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Abstract 25 

 26 
We simulated epidemic projections of a potential COVID-19 outbreak in a residential university 27 

population in the United States under varying combinations of asymptomatic tests (5% to 33% 28 

per day), transmission rates (2.5% to 14%), and contact rates (1 to 25), to identify the contact 29 

rate threshold that, if exceeded, would lead to exponential growth in infections. Using this, we 30 

extracted contact rate thresholds among non-essential workers, population size thresholds in the 31 

absence of vaccines, and vaccine coverage thresholds. We further stream-lined our analyses to 32 

transmission rates of 5 to 8%, to correspond to the reported levels of face-mask-use/physical-33 

distancing during the 2020 pandemic. 34 

 35 

Our results suggest that, in the absence of vaccines, testing alone without reducing population 36 

size would not be sufficient to control an outbreak. If the population size is lowered to 34% (or 37 

44%) of the actual population size to maintain contact rates at 4 (or 7) among non-essential 38 

workers, mass tests at 25% (or 33%) per day would help control an outbreak. With the 39 

availability of vaccines, the campus can be kept at full population provided at least 95% are 40 

vaccinated. If vaccines are partially available such that the coverage is lower than 95%, keeping 41 

at full population would require asymptomatic testing, either mass tests at 25% per day if vaccine 42 

coverage is at 63-79%, or mass tests at 33% per day if vaccine coverage is at 53-68%. If vaccine 43 

coverage is below 53%, to control an outbreak, in addition to mass tests at 33% per day, it would 44 

also require lowering the population size to 90%, 75%, and 60%, if vaccine coverage is at 38-45 

53%, 23-38%, and below 23%, respectively. 46 

 47 
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Threshold estimates from this study, interpolated over the range of transmission rates, can 48 

collectively help inform campus level preparedness plans for adoption of face mask/physical-49 

distancing, testing, remote instructions, and personnel scheduling, during non-availability or 50 

partial-availability of vaccines, in the event of SARS-Cov2-type disease outbreaks.  51 
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Introduction  72 

The COVID-19 pandemic caused by the SARS-CoV-2 virus has caused significant disease and 73 

economic burdens since its first outbreak in December 2019. Because of the absence of an 74 

effective vaccine, as of June 2020 at the time of this study and since March 2020, the main 75 

intervention for the prevention of COVID-19 transmissions had been to reduce contacts between 76 

people through lockdowns of non-essential organizations and services [1]. However, lockdowns 77 

are a threat to the economic stability of a nation as seen by the unprecedented rise in 78 

unemployment rates [2,3]. Therefore, while lockdowns are a good short-term strategy, for a 79 

long-term strategy, or until a vaccine becomes widely available, it has become necessary to 80 

identify alternate strategies and lifestyles that control the disease burden while minimizing the 81 

economic burden. Interventions that are effective include the use of face masks, physical 82 

distancing between persons at a recommended 6ft, and contact tracing and testing or mass testing 83 

to enable early diagnosis in the asymptomatic stage of infection [4]. However, removal of 84 

lockdowns should be strictly accompanied by a reopening plan that rapidly and efficiently 85 

enables the adoption of the above interventions to avoid an epidemic rebound. In addition to 86 

public health agencies, all members of a community, in both public and private sectors, play a 87 

key role in the development and implementation of a reopening plan that is most suited for their 88 

organization [5]. Among these sectors, universities and colleges bear a special burden to develop 89 

a reopening plan that include changes to a range of activities related to teaching, research, dining, 90 

housing, and extra-curricular activities. 91 

 92 

We developed a compartmental differential equations model to simulate epidemic projections of 93 

a potential COVID-19 outbreak in a population of 38,000 individuals, which is representative of 94 
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undergraduate and graduate students, faculty, and staff in a typical residential university in the 95 

United States. We simulated epidemic projections of potential outbreaks under varying 96 

combinations of contact tracing and testing, and mass testing, to identify combinations that 97 

would reduce the effective reproduction number 𝑅𝑅𝑒𝑒 to a value below the epidemic threshold of 1. 98 

𝑅𝑅𝑒𝑒 is directly proportional to the duration of infectiousness, transmission rate (the probability of 99 

transmission per contact per day, representing the infectiousness of the virus), and contact rate 100 

(the number of contacts per person per day) [6]. Asymptomatic testing through trace and test or 101 

mass tests lead to diagnosis in the asymptomatic phase of the infection, and thus, if persons 102 

diagnosed with infection are successfully quarantined, it reduces the duration of exposure [7–9] 103 

and thus reduce 𝑅𝑅𝑒𝑒. Physical distancing by the recommended 3 or 6ft and use of face masks can 104 

reduce transmission rate, and thus reduce 𝑅𝑅𝑒𝑒 [10,11]. Reducing contact rate such as through 105 

transitioning to remote work to reduce population density on campus directly reduces 𝑅𝑅𝑒𝑒. Thus, 106 

different types of interventions help reduce each of these components of 𝑅𝑅𝑒𝑒. Here, we evaluated 107 

different combinations of test rates, transmission rates, and contact rates that help reduce 𝑅𝑅𝑒𝑒 to 108 

below 1 to identify minimum levels of testing, physical distancing and face mask use, and 109 

population density necessary for effective control of an outbreak. 110 

 111 

While it is generally known that increasing contact tracing and testing is necessary, studies 112 

evaluating testing at an organizational level, such as university, were only recently emerging at 113 

the time of this study in June 2020. One study that analyzed contact tracing in the general 114 

populations estimated that reducing 𝑅𝑅0 of 1.5 to an 𝑅𝑅𝑒𝑒 of 1 requires more than 20% of contacts 115 

traced, reducing 𝑅𝑅0 of 2.5 to an 𝑅𝑅𝑒𝑒 of 1 requires more than 80% of contacts traced, and reducing 116 

𝑅𝑅0 of 3.5 to an 𝑅𝑅𝑒𝑒 of 1 requires more than 100% of contacts traced [12]. A modeling study 117 
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applied to the Boston area [13] estimated that the best way-out scenario is a Lift and Enhanced 118 

Testing (LET) with 50% detection and 40% of contacts traced. According to this, the number of 119 

individuals that need to be traced per 1000 persons is below 0.1 under partial reopening and 120 

below 0.15 under total reopening. Models for a university were only recently emerging at the 121 

time of this study in June 2020, [14–17] but typically, most studies combine transmission rate 122 

and contact rate as one metric in the evaluation of testing.  123 

 124 

In this study, instead of using a product of transmission rate and contact rate as one metric as 125 

typically done, we evaluated these separately, due to the following reasons. First, it helps 126 

systematically evaluate different interventions considering that different types of interventions 127 

help reduce each of the three components of 𝑅𝑅𝑒𝑒, testing reduces duration of exposed infectious 128 

stage, transitioning to remote classes reduce contact rate, vaccinations reduce the number of 129 

contacts who are potential disease carriers, and face mask use and 6ft distancing reduces 130 

transmission rate. Second, while adoption of each of these decisions are made at an 131 

organizational level, adherence and feasibility of face mask and 6ft distancing are highly 132 

influenced by individual behaviors and thus have a larger range of uncertainty. Third, while 133 

physical distancing and use of face masks can reduce transmission rate, the baseline transmission 134 

rate and expected reductions could vary based on multiple factors such as indoor vs. outdoor 135 

settings and ventilation, proper use and type of face mask [10,11,18,19], mode of transmission 136 

[20–23], and viral load in the index person [8,24]. Fourth, though we specifically focus this study 137 

on COVID-19 caused by the original SARS-CoV-2 virus, studying varying levels of 138 

transmission rates could help extrapolate findings to new variants or future outbreaks of viral 139 

respiratory infections with similar disease progressions [24], especially in the early stages when 140 



 7 

specific data is lacking but when the same non-pharmaceutical interventions, such as face masks, 141 

physical distancing, remote instructions, and testing, are suitable options.  142 

 143 

To systematically inform these analyses, we first evaluated different combinations of trace and 144 

test rate, mass test rate, and transmission rate for a range of contact rates, to identify the 145 

threshold contact rates that maintain infection cases below certain set levels of tolerance. We 146 

then used the contact rate thresholds to identify the population size thresholds, i.e., the maximum 147 

population size on campus, which could help inform decisions related to campus activities such 148 

as the fraction of classes to transition to remote. We also used the contact rate thresholds to 149 

identify the vaccine coverage thresholds for a post-vaccine era, i.e., the vaccine coverage 150 

necessary for a campus to return to a normal population size. We also identify, under each 151 

intervention combination, the number of trace and tests and quarantines. These metrics could 152 

collectively help inform development of a preparedness plan for reopening a university during 153 

the COVID-19 pandemic or to set protocols in the event of future outbreaks.   154 

Methodology  155 

Simulation methodology 156 

We developed a compartmental model for simulating epidemic projections over time. The 157 

epidemiological flow diagram for the compartmental model is depicted in Fig 1A. Each box is an 158 

epidemiological state, and each arrow represents a transition from one state to another. Note, 159 

each compartment is further split by age and gender, but for clarity of notations, we do not 160 

include it in the equations below.  161 

 162 
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 163 
Fig 1.  Overview of the extended SEIR compartmental model. 164 
(A) Compartmental model flow diagram. (B) Natural disease progression of SARS-COV-2 virus 165 
in infected patients. 166 
S = susceptible, L = exposed and not infectious (Latent stage) (asymptomatic), E = 167 
asymptomatic and infectious, I = symptomatic and infectious, 𝑄𝑄𝐿𝐿 = exposed and not infectious 168 
(Latent) and Quarantined (diagnosed), 𝑄𝑄𝐸𝐸  = asymptomatic and infectious and Quarantined 169 
(diagnosed), 𝑄𝑄𝐼𝐼 = Infectious and Quarantined (diagnosed), H = Hospitalized, R = Recovered, and 170 
D = Deaths. 171 
 172 

Let 𝜋𝜋𝑡𝑡 = [S, L, E, I, QL, QE, QI, H, R, D] be a vector, with each element representing the number of 173 

people in a compartment at time 𝑡𝑡, specifically, 174 

 175 

𝑆𝑆 = the number of susceptible individuals at time 𝑡𝑡, 176 

𝐿𝐿 = the number of exposed, but asymptomatic and not infectious individuals (latent stage; 177 

also, the non-infectious phase of incubation stage) at time 𝑡𝑡, 178 

𝐸𝐸 = the number of asymptomatic or pre-symptomatically infectious individuals 179 

(infectious phase of the incubation stage) at time 𝑡𝑡, 180 

𝐼𝐼 = the number of infectious individuals (symptomatic and infectious stage) at time 𝑡𝑡, 181 
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𝑄𝑄𝐿𝐿 = the number of exposed, asymptomatic and not infectious (latent) and quarantined 182 

individuals (diagnosed) at time 𝑡𝑡, 183 

𝑄𝑄𝐸𝐸 = the number of asymptomatic or pre-symptomatically infectious and quarantined 184 

individuals (diagnosed) at time 𝑡𝑡, 185 

𝑄𝑄𝐼𝐼 = the number of infectious and quarantined individuals (diagnosed) at time 𝑡𝑡, 186 

𝐻𝐻 = the number of hospitalized individuals at time 𝑡𝑡, 187 

𝑅𝑅 = the number of recovered individuals at time 𝑡𝑡, and 188 

𝐷𝐷 = the number of deaths at time 𝑡𝑡.  189 

Epidemic states 𝐿𝐿,𝐸𝐸, and 𝐼𝐼 were formulated such that each state represented a distinct phase 190 

along the natural disease progression (see Fig 1B), and they collectively included all phases. 191 

Over time, persons from 𝑆𝑆 can transition to 𝐿𝐿,𝐸𝐸, and 𝐼𝐼, and upon diagnoses, transition to 192 

𝑄𝑄𝐿𝐿 ,𝑄𝑄𝐸𝐸 , or 𝑄𝑄𝐼𝐼, and further to 𝐻𝐻,𝑅𝑅, or 𝐷𝐷, (transitions represented by arrows in Fig 1A) as discussed 193 

below.  194 

 Let, 195 

𝑝𝑝 = transmission rate (probability of transmission per contact per day), 196 

𝑐𝑐 = contact rate (number of contacts per person per day), 197 

𝑁𝑁 = total population who are alive, 198 

𝑎𝑎𝐵𝐵 = symptom-based testing rate,  199 

𝑎𝑎𝐶𝐶,𝑡𝑡 =  rate of testing through contact tracing at time t, 200 

𝑎𝑎𝑈𝑈,𝑡𝑡 = rate of testing through mass testing at time t,  201 

𝜌𝜌 = test sensitivity for asymptomatic testing (through mass tests or trace and test), 202 

𝑑𝑑𝑑𝑑𝑑𝑑𝑠𝑠𝐿𝐿 = duration in latent period,  203 

𝑑𝑑𝑑𝑑𝑑𝑑𝑠𝑠𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = duration in incubation period, 204 
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𝑑𝑑𝑑𝑑𝑑𝑑𝑠𝑠𝐼𝐼𝐼𝐼 = time from onset of symptoms to recovery, 205 

𝑑𝑑𝑑𝑑𝑑𝑑𝑠𝑠𝑄𝑄𝐼𝐼𝑅𝑅 = time from diagnosis to recovery,  206 

𝑑𝑑𝑑𝑑𝑑𝑑𝑠𝑠𝑄𝑄𝐼𝐼𝐻𝐻 = time from diagnosis to hospitalization,  207 

𝑑𝑑𝑑𝑑𝑑𝑑𝑠𝑠𝐻𝐻𝐻𝐻 = time from hospitalization to recovery, 208 

𝑑𝑑𝑑𝑑𝑑𝑑𝑠𝑠𝐻𝐻𝐻𝐻 = time from hospitalization to death, 209 

𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝ℎ𝑜𝑜𝑜𝑜𝑜𝑜 = proportion hospitalized, and  210 

𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = proportion of cases that are severe. 211 

Then, we can write the equations for transition rates (arrows in Fig 1A) as follows: 212 

𝑟𝑟𝑆𝑆,𝐿𝐿 = 𝑝𝑝𝑝𝑝(𝐸𝐸 + 𝐼𝐼)
𝑁𝑁

, which assumes that only infected persons in 𝐸𝐸 and 𝐼𝐼 can transmit, persons 213 

in 𝑄𝑄𝐸𝐸  and 𝑄𝑄𝐼𝐼 self-quarantine, and persons in 𝐿𝐿 and  𝑄𝑄𝐿𝐿 are not infectious.  214 

𝑟𝑟𝐿𝐿,𝐸𝐸 =
1

𝑑𝑑𝑑𝑑𝑑𝑑𝑠𝑠𝐿𝐿
 215 

𝑟𝑟𝐸𝐸,𝑄𝑄𝐼𝐼 = (𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑠𝑠𝑠𝑠𝑠𝑠𝑒𝑒𝑒𝑒𝑒𝑒)
𝑑𝑑𝑑𝑑𝑑𝑑𝑠𝑠𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖−𝑑𝑑𝑑𝑑𝑑𝑑𝑠𝑠𝐿𝐿

, which assumes that only a proportion of cases that are severe 216 

(𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠) get diagnosed immediately because of exhibition of symptoms, we use the 217 

proportion hospitalized as a proxy for severe cases; the denominator is based on the 218 

assumption that the duration in state E is equal to the difference between the duration of 219 

the incubation period and the latent period.  220 

𝑟𝑟𝐸𝐸,𝐼𝐼 = (1−𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠)
𝑑𝑑𝑑𝑑𝑑𝑑𝑠𝑠𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖−𝑑𝑑𝑑𝑑𝑑𝑑𝑠𝑠𝐿𝐿

 , which follows from above. 221 

𝑟𝑟𝐼𝐼,𝑄𝑄𝐼𝐼 = 𝑎𝑎𝐵𝐵, which assumes that under symptom-based testing, only persons who show 222 

moderate to severe symptoms get diagnosed and those who show mild symptoms do not. 223 

𝑟𝑟𝑄𝑄𝐼𝐼,𝐻𝐻 = 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝ℎ𝑜𝑜𝑜𝑜𝑜𝑜
𝑑𝑑𝑑𝑑𝑑𝑑𝑠𝑠𝑄𝑄𝐼𝐼𝐻𝐻

, for 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝ℎ𝑜𝑜𝑜𝑜𝑜𝑜 we use the proportion of persons hospitalized among those 224 

diagnosed through symptom-based testing.  225 
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𝑟𝑟𝐿𝐿,𝑄𝑄𝐿𝐿 = 𝜌𝜌𝑎𝑎𝑈𝑈,𝑡𝑡 + �1 − 𝜌𝜌𝑎𝑎𝑈𝑈,𝑡𝑡�𝜌𝜌𝑎𝑎𝐶𝐶,𝑡𝑡, which assumes that under the implementation of both 226 

mass testing and contact tracing and testing, persons diagnosed through mass test will not 227 

be tested again on the same day through contact tracing (as our time unit is daily).  228 

𝑟𝑟𝐸𝐸,𝑄𝑄𝐸𝐸 = 𝜌𝜌𝜌𝜌𝑈𝑈,𝑡𝑡 + �1 − 𝜌𝜌𝜌𝜌𝑈𝑈,𝑡𝑡�𝜌𝜌𝑎𝑎𝐶𝐶,𝑡𝑡, which is similar to above. 229 

𝑟𝑟𝐼𝐼,𝑅𝑅 = (1 − 𝑎𝑎𝐵𝐵)[𝜌𝜌𝑎𝑎𝑈𝑈,𝑡𝑡 + �1 − 𝜌𝜌𝜌𝜌𝑈𝑈,𝑡𝑡�𝜌𝜌𝑎𝑎𝐶𝐶,𝑡𝑡] + 1
𝑑𝑑𝑑𝑑𝑑𝑑𝑠𝑠𝐼𝐼𝐼𝐼

, which assumes that persons with 230 

mild cases that did not get diagnosed through symptom-based testing have a chance of 231 

getting tested through additional testing options, and self-quarantine upon diagnosis. Note 232 

that we did not separately model asymptomatic cases but incorporated that into the 233 

symptom-based testing rate (𝑎𝑎𝐵𝐵) by considering that 35% of cases are mild to no 234 

symptoms and thus do not have a chance of being diagnosed through symptom-based 235 

testing. 236 

𝑟𝑟𝑄𝑄𝐿𝐿,𝑄𝑄𝐸𝐸 = 1
𝑑𝑑𝑑𝑑𝑑𝑑𝑠𝑠𝐿𝐿

  237 

𝑟𝑟𝑄𝑄𝐸𝐸,𝑄𝑄𝐼𝐼 = [𝑎𝑎𝐵𝐵(1 − 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠)+ (𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠)]
𝑑𝑑𝑑𝑑𝑑𝑑𝑠𝑠𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖−𝑑𝑑𝑑𝑑𝑑𝑑𝑠𝑠𝐿𝐿

, theoretically, 𝑟𝑟𝑄𝑄𝐸𝐸,𝑄𝑄𝐼𝐼 should be the same as 𝑟𝑟𝐸𝐸,𝐼𝐼, 238 

however, as the rate of transitioning from 𝑄𝑄𝐼𝐼 to 𝐻𝐻 is fixed to fit to the proportion 239 

hospitalized under symptom-based tests, if extensive testing is conducted, the number of 240 

persons in 𝑄𝑄𝐼𝐼 would increase, thus, incorrectly inflating the number of persons who are 241 

hospitalized; To avoid this, we modified the equation to consider that the number of 242 

persons flowing into 𝑄𝑄𝐼𝐼would be equal to the proportion flowing from 𝐼𝐼 to 𝑄𝑄𝐼𝐼 under 243 

symptom-based testing. 244 

𝑟𝑟𝑄𝑄𝐸𝐸,𝑅𝑅 =  �1−�𝑎𝑎𝐵𝐵
(1 − 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠)+ �𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝ℎ𝑜𝑜𝑜𝑜𝑜𝑜���

𝑑𝑑𝑑𝑑𝑑𝑑𝑠𝑠𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖−𝑑𝑑𝑑𝑑𝑑𝑑𝑠𝑠𝐿𝐿
, which follows from the above equation. 245 

 𝑟𝑟𝑄𝑄𝐼𝐼,𝑅𝑅 = 1−𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝ℎ𝑜𝑜𝑜𝑜𝑜𝑜
𝑑𝑑𝑑𝑑𝑑𝑑𝑠𝑠𝑄𝑄𝐼𝐼𝑅𝑅

  246 
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𝑟𝑟𝐻𝐻,𝑅𝑅 = 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟
𝑑𝑑𝑑𝑑𝑑𝑑𝑠𝑠𝐻𝐻𝐻𝐻

  247 

𝑟𝑟𝐻𝐻,𝐷𝐷 =  (1−𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟)
𝑑𝑑𝑑𝑑𝑑𝑑𝑠𝑠𝐻𝐻𝐻𝐻

   248 

Note: rs,s is the testing rate (either through mass test or trace and test). We assumed that 249 

susceptible persons go back to the susceptible state after testing, i.e., we did not explicitly 250 

track false positives. 251 

The values and ranges for the above epidemic parameters used in the compartmental simulation 252 

model are presented in Supplemental Appendix Table S1.  253 

We simulate the epidemic over time using the following system of differential equations 254 

𝜋𝜋𝑡𝑡+1 = 𝜋𝜋𝑡𝑡 + 𝜋𝜋𝑡𝑡𝑄𝑄𝑡𝑡.𝑑𝑑𝑑𝑑   255 

where, 𝑄𝑄𝑡𝑡 = a matrix of transition rates between states (arrows in Fig 1A), and 𝑑𝑑𝑑𝑑 = time-step. 256 

We use a time-unit of per day for the transition rates in 𝑄𝑄𝑡𝑡 and set 𝑑𝑑𝑑𝑑 = 1
10

, and thus, the model 257 

simulates every 10th of a day.  258 

The expansion of the system of differential equations are as follows: 259 
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𝐼𝐼𝑡𝑡+1 = 𝐼𝐼𝑡𝑡 + �𝑟𝑟𝐸𝐸,𝐼𝐼 𝐸𝐸𝑡𝑡 − �𝑟𝑟 𝐼𝐼,𝑄𝑄𝐼𝐼 + 𝑟𝑟𝐼𝐼,𝑅𝑅�𝐼𝐼𝑡𝑡� 𝑑𝑑𝑑𝑑 263 

𝑄𝑄𝐿𝐿,𝑡𝑡+1 = 𝑄𝑄𝐿𝐿,𝑡𝑡 + �𝑟𝑟𝐿𝐿,𝑄𝑄𝐿𝐿  𝐿𝐿𝑡𝑡 − �𝑟𝑟𝑄𝑄𝐿𝐿,𝑄𝑄𝐸𝐸�𝑄𝑄𝐿𝐿,𝑡𝑡� 𝑑𝑑𝑑𝑑 264 

𝑄𝑄𝐸𝐸,𝑡𝑡+1 = 𝑄𝑄𝐸𝐸,𝑡𝑡 + �𝑟𝑟 𝐸𝐸,𝑄𝑄𝐸𝐸  𝐸𝐸𝑡𝑡 − �𝑟𝑟𝑄𝑄𝐸𝐸,𝑄𝑄𝐼𝐼 +  𝑟𝑟𝑄𝑄𝐸𝐸,𝑅𝑅�𝑄𝑄𝐸𝐸,𝑡𝑡� 𝑑𝑑𝑑𝑑 265 

𝑄𝑄𝐼𝐼,𝑡𝑡+1 = 𝑄𝑄𝐼𝐼,𝑡𝑡 + �(𝑟𝑟𝐸𝐸,𝑄𝑄𝐼𝐼  𝐸𝐸𝑡𝑡 + 𝑟𝑟𝑄𝑄𝐸𝐸,𝑄𝑄𝐼𝐼  𝑄𝑄𝐸𝐸,𝑡𝑡 + 𝑟𝑟𝐼𝐼,𝑄𝑄𝐼𝐼𝐼𝐼𝑡𝑡)  − �𝑟𝑟𝑄𝑄𝐼𝐼,𝐻𝐻 + 𝑟𝑟𝑄𝑄𝐼𝐼,𝑅𝑅�𝑄𝑄𝐼𝐼,𝑡𝑡� 𝑑𝑑𝑑𝑑 266 

𝐻𝐻𝑡𝑡+1 = 𝐻𝐻𝑡𝑡 + �𝑟𝑟𝑄𝑄𝐼𝐼,𝐻𝐻𝑄𝑄𝐼𝐼,𝑡𝑡 − �𝑟𝑟𝐻𝐻,𝑅𝑅 + 𝑟𝑟𝐻𝐻,𝐷𝐷�𝐻𝐻𝑡𝑡� 𝑑𝑑𝑑𝑑 267 
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𝐷𝐷𝑡𝑡+1 = 𝐷𝐷𝑡𝑡 + 𝑟𝑟𝐻𝐻,𝐷𝐷𝐻𝐻𝑡𝑡𝑑𝑑𝑑𝑑 269 

We can further expand by substitution of the rate terms with their equations as follows: 270 
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Input data assumptions and sources for simulation model 292 

 293 

For the rates of natural disease progression, we used estimates from other studies in the 294 

literature. The description of the data, sources, and values (with ranges and medians where 295 

applicable) for all parameters are available in the Supplemental Appendix Table S1. Briefly, we 296 

assumed an incubation period duration of 5.4 days [25], the first 2.5 days in stage L (not 297 

infectious and asymptomatic) [26], and the remaining 2.9 days in stage E (infectious and 298 

asymptomatic). We assumed about 65% of cases develop medium to severe symptoms [27]  and, 299 

in the absence of test and trace or mass test, can be diagnosed through symptom-based testing. 300 

We assumed the remaining 35% of cases show mild to no symptoms and can be diagnosed only 301 

through trace and test, or universal mass test. We assumed an average duration of 3.5 days from 302 

the time of onset of symptoms to hospitalization [28], with the proportion hospitalized varying as 303 

a function of age. For mild cases, we assumed an average duration of 7 days from the time of 304 

onset of symptoms to recovery [28]. We assumed case fatality rates vary as a function of age and 305 

gender.  306 

 307 
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Interventions  308 

Mass test and trace and test: We evaluated the following scenarios: mass test only, trace and test 309 

only, delayed trace and test only, combination mass test and trace and test, and combination mass 310 

test and delayed trace and test, each at different rates of testing, as follows. We evaluated mass 311 

testing at rates of 5% 10%, 20%, 25%, and 33% of the population per day, which is equivalent to 312 

testing once every 20 days (5% per day over every 20-day period), 10 days, 5 days, 4 days, and 3 313 

days (33% per day every 3-day period), respectively. We modeled the rate of trace and test as the 314 

inverse of the time from infection to effective isolation of a contact, i.e., the sum of the number 315 

of days passed since contact with an individual (as reported by the index diagnosed person) and 316 

the number of days into the future to find, test, and isolate the infected contact. We chose this 317 

definition as each component in this duration can vary significantly for every diagnosed person 318 

and for each of their contacts. In the case the contact is never found, the duration would be the 319 

full duration of infection. Thus, this definition of trace and test can be comparable to data that is 320 

typically collected. Specifically, the trace and test rate here should be compared to the average of 321 

the inverse of the time from reported contact to either effective isolation of that contact or 322 

maximum infection duration (whichever is the least value), averaged over all contacts. We 323 

evaluated trace and test rates at levels of 10%, 17%, 20%, 25%, 33%, and 50%, equivalent of 10 324 

days, 6 days, 5 days, 4 days, 3 days, and 2 days, respectively, from the time of transmission of 325 

infection to effective isolation of that contact. We evaluated combinations of mass test and trace 326 

and test, by varying mass tests between 5% and 33% per day and keeping trace and test at 50% 327 

as this higher rate of trace and test maybe more feasible with mass test than symptom-based test 328 

only. We assumed trace and test would initiate within the first 5 cases of diagnosis. Considering 329 

there may be delays in setting up a trace and test system (such as in events of new outbreaks in 330 
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the future or failure to respond quickly), to tests its sensitivity, we evaluated scenarios by 331 

delaying the initiating of trace and test to after diagnosis of 20 cases. Thus, the scenarios referred 332 

to as ‘trace and test only’ and ‘combination tests’ refers to initiation of trace and test after first 5 333 

cases of diagnosis. And the scenarios referred to as ‘delayed trace and test only’ and ‘delayed 334 

combination tests’ refers to delaying initiation of trace and test to after diagnoses of 20 cases. In 335 

all scenarios, we applied baseline symptom-based testing, assumed test results are available 336 

within 24 hours, and persons testing positive self-quarantine for 14-days. For diagnosis in 337 

asymptomatic stages, i.e., diagnosis through trace and test or mass test, we assumed a test 338 

sensitivity of 0.9 [29]. 339 

 340 

Non-pharmaceutical interventions: We evaluated transmission rates (𝑝𝑝) of 14% (baseline), 8% 341 

(mid), 5.4% (lower-mid), and 2.5% (lowest). The baseline value of 𝑝𝑝 corresponds to an average 342 

estimate under no interventions (no physical distancing and no face masks) [11,30]. A 343 

transmission rate of 8% corresponds to the expected rates with the use of face masks in a non-344 

health care setting [11]. Transmission rates of 5.4% and 2.5% correspond to expected rates under 345 

3ft and 6ft physical distancing, respectively [11] (see Supplemental Appendix Table S2). We 346 

evaluated contact rates between 1 and 25 (𝑐𝑐), we did not differentiate between on-campus and 347 

off-campus contact rates.  348 

 349 

Application to a university setting  350 

Demographic data: We used the Fall 2018 student enrollment data from the University of 351 

Massachusetts - Amherst, Amherst, MA, to determine the population size of undergraduate and 352 

graduate students and their age and gender distributions [31]. For faculty and staff, we used the 353 



 17 

age distribution of persons 25 years and older from the Town of Amherst, MA, where the 354 

university is located [32]. To initiate an outbreak, we assumed 4 to 5 infected cases on Day 1, 355 

estimated as follows. We assumed that the proportion of incoming students who are infected 356 

would be equal to the prevalence of COVID-19 in Massachusetts (MA) in June 2020. We also 357 

assumed that all incoming students would be tested, and about 10% of infected cases would be 358 

false negatives. Prevalence is unknown, as not all cases are diagnosed and diagnosed cases are 359 

not specifically tracked. Therefore, to estimate prevalence of COVID-19 in MA, we used the 360 

simulation model to determine the ratio of new diagnosis to persons with infection and applied 361 

that ratio to the number of new diagnoses on June 26th in MA. This resulted in about 4 infected 362 

cases on day 1 remaining undetected, thus initiating an outbreak. We also assumed that at the 363 

beginning of every week, there would be about 3 to 4 infections from outside, calculated by 364 

assuming that about 10% of the population are likely to mix with the population outside the 365 

university or travel out of Amherst during weekends and are not tested upon return. Based on the 366 

above, we initialized the model on Day 1 with 4 infected persons in the Latent stage and added 3 367 

to 4 outside cases to the Latent stage at the beginning of every week. We simulated the model for 368 

a 90-day period to represent the duration of the expected Fall 2020 semester.  369 

 370 

Tolerance on the number of infected cases for identifying contact rate thresholds  371 
 372 
We evaluated contact rate thresholds under three levels of epidemic tolerance: relaxed tolerance, 373 

medium tolerance, and tight tolerance. Relaxed tolerance marked the point beyond which there 374 

was an exponential growth in infections, the maximum number of infections under this tolerance 375 

level was about 170. For medium tolerance, we set the number of infections to less than 77, and 376 

for tight tolerance, we set the number of infections to less than 50. The latter two cases 377 
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correspond to maximum infections for a case fatality rate (CFR) of 2%, which is the reported 378 

CFR in the general population for the United States [33]. That is, 1/0.02 gives the 50 cases 379 

threshold and 77 is obtained by further dividing that by 65%, which is the proportion of cases 380 

with medium to severe symptoms [27], to account for the remaining 35% of cases with mild to 381 

no symptoms that were likely unreported and thus not included in the CFR calculation. As the 382 

CFR for COVID-19 is much lower in university student aged populations, the use of the 383 

alternative tolerance on the number of infections helps avoid spill-over effect of a breakout into 384 

the community. Also note that, because of our assumptions for the number of initial cases and 385 

cases per week entering the population from outside, the minimum number of cases over the 90-386 

day period would be 45. Therefore, the tolerance of 50 cases is a very tight tolerance. For 387 

context, one of the indicators CDC uses to categorize community transmission risk is the number 388 

of cases per 100,000 persons during the last 7 days, categorizing as low, moderate, and 389 

substantial to high if there were less than 10, 10-49, and greater than 49 cases, respectively [34]. 390 

Converting our tolerance levels to the CDC indicator would translate to 35, 15, and 10 cases for 391 

relaxed, medium, and tight tolerances, respectively. If we exclude the 45 cases from outside, it 392 

translates to 25, 6, and 1 cases for relaxed, medium, and tight tolerances, respectively.  393 

 394 

Population behavioral data 395 
 396 
While there was limited data on contact rates specific to university students at the time of this 397 

original study in June 2020, studies conducted since then have generated some (though limited) 398 

data on population behaviors. These data include contact rates and behaviors related to use of 399 

non-pharmaceutical interventions such as face mask and 6 ft physical distancing, mostly either 400 

self-reported in surveys or estimations made in other modeling studies informed through 401 
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university settings. We briefly summarize the data from each study in the Supplemental 402 

Appendix Table S3. Some of the surveys were specific to university students in the United States 403 

while others were either university students in other countries or general populations. Studies on 404 

surveys of university students, when partial shutdowns were enforced and universities resorted to 405 

varying levels of remote classes, reported 6 to 8 contacts per person per day [35,36]. However, 406 

students who self-reported as providing essential services or caring for non-household members 407 

(~23%) reported an average contact rate of about 14 per person per day [37]. Modeling studies 408 

that estimated contacts among university students for a scenario prior to the pandemic assume 409 

contact rates of 16 to 24 per person per day [38–40]. Using data on face mask use and physical 410 

distancing, specifically originating from three surveys of student and general population in the 411 

United States [38,42,43] and the transmission rates corresponding to these interventions 412 

(summarized in Supplemental Appendix Table S3), we calculate the expected transmission rate 413 

to be between 5% and 8%. We use these estimates to further streamline our analyses. 414 

Interpretation of contact rate thresholds: size of social circle, population size, and vaccine 415 
coverage  416 
 417 
We utilize the contact rate thresholds, under the different levels of testing and transmission rate 418 

(face mask use and physical distancing), to identify four additional metrics that would help 419 

inform campus decisions: first, the contact rate threshold among non-essential workers after 420 

accounting for the higher contact rate among essential workers, which would help inform the 421 

size of social circles at the individual level and schedule campus activities; second, the threshold 422 

values for population size on campus as a proportion of the actual population size, which would 423 

help decisions related to the fraction of remote vs. face-to-face classes, on-campus housing, and 424 

other campus activities for the era of pre-vaccine availability; third, for the era of post-vaccine 425 
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availability, the threshold values for vaccination coverage for the university to return to normal 426 

(i.e., 100% population size); fourth, the threshold values for population sizes under varying 427 

levels of vaccine coverage, which would help decisions related to campus activities in the event 428 

that vaccines are only partially available that coverage is not at levels sufficient to fully return to 429 

normal. All four metrics would be used alongside decisions related to the level of testing.  430 

The metrics were estimated as follows. Suppose 𝐶̂𝐶 is the contact rate threshold, we estimated the 431 

first metric as 𝐶̂𝐶𝑛𝑛 = (𝐶̂𝐶 − 𝐶𝐶𝑒𝑒𝑝𝑝𝑒𝑒)/(1 − 𝑝𝑝𝑒𝑒), where 𝐶̂𝐶𝑛𝑛 is the contact rate threshold among non-432 

essential workers (we limit  0 ≤ 𝐶̂𝐶𝑛𝑛 ≤ 𝐶̂𝐶), 𝐶𝐶𝑒𝑒 is the contact rate among essential workers (we 433 

assume 𝐶𝐶𝑒𝑒 =14 [37]), and 𝑝𝑝𝑒𝑒 is the proportion of the population who are essential workers (we 434 

assume 𝑝𝑝𝑒𝑒 =23% [37]).  435 

The interpretation of the second, third, and fourth metrics arise from our simplifying assumption 436 

that contact rates are directly proportional to the population density [41], 𝐶𝐶 = 𝑐𝑐0𝜌𝜌;𝜌𝜌 = 𝑁𝑁/𝐴𝐴; 437 

where 𝐶𝐶 is the actual contact rate (under regular face-to-face instructions), 𝜌𝜌 is the density, 𝑁𝑁 is 438 

the population size, 𝐴𝐴 is the campus area, and 𝑐𝑐0 is a constant. Further, we assume that university 439 

campuses maintain similar levels of population density under regular work conditions, i.e., 440 

though the population sizes may vary across universities, the campus area also changes 441 

proportionally so that the population density is similar, and thus, the contact rates under regular 442 

work conditions are also similar. Multiple studies reported similar contact rates of 16 to 24 under 443 

regular working conditions supporting this assumption [42,43]. Thus, if our estimated contact 444 

rate thresholds (say 𝐶̂𝐶) are lower than the actual contact rates of 16 to 24 (𝐶𝐶), given fixed area 445 

(𝐴𝐴), achieving 𝐶̂𝐶 would require reducing the population size (𝑁𝑁) proportional to the reduction in 446 

contact rate, i.e., 𝐶̂𝐶 𝐶𝐶⁄ =  𝑁𝑁� 𝑁𝑁⁄ (= 𝑠𝑠𝑠𝑠𝑠𝑠 𝑝̂𝑝), implying that the population size on campus should be 447 

at a maximum of 𝑝̂𝑝% of its original population size (𝑝̂𝑝 = 𝐶̂𝐶 𝐶𝐶⁄ ).  448 
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 449 

The third metric on interpretation of threshold for vaccination coverage (say 𝑉𝑉�) follows from the 450 

above assumptions. Achieving a contact rate threshold of 𝐶̂𝐶 when universities are back to regular 451 

face-to-face classes, i.e., 𝑁𝑁� = 𝑁𝑁 or 𝑝̂𝑝 = 1, would require that (1 − 𝐶̂𝐶/𝐶𝐶) proportion of the 452 

population be effectively vaccinated. More precisely, vaccine coverage should be at least 𝑉𝑉� =453 

�1 − �𝐶̂𝐶 𝐶𝐶⁄ �� /𝑣𝑣𝑒𝑒, where 𝑣𝑣𝑒𝑒 is vaccine efficacy and corresponds to the chance that a vaccinated 454 

individual is fully protected from being infected, and thus, is not a potential disease carrying 455 

contact. Intuitively, this is saying that though the actual contact rate is 𝐶𝐶, because  𝑉𝑉�% are 456 

vaccinated and protected from infection or transmitting, the effective contact rate is 𝐶̂𝐶. This 457 

implies that a threshold contact rate of  𝐶̂𝐶 can be achieved, while maintaining 𝑝̂𝑝 = 1, if 𝑉𝑉�% are 458 

vaccinated. The vaccine coverage results presented here were estimated by assuming a vaccine 459 

efficacy of 95%, and thus, in the event that this changes, the vaccine coverage results should be 460 

adjusted by multiplying with 95% and dividing by the new value.  461 

 462 

Following from above, the fourth metric considers the fact that if the actual vaccine coverage 463 

(say 𝑉𝑉) is less than 𝑉𝑉� , achieving the contact rate threshold (𝐶̂𝐶) would also require some reduction 464 

in 𝑁𝑁. Specifically, the population size on campus should be at a maximum of 𝑝̂𝑝% of its original 465 

population size, with 𝑝̂𝑝 = 1 − �(1 −  𝑉𝑉)𝐶𝐶 − 𝐶̂𝐶 � / 𝐶𝐶, derived as follows. We can write 466 

(1 − 𝑉𝑉)𝐶𝐶 − 𝐶̂𝐶 as the number of excess contacts, i.e., the number to reduce after accounting for 467 

the proportion vaccinated �(1 − 𝑉𝑉)𝐶𝐶�, the proportion of contacts to reduce would then be 468 

�(1 − 𝑉𝑉)𝐶𝐶 − 𝐶̂𝐶 � /𝐶𝐶, and finally, applying the same assumptions as in the second metric would 469 

give the equation for 𝑝̂𝑝. If the vaccination coverage is zero, i.e., 𝑉𝑉 = 0, we would get back  𝑝̂𝑝 =470 
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𝐶̂𝐶 𝐶𝐶⁄ . If  𝑉𝑉 = 1, then 𝑝̂𝑝 = 1 + 𝐶̂𝐶 𝐶𝐶⁄ , which implies that even if 𝐶̂𝐶 = 0, the campus can fully open. 471 

We bound 0 ≤ 𝑝̂𝑝 ≤ 1, such that, even if 𝐶̂𝐶 > 0 we interpret this as fully back to normal 472 

population size (though it would mathematically imply that the campus can handle a higher 473 

density from an epidemic perspective, e.g., influx from outside).  474 

 475 

 Thus, to keep within the infection tolerance levels, 𝐶̂𝐶 would mark the maximum average contact 476 

rate over the full population, 𝐶̂𝐶𝑛𝑛 the maximum average contact rate for non-essential workers 477 

after accounting for the higher contact rate among essential workers, 𝑝̂𝑝 the maximum proportion 478 

of the population who should return back to campus (either when 𝑉𝑉 = 0 or 0 < 𝑉𝑉 ≤ 𝑉𝑉�), and 𝑉𝑉�  479 

the minimum vaccine coverage to fully return back to normal (𝑝̂𝑝 = 1). As the above method of 480 

estimation of thresholds incorporate the effectiveness of vaccinations, we can interpret that the 481 

interventions, such a testing and use of facemask and social distancing, would be applied to only 482 

the unvaccinated persons.  483 

Identifying feasible intervention combinations 484 
 485 

We identify three sets of feasible combination results. For the event that vaccines are 486 

unavailable, we identify the feasible combinations of testing, contact rate for non-essential 487 

workers (𝐶̂𝐶𝑛𝑛), and population size on campus (𝑝̂𝑝) that can effectively control an outbreak to 488 

below the tolerance levels. We define feasible combinations as those with 𝐶̂𝐶𝑛𝑛 > 2 in the 489 

transmission rate range of 5% to 8%, which would correspond to the reported use of face mask 490 

and physical distancing among the university population (see ‘Population behavioral data’ 491 

above). For the event that vaccines are partially or fully available, we identify the minimum 492 

vaccine coverage threshold (𝑉𝑉�) for the campus to fully return back to normal (𝑝̂𝑝 = 1), and if the 493 
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vaccine coverage is below this threshold, the reductions in population size (𝑝̂𝑝) necessary to 494 

control the epidemic to within the tolerance levels. We also identify suitable testing scenarios for 495 

reported levels of face mask use and physical distancing (transmission rate of 5% to 8%), and 496 

reported levels of contact rates under regular face-to-face classes (16 to 24 per day) and remote 497 

classes (6 to 8 per day). We define suitable as those that avoid exponential growth in cases over 498 

the duration of a semester. For the above three sets of combination scenarios, we also present 499 

results under the full range of transmission rates in the Appendix Tables S4, S5, and S6, which 500 

could be useful in the event of change in transmission rates such as emergence of new virus 501 

variants.  502 

Results  503 

When vaccines are unavailable (𝑉𝑉 = 0%), there is no single intervention that can effectively 504 

control an outbreak. However, there are multiple feasible combinations of testing, contact rate 505 

for non-essential workers (𝐶̂𝐶𝑛𝑛), and population size on campus (𝑝̂𝑝) that can be implemented to 506 

effectively control an outbreak to keep cases below the relaxed to medium tolerance levels, 507 

though none to keep cases below the tight tolerance level (Table 1). Examples of feasible 508 

combinations under the relaxed tolerance level include: mass tests only at 25% per day, contact 509 

rate for non-essential workers at 2 to 6 per day, and campus population size at 26% to 42%; or 510 

trace and test only at 33%, contact rate for non-essential workers at 4 to 8 per day, and campus 511 

population size at 31% to 47% (see full list in Table 1). Under the medium tolerance level, only 512 

scenarios with combination tests were feasible, examples include: 5% mass test, 50% trace and 513 

test, contact rate for non-essential workers at 2 to 5 per day, and campus population size at 26% 514 

to 36%; or 33% mass test, 50% trace and test, contact rate for non-essential workers at 8 to 14 515 

per day, and campus population size at 47% to 73% (see full list in Table 1). Note: the range in 516 
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population size results correspond to mid-points of the range for contact rate (𝐶𝐶) of 16 and 24 in 517 

Table 1. 518 

Table 1.  Feasible combinations ⁋ of testing, contact rate, and population size on campus for 519 
effective control of a disease outbreak in the absence of a vaccine  520 

Tolerance  Testing 

Contact rate 
threshold 
(per day)† 
for non-
essential 
workers‡  

Population 
size† (if 
regular 
contact rate 
is 16) 

Population 
size† (if 
regular 
contact rate 
is 24) 

Peak trace 
and tests 
per day 
(per 
10,000 
persons) 

Peak 
quarantine 
per day 
(per 10,000 
persons) 

Relaxed 
tolerance  

S+25%U  2 - 6 31% - 50% 21%  - 33% 0 - 0 6 - 7 
S+33%U 5 - 9 44% - 63% 29%  - 42% 0 - 0 7 - 7 
S+33%T 4 - 8 38% - 56% 25%  - 38% 14 - 21 18 - 18 
S+50%T 6 - 11 50% - 75% 33%  - 50% 36 - 55 22 - 23 

S+5%U+50%T 10 - 16 69% - 100% 46%  - 67% 33 - 48 20 - 20 
S+10%U+50%T 11 - 18 75% - 100% 50%  - 75% 24 - 35 15 - 15 
S+20%U+50%T 15 - 22 94% - 100% 63%  - 92% 16 - 25 13 - 13 
S+25%U+50%T 16 - 24 100% - 100% 67%  - 100% 14 - 20 13 - 12 
S+33%U+50%T 18 - 25 100% - 100% 75%  - 100% 12 - 15 10 - 9 
S+5%U+50%dT 4 - 9 38% - 63% 25%  - 42% 36 - 55 21 - 25 

S+10%U+50%dT 6 - 13 50% - 81% 33%  - 54% 32 - 63 21 - 25 
S+20%U+50%dT 11 - 18 75% - 100% 50%  - 75% 36 - 54 21 - 21 
S+25%U+50%dT 13 - 19 81% - 100% 54%  - 79% 28 - 41 19 - 18 
S+33%U+50%dT 15 - 23 94% - 100% 63%  - 96% 21 - 33 16 - 18 

Medium 
tolerance 

S+5%U+50%T 2 - 5 31% - 44% 21%  - 29% 8 - 9 6 - 6 
S+10%U+50%T 4 - 8 38% - 56% 25%  - 38% 7 - 11 6 - 6 
S+20%U+50%T 5 - 10 44% - 69% 29%  - 46% 4 - 7 5 - 5 
S+25%U+50%T 6 - 11 50% - 75% 33%  - 50% 4 - 6 4 - 5 
S+33%U+50%T 8 - 14 56% - 88% 38%  - 58% 3 - 6 5 - 5 

S+20%U+50%dT 2 - 5 31% - 44% 21%  - 29% 4 - 4 6 - 6 
S+25%U+50%dT 4 - 6 38% - 50% 25%  - 33% 4 - 4 6 - 5 
S+33%U+50%dT 5 - 9 44% - 63% 29%  - 42% 3 - 4 6 - 5 

Tight tolerance  
No scenarios were 

feasible ⁋           
Relaxed tolerance: Less than 1 death or 170 cases of infection. This point also marks the point beyond which 
there was an exponential growth in infections in the simulated runs. 
Medium tolerance: Less than 77 cases of infections. Estimated as 1/CFR /%reported cases. We assumed a case 
fatality rate (CFR) of 2% in the general population in the US [33]; We assumed that 65% of infected cases are 
reported, which is the proportion showing medium to severe symptoms [27]. 
Tight tolerance: Less than 50 cases of infection. Estimated as 1/CFR. We assumed a case fatality rate (CFR) of 
2% in the general population in the US [33]. 
S: symptomatic testing, U: Mass test, T: trace and test, dT: delayed trace and test. 
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 ⁋ We defined a testing scenario as feasible if estimated contact rate thresholds among non-essential workers were 
at least 2 when transmission rates were 8% and 5% (corresponding to reported use of face mask and physical 
distancing [11,30]). The range of values in the table thus correspond to transmission rate of 8% - 5% 
‡ We assume 23% are essential workers and have a contact rate of 14 per day [37].  
† Contact rate threshold (per person per day): the average value for contacts per person per day to keep infections 
below the tolerance level. These reduced contact rates, from the original rates of 16 to 24 [42,43], can be achieved 
through reduction in population size at the noted thresholds. 

 521 

The corresponding peak numbers of trace and tests per day (per 10,000 persons) in the above 522 

feasible scenarios were at a reasonably manageable level. The relaxed tolerance level had a 523 

higher value (14 to 55 per day) than the medium tolerance level (3 to 11 per day) considering the 524 

population size on campus were lower in the latter case because of the tighter tolerance (Table 525 

1). The peak number of quarantines per day (per 10,000 persons) for the above feasible scenarios 526 

also seem manageable. As with above, the relaxed tolerance level had a higher value (6 to 25 per 527 

day) than the medium tolerance level (5 to 6 per day). Combinations of testing, contact rate, and 528 

population size for the full range of transmission rates evaluated are presented in Supplemental 529 

Appendix Table S4. 530 

When vaccines become partially or fully available, to keep the population size on campus at 531 

100% (𝑝̂𝑝 = 1), the level of testing necessary to effectively control an outbreak would depend on 532 

the vaccine coverage in the population (Table 2). To keep infection cases within the relaxed 533 

tolerance level, implementing symptomatic-testing-only will be sufficient if at least 95% (𝑉𝑉�) of 534 

the population are vaccinated (Table 2). With the addition of mass tests only, 5%, 10%, 20%, 535 

25%, and 33% mass tests per day would be sufficient if at least 89% to 95%, 84% to 89%, 74% 536 

to 84%, 63% to 79%, and 53% to 68% (𝑉𝑉�) of the population are vaccinated (Table 2), 537 

respectively, the range corresponding to transmission rate of 5% to 8%, i.e., the unvaccinated 538 

continue to use face masks and maintain physical distancing at current compliance levels.  539 
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Table 2. Combinations of testing, vaccine coverage, and population size for effective control 540 
of a disease outbreak  541 

Testing Vaccination 
coverage  

Population size  (if 
regular contact rate 
is 16) 

Population size  (if 
regular contact rate 
is 24) 

S 95% - 100% 100% - 100% 100% - 100% 
Mass tests only (% tested per day)       

S+5%U 89% - 95% 100% - 100% 100% - 100% 
S+10% U 84% - 89% 100% - 100% 100% - 100% 
S+20%U  74% - 84% 100% - 100% 100% - 100% 
S+25%U  63% - 79% 100% - 100% 100% - 100% 
S+33%U 53% - 68% 100% - 100% 100% - 100% 
S+33%U 38% - 53% 100% - 97% 79% - 83% 
S+33%U 23% - 38% 85% - 82% 64% - 68% 
S+33%U 8% - 23% 70% - 67% 49% - 53% 

Trace and tests only       
S+10%T  84% - 95% 100% - 100% 100% - 100% 
S+17%T 79% - 89% 100% - 100% 100% - 100% 
S+20%T  74% - 84% 100% - 100% 100% - 100% 
S+25%T  68% - 84% 100% - 100% 100% - 100% 
S+33%T 58% - 74% 100% - 100% 100% - 100% 
S+50%T 42% - 63% 100% - 100% 100% - 100% 
S+50%T 27% - 42% 100% - 92% 77% - 75% 
S+50%T 12% - 27% 87% - 77% 62% - 60% 

Trace and tests only (capped at 20%)       
S+10%T  84% - 95% 100% - 100% 100% - 100% 
S+17%T 79% - 89% 100% - 100% 100% - 100% 
S+20%T  74% - 84% 100% - 100% 100% - 100% 
S+20%T  59% - 69% 96% - 94% 84% - 86% 
S+20%T  44% - 54% 81% - 79% 69% - 71% 
S+20%T  29% - 39% 66% - 64% 54% - 56% 
S+20%T  14% - 24% 51% - 49% 39% - 41% 

The range of value presented correspond to transmission rate range of 5% - 8%, thus fixing face mask and 
physical distancing at reported levels. 
S: symptomatic testing, U: Mass test, T: trace and test, dT: delayed trace and test. 

 542 

If vaccine coverage (𝑉𝑉) is below 53% (the threshold noted above), it would be necessary to also 543 

reduce the population size (Table 2). If vaccine coverage (𝑉𝑉) is between 38% and 53%, 23% and 544 

38%, or 8% and 23%, in addition to mass tests at 33% per day, it would be necessary to maintain 545 

a population size threshold (𝑝̂𝑝) of at most 90%, 75%, or 60% on average, respectively, (Table 2) 546 
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and the unvaccinated continue to use face masks and maintain physical distancing at current 547 

compliance levels. Note: the population size threshold noted here is the average of the values 548 

reported for contact rate (𝐶𝐶) of 16 and 24 in Table 2.  549 

  550 

Instead of adding mass tests only, addition of trace and tests only to symptom-based testing at 551 

the lowest rate of 10% (or highest rate of 50%) will also be sufficient to keep the population size 552 

on campus at 100% (𝑝̂𝑝 = 1) if at least 84% to 95% are vaccinated (or 42% to 63% are 553 

vaccinated) (Table 2). If vaccine coverage (𝑉𝑉) is below 42% it would be necessary to also reduce 554 

the population size, keeping it to at most 89% on average if vaccine coverage is between 27% 555 

and 42%, and to at most 75% on average if vaccine coverage is between 12% and 27%. 556 

Considering that 50% trace and test, equivalent to 2 days from infection to isolation is a very 557 

tight timeline, which may be more feasible only with digital tracing, we also evaluated at a 558 

maximum of 20% trace and test, equivalent to 5 days from infection to isolation. This level of 559 

20% trace and test only will be sufficient to keep the population size on campus at 100% if 560 

vaccine coverage is at least 74% to 84%. If vaccine coverage is below that, it will also require a 561 

reduction in population size, e.g., to 75% on average if only 44% to 54% of the population are 562 

vaccinated (Table 2). All the above scenarios for trace and tests also correspond to the continued 563 

use of face masks and physical distancing at least at current compliance levels (transmission rate 564 

of 5% to 8%). The combinations of testing and vaccination coverage under the full range of 565 

transmission rates are presented in Supplemental Appendix Table S5. 566 

 567 
Table 3. Suitable testing options for effective control of a disease outbreak keeping contact 568 
rates at reported levels † ‡ 569 

Testing Number infected (per 
10,000 persons) 

Peak trace and tests per 
day (per 10,000 persons) 

Peak quarantine per day 
(per 10,000 persons) 
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Transmission 
rate (p) ⁋--> 5% 8% 5% 8% 5% 8% 

S+33%U 23 (20, 27) 44 (32, 67) 0 (0, 0) 0 (0, 0) 4 (3, 5) 7 (5, 13) 
S+33%T 30 (25, 36) 60 (42, 89) 14 (9, 17) 22 (14, 28) 12 (9, 14) 24 (18, 33) 
S+50%T 23 (21, 26) 34 (29, 41) 20 (12, 24) 29 (19, 36) 10 (9, 13) 18 (14, 22) 

S+5%U+50%T 19 (17, 21) 25 (22, 29) 8 (7, 13) 16 (10, 19) 6 (5, 7) 9 (8, 12) 
S+10%U+50%T 17 (16, 19) 22 (20, 24) 6 (5, 9) 8 (7, 10) 5 (4, 5) 7 (6, 8) 
S+20%U+50%T 16 (15, 16) 19 (18, 21) 4 (3, 4) 4 (4, 5) 4 (3, 4) 5 (4, 5) 
S+25%U+50%T 15 (15, 16) 18 (17, 20) 3 (2, 4) 3 (3, 3) 3 (3, 4) 4 (4, 4) 
S+33%U+50%T 15 (14, 16) 17 (16, 18) 2 (2, 2) 2 (2, 3) 3 (3, 3) 4 (3, 4) 
S+5%U+50%dT 30 (26, 34) 45 (38, 55) 26 (16, 32) 46 (36, 64) 15 (12, 18) 26 (21, 34) 

S+10%U+50%dT 24 (22, 27) 34 (29, 40) 11 (9, 18) 24 (15, 32) 10 (8, 12) 17 (14, 21) 
S+20%U+50%dT 19 (18, 21) 25 (22, 28) 4 (3, 8) 10 (6, 10) 6 (5, 7) 9 (8, 11) 
S+25%U+50%dT 18 (17, 19) 22 (20, 25) 3 (3, 3) 6 (4, 8) 5 (5, 5) 7 (6, 9) 
S+33%U+50%dT 17 (16, 17) 19 (18, 22) 2 (2, 2) 3 (2, 6) 4 (4, 4) 6 (5, 7) 
S: symptomatic testing, U: Mass test, T: trace and test, dT: delayed trace and test 
†Reported value of contact rate is on average between 6 and 8 per person per day under remote instructions 
[35,36]; Using our estimations, this would correspond to population size of about 31% and 42%. Results in the 
table correspond to this contact rate, presented as average (minimum, maximum) 
‡ Reported contact rate is on average between 16 and 24 per person per day under face-to-face instructions 
[42,43]. None of the scenarios for this contact rate were suitable, and thus, are not presented in the table. 
 ⁋ We defined a testing scenario as suitable if there were no exponential growth in infections when transmission 
rates were 5% and 8% (corresponding to reported use of face mask and physical distancing [11,30]). 

 570 

The total cases of infections and deaths over a 90-day semester if a fully unvaccinated population 571 

is on campus (contact rates of 16 to 24 per person per day as reported for regular face-to-face 572 

instructions [42,43]) suggest an exponential growth in infections in most testing scenarios, even 573 

if face mask and physical distancing are used at levels reported during the pandemic 574 

(transmission rates of 5% to 8%) (Supplemental Appendix Table S6).  With contact rate of 6 to 8 575 

per person per day (corresponding to reported numbers when several universities moved to 576 

partial or full remote instructions [35,36]) and use of facemask and physical distancing at levels 577 

reported during the pandemic, an exponential growth in infections was prevented with the 578 

following testing scenarios: 33% per day mass test only, at least 33% trace and test only, any of 579 

the combination tests, and any of the delayed combination tests (Table 3). In these suitable 580 
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scenarios, the peak number of trace and tests, per 10,000 persons, varied from 2 to 64 per day, 581 

and the peak number of quarantines, per 10,000 persons, varied from 3 to 26 per day (Table 3).   582 

 583 

Discussions  584 

This work estimates, under varying combinations of mass test, trace and test, and transmission 585 

rate, the contact rate thresholds that would help efficiently control an infectious disease outbreak 586 

on residential university campuses in the United States. The metric typically used in the COVID-587 

19 literature for evaluating testing strategies is the reproduction number 𝑅𝑅0, which combines the 588 

contact rate and transmission rate. As interventions that influence transmission rates are different 589 

than those that influence contact rates, separating these parameters help systematically evaluate 590 

metrics to inform epidemic control protocols on university campuses. In this study, we extracted 591 

four main metrics. First, the contact rate threshold among non-essential workers after accounting 592 

for the higher contact rate among essential workers, which could help inform the size of social 593 

circles at the individual-level and schedule group activities such as in labs and offices. Second, 594 

population size threshold, i.e., the maximum proportion of the actual population size, which 595 

could help university-level activity decisions such as the fraction of classes that should be moved 596 

to remote instruction. Third, the threshold values for vaccination coverage for the campus to 597 

return to normal, i.e., the minimum vaccination coverage for having 100% of the population back 598 

on campus, which would help plan for the period post introduction of vaccines. Fourth, the 599 

threshold values for population size if vaccine coverage is below required thresholds, which 600 

could help decisions in the event that vaccines are not widely available that coverage (proportion 601 

vaccinated) is not at levels sufficient to fully resume normal activities. The fourth metric could 602 

especially be useful in the transitionary phase to normality (until vaccines become fully 603 
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available) and where the results suggest lowering the population size by just a small number, 604 

which could be achieved by moving only a few classes online, such that, the overall population 605 

density on campus on any given day is lower but most students have most (if not all) of their 606 

classes as face-to-face. 607 

 608 

While the implementation of the decisions related to the above metrics are driven at the 609 

university-level, adherence and feasibility to use of interventions such as face mask and physical 610 

distancing could vary by individual behaviors [37,39,40]. By separately modeling contact rates 611 

and transmission rates in this study, we extracted results corresponding to transmission rates (of 612 

5% to 8%) that match reported behaviors for face mask use and physical distancing [11,30], and 613 

thus evaluated the university-level decisions under these adherence or feasibility ranges.  614 

 615 

Our analyses suggest that implementing only testing, only face mask use and physical distancing, 616 

or only population size reductions will not be sufficient, but require combinations of these 617 

interventions to successfully control an outbreak on university campuses. Further, in the absence 618 

of vaccinations, at reported levels of face mask and physical distancing, testing alone without 619 

reducing population size would also not be sufficient to control an outbreak. This suggests that 620 

university campuses have high population densities that, for effective control of highly virulent 621 

infections such as SARS-CoV-2, it would require reducing the population size such as through 622 

remote learning.  623 

 624 

Although individual interventions are not sufficient, there are multiple choices for combinations 625 

of interventions to choose from if vaccines are unavailable. If, along with continuing face mask 626 
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and physical distancing at current levels, the population size is kept to at most 34% (or 44%) of 627 

the actual population size, mass tests only of 25% (or 33%) per day would help control an 628 

outbreak (Table 1). The choice between mass tests of 25% per day vs. 33% per day should 629 

consider the costs of a greater proportion remote learning (quantitative and qualitative costs) vs. 630 

costs of both testing more often and testing a larger population.  631 

 632 

An alternative to mass tests only would be trace and test only, along with continuing face mask 633 

and physical distancing at current levels and reducing population size. Trace and test only would 634 

also be sufficient at rates of 33% (or 50%) if population size is kept to at most 39% (or 52%) 635 

(Table 1). These population size range are close to the 34% (or 44%) reported above for 25% (or 636 

33%) per day mass tests only. Trace and test of 33% and 50% correspond to 3 days and 2 days, 637 

respectively, from the time an infected person makes contact with an individual to effective 638 

isolation of that individual. Feasibility of this short turnaround times would determine the choice 639 

between use of mass test vs. trace and test. Turnaround times are expected to be shorter with 640 

digital contact tracing, such as smart phone apps, compared to manual tracing, and feasibility and 641 

adoption of apps could be higher among university students than general population. However, 642 

studies related to its feasibility and adoption followed by adherence to isolation, among other 643 

issues such as privacy and alternative digital technologies are only recently emerging [44–47]. 644 

Our results also suggest that, if these turnaround times are not achievable and further if there are 645 

any delays in trace and test initiation, then trace and test alone is not favorable (none of the 646 

delayed trace and test were feasible (Table 2)) and should instead adopt either mass tests only or 647 

mass test with trace and test. Use of mass test with trace and test could improve trace and test 648 

due to potential early diagnosis of index persons. Our results suggest that, if mass tests can 649 
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increase trace and test to 50% (within two days from contact to isolation), there is more 650 

flexibility in trade-offs between mass test rates and contact rate thresholds, and thus more 651 

flexibility in population size (Table 2).  652 

 653 

In the event that vaccines are available, the full population can be back on campus and resume 654 

normal activities provided at least 95% of the population is vaccinated (Table 2). If vaccine 655 

coverages are lower than 95%, resuming normal activities with the full population size on 656 

campus would require additional asymptomatic testing, with the level of testing depending on 657 

vaccine coverage. Mass tests of at least 25% per day would be sufficient if vaccine coverage is at 658 

least 70%, or mass tests of at least 33% per day would be sufficient if vaccine coverage is at least 659 

59%. If vaccine coverage is below 59%, to control an outbreak, in addition to mass tests at 33% 660 

per day, it would also require lowering the population size to 90%, 75%, and 60%, if vaccine 661 

coverage is at 46%, 31%, and 16%, respectively (Table 2). 662 

 663 

Corresponding to the reported compliance to face mask and physical distancing and reported 664 

contact rates of 6 to 8 per person per day (a population size of 31% to 42% as per our 665 

estimations), from surveys [35,37,39] conducted over the year 2020 when universities 666 

transitioned a large proportion of classes to remote instructions and vaccines were unavailable, 667 

our results suggest the need for at least 33% mass test only or 33% trace and test only (Table 3). 668 

Scenarios that did not meet these criteria led to exponential growths in infections. These results 669 

generally match observed cases over the Fall 2020 semester, where several campuses saw cases 670 

into the thousands within the first two weeks of opening and were able to quickly control the 671 

spread within two to three weeks by temporarily transitioning to remote instructions [48]. While 672 
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the universities were able to effectively control the outbreak quickly, it was also observed by this 673 

study [48] that the infections rapidly spread into the neighboring community, which were less 674 

successful in controlling the spread. Therefore, we believe, results obtained from our study, 675 

which set tight tolerance levels on infection cases, would be beneficial for developing epidemic 676 

response plans that consider the interests of the broader community. Our results also suggest that, 677 

with asymptomatic testing only, it would be necessary to have a vaccination coverage threshold 678 

of >95% for a university to fully return back to normal. This threshold is much higher than the 679 

typical 70% to 80% range used for herd-immunity in the literature for the general population 680 

[49], to a small extent because of setting a tighter tolerance but to a large extent because of the 681 

higher population density characteristic of university campuses. The latter can also be observed 682 

in 𝑅𝑅0 values estimated for universities, which in some instances went above 10 even with online 683 

instructions [48], while the herd-immunity in the general population is approximately calculated 684 

as 1 − 1/𝑅𝑅0 using a 𝑅𝑅0 of 3.5. 685 

  686 

Our work is subject to limitations. Our model is deterministic. We used an average contact rate 687 

for all persons in order to estimate threshold values that could help inform university-level 688 

decisions. We did not model contact rates to be representative of actual expected networks 689 

between individuals. We did not explicitly model other interventions that could reduce 690 

transmission rate such as controlled ventilation, filtering air and controlling air flow, which are 691 

likely to impact transmissions [50]. The transmission rates also have a large range of uncertainty 692 

due to varying individual behaviors, the data used for streamlining the analyses in this study are 693 

based on limited data availabilities, however, the extrapolations over the wide range of 694 

transmission rates could be utilized. We did not model false positives for any of the testing 695 
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scenarios and thus susceptible persons immediately return back to susceptible compartment after 696 

testing. We did not model other flu like illnesses and thus we did not assess the additional 697 

healthcare resource needs such as testing and quarantining because of similarity in symptoms 698 

with COVID-19.  In estimation of vaccination thresholds, we did not consider the natural 699 

immunity developed among persons who may have been infected previously. The estimation of 700 

vaccination thresholds assume that the virus is still prevalent in the larger community and thus 701 

there is a chance of the infection entering the population, such as through local or global travel. 702 

We assume that the population density is similar across university campuses with contact rates 703 

between 16 and 24, and thus, this assumption should be considered when generalizing to 704 

campuses.   705 

 706 

In conclusion, the results from this study could be used to collectively inform decisions related to 707 

testing, population size reductions through remote instructions, size of social circles, personnel 708 

scheduling in labs and offices, under scenarios of both unavailability or partial availability of 709 

vaccines, and within the observed levels of compliance to face mask use and physical distancing. 710 

The analyses conducted here specifically streamlined the results to the COVID-19 disease caused 711 

by the SARS-CoV-2 virus. However, given the wide range of transmission rates evaluated here, 712 

which were based on  results from a meta-analysis study that evaluated SARS-CoV-2 and other 713 

viruses of similarly high virulence [11], broader observations from this study could be 714 

extrapolated for use in early stages of new outbreaks of similar viral respiratory infections with 715 

similar incubation periods, [24] where non-pharmaceutical intervention options such as face 716 

masks, physical distancing, remote instructions, and testing are the suitable options. As was the 717 

case at the time of conducting this study, in the early stages of an outbreak, there is uncertainty in 718 
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the baseline transmission rate, efficacy of face mask use and physical distancing [11]. Thus, the 719 

results over the range of transmission rates might only serve as a preliminary guide, until more 720 

information becomes available for more streamlined analyses.  721 
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