostericmodulator

ofGABAattheGABAAbenzodiazepinereceptorsite[8].Usinglead-baseddrugdesignmethods,

weproposedthatoptimizingtheKRS−5Me−4−OCF3analogwithanamidebridgefunctionality

betweentheenaminoneintermediateandthearomaticringwhilemaintainingthefluorinatedgroup

onthebenzenering(asseeninFigure2)willallowfortheanalogstoretainanticonvulsantactivity
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Byutilizingstructure–activityrelationship(SAR)studies,whichisakeystepintheearlydrug

discoveryprocessforuncovering‘hittolead’compounds,wehavesuccessfullysynthesizedalibraryof

14novelfluorinatedN-benzamideenaminoneanalogs(Figure3).Severalanalogshavebeenscreened

intheacuterodentseizuremodelsattheNationalInstituteofNeurologicalDisordersandStroke

(NINDS),NIHEpilepsyTherapyScreeningProgram(ETSP).Theanimalmodelsinclude:themaximal

electroshock(MES)test,the6-Hz’psychomotor’44-mAtest,andaseparaterotarodtestusedtodetect
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neurotoxicity.Eachmodelevaluatesacompound’sabilitytopreventtheonsetofinduced-seizures.

The6-Hz‘psychomotor’44-mAtest,inparticular,correlateswithDREinhumansandidentifies

compoundsthatcanblockapsychomotorseizureinducedbylong-duration(3s)andlow-frequency

(6Hz)stimulation[13,14].Todate,threeleadN-benzamideenaminonecompounds—GSA62(4a),

TTA35(5b)andWWB67(6b)—haveemergedasthefirstenaminoneanalogstoblockseizuresin

thedrug-resistant6-Hz’psychomotor’44-mAtestswithlimitedtonoobservedneurotoxicity.Based

ontheseresults,wehavelaunchedmoleculartargetstudiestoidentifytheplausiblemechanismof

action(s)fortheactivecompounds. Wehaveevaluatedtheinhibitionofneuronalactivityforthelead

anticonvulsantfluorinatedenaminonesusingwhole-cellpatch-clampelectrophysiologystudieswitha

focusonseizure-relatedmoleculartargets,suchasGABAergicmodulationandvoltage-gatedsodium,
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2. MaterialsandMethods

2.1.Chemistry

TheN-benzamidecompoundsweresynthesizedbyaminationoftherespectiveβ-diketones,

followedbyN-acylationoftheenaminoneintermediateswithcorrespondingaromaticacylchloridesin

abase-catalyzedreaction[15].The5-methyland5,5-dimethylaminationreactionswerecarriedoutwith

ammoniumacetateastheaminesourceandbaseusinganhydrousbenzeneasthesolvent. Weutilizeda

deanstarktraptocollectthewaterproducedinthereaction.Thepurifiedaminesunderwentacylation

withrespectivemonoordisubstitutedacylchloridestogeneratethedesiredanalogs.Thereactions

weremonitoredusingthinlayerchromatography(TLC)andgaschromatographymassspectroscopy

(GCMS)chromatographicmethodsuntilreactioncompletion.Thefinalreactionwasquenchedand

extractedusingdichloromethane.Thecombinedorganicswereconcentratedunderreducepressure

toyieldcrudeproduct,whichwaspurifiedbycolumnchromatographymethods.Allofthetarget

analogswereobtainedinquantifiableyieldsvaryingfrom30%–70%yield.Protonnuclearmagnetic

resonance(1HNMR)spectraofthesynthesizedcompoundsweremeasuredind6-DMSOusingTMSas

aninternalstandardonaBruker400-MHzspectrometer.Thepurityofthecompoundswasassessedby

TLCandGCMS.ElementalanalysisforC,HandNwerecarriedbyMicro-Analysis,Inc.(Wilmington,

DE,USA).Theelementalanalysesresultswerewithin±0.4%ofthetheoreticalvalues.Meltingpoints
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weredeterminedinopencapillariesandareuncorrected.Allofthechemicalsandsolventswere

purchasedfromSigma-Aldrich(St.Louis,MO,USA)andwereusedwithoutfurtherpurification.

2.2.BiologicalTesting/AnticonvulsantActivity

TheinvivoevaluationofanticonvulsantactivityintheMESand6-Hztest,andthedetermination

ofneurotoxicityintherotarodtest,wereperformedattheUniversityofUtahaspartoftheETSP

NINDS,NIH.Animaltestingwasperformedinamannerconsistentwithaprotocolapprovedby

theInstitutionalAnimalCareandUseCommitteeattheUniversityofUtah(protocol12-11011and

15-10007,PI:Wilcox)[13,14,16–18].

2.3.ElectrophysiologyStudies—SlicePreparation

Wild-typemice(C57BL/6J,JacksonLaboratory,BarHarbor,ME,USA)wereusedinagreement

withInstitutionalAnimalCareandUseCommitteeandNIHguidelines.Juvenile(16–25-day-old)

miceweredecapitated,andthemainolfactorybulbs(MOBs)weredissectedoutandimmersedin

artificialcerebrospinalfluid(ACSF,seebelow)at4◦C,aspreviouslydescribed[8].Horizontalslices

(400-µmthick)werecutparalleltothelongaxisusingavibratome(VibratomeSeries1000,TedPella

Inc.,Redding,CA,USA).After30minat30◦C,sliceswereincubatedinaholdingbathatroom

temperature(22◦C)untiluse.Forrecording,abrainslicewasplacedinarecordingchambermounted

onamicroscopestageandmaintainedat30±0.5◦CbysuperfusionwithoxygenatedACSFflowing

at2.5–3mL/min.

2.3.1.ElectrophysiologicalRecordingandDataAcquisitionontheSlidePreparation

Visually-guidedrecordingswereobtainedfromcellsinthemitralcelllayerwithnear-infrared

differentialinterferencecontrastopticsandaBX51WImicroscope(OlympusOptical,Tokyo,Japan)

equippedwithacamera(C2400-07,HamamatsuPhotonics,Hamamatsu,Japan).Imageswere

displayedonaSonyTrinitronColorVideomonitor(PVM-1353MD,SonyCorp.,Tokyo,Japan).

Recordingpipettes(5–8MΩ)werepulledonaFlaming-BrownP-97puller(SutterInstrumentCo.,

Novato,CA,USA)from1.5mmO.D.borosilicateglasswithfilament.Sealresistancewasroutinely

>1GΩandliquidjunctionpotentialwas9–10mV;reportedmeasurementswerenotcorrectedforthis

potential.DatawereobtainedusingaMulticlamp700Bamplifier(MolecularDevices,Sunnyvale,CA,

USA).Signalswerelow-passBesselfilteredat2kHzanddigitizedonacomputerdisc(Clampex10.1,

MolecularDevices,SanJose,CA,USA).DatawerealsocollectedthroughaDigidata1440AInterface

(MolecularDevices,SanJose,CA,USA)anddigitizedat10kHz.Holdingcurrentsweregenerated

undercontroloftheMulticlamp700BCommander.

Membranepotentialswerecalculatedfromthesteady-statemembranepotentialthatoccurred

afterasingleactionpotential.Toreducethevarianceofspontaneousmitralcellfiringrate,mitralcells

withafiringrateof1–6Hzwereusedfortestingcannabinoidactions.Testsforstatisticalsignificance

(p<0.05)wereperformedusingapairedStudent’st-test,andanon-parametricWilcoxonsignedrank

testforpaireddataofsmallsamplesizes(~5),orone-wayANOVAfollowedbytheBonferronitestfor

multiplecomparisons.

TheACSFconsistedof(inmM):NaCl124,KCl3,CaCl22,MgSO41.3,glucose10,sucroseNaHCO3
26,NaH2PO41.25(pH7.4,300mOsm),saturatedwith95O2/5%CO2.Thestandardpipette-filling

solutionconsistedof(mM)Kgluconate125,MgCl22,HEPES10,Mg2ATP2,Na3GTP0.2,NaCl1,

EGTA0.2.

2.3.2.ChemicalsandSolutionsforMOBRecordings

Drugswerebathperfusedatthefinalconcentrationasindicatedbydissolvingaliquotsofstockin

ACSF.ThenovelfluorinatedN-benzamideenaminones(4a,5b–c,6b–c)thatwetestedwererecently

synthesized.AlloftheenaminonesweredissolvedinDMSOtomake20mMofstocksolution(final

concentrationofDMSOinbath<0.1%).Foralloftheexperiments,thedrugswereappliedbybath
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perfusion.Controlrecordingsshowedthat0.1%DMSOhadnodetectableeffectsonthefiringrate

andmembranepotential.ChemicalsweresuppliedbyTocris(Ellisville,MO,USA)andSigma-Aldrich

(St.Louis,MO,USA).

2.4.ND7/23CellCulturePreparation

CultureofND7/23cellswasperformedaspreviouslydescribedbyZhangetal.[19].Briefly,

undifferentiatedND7/23cellswerepurchasedfromSigma-Aldrich(St.Louis,MO,USA)andgrown

inDMEM-highglucosegrowthmediasupplementedwith10%fetalbovineserum,50U/mlpenicillin

and50µg/mlstreptomycinat37◦Cina5%CO2/95%airhumidifiedatmosphere.Celldifferentiation

wasinducedbyexposingthecellstodifferentiationmediaforfourtosixdays.Thedifferentiation

mediaconsistedofDMEM/F12,supplementedwith0.5%fetalbovineserum,db-cAMP(1mM),

andNGF(50ng/mL,Sigma-Aldrich,St.Louis,MO,USA).

2.5.ElectrophysiologicalRecordingandDataAcquisitiononCellCultures

Whole-cellrecordingsofsodiumandcalciumcurrentsindifferentiatedND7/23cellswere

performedaspreviouslydescribed[19].DifferentiatedND7-23cellswerevisualizedusingaNikon

EclipseTiinvertedmicroscope(Nashua,NH,USA)equippedwithHoffmanopticsandepifluorescence

filters.Recordingswereperformedatroomtemperature(22–24◦C).Recordingelectrodesweremade

fromthin-wallborosilicateglass(3–4MΩ)andfilledwithasolutionconsistingof(inmM)CsCl(120),

MgCl2(2),HEPES-KOH(10),EGTA(10),ATP(1)andGTP(0.1),pH7.4withCsOH.Normalexternal

salineformeasurementsofCa2+currentscontained(inmM):tetraethylammoniumchloride(TEACl,

145),CaCl2(10),MgCl2(1)andHEPES(10),pH7.4adjustedwithCsOH.Normalexternalsalinefor

measurementsofNa+currentscontained(inmM):NaCl(145),KCl(5.4),MgCl2(0.8),CaCl2(5.4),

glucose(5),andHEPES(13),pH7.4adjustedwithNaOH.Ca2+currentsweregeneratedbyapplyinga

200-msdepolarizingsteptovariouspotentials.Na+currentsweregeneratedbyapplyinga100-ms

depolarizingsteptovariouspotentialsfromaholdingpotentialof−100mV.Voltagecommands,

dataacquisition,andanalysiswereperformedwitha MultiClamp700AamplifierandPclamp

software(AxonInstruments,FosterCity,CA,USA).Pipetteoffset,wholecellcapacitance,andseries

resistance(usually<10MΩ)werecompensatedautomaticallywiththeMultiClamp700BCommander.

Samplingrateswerebetween5–10kHz.

Allofthedatavaluesarepresentedasmean±SEM.StatisticalanalysesconsistedofaStudent’s

unpairedt-testwhensinglecomparisonsweremade,orone-wayANOVAfollowedbyposthocanalysis

usingTukey’shonestsignificantdifferencetestforunequalnforcomparisonsbetweenmultiplegroups

(STATISTICAsoftware,Tulsa,Oklahoma).Throughout,p<0.05wasregardedassignificant.

3.Results

3.1.Chemistry

Thesynthesisofthe5-methyland5,5-dimethylfluorinatedN-benzamideenaminoneanalogs

weredoneusingaone-potbase-catalyzedacylationreaction(Figure2)[16].Thesyntheticprocedure

involvedaminationoftherespectiveβ-diketonestogeneratethemethylatedenaminoneintermediates,

followedbyacylationwiththerespectivesubstitutedacylchloridetoprovidetargetcompounds4a–9b,

(Figure3)[9,15,20]. Weobtainedallofthefinalcompoundsinmoderatetogoodyields(14%–63%),

asshowninTable1.

3.2.Pharmacology

TheNINDSETSPprogramselectedfivefluorinatedN-benzamideenaminones(4a,5b–c,6b–c)

fromourdruglibrarytotestintheirinvivoseizuremodels.Thecompoundsunderwentanticonvulsant

evaluationintheinitial(Identificationphase)acuteseizuremodels,MESand6Hz44mA(datashown

inTables2and3)[14,16].ThestudiesweredoneinnormaladultmaleCF1miceusingfouror
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moremicepre-test.Intraperitoneal(ip)administrationofthetestcompoundswerecarriedoutasa

suspensionin0.5%methylcellulose.Thecompoundsweretestedatdosesrangingfrom30mg/kgto

300mg/kg.Theanimalswerepretreatedwiththetestcompoundattimeintervalsfrom0.25hto4h.

Therotarodneurologictoxicitytestwascompletedateachdoseandtimepoint.

TheMEStestisoneofthegoldstandardpreclinicalseizuremodelsfortheearlyidentificationand

highthroughputscreeningofinvestigationalantiepilepticdrugs.Thistest,alongwiththesubcutaneous

Metrazol(scMet)test,albeitextremelyeffectiveinidentifyingnewantiepilepticdrugsthatmaybe

usefulforthetreatmentofhumangeneralizedseizures[17],maymisspotentialdrugcandidatesthat

couldbeusefulinthetreatmentofDRE[18].Therefore,additional“first-pass”screeningassaysare

necessarytoidentifycompoundsthatmayproveeffectiveagainstdrug-resistantseizures.Inlight

ofthisobservation,testcompoundsthatwerefoundtobeinactiveineithertheMESorscMettests

arescreenedfortheirabilitytoblockpsychomotorfocalseizuresinducedbyalow-frequency(6Hz)

44-mA,long-duration(3s)stimulusdeliveredthroughcornealelectrodesinnormalrodents[18].

Thecompoundseffectiveinthe6-HzmodelduringtheIdentificationphasebecomecandidatesfor

advancedscreeningintheDifferentiationphase[13].

AsshowninTable2,theinactivityfortheanalogstestedintheMESmicemodelwereconsistent

atalldosesandpretreatmenttimes,withtheexceptionofGSA62(4a).Zerooutoffouranimalswere

protectedforWWB67(6b),THA36(6c),TTA35(5b),andSGA33(5c).GSA62wasshowntoprotect

theanimal(s)attwotimeintervalsandthreedifferentdoses.At0.50h,twomicewereprotectedat

300mg/kg.Forthepretreatmenttimeof2h,1/4micewereprotectedat30mg/kg,2/4micewere

protectedat100mg/kg,and4/4micewereprotectedat300mg/kg.

Inthe6-Hz44-mAtestmodel(Table3),allfivecompoundsshowedprotectionatvarioustime

intervalsanddoses.CompoundWWB67(6b)at150mg/kgwasshowntoprotect2/4,4/4,4/4,2/4,

and1/4oftheanimalsatpretreatmenttimesof0.25h,0.50h,1h,2h,and4h,respectively.THA36(6c)

protectedonly1/4miceat0.50hat150mg/kgand200mg/kg.ForanalogTTA35(5b),anti-seizure

protectionwasseenat150mg/kgat0.50h,1h,and2h.SGA33(5c)showedactivityat150mg/kg

and300mg/kgrangingfrom1/4to4/4animalsprotectedat0.50hto4hpretreatment.Compound

GSA62(4a)wastestedatthesamedosesandtimeintervalsasshownintheMESmodel(Table2).Inthe

6-Hzmodel,GSA62wasshowntoprotect1/4miceat30mg/kg(2h),100mg/kg(2h),and300mg/kg

(0.50h).Fouroutoffourmicewereprotectedat300mg/kg,asseenintheMEStest.
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In the 6-Hz 44-mA test model (Table 3), all five compounds showed protection at various time 

intervals and doses. Compound WWB 67 (6b) at 150 mg/kg was shown to protect 2/4, 4/4, 4/4, 2/4, 

and 1/4 of the animals at pretreatment times of 0.25 h, 0.50 h, 1 h, 2 h, and 4 h, respectively. THA 36 

(6c) protected only 1/4 mice at 0.50 h at 150 mg/kg and 200 mg/kg. For analog TTA 35 (5b), anti-

seizure protection was seen at 150 mg/kg at 0.50 h, 1 h, and 2 h. SGA 33 (5c) showed activity at 150 

mg/kg and 300 mg/kg ranging from 1/4 to 4/4 animals protected at 0.50 h to 4 h pretreatment. 

Compound GSA 62 (4a) was tested at the same doses and time intervals as shown in the MES model 
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and 300 mg/kg (0.50 h). Four out of four mice were protected at 300 mg/kg, as seen in the MES test. 

Table 1. Chemical properties of fluorinated n-benzamide enaminones. 

 

Compound  R1 R2 R3 Yield (%)  MP °C 

4a H  CH3 2−F, 4−CF3 46   170–172  

4b CH3 CH 3 2−F, 4−CF3 50   177–179  

5a H  H  4−OCF3 54  157–158  

5b H  CH3 4−OCF3 32  186–187  

5c CH3 CH 3 4−OCF3 43  170–171  

6a H  H  4−CF3 63  197–198  

6b H  CH3 4−CF3 48  201–203  

6c CH3 CH 3 4−CF3 56  197–200  

7a H  CH3 3,5 −CF3 34  186–188  

7b CH3 CH 3 3,5 −CF3 14  149–151  

8a H  CH3 2−OCF3 34  142–143  

8b CH3 CH 3 2−OCF3 42  153–155  

9a H  CH3 2−CF3 21  180–181  

9b CH3 CH 3 2−CF3 28  195–197  

Yield percentages and melting point values obtained for synthesized analogs 4a–9b. 

Chemicalpropertiesoffluorinatedn-benzamideenaminones.

Compound R1 R2 R3 Yield(%) MP◦C

4a H CH3 2−F,4−CF3 46 170–172
4b CH3 CH3 2−F,4−CF3 50 177–179
5a H H 4−OCF3 54 157–158
5b H CH3 4−OCF3 32 186–187
5c CH3 CH3 4−OCF3 43 170–171
6a H H 4−CF3 63 197–198
6b H CH3 4−CF3 48 201–203
6c CH3 CH3 4−CF3 56 197–200
7a H CH3 3,5−CF3 34 186–188
7b CH3 CH3 3,5−CF3 14 149–151
8a H CH3 2−OCF3 34 142–143
8b CH3 CH3 2−OCF3 42 153–155
9a H CH3 2−CF3 21 180–181
9b CH3 CH3 2−CF3 28 195–197

Yieldpercentagesandmeltingpointvaluesobtainedforsynthesizedanalogs4a–9b.
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Table 2. Anticonvulsant activity: maximal electroshock (MES) test in mice. 

 

Compound  R1 R2 R3 
Dose 

(mg/kg) 

Pretreatment Times (h) a 
Tox b 

0.25  0.50   1   2   4  

WWB 67 (6b) CH3 H   4 −CF3 

100  0/4  0/4  0/4  0/4  0/4  0/4  

150  0/4  0/4  0/4  0/4  0/4  0/4  

200  0/4  0/4  0/4  0/4  0/4  0/4  

THA 36 (6c)  CH3 CH 3 4−CF3 
150  0/4  0/4  0/4  0/4  0/4  0/4  

200  0/4  0/4  0/4  0/4  0/4  0/4  

TTA 35 (5b)  CH3 H   4 −OCF3 
150  0/4  0/4  0/4  0/4  0/4  0/4  

300  0/4  0/4  0/4  0/4  0/4  0/4  

SGA 33 (5c)  CH3 CH 3 4−OCF3 
150  0/4  0/4  0/4  0/4  0/4  0/4  

300  0/4  0/4  0/4  0/4  0/4  0/4  

GSA 62 (4a)  CH3 H  
2−F, 

4−CF3 

30  0/4  0/4 0/4 1/4 0/4   0/4  

100  0/4  0/4  0/4  2/4 0/4  0/4  

300  0/4  2/4 0/4  4/4 0/4  0/4  
a Ratios where at least one animal was protected have been highlighted in bold for easier data 

interpretation. Data indicate the number of mice protected/number of mice tested. Pretreatment times 

of the test analogs vary from as early as 15 min up to 4 h. This is Epilepsy Therapy Screening Program 

(ETSP) protocol to identify compounds with an early onset of action as well as a long duration of 

action. b Rotarod neurologic toxicity test (Tox). 

Table 3. Anticonvulsant activity: 6-Hz 44-MA test in mice. 

 

Compound  R1 R2 R3 
Dose 

(mg/kg) 

Pretreatment Times (h) a 
Tox b 

0.25  0.50   1   2   4  

WWB 67 (6b) CH3 H   4 −CF3 

100  0/4  0/4 0/4 0/4 0/4  0/4  

150 2/4 4/4 4/4 2/4 1/4 0/4  

200  0/4  3/8 1/4 1/4 0/4   0/4  

THA 36 (6c)  CH3 CH 3 4−CF3 
150  0/4  1/4 0/4   0/4   0/4   0/4  

200  0/4  1/4 0/4  0/4   0/4   0/4  

TTA 35 (5b)  CH3 H   4 −OCF3 
150  0/4  3/4 1/4 1/4 0/4   0/4  

300  0/4  0/4 0/4 0/4 0/4  0/4  

SGA 33 (5c)  CH3 CH 3 4−OCF3 
150  0/4  1/4 1/4 3/4 0/4  0/4 

300  0/4  1/4  4/4   3/4   2/4 0/4  

GSA 62 (4a)  CH3 H  2 −F, 4−CF3 

30  0/4  0/4 0/4 1/4 0/4   0/4  

100  0/4  0/4  0/4  1/4 0/4  0/4  

300  0/4  1/4 0/4  4/4 0/4  0/4  
a Ratios where at least one animal was protected have been highlighted in bold for easier data 

interpretation. Data indicate the number of mice protected/number of mice tested. Pretreatment times 

of the test analogs vary from as early as 15 min up to 4 h. This is ETSP protocol to identify compounds 

with early onset of action as well as long duration of action. b Rotarod neurologic toxicity test (Tox). 

Anticonvulsantactivity:maximalelectroshock(MES)testinmice.

Compound R1 R2 R3 Dose(mg/kg)
PretreatmentTimes(h)a

Toxb

0.25 0.50 1 2 4

WWB67(6b) CH3 H 4−CF3

100 0/4 0/4 0/4 0/4 0/4 0/4
150 0/4 0/4 0/4 0/4 0/4 0/4
200 0/4 0/4 0/4 0/4 0/4 0/4

THA36(6c) CH3 CH3 4−CF3
150 0/4 0/4 0/4 0/4 0/4 0/4
200 0/4 0/4 0/4 0/4 0/4 0/4

TTA35(5b) CH3 H 4−OCF3
150 0/4 0/4 0/4 0/4 0/4 0/4
300 0/4 0/4 0/4 0/4 0/4 0/4

SGA33(5c) CH3 CH3 4−OCF3
150 0/4 0/4 0/4 0/4 0/4 0/4
300 0/4 0/4 0/4 0/4 0/4 0/4

GSA62(4a) CH3 H 2−F,4−CF3

30 0/4 0/4 0/4 1/4 0/4 0/4
100 0/4 0/4 0/4 2/4 0/4 0/4
300 0/4 2/4 0/4 4/4 0/4 0/4

aRatioswhereatleastoneanimalwasprotectedhavebeenhighlightedinboldforeasierdatainterpretation.Data
indicatethenumberofmiceprotected/numberofmicetested.Pretreatmenttimesofthetestanalogsvaryfromas
earlyas15minupto4h.ThisisEpilepsyTherapyScreeningProgram(ETSP)protocoltoidentifycompoundswith

anearlyonsetofactionaswellasalongdurationofaction.bRotarodneurologictoxicitytest(Tox).
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Compound  R1 R2 R3 
Dose 

(mg/kg) 

Pretreatment Times (h) a 
Tox b 

0.25  0.50   1   2   4  

WWB 67 (6b) CH3 H   4 −CF3 

100  0/4  0/4 0/4 0/4 0/4  0/4  

150 2/4 4/4 4/4 2/4 1/4 0/4  

200  0/4  3/8 1/4 1/4 0/4   0/4  

THA 36 (6c)  CH3 CH 3 4−CF3 
150  0/4  1/4 0/4   0/4   0/4   0/4  
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100  0/4  0/4  0/4  1/4 0/4  0/4  
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a Ratios where at least one animal was protected have been highlighted in bold for easier data 

interpretation. Data indicate the number of mice protected/number of mice tested. Pretreatment times 

of the test analogs vary from as early as 15 min up to 4 h. This is ETSP protocol to identify compounds 

with early onset of action as well as long duration of action. b Rotarod neurologic toxicity test (Tox). 

Anticonvulsantactivity:6-Hz44-MAtestinmice.

Compound R1 R2 R3 Dose(mg/kg)
PretreatmentTimes(h)a

Toxb

0.25 0.50 1 2 4

WWB67(6b) CH3 H 4−CF3

100 0/4 0/4 0/4 0/4 0/4 0/4
150 2/4 4/4 4/4 2/4 1/4 0/4
200 0/4 3/8 1/4 1/4 0/4 0/4

THA36(6c) CH3 CH3 4−CF3
150 0/4 1/4 0/4 0/4 0/4 0/4
200 0/4 1/4 0/4 0/4 0/4 0/4

TTA35(5b) CH3 H 4−OCF3
150 0/4 3/4 1/4 1/4 0/4 0/4
300 0/4 0/4 0/4 0/4 0/4 0/4

SGA33(5c) CH3 CH3 4−OCF3
150 0/4 1/4 1/4 3/4 0/4 0/4
300 0/4 1/4 4/4 3/4 2/4 0/4

GSA62(4a) CH3 H 2−F,4−CF3

30 0/4 0/4 0/4 1/4 0/4 0/4
100 0/4 0/4 0/4 1/4 0/4 0/4
300 0/4 1/4 0/4 4/4 0/4 0/4

aRatioswhereatleastoneanimalwasprotectedhavebeenhighlightedinboldforeasierdatainterpretation.Data
indicatethenumberofmiceprotected/numberofmicetested.Pretreatmenttimesofthetestanalogsvaryfromas
earlyas15minupto4h.ThisisETSPprotocoltoidentifycompoundswithearlyonsetofactionaswellaslong

durationofaction.bRotarodneurologictoxicitytest(Tox).

3.3.CellPhysiologicalEffectsofNovelEnaminones

3.3.1.MitralCells

Recordingswereobtainedfrommitralcellswithwhole-cellpatch-clamprecordingsinacute

mousemainolfactorybulbslices. Mitralcellswereidentifiedvisuallybytheirsomalocationand

relativelylargesomasize,andbytheirinputresistance(~300MΩ).Themembranepotentialofmitral

cellsinthisstudywasbetween−50mVand−55mV.
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Mitralcellsareprincipalneuronsandplayacrucialroleinprocessingsensoryinformation

inthe mainolfactorybulb. Theyarethesynaptictargetofolfactoryreceptorneuronsinthe

nasalolfactoryepitheliumthatsendtheiraxontotheipsilateral mainolfactorybulbtoform

synapticcontactswithmitralcells.Mitralcellssendexcitatoryprojectionstoolfactorycorticalareas,

andreceivestrongfeedbackinhibitionprimarilythroughreciprocaldendrodendriticsynapseswith

localinterneurons[21,22]. Wetookadvantageoftheintrinsicpropertiesofmitralcells,namelythe

generationofspontaneousactionpotentials(1–6Hz)inslices,membranepotential,andmembrane

conductancestotesttheeffectofnovelenaminonesonmitralcellactivityanddeterminethepossible

bindingtargetofenaminones.

Toexpandourdrugdiscoveryefforts,wetestedthefivenovelenaminonesthatwerescreenedin

theETSProdentseizuremodels(GSA62(4a),TTA35(5b),SGA33(5c),WWB67(6b)andTHA36(6c)).

Wehypothesizedthatoneormoreofthefivenovelenaminoneshasareversibleinhibitoryeffecton

mitralcells,similartothedrugeffectofKRS−5ME−4−OCFthatresultedinadecreaseofthefiring

rateandamorenegativemembranepotential[8].Bathapplicationofnoneofthenovelenaminones

modulatedtheactionpotentialfiringrateofmitralcellsorchangedthemembranepotentialineither

adepolarizingorhyperpolarizingdirection(Figure4).Likewise,theenaminonesdidnotevokea

distinctmembranecurrentinourrecordingconditions.Comparedtocontrolconditions,therecorded

cellsdidnotshowmeasurableresponsestoanyofthefivenovelenaminones(p>0.05,n
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Figure4.EffectsofN-benzamideenaminonesonmembranecurrentsinmitralcells.Bathapplicationof

novelenaminonestotesttheeffectonmembranecurrentsandactionpotentialfiringinthemitralcells

ofthemainolfactorybulb.Noneoftheenaminonesthatweretestedchangedthefiringrateorevoked

distinctmembranecurrents.Barsabovetherepresentativerecordingtracesindicatetheapplicationof

anenaminone. WWB33wasoriginallytermedSGA33.
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3.3.2.CulturedCells

ToinvestigatetheeffectoffluorinatedN-benzamideenaminoneanalogsonvoltage-gatedsodium

andcalciumchannels,weperformedwhole-cellrecordingsusingspecificionicsolutionstoisolate

thecurrentsofinterest.AsrepresentedinFigure5A,B,thetreatmentofdifferentiatedND7/3cells

with50µMofGSA62(4a),TTA35(5b),orWWB67(6b)causedasignificantinhibitionofsodium

currents.Thecompoundstesteddidnotalterthecurrent–voltagerelationshipofvoltage-gatedsodium

currents,asrepresentedinFigure5CusingTTA35(5b)asanexample.DifferentiatedND7/23cells

alsoexpressaprominentT-typecalciumcurrent. However,recordingsofT-typecalciumchannel

activityrevealednochangesincurrentamplitudefollowingtreatmentwith50µMofTTA35(5b)or

GSA62(4a)(Figure6

Int. J. Environ. Res. Public Health 2018, 15, x 9 of 13 

 

Figure 4. Effects of N-benzamide enaminones on membrane currents in mitral cells. Bath application 

of novel enaminones to test the effect on membrane currents and action potential firing in the mitral 

cells of the main olfactory bulb. None of the enaminones that were tested changed the firing rate or 

evoked distinct membrane currents. Bars above the representative recording traces indicate the 

application of an enaminone. WWB33 was originally termed SGA 33.   
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Figure 5. Inhibition of voltage-gated sodium channel currents. Effect of TTA 35, GSA 62, or WWB 67 

on whole-cell sodium currents in ND7/23 cells. (A) Typical whole-cell sodium current generated in 

an ND7/23 cell before and after treatment with 50 µM of TTA 35. Sodium current was generated by a 

voltage step to +10 mV from a holding potential of −100 mV. (B) Treatment of ND7/23 cells with 50 

µM of TTA 35, GSA 62, or WWB 67 evoked a significant reduction in the amplitude of the sodium 

currents generated by a voltage step to +10 mV. The number of recorded cells under each condition 

is presented in parenthesis. * represents p ≤ 0.05 vs. vehicle. (C) TTA 35 treatment does not alter the 

current–voltage relationship, as indicated by the presence of the peak current at +10 mV. 

).

Figure5.Inhibitionofvoltage-gatedsodiumchannelcurrents.EffectofTTA35,GSA62,orWWB67

onwhole-cellsodiumcurrentsinND7/23cells.(A)Typicalwhole-cellsodiumcurrentgeneratedin

anND7/23cellbeforeandaftertreatmentwith50µMofTTA35.Sodiumcurrentwasgeneratedby

avoltagestepto+10mVfromaholdingpotentialof−100mV.(B)TreatmentofND7/23cellswith

50µMofTTA35,GSA62,orWWB67evokedasignificantreductionintheamplitudeofthesodium

currentsgeneratedbyavoltagestepto+10mV.Thenumberofrecordedcellsundereachcondition

ispresentedinparenthesis.*representsp≤0.05vs.vehicle.(C)TTA35treatmentdoesnotalterthe

current–voltagerelationship,asindicatedbythepresenceofthepeakcurrentat+10mV.
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Figure 6. Inhibition of voltage-gated calcium channel currents. Effect of TTA 35 or GSA 62 on T-type 

calcium currents in ND7/23 cells. (A) Typical T-type calcium currents generated in an ND7/23 cell 

before and after treatment with 50 µM of TTA 35. T-type calcium currents were generated by a voltage 

step up to −20 mV from a holding potential of −110 mV. (B) Treatment of ND7/23 cells with 50 µM of 

TTA 35 or GSA 62 did not alter the amplitude of the T-type calcium currents generated by a voltage 

step to −20 mV. NS represents no statistically significant difference vs. vehicle. 

4. Discussion 

4.1. Chemistry and Pharmacology 

Ongoing SAR studies lead us to the design and synthesis of 14 novel mono and disubstituted 

fluorinated N-benzamide enaminones. The ETSP program chose five analogs of similar chemical 

structure with a 5-methyl or 5,5-dimethyl moiety on the cyclic enaminone structure and a para-CF3 

or OCF3 at the aromatic ring. Our synthetic approach that was used to generate the target analogs 

were modified from previous work done by Anderson et al. [11]. The target compounds were 

successfully synthesized in our lab in quantifiable yields. Melting points were determined and are 

reported without correction. The structural identity and purity of all of the compounds were obtained 

using elemental analysis, GCMS, and NMR methods (data not reported). Test analogs (GSA 62 (4a), 

TTA 35 (5b), SGA 33 (5c), WWB 67 (6b) and THA 36 (6c)) showed minimal to no activity in the MES 

test, and moderate to excellent seizure protection in the 6-Hz 44 mA-test with no neurotoxicity (see 

Tables 2 and 3). This was the first time that N-benzamide enaminones were shown to be effective 

against seizures in the 6-Hz 44-mA acute seizure rodent model. Our sulfonamide series (data not 

shown) was the first class of enaminones to show effectiveness against focal seizures in the 6-Hz 32-

mA model. The latter work was recently patented (US No. 9,932,302 B1).   

Compound WWB 67 (6b) at a dose of 150 mg/kg was shown to have early onset activity 

protecting 50% of the animals at 0.25 h. The activity increases to protection of 100% of animals at two 

time intervals: 0.50 hour and 1 hour. The activity continued to extend to 2 h and 4 h. THA 36 (6c) was 
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Figure6.Inhibitionofvoltage-gatedcalciumchannelcurrents.EffectofTTA35orGSA62onT-type

calciumcurrentsinND7/23cells.(A)TypicalT-typecalciumcurrentsgeneratedinanND7/23cell

beforeandaftertreatmentwith50µMofTTA35.T-typecalciumcurrentsweregeneratedbyavoltage

stepupto−20mVfromaholdingpotentialof−110mV.(B)TreatmentofND7/23cellswith50µMof

TTA35orGSA62didnotaltertheamplitudeoftheT-typecalciumcurrentsgeneratedbyavoltage

stepto−20mV.NSrepresentsnostatisticallysignificantdifferencevs.vehicle.

4.Discussion

4.1.ChemistryandPharmacology

OngoingSARstudiesleadustothedesignandsynthesisof14novelmonoanddisubstituted

fluorinatedN-benzamideenaminones.TheETSPprogramchosefiveanalogsofsimilarchemical

structurewitha5-methylor5,5-dimethylmoietyonthecyclicenaminonestructureandapara-CF3or

OCF3atthearomaticring. Oursyntheticapproachthatwasusedtogeneratethetargetanalogs

weremodifiedfrompreviousworkdonebyAndersonetal.[11]. Thetargetcompoundswere

successfullysynthesizedinourlabinquantifiableyields. Meltingpointsweredeterminedand

arereportedwithoutcorrection.Thestructuralidentityandpurityofallofthecompoundswere

obtainedusingelementalanalysis,GCMS,andNMRmethods(datanotreported).Testanalogs(GSA

62(4a),TTA35(5b),SGA33(5c),WWB67(6b)andTHA36(6c))showedminimaltonoactivityinthe

MEStest,andmoderatetoexcellentseizureprotectioninthe6-Hz44mA-testwithnoneurotoxicity

(seeTables2and3).ThiswasthefirsttimethatN-benzamideenaminoneswereshowntobeeffective
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againstseizuresinthe6-Hz44-mAacuteseizurerodentmodel.Oursulfonamideseries(datanot

shown)wasthefirstclassofenaminonestoshoweffectivenessagainstfocalseizuresinthe6-Hz32-mA

model.Thelatterworkwasrecentlypatented(USNo.9,932,302B1).

CompoundWWB67(6b)atadoseof150mg/kgwasshowntohaveearlyonsetactivityprotecting

50%oftheanimalsat0.25h.Theactivityincreasestoprotectionof100%ofanimalsattwotimeintervals:

0.50hand1h.Theactivitycontinuedtoextendto2hand4h.THA36(6c)wasnotassuccessful

as WWB67(6b),onlyprotecting25%oftheanimalsatonetimeintervalforthe150mg/kgand

200mg/kgdoses.TTA35(5b)andSGA33(5c)arefromthesameseries,butsimilartoWWB67(6b)

andTHA36(6c),behaveddifferentlyinthemice.TTA35(5b)hasanearlyonset,protecting75%of

animalsat0.50h,whereasSGA33(6c)hadthebestactivityat1h,2h,and4h,butonlyat300mg/kg,

whichwasthehighestdosetested.GSA62(4a),havingtwoelectronwithdrawingsubstituentson

thearomaticring(2-fluoroand4-trifluoromethylgroups)showedthebestactivityat2h,protecting

theanimalsfromthefocalseizuresatthreedifferentdoses(30mg/kg,100mg/kg,and300mg/kg).

Fromtheseresults,weconcludedthattheoptimaldosefortheactiveN-benzamideenaminonesinthe

6-Hztestis150mg/kg.Themonosubstitutedanalogs(TTA35(5b)andWWB67(6b))wereshownto

havebetteractivityandpotencythanGSA62(4a).TTA35(5b),SGA33(5c),WWB67(6b),andTHA

36(6c)didnotshowanyactivityintheMEStest.OnlycompoundGSA62(4a)wasshowntoprotect

100%ofanimalsintheMESand6-Hztestsatthesamedoseandtime(300mg/kgat2h),asseen

inTable3.Noneofthetestcompoundsshowedneurotoxicity.GSA62,TTA35,andWWB67were

establishedastheleadcompoundsfromtheanimalstudies.

4.2.Physiology

Our previous electrophysiologicalstudiesrevealedthat one enaminonecompound,

KRS−5Me−4−OCF3(1),evokedsignificantinhibitionofmitralcellactivity[8].Theexperiments

thatwereaimedatunderstandingthecellularmechanismunderlyingtheinhibitoryeffectrevealed

thatKRS−5Me−4−OCF3shiftedtheconcentration−responsecurveforGABAtotheleft.Theseresults

indicatedthatKRS−5Me−4−OCF3enhancedGABAaffinityandactedasapositiveallosteric

modulatorofGABAA receptors. WhenthebenzodiazepinesiteoftheGABAreceptor was

blockedbyanantagonist,theeffectofKRS−5Me−4−OCF3wasblocked.Thisresultshowedthat

KRS−5Me−4−OCF3bindsattheclassicalbenzodiazepinesitetoexhibititspharmacologicaleffect.

Basedonourpreviousfinding,wehypothesizedthatthenovelN-benzamideenaminoneswouldshow

asimilarinhibitionofmitralcellactivity.However,theleadenaminonesinthisstudy(GSA62,TTA35,

andWWB67)didnotdemonstraterobustchangesinthefiringrateormembranepotentialofthe

mitralcellscomparedtotheprominenteffectsofKRS−5−Me−OCF3[8].Noneofthetesteddrugs

evokedsignificantelectrophysiologicalresponses,suggestingthattheyexerttheiractivitythrough

anothermechanismofactionnottestedwithwhole-cellpatch-clamprecordinginanacutebrainslice

preparation.Intheintactslicepreparation,whole-cellpatch-clamprecordingsincurrentclampmode

willrevealchangesinmembranepotentialand/orfiringfrequencyiftheunderlyingioniccurrents

aresufficientlylargetochangethepropertiesoftherecordedcell.Ourexperimentsinculturedcells

usedrecordingconditionsthatspecificallytargetedchangesinsodiumorcalciumcurrents.Another

explanationforthelackofdistinctelectrophysiologicalresponsesisrelatedtotherecordingconditions

inaslicepreparation.Inculturedcells,theexpressionofspecificionchannelsmightberevealedmore

clearlythaninaslicepreparation,becausemitralcellsaretargetedbyamultitudeofsynapticinputsin

themainolfactorybulb.Theeffectsofthesedifferentsynapticinputscanpotentiallycanceleachother

ormasktheeffectonaparticularionicconductance,whichmakesitdifficulttodiscernsmalleffects

onmembranepotentialandcurrent.Futureexperimentswilldetermineifblockingspecificsynaptic

input,mediatedforexamplethroughglutamateorGABAreceptors,willrevealeffectsofoneormore

oftheenaminonesoncentralolfactoryneurons.Theeffectsonsodiumchannelsobservedincultured

ND7/23cellsmightbetoosmalltobedetectedintheintactcircuitryofthemainolfactorybulbor

occurtoofarawayfromthesomaticrecordingsite.Spaceclampproblems,i.e.,thedetectionofionic
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currentsatthedistaldendrite,mightmakeitdifficulttodiscernioniccurrentwhenrecordingfromthe

cellbodyofneurons.Areductionofasodiumcurrentcanbeovershadowedbyexcitatorysynaptic

inputthatevokesfiringintherecordedcell.Likewise,anallostericmodulationofGABAreceptors

canpotentiallyresultsindisinhibitorycircuiteffectsthatevokeanincreaseinthefiringofmitralcells.

Giventheseexperimentalconstraints,ourresultsinculturedcellsandmitralcellsinanacuteslice

preparationarecomplementary,andwillguideourfutureexperiments.

ThepresentresultssuggestthattheleadcompoundsGSA62(4a),TTA35(5b),or WWB

67(6b)haveaninhibitoryeffectonvoltage-gatedsodiumchannels,asrevealedbywholecell

recordingsindifferentiatedND7/23cells.However,thesecompoundshadnoeffectonT-typecalcium

currents.ThesefindingssuggestthatfluorinatedN-benzamideenaminonemayspecificallytarget

theconductanceofvoltage-gatedsodiumchannels.Futureworkwillinvestigatethemechanismof

inhibitionofthesecompoundsonvoltage-gatedsodiumchannels.Theabilityofthesecompounds

totargetvoltage-gatedsodiumchannelsmayberelevantforthetreatmentofepilepsygeneratedby

increasedneuronalexcitability.

5.Conclusions

Invivodataforthe monoanddisubstituted N-benzamideanalogsthat werepreviously

synthesizedinourlabshowedprotectionintheMESand6-Hz44-mAseizurerodentmodelswith

noneurotoxicity.Interestingly,weidentifiedthreeleadanalogsthatshowedprotectionintherodent

drug-resistantmodel,whichisanewresultthatpotentiallyhasclinicalimplications. Wewereableto

concludefromtheelectrophysiologystudiesthatoneprobablemodeofactionfortheleadanalogsis

theinhibitionofthevoltage-gatedsodiumchannel.Otherseizure-relatedmoleculartargetsrequire

furtherstudies.Thenextstepsare(1)tofurtherexploretheinhibitorysodiumchanneleffectsofthe

anticonvulsantanalogsbyconductingconcentrationdependentstudiesinvitro,and(2)todetermine

theinhibitorymechanismofthesecompoundsonvoltage-gatedsodiumchannels,andwhetherthey

maytargetdifferentsubunitsofthechannelsselectively.
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