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Abstract

We study an estimator with a convex formulation for recovery of low-rank matrices from
rank-one projections. Using initial estimates of the factors of the target d; x dy matrix of
rank-r, the estimator admits a practical subgradient method operating in a space of dimension
r(dy 4+ d3). This property makes the estimator significantly more scalable than the convex esti-
mators based on lifting and semidefinite programming. Furthermore, we present a streamlined
analysis for exact recovery under the real Gaussian measurement model, as well as the partially
derandomized measurement model by using the spherical ¢t-design. We show that under both
models the estimator succeeds, with high probability, if the number of measurements exceeds
r2(dy + do) up to some logarithmic factors. This sample complexity improves on the existing
results for nonconvex iterative algorithms.

1 Introduction

We consider the problem of estimating a matrix My € C%*92 of known rank r < min{d;, ds} from
rank-one “sketches” of the form

mz‘:anobi, i:1,...,n, (1)

for random vectors a; € C* and b; € C% drawn from certain distributions. More specifically, given
the observations {(a;, b;, m;)};_;, the goal is to estimate factors Xo € Ch>xT and Yy € C2X" of
M() (i.e., Mg = XO}IO*)

Depending on the distribution of (a;, b;);, the observation model (1) can describe various low-
rank matrix recovery problems including matrix completion [11, 25, 30, 28, 46], phase retrieval
[12, 13], blind deconvolution and calibration [1, 10], and sketching [27, 9, 7, 23] to name a few. There
are various algorithms proposed in the literature for these problems that can be broadly categorized
as follows: the algorithms based on semidefinite relaxation [11, 25], the iterative methods based on
variants of nonconvex gradient descent [30, 46, 37|, alternating minimization [28], or approximate
message passing [41]. We refer the interested reader to the survey papers [16] and [15] for a broader
view of the low-rank matrix recovery literature.

Semidefinite relaxations of the low-rank matrix recovery provide the state of the art sample
complexity with linear scaling in the rank and no dependence on the condition number. From
the algorithmic perspective, however, these methods suffer from a high computational cost, and
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more importantly memory usage. This drawback motivated a suite of nonconvex approaches with
comparable but weaker sample complexity guarantees [15]. Another line of research, originally
studied for phase retrieval, proposed recovery by a convex program that avoids lifting and the
semidefinite constraint altogether [3, 24, 4, 2]. This new convex approach admits inherent robustness
due to convex geometry of the optimization formulation together with flexibility in adopting a
number of off-the-shelf numerical convex optimization algorithms. We apply this framework to the
low-rank desketching problem in this paper. We extend and streamline the analysis of the special
case of rank-1 recovery with Gaussian factors provided in [2], to a more general low-rank recovery
problem.

1.1 Anchored regression

Let Xvo and ?0 be a pair of matrices for which Xvo?o* approximates the ground truth matrix M.
With (-, ) being used throughout the paper to denote the real-valued inner product defined as

(U, V)< Re (tr(U*V)) ,

our proposed estimator is formulated as
-~ — — 1
(X,Y)€e  argmax (X0, X)+ (Y0, Y) — = > 4(X,Y), (2)
XeChxryecdaxr g

where

de 1 * 1 * * *
GXY) = Sl X al* + SV bl + o XY b — mi

The optimization in (2) is effectively a convex program and can be solved efficiently. To clarify
this fact, observe that the functions ¢;(X,Y’) can be written equivalently as

1 * 1 * * *
6(X,Y) = o S X aill” + SV bil|* + Re(¢ (a; XY b — ma)) (3)
1
= sup =||X*a; + oY b||* — Re(¢pm;)
o1 lol=1 2

For any fixed ¢, the argument of the supremum is clearly convex in [X; Y] € Clditd2)xr  Therefore,
4;(X,Y) is also a convex function of [X; Y], meaning that (2) is a convex program.

Because of the specific form of the loss functions ¢;(X,Y’), the estimator in (2) can be viewed
as a “convexification” of the (nonconvex) least absolute deviation (LAD) estimator by quadratic
regularization. Previously, [2] has studied similar estimators for observations in the form of differ-
ence of convex functions, with the bilinear observations for rank-1 matrices as a special case. In
this paper we provide a streamlined analysis of the estimator tailored to desketching of a low-rank
matrix from its rank-one measurements in (1). The following provides the high-level description
of the sample complexity we have established for the anchored regression estimator. The precise
statements are provided in Theorems 1 and 2.

Theorem. Given a “good” approximation of the unknown rank-r matriz My as XVO?O* ~ My, with
high probability, the proposed anchored regression recovers My exactly, from O(r(dy+dz) polylog(dy+
ds)) random rank-one measurements. The hidden constant in the sample complexity depends also
on the “low-rank condition number” of M.

The sufficient number of samples for the exact recovery provided by the theorem is near optimal
compared to the degrees of freedom of the rank-r matrix model. The random sketching models and
the size of the neighborhood will be specified in the following section.



1.2 Sketching Models

We study the sample complexity of our proposed estimator under two different random measure-
ments models. The first model, which we refer to as the real Gaussian sketching, simply uses the
outer product of two independent Gaussian vectors as the rank-one sketching matrix. The second
model, called the partially derandomized sketching, mimics the behavior of the firs model but the
random rank-one sketching matrix takes realizations from a finite set. More precisely, the first few
moments of the sketching matrix of the second model are designed to coincide with those of the
real Gaussian model.

1.2.1 Real Gaussian sketching

This model simply considers the random vectors [a;; b;] € R¥H% to be independent copies of a
random vector [a; b] € R%+% gatisfying

[a'; b] NN(O’Id1+d2) . (4)

1.2.2 Partially derandomized sketching

Next we consider a measurement distribution supported on a special finite set whose first 2¢ mo-
ments coincide with those of the real Gaussian model. A configuration of such a set is called a
complex projective t-design and designs were first introduced by Delsarte et al. [19]. A variant of
this model has been previously employed for the phase retrieval [5, 26, 32]. The concept of t-design
has been utilized in coding theory and quantum information theory, particularly in the analysis of
randomized algorithms. One drawback is the size of the set generally grows exponentially in the
dimension while the exponent is proportional to the parameter ¢. Concrete constructions are widely
available for the special case with degree 2 and numerical algorithms for an approximate design for
higher order are also available in the literature. We refer to [26] for more details on the ¢-design
model and the related references. Below we describe the version of the model that is relevant for
OUr purposes.

Let Pg,,¢ denote the totally symmetric subspace of (C%)®! such that all elements are invariant
under every possible permutation of ¢ factors (see, e.g., [33]). Then a weighted ¢-design is defined
as follows [26].

Definition 1. Lett € N and wr, ..., wy € C% be unit vectors. The set {wi}f\;l with corresponding
weights {p; fil such that p; > 0 for alli = 1,...,N, and Zi]\il p; = 1 is a weighted complex
projective t-design of dimension n and cardinality N, if

N —1

. d+t—1
Zpi(wiwi)®t:< ; > Pyt
=1

where Pgy,.¢ denotes the projector onto the totally symmetric subspace Sym! of (C%)®t,

Our second sketching model is given by the concatenation of two independent random vectors
a and b in the following construction: Given a weighted ¢-design {(w;, p;) 5\21 in Ch with ¢t > 2,
let @ be a random vector given by

Pla=Vdiw}=p, i=1,....N. (5)
Then a satisfies

—1
N di+t—-1
E(aa*)® = dﬁ( ; > Pyt - (6)
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Similarly, given a weighted ¢-design {(wy/, p;)}f\fl in C% with ¢ > 2, let b be a random vector given

by
P{b:\/@wg}:pg, 1=1,...,No. (7)
Then b satisfies .
" d2 +t—-1 -
E(bb )®t = d’;( ; ) Psymt ) (8)

By construction, a weighted ¢-design is automatically a weighted #'-design for all ¥ < t. Given
accurate anchor matrices, a performance guarantee for (2) can be derived only requiring the moment
conditions of up to the 4th order. However, obtaining such accurate anchor matrices require a more
stringent condition on higher moments of up to order 2t = Q(log(d; + dz2)). This is why we assume
that t > 2 in constructing partially derandomized measurement vectors with t-designs.

1.3 Spectral initialization

Our main results rely on the availability of fo and %* such that 5(/0?0* is close to the ground truth
matrix My. To provide a stand-alone theory that does not require any oracle information, we also
analyze a specific method to obtain such matrices )A(/O and %* described below.

Let A : Ch*d 5 C" denote the linear operator representing the rank-one measurements in
(1), i.e., it is defined by

vn

Then its adjoint operator, denoted by A*, is given by

M — AM) = (1 anb,) .
=1

Y= A* Zyzaz

The spectral method computes an estimate Mg of the unknown matrix My as the best rank-r
approximation of A* A(Mj) with respect to the Frobenius norm. Under the two random sketching
models, we obtain suitable upper bounds on the approximation error through matrix concentration
inequalities.

Next we factorize the estimated matrix into Mo = XOYO through the singular value decompo-
81t10n Let Mo UOZOVB be the compact singular value decomposition of My. Then we choose
XQ and Yb by

X, = ﬁoig/Q and Yy = %:‘7/01/27
so that they have the same singular values. This particular decomposition provides a set of useful
properties, such as the identity

5= X;Xo=Y;'Yo,

that are utilized in the proof of our main results.

The precise statement of the requirements for the spectral initialization, and the corresponding
sample complexity under the two considered measurement models are provided in Section 2. The
pertaining derivations are provided in Section 6.



1.4 Discussion and Related work

Under the real Gaussian sketching model and given an initial estimate satisfying (9), we demonstrate
that, with high probability, the estimator in (2) recovers My exactly, provided the number of
measurements scales as n > Cdr, where d = max(d;,ds). This sample complexity coincides with
the sample complexity achieved by the estimators based on lifting and semidefinite relaxation [14, 9].
On the other hand, our estimator is formulated through an explicit factorization only with r(d;+d2)
variables while the lifted convex estimator over djdy variables [14, 9]. Furthermore, because the
methods based on semidefinite relaxation do not operate in the factorized domain, they often need
singular value calculations which further complicates their scalability.

However, computationally inexpensive methods used to find the initial estimates obeying (9),
often lead to a suboptimal overall sample complexity. In fact, we show that, with high probability,
the spectral initialization succeeds if n > Cdr? which dominates the sample complexity n > Cdr
for the “oracle-assisted” estimator mentioned above.

The iterative hard thresholding algorithm is studied under variants of the restricted isometry
property for low-rank matrices in [28] and [23]. This algorithm is computationally less expensive
than the generic convex optimization algorithms that solve the semidefinite relaxation, because it
only requires to perform low-rank SVDs in its iterations rather than the full SVDs. However, the
fact that the iterative hard thresholding method operates in the lifted domain, is an obstruction
to its scalability. Several other iterative algorithms have been proposed and analyzed under the
real Gaussian sketching model. Earlier methods used resampling to draw fresh measurements per
iteration. Therefore, these methods need to terminate after finitely many iterations, which only
allows for approximate recovery up to a prescribed accuracy €. Prior work on this approach achieve
the sample complexities O(dr*log? dlog(1/€)) [51], O(dr®log(1/€)) [36], and O(dr?log* dlog(1/e))
[44]. In more recent work, [42] and [35] studied performance of the nonconvex gradient descent
and established the sample complexities O(drS log? d) and O(dr*logd), respectively. Our estimator
outperforms these results for nonconvex approaches. In fact, our estimator would have achieved
the ideal sample complexity should there be an initialization with the sample complexity O(dr).
The hidden constant in this sample complexity, similar to the sample complexity of the nonconvex
methods, depends on the “low-rank condition number” of the ground truth matrix, defined precisely
below in Section 2. It is also worthwhile to mention that the existing results in the literature
often focus on the case where the rank-one measurement matrices or the ground truth matrix are
symmetric. The model (1) considered in this paper allows for a general choice of the measurement
factors a; and b;. For simplicity, we only consider independent factors a; and b;, but the provided
framework can be adapted to the case of dependent factors by modifying some of the relevant
calculations.

2 Main results

Our main results demonstrate how many observations suffice for the estimator (2) to reconstruct
the unknown matrix XoY;". Our first theorem provides a sample complexity that guarantees
accuracy of the estimator (2) under the real Gaussian sketching model. Throughout we use £ > 1
to denote the (low-rank) condition number of My, which refers to the ratio of the largest and
smallest non-zero singular values of My, i.e.,



Theorem 1 (Real Gaussian desketching). Let ([a;; bi]);, be independent copies of [a; b] ~
N(0,14,14,). Let Xo e Ch*" and Yb € C%X7 be matrices that satisfy XOXO = Y}] Yb and

| Xo Y5 — My < 72672 | My (9)
If the number of measurements n obeys
n 2 max{kr(dy + d2),log(1/0)}, (10)

then with _probability at least 1 — § the estimates X and Y obtained by the anchored regression
satisfy XY * = M.

The result by Theorem 1 is comparable to the analogous result for the lifted convex optimization
by nuclear norm minimization [14, 9]. However, the dependence on the condition number, which
does not appear in the lifted case, is the cost we need to pay to save the computation through
explicit factorization.

We also present the sample complexity for the success of the spectral initialization under the
same model.

Proposition 1. Let ([a;; bi])iL be independent copies of [a; b] ~ N'(0, 14, +a,). Then the estimate
(Xo, Yo) by the spectral initialization satisfies (9) with probability at least 1 — (dy + d2)~%, if

n > &3k42(dy + da)log?(dy + da) .

As shown in Theorem 1 and Proposition 1, the number of samples enough for the success of
the spectral initialization dominates that for the estimator. Although the spectral initialization is
just one approach to obtain an initial estimate satisfying (9), it has not been shown any alternative
practical method providing the same accuracy from fewer measurements.

Next we present the corresponding results for partially derandomized sketching below.

Theorem 2 (Partially derandomized desketching). Let a and b are independent random vectors
uniformly distributed over the corresponding t-design sets according to (5) and (7) with t > 2. Let
([ai; bi])i—, be independent copies of [a; b]. Let My, Xy, and Yy as in Theorem 1 satisfying (9).
If the number of measurements n satisfies

n 2 kr(dy + do) max{log(d; + ds),log(1/6)}, (11)
then the anchored regression exactly recovers My with probability at least 1 — 6.

Proposition 2. Under the sketching model in Theorem 2, the spectral initialization provides
(X0, Yo) satisfying (9) with probability at least 1 — (dy + d2)~% provided

2t/(2t—1
n >t (dy + do) T2y (t2f<;2r3/2(d1 I d2)1+a/2t) /(2t=1) . (12)

Particularly, if t > (o + 1/2)In(dy + dg), then the condition in (12) simplifies to
n > o?kr?(dy + do) In*(dy + do) .

Compared to the real Gaussian sketching model, the derandomized case is guaranteed by slightly
more measurements (larger by a logarithmic factor).



3 Numerical Results

A set of Monte Carlo numerical results are provided to illustrate that the empirical behavior of
the estimator is consistent with the main theoretical results. We first discuss how the convex
program in (2) can be solved by a practical numerical algorithm. Recall that the estimator in (2)
is equivalently written as

(X,Y)e  argmin  f(X,Y), (13)
XGCdl XT,YECdQ Xr

where the convex objective function is given by
e N 1 < 1 * 2 1 * 2 * *
FX,Y) = (X0, X) = (Y0, Y) = - 3 (51X all” + SIYbl” + [af XY = mi] ) .
i=1

A simple subgradient method can be used to find a minimizer to (13). The estimator is refined

by
X1 X
fry — G s
[}fri-i-l] [Yt] et

where 7, denotes the step size at the tth iteration and Gy € Cl@1+92)x7 ig 5 gubgradient of f at

[X: Yy] specifically given by
+1 Xn: aa;  ¢;ja;bi| | X;
n ~ |¢ibia;  bib; Y, |’

¢; = exp (1 Arg(a; X, Y,"b; — m;)) ,

G =—

where

with + = /=1 denoting imaginary unit, and Arg(z) denoting the principal argument of z € C.
The per-iteration-cost of this subgradient method is comparable to that of the nonconvex gradient
descent. We use the diminishing step size rule for (n;);. We chose the simplest algorithm to solve
the convex program in (13). However, we believe that more sophisticated optimization algorithms
are also applicable to our problem. For example, in expression of 4;(-, -) as (3) the constraint |¢| = 1
can be relaxed to |¢| < 1 without affecting the function value. Then, we can show that the proposed
estimator can be equivalently formulated as a convex-concave saddle-point problem, which can be
solved using algorithms based on mirror descent and mirror prox [45, Chs. 5 and 6], [8, Ch. 5].

The first set of simulation provides the empirical phase transition as a function of the rank while
the other parameters are fixed (d; = do = 128 and n = djda/4). The measurements are generated
by the standard complex normal distribution. Theorem 1 shows that, if fo%* is close enough to
the ground-truth matrix My, the maximum rank that leads to the exact recovery is determined
by (10). In order to consider the effect of the accuracy of the anchor, we introduce a parameter
a € [0,1] to linearly interpolate between the spectral initialization, corresponding to a = 1, and
the ground truth, corresponding to @ = 0. Figure 1 illustrates the empirical phase transitions,
with the left and right panels respectively showing the median and 90th percentile of the relative
error over 100 trials. Exact recovery is achieved in most cases for r < 2. The top rows in Figure 1
shows the empirical recovery phase transition when (X, Y)) is given by the spectral initialization,
whereas the bottom rows correspond to the ground truth chosen as the anchor. Figure 1 suggests
that at larger o the phase transition occurs at smaller «, thereby requiring a more accurate initial
estimate XoYp , which is consistent with the requirement in (9).



(a) Median (b) 90th percentile

Figure 1: Empirical phase transition in the noiseless case. The logarithm base 10 of percentiles
of the normalized estimation error HX\?* — Mpy||r/||My||F is plotted. The size of matrix and the
number of measurements are set to d; = do = 128 and n = d;da /4, respectively. The anchor matrix
is computed from a convex combination of the rank-r matrix in the spectral initialization and the
ground truth respectively with weights o and 1 — «. Thus a = 1 denotes the case with the spectral
initialization.

The second simulation illustrates how the additive noise to measurements propagates to the
estimation error. We consider the regime of parameters where the convex estimator provides exact
recovery in the noiseless case. We set d; = do = 128, r = 2, and n = d1da/4. The 90th percentile
of 100 realizations was observed while the signal-to-noise ratio (SNR) varies over 5 to 50 dB.
Figure 2 shows that the estimation error decreases gradually as SNR increases. In other words, the
estimation error in the presence of measurement noise scales smoothly as a function of SNR. This
stable performance of the estimator is due to the nice geometry of the convex program in (13).

normalized estimation error

5 1‘(] 1‘5 2‘(] 2‘5 3‘0 3‘5 4‘0 4‘5 50

SNR
Figure 2: Estimation error for varying SNR. The observation is corrupted with additive Gaussian
noise so that m; = af Myb; +; fori =1,...,n with (1, ...,(, being i.i.d. N'(0,02). SNR is defined
as 10logyo(3°1; m?/0?). The 90th percentile of the normalized estimation error is plotted. The
size of matrix, rank, and number of measurements are set to d; = dy = 128, r = 2, and n = d1d2/4,
respectively. The anchor matrix is computed by the spectral initialization.



4 Proof of the Main Theorems

We prove Theorems 1 and 2 in two steps. First, we derive a set of deterministic conditions to
guarantee exact recovery for the proposed estimator. Then, we show that these conditions hold,
with high probability, for the sketching models introduced in Section 1.2.

4.1 A deterministic sufficient condition for exact recovery

Recall that My = UyX V" is the compact singular decomposition of the ground truth matrix Mp,
where both Uy € C#*" and Vj € C%*" have orthonormal columns, and X, € R™™" is the diagonal
matrix of the singular values. The support space of My, denoted by 7, is defined as

TE{AVy +UoA; - Aech i=12}.

With these notations, the following proposition provides a set of deterministic sufficient conditions
for the estimator (2) to exactly recover My. The proof is deferred to Section 5

Proposition 3. Let r and  respectively denote the rank and the condition number of My, and
(Xo, YE)) be a given pair of matrices that satisfy Xo XO = Y{) Yb Furthermore, suppose that there
exist p € (0,1], and absolute constants Cy,Ca > 1 such that

1
EZ\(aib;‘,HHEpHHHF, forall H e T, (14)
=1
I —lzn:a a; i (15)
dy nk:l kOl > Cl T"Ka

1 & P
I, — = bb: 16
| dz nkgl k‘ k: — Cl\/ﬁv ( )

and

~ M,

HXoYo* _MOH < pllMol| (17)

Co/TK2

Then, the mazimizer (X,Y) to (2) is unique and satisfies XY * = Mj.

4.2 Verifying the sufficient condition under the random models

We demonstrate that under the random measurement models introduced in Section 2 the assump-
tions made in Proposition 3 hold with high probability.

4.2.1 Small-ball method

Our analysis is based on the small-ball method [31, 39]. A simple exposition and some applications
of this method can be found in [48] and [21]. We provide the proofs for the manuscript to be
self-contained as well as addressing some subtle but important differences due to operation in the
complex domain.

We first show in the following proposition that (14) is satisfied with high probability.



Proposition 4 (Lower-tail via the small-ball method). Let T be a subset of C"*% that is invari-
ant under multiplication by unit-modulus scalars. For i.i.d. and isotropic random vectors [a; b],
[al; bl}; R [an; bn] € Cdl+d2 deﬁne

def
()Y inf P{la*Hb| > 7|H|.) ,
po(T)VE | int P {la” Hb| > 7 H]lg)

a;bl, H)
¢ (T “E sup 7< ,
7) HeT\{o}fl < Hlg

where €1, ...,y are i.i.d. Rademacher random variables independent of everything else. Then, for
any T >0 and § € (0,1), with probability at least 1 — §, we have

a’Hb; | T&(T) i, log(1/0) .

!
T)— 18
HGT\{O} n Z |Hllp ~ mor(T) vn n (18)
Proof. Using [z]<¢ = min{z, ¢} to denote the “saturation” at t, for any 7 > 0, we have
1 & 1 &
n Z:ZI la; Hb;| > n 12::1 [|a; HszST”HHF ) (19)

for every H € R%*492. By normalizing by || H||p, it suffices to find a lower bound for the right-hand
side of (19) for all H € TS, where S denotes the unit sphere of the Frobenius norm in C% 9z,

Adding and subtracting E (|abei\§T), and using the fact that E (Ha;‘kHbngT) > 7P (lafHb;| > 1),

we can write

1, 1 & .
o 2 llai Hbdl, > 23 P (jaiHb 2 7
- 1*n (20)
—=N"E([|larHb; — [|a} Hb;
P> (lla; Hbill,) — lla; Hb,l],

The function F : (C)" — Rx¢ defined as

€: 1 - * *
F(las; bil,-. o an; b))% sup = [STE ([laf Hbill, ) — [Ja} Hbl.,
=1

HeT(s ™

has the bounded difference property. Therefore, invoking the bounded difference inequality [38],
with probability at least 1 — §, we have

F([as; bil,...,[an; ba]) <EF([a1; bi,...,[an; ba]) + 7 log;/é). (21)

Using the standard Giné-Zinn symmetrization argument (e.g., see [49, Lemma 2.3.1]), the expec-
tation on the right-hand side of (21) can be bounded as

EF ([as: bil,..., [an: bn])g\/Qﬁ[E< sup \FZ& a2 Hbi]. )

HeT()S

10



where the expectation on the right-hand side is with respect to [a1; bi],...,[an; by] as well as
the i.i.d. Rademacher random variables 1,...,&,. Since the function 2z — [|z[|, is 1-Lipschitz,
invoking the Rademacher contraction principle [34, Theorem 4.12] yields

[E(HGS};%S\FZQ |a; Hb;|] - ) (H;E%S\FZQM Hb|) (22)

Let ¢ be a unit-modulus scalar in C that is selected uniformly at random, and E, denote the
expectation with respect to ¢ conditioned on everything else. Straightforward calculus shows that
for any z € C we have |z| = (7/2)E, (|Re(¢*2)|). Applying this identity in (22) then yields

1 n
[E( sup nZsHa Hb;|| - )Sg[E( sup fzgl[qu,]all,qﬁH)])

HeTﬂS i=1 HeT(S

7
< —EE sup ei [(a;b;, oH)]
2 d)(HeTﬂs\fZ )
7
< -—E sup 82 az
2 (HeTﬂ§ Z )
T

where the second, third, and fourth lines follow respectively from the Jensen’s inequality, the
assumption that 7 is invariant under multiplication by unit-modulus scalars, and applying the
Rademacher contraction principle once more.

Furthermore, since [a1; b1],...,[as; b,] € C11T9% are identically distributed, we have

1 n
=Y P(lajHb;| > 7) =P (la*Hb| > 7) . (23)
Nz

Therefore, in view of (20), (21), and (23), with probability at least 1 — 4, for all H € T NS we
have

1 = * . * o WCTL(T) o log(l/é)
E;HaiHbZHST > 7P (la*Hb| > 1) o T\ g

Recalling the definition of p,(7) is enough to complete the proof. O

We apply Proposition 4 under the assumptions in either of Theorems 1 and 2. Then (14) is
satisfied with high probability provided that the right-hand side of (18) is lower bounded by a
nonnegative scalar p. The following lemmas provides a lower (resp. upper) bound on p,(7) (resp.
€, (7)). The proofs are provided in Appendix sections B.1 and B.2.

Lemma 1 (Lower bound on probability). Let [a; b] to be a random vector drawn either according
to (4), or the pair (5) and (7). Then

pr(T) 2 e(1 - 77)?

for an absolute constant ¢ > 0.
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Lemma 2 (Upper bound on Rademacher complexity). Let [a; b] satisfy that i) a and b are
independent; ii) each of a and b is isotropic. Then

Co(T) < o/(dy +do)r,

By plugging in the results of the above lemmas, a sufficient condition for satisfying (14) with
probability 1 — 0 is given by

@rdyr  [log(1/)
N4D -7 on =

Given p, by choosing C' in the assumption n > Cmax{r(d; + d2),log(1/4)} large enough and
by choosing 7 small we obtain that (24) holds with probability 1 — .

o(l—72)% - (24)

4.2.2 Approximate Isotropy

Next we show that (15) and (16) are satisfied with high probability for both the Gaussian and
t-design cases. To simplify the notation, let 7 denote the right-hand side of (15), which coincides
with that of (16), i.e., n = p/C1+/rk. We are interested in the regime where 0 < n < 1.

In the Gaussian case, the concentration of extreme singular values of a Wishart matrix has been
well studied in the literature (e.g., see [17, Theorem II1.13], which is summarized as Theorem 3 in
Appendix). If [a; b] is a standard Gaussian random vector, then we have

4dy 4d

> 3max (1/ =1 1) } < 2exp(—dy/2)
n n
1 & [4dy 4d

P{ ﬁ;bzb;k—IdQ >3maX( n2,n2)} SQeXp(—d2/2)

Therefore, (15) and (16) are satisfied with probability 1 — ¢ if

1"
P — Z aia;-k — Id1
n 1=1

and

n > max{36n2(dy + dy),2log(4/8)} = max{C?p~%kr(dy + do),2log(4/5)},

which is implied by (10) in Theorem 1.
In the ¢-design case with ¢ > 2, we obtain a similar result via the matrix Bernstein inequality
[47, Theorem 1.6], summarized as Theorem 4 in the appendix. If [a; b] satisfy (5) and (7), then

1 & —n’n
P{Hn;aiaf—Idl 77} §2d1exp< i >

2n
{ be — 1, >n}<2d2exp<4d )
2

Therefore, (15) and (16) are satisfied with probability 1 — ¢ if

4(d1 + dg) og (4(d1 + dg)) _ 4012/€T(d1 + dg) og <4(d1 + dg))

- J p? J

which is implied by (11) in Theorem 2.

we have

and
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5 Proof of Proposition 3

For conciseness, we introduce the following shorthand notations. Let

A:{al a ... an], B:{bl by ... b,
and define e p 25)
CiVTE’
Then, (15) and (16) are equivalent to
I, - %AA* <n and ‘ Iy, - %BB* (26)

First, through the following lemma we establish a sufficient optimality condition needed to prove
Proposition 3.

Lemma 3. Let Xg € C"*" and Yy € C"*" satisfy XoYy = My. Then [Xo; Y| is the unique

mazimizer of (2), if for every Ay € CUX" and Ay € C2X" we have

— 1 n
(Xo — EAA*XO, Ay + (Yo — —BB Yy, As) < Z (a;b}, XoAS + A1Yy)| (27)

:\'—‘

with equality occurring only when both Ay and As are zero.

Proof. Let Xy € CH*" and Yy € C%®*" gsatisfy XYy = My. Note that (Xo,Ys) would be the
unique maximizer of (2) if for any A; € R4X" and Ay € R%2X7

—~ — 1
(Xo, A1) + (Yo, Q) < - D (X0 + ALYy + Ag) — 45( X0, YD) (28)
i=1

with equality holding only for A; = 0 and Ay = 0.
Since a; XoY;'b; = my, for each i, we obtain

i(Xo+ ALYy + Ar) — 4( X0, Yp)

1 * * * 1 * * *
= L Ata + (Xgar Ata) + 1A + (%, Azb)

+ |a,;"(X0A§ + Al}fo* + AlA;)bZ|
> (aja; Xo, A1) + (bibj Yy, Ag) + |a; (XoA5 + A1 Y])b|

1 * 1 *

~Ja A Ash + Sl Aja | + 1 Ash?

Z <aia;,'kX0a A1> + <blb;kYE)7 A2> + ‘a’;k(XOA; + AI}IO*)bZ‘ ’ (29)

where the first lower bound is obtained by the triangle inequality and the next lower bound follows
from the Cauchy-Schwarz inequality.

Using (29), for i = 1,...,n, the right-hand side of (27) can be bounded from above. This bound
shows that if (27) holds with equality occurring only at [A;; Ag] = 0, then (28) holds and the
claim is proved. O

13



For any Xy € C"*" and Yy € C%*" that satisfy XoYy = My, we have Xq A5+ A1Y) € T.
Therefore, by Lemma 3 and (14), it suffices to show that

<X0 — EAA*XO’ A1> + <Y0 — EBBTY(), A2> < pHXoA; + AlYE]*HF (30)

for all A; € CH*" and Ay € C2*" with the equality only when [A1; Ag] =0.
Define the linear operator £ : Cditd2)xr _y cdixdz hy

£ ([Ar: Ay)) = XoA3 + ALYy, forall Ay € €O Ay € T
whose adjoint operator is
£5(Z) = [ZYO; ZTYO} . forall Z e chxd2

With
A=A Ay,

and
__ 1 . — 1
E=\|\X,—-—-AA*Xy; Yo— —BB'Y,|, (31)
n n

we can rewrite (30) as

(E,4) <pl£(A)p-

Note that £ generally has a nontrivial nullspace, particularly, if (d; 4+ do)r < dids. Therefore,
in view of the inequality above, it is necessary to have (E, A) = 0 for all A in the nullspace of
L. Fortunately, for a certain choice of (Xo, Yp) the corresponding matrix E satisfies the required
condition, as shown by the following lemma, which is proved in Appendix B.3.

Lemma 4. Let (X0,Y)) be the solution to

— — 1 2 1 2
Xo, X Yy, Y)—- —|| X*A|lz — —||Y*B
Xecdlgl?;(ecd2”< 0, X)+ (¥0,Y) 2nH I 2n|| I

subject to XY * = M.

(32)

For the operator L and the matriz E, defined by (31) in terms of the particular solution (Xo,Y))
above, we have

E €V ¥ range(L*).
Furthermore, if (26) holds, then

Gl Gell == ATl - w2 -

for all X € C1*" and Y € C2*" satisfying XY* = M.

)

Hereafter, the pair (X, Yp) is chosen as in Lemma 4. The subspace V can be described explicitly

F F

" V = range(L*) = {{ZYO; ZTYO} 1 Z € CledQ} : (34)

14



By the fundamental theorem of linear algebra, we also have V = null(£)*. Thus, with Py denoting
the orthogonal projection onto the subspace V, Lemma 4 implies that £ = Py E. Consequently, to
guarantee (30), it suffices to have

1B [PvAllg < pllL(PvA)p (35)
because by the Cauchy-Schwarz inequality
(E,A) = (PVE, A) = (E,PvA) < |E|p [[PvAl|p -
Furthermore, the following technical lemma provides a lower bound for ||£ (PyA)||/|PvAlp.

Lemma 5. The linear operator L satisfies
1£(PyA) g = min{omin(Xo0), omin(Yo) [Py Allp, VA € Clhtd)xr, (36)

Proof. Let [A1; As] belong to V = range(L£*). Then there exists Z € C%*% such that A; = ZYy
and AQ = Z*Xo. Thus

leqar: Ao = 1X0a3 + Arvy 2
= | X0 X5 Z + ZYo Y5 ||}
= X0 X3 213 + | ZY0Y5 |} + 2AX0 X Z, ZV0Yy)
= | X0 X5 2|2 + | 2Y Y5 |2 + 2 X5 25 2
XO)HXOZ”F + 02 (Y0 ZYo %

mln(

X0), Tmin (Y0 }H A A H

> mln{amln (

Note that
max min{omin(X), omin(Y)} = \/ 0 (M)
XeCah XT,YECdQXT
subject to XY™ = M.

Indeed, the assumptions of the proposition implies that min{omin(Xo), omin(Yo)} is larger than
Vor(My) divided by a numerical constant. In order to show this, we introduce another pair
(X1, Yl) Wlth XY = My so that [X; Yi] approximates [Xo; Yp]. The following lemma provides
an upper bound on the approximation error; the proof is provided in Appendix C.1.

Lemma 6. Suppose that the rank-r matrices Mo and Mo, whose compact SVDs are respectively
Uy o Vi and Uy XV, satisfy | Mo — M| < o,(My). Then

o Vor(XZ0)  on(Z0) — [ Mo — M|

min
QECTXTZ Qfle* ‘/O

Let ﬁo, fo and Vg be as in Lemma 6. Let @ be the minimizer in Lemma 6. Let

X, =UpyBY?Q and Y1 =V%/?Q.

15



Then (17) implies
X vl - 1Xo Y, sva,  svE
o (Vo) =G, p/ik G 1
Choosing Cy > 8v/2 + 1 yields

[1X1: vi] = [Xo; Yol < py/forn (M) (38)

It follows from (38) via the triangle inequality that

(37)

Xo _Xl
H [%] H [ ] [ + _YI] = pJor (Mp) +\/ro1(Mo) < 2\/ro1(Mo).  (39)
Plugging in 33) with X = X; and Y =Y gives
=~ 1 =712
Xo B {0 o1 1+ U X1 XO
Yo Yo 1 Y:

ol [

n X1 X
vi| %l
After some simplification, the above inequality and (37) imply

|1X0; 5] - [Xo; %]\]F _ 1 <2+\/( 128(C + 1) 32v2 4 ) .

+
p\/ar(MO) -~ Ci—-1 Ci — 1)(02 — 1)2 (Cl — 1)(02 — 1) (Cl — 1)2
By choosing both C and C5 large enough, we obtain

Rl = o 5] R

Then by the triangle inequality we have

5[5

By the singular value perturbation theory by Weyl [6] and because p € (0,1), it follows that

<P or(Mo) ‘

- 10

< P UT(MO) '

4/ or (M
00 (X0) 2 0,(X1) — | Xo — Xy | > D)
and
4/, ( M
0, (o) = 0,(¥i) — [¥o - v | = Vo).
Then (36) is implied by
g (Mo)
I£P A, > YT Py Al
Therefore, by combinig the above estimates, we obtain a sufficient condition for (35) given by
4py/or(Mp)
Bl < 2220 (40)

The following lemma, which is proved in Appendix C.2, provides an upper bound for || E||; that
can be used to ensure the sufficient condition (40).
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Lemma 7. Let (Xo,Yy) and E be as in Lemma /. Suppose that (26) holds. Then for all (X,Y)
satisfying XY * = My, we have

3+1

1Bl < T (H Xo - X; Yo - Y]||_+nl[X: YHF>-

By applying Lemma 7 with X = X; and Y = Y7, and by (25), we obtain

3C1+1/1 1
1Bl < 51 (55 + & ) oo (o).

Finally we choose C] large enough so that

3C1 +1 <1+ 1 ) <%
Cy—1 Ch 5
This completes the proof.
6 Analysis of Spectral Initialization
Note that
A" A(M, Z aia; Mob;b; .

=1

Then by the independence between a and b together with the isotropy of each of them implies
EA*A(M,) = M.

Since the spectral initialization computes Mg as the best rank-r approximation of A*A(Mj),

by the optimality, we have -
[ Mo — Mol| < 2|(A*A — 1d) Mo .

Our goal is to show that
C|[ Mo

Vi

(A" A = 1d) Mo || <

for an absolute constant C'. Then it will imply (9).
Let

1
Zi:*aia?MObibfa izl,...,n.
n
Then we will show that

|y ez < S8

holds with high probability respectively in the cases of Gaussian and ¢-design measurements.
In the following derivations we use the shorthand

n
> Z; - EZ

i=1

def

(41)

Sp

for compact notation.
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6.1 Proof of Proposition 1

By the triangle inequality we have

T
< > oullaillyla; upllvpbil b7, -
Sp k=1

T
Z ora;a; uLvLb;b;
k=1

nlZills, =

It follows that

1/p £ 1
(E1Z1,) " < 1 S o0 (EllasBlasuc oo )7
"=

(a) * 1 * *
<> L™ o (EllaslBlazus )7 (Efogbil? b5 [5) 7

k=1
®) 1

LS o (Ellad )™ (Elatunl) "™ (Ering) "™ (£5:127) "
k=1

~
n

IN

k=1
| Mo|[p?r(dy + da)
n

S

)

where (a) holds by the independence between a; and b;; (b) follows from Cauchy-Schwarz inequality;
and (c) holds by [50, Eq. (2.15) and Lemma 2.7.6] since ||a;||3, |afuy|?, [vib;|2, and ||b||3 are sub-
exponential random variables. Then we deduce that

/v _ || Mollp®r(di + da)
~ n *

(E1z ez )" <2 (E|Zi|3,)’

Furthermore, the second-order moments are computed as

d2—|—2 2do + 3

E(Z; —EZ,)(Z;,—EZ;))" = HMOHFId1 . ———MyM}

and
d1 + 2 2d1 + 3

E(Z; — EZ;)"(Z; — EZ;) = —— | M| §1a, + 3 ——MyM.

Then we obtain

|

> E(Zi —EZ)(Z; - EZ;)*
=1

> E(Zi —EZ)"(Z; —EZ)
=1

V
Sp

n

) = M| Pr(dy + dp)' 177
S,

Now we are ready to apply Theorem 5. Recalling (41), Theorem 5 provides

([Efp)l/p < <p7’(d1 +d2)1+1/p>1/2 y p3n1/p’f’(d1 +d2)

[ Mo n n
By Markov’s inequality, it implies

P{¢ > (EEP) /Py /P} <. (42)
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We choose = (d; 4+ d2) ™. Then there exists an absolute constant C; such that if
-1
n > Cy 672prd1+1/p+204/p V; (671p37,d1+a/p)p/(p )] ’ (43)

then
P{¢ > €| Mol|} < (d +d2)™ . (44)
Since the Shatten-p norm is larger than the spectral norm, it follows that (44) implies
P{||A*AM, — EA* AMy|| > €||Mp||} < (d1 +da)™*.
We choose p = (2a + 1) In(d; + da) so that the condition in (43) simplifies to
n > Cor(dy + da) (e*2aln2(d1 +do) Ve tad nd(dy + dg))

for another an absolute constant Cy. We obtain a sufficient condition by choosing € = C/k%\/r.
This compltes the proof.

6.2 Proof of Proposition 2
Since ||a;|l, = v/d1 and ||b; |, = V/d2, we have

Vdida

T

Z aka;‘ukv};bi
k=1

1Zills,, =

Note that we have

r
S Z (7 |afukv,’;bi\ .
k=1

r
Z Uka;‘ukv}:,bi
k=1

Thus, by the triangle inequality in Lo; together with the homogeneity of the Lo, norm, we obtain

(ElZi,) "™ < Y& 3 o (Elauvibif®) ™

- (45)
S % O ([E ‘dl UQ(L:’LL}C‘ ) ([E ‘dz 1/21);(’1%‘ ) N
k=1

where the second inequality holds since a; and b; are independent.
Recall that, by the construction of a t-design set, a; satisfies

-1
_ L\ Ot d+t—1
E <d1 1aiai) = ( ) ) Pgymt -

Therefore we have

E ’d;lﬂafuk‘% = tr <[E (dflaia;‘>®t (uku’g)@t)
_ <d1 +tt - 1) —1tr (Psymt (uku2)®t)

di+t—1\"
= ( ! ; ) tr ((uku;;)@t) <dj't!,
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where the third identity follows since (ujuj)® is invariant under the factor-wise permutation.
Then we obtain

ot 1/2t 1/2t t
( ' awy ) < (di't) < i (46)
Similarly we also have
_ 21\ 1/2t 1/2t t
( ;" ?b vy ) < (dy"t!) o e (47)

Then by plugging in the upper bounds in (46) and (47) into (45), we obtain

o1\ 1/2t tUlr\/dldg tUﬂ'(dl—i-dg)
(El1Z:)*) . o

Furthermore, the triangle inequality and Jensen’s inequality yield

(1 -z < (B1Z%,) " + (ElEZAIZ,
= (E1Zi,)"" + IEZil,,

<2(g|z)%,)"" .

)1/2t

Putting these bounds together we obtain

)1/275 < 2to1r(dy + d2)

2
(Ellzi|* o

Furthermore, the second moments are computed as

. 1 [dida||My|31y dids .
[E(ZZ—[EZZ)(ZZ—[EZZ) :ﬁ ( (’1’1+1F 1 +<d1+1 —1) M()MO

and

* 1 (dydy|| Mo 314 dids *
[E(ZZ—[EZZ) (ZZ_[EZZ):7L2< d2+1F 2+<d2+1—1)M0M0 .

Then we have

|

> E(Z; —EZ)(Z; — EZ;)*
=1

> E(Z; —EZ)*(Z; — EZ;)
=1

vV
Sat

With £ defined in (41), Theorem 5 provides

n

) _ dofr(dy + do) Y/
Sot

n n

2 141720\ Y2 2 172t
([E§2t) 1/2t < (talr(dl + do) > Y t*n'/“to1r(dy + dz) .

Then invoking (42) with n = (d1 4+ d2)™%, we can show that there exists an absolute constant C;
such that if

)

2t/(2t—1
n>C |:62t7“(d1 4 d2)1+1/2t+a/t v (e’thr(dl +d2)1+a/2t> ¢/ (2t )}

then
P{|A"AM, — EA" AMo|| > €[ Mo||} < d™.
The desired result follows by choosing € = C/k?\/r.
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A Tools from Random Matrix Theory

Theorem 3 ([17, Theorem I1.13]). Let G € R™*" be a random matriz whose entries are indepen-

dent copies of g ~ N (0,1). Then
dn 4
> 3max (\/n, n)} < 2exp(—n/2).
m’m

Theorem 4 (Matrix Bernstein inequality [47, Theorem 1.6]). Let (Y}) C C™*™ be a finite sequence
of independent zero-mean random matrices such that || Yx|| < R almost surely for all k. Let

—2/2
[F"{ %:Yk Zt}é(m—i-n)-exp(w) .

Theorem 5 (Noncommutative Rosenthal inequality [29, Theorem 0.4], [20, Theorem 3.8]). Let
(Yy) € Ch>% be q finite sequence of independent zero-mean random matrices. Then there exists
an absolute constant C' > 0 such that for all 2 < p < oo

(1)

AN
k

1
m

P {HGTG -1,

)

DEVYY| L Y EYY;
k k

Then for allt >0

<C \

Sp

1/2 1/p
ﬁ?( ) m(mz ||Yk||§p> ] -
Sp k

> EYY;
k

B Proofs of the main lemmas

B.1 Proof of Lemma 1
Let 7 > 0 be fixed. Since a and b are independent and isotropic, they satisfy

Eaa* ® bb* = I;,4, , (48)

which implies
Ela*Hb]®> = |H|3, VH ¢ RU*%, (49)

Therefore, the Paley-Zygmund inequality [40] (see also [18, Corollary 3.3.2]), we have
P (la"Hb| > 7||H||) = P (|a"Hb[* > 7°E |a” Hb[*)
2
(1 _ 7.2)2 ([E |a>(<Hb|2) (50)
> .
E|a*Hbl*

2
Then it suffices to show that the fourth order moment E|a* Hb|* is upper-bounded by ([E la*H b|2) =

| H ||4F within a constant factor. We first show this for the real Gaussian case. Since [a; b] ~
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N(0,I4 +4,), we have

[E|a"‘Hb|4 =Ey(b’H" @ b"H")Eq(aa™ ® aa™)(Hb® HDb)
= E|[b"H* || + 2| b*H*| %,
= 3E||b"H*|;
= 3tr[(H ® H)Ey(bb* @ bb*)(H* @ H"))
=3|H|p + 6| H|g,
<9||H|, (51)

where ||-||g, denotes the Schatten-4 norm.
By plugging in (49) and (51) to (50), we obtain
* (1 — 7_2)2
P (la Hb| > 7| Hllp) > T

We obtain an analogous upper bound in the ¢t-design case. With the isotropic normalization, a
and b satisfy (6) and (8). Therefore,

Ela*Hb|* = Ey(b*H* © b* H)Eq(aa”® @ aa®)(Hb ® Hb)

. dy * ry* 14 * x4
= oy (Bllo B[+ o B, )
2d, 4
= - Ep||b*H*
L R
2d
= L tr[(H @ H)Ep(bb* @ bb*)(H* @ H"))
d1 +1
2d,dy 4 4
= -\ -H H
G (IHIE+1HI,)
4dydy 4
| H||w - 52
By plugging in (49) and (52) to (50), we obtain
(1—72)2

P (la” Hb| = 7| H ) = “—

B.2 Proof of Lemma 2

The independence and isotropy assumptions imply (48). Note that any H € T can be written as
H = A Vy 4+ UpAj. Furthermore, without loss of generality, we may assume

(A1,Up) =0, (53)

which implies
2 2 2
[H|[z = [[Allg + [ A2]f -

Since

a’Hb; = tr ((a;b] Vh)* Ay) + tr (Ufa;b})* A3) |
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by (53) we have

¢,(T) <E sup
HeTNS

Zaza Hb,

<E sup | AR - H Zslazb*%
I[A1; Aq]llp=1

:[E( 2

g(rE \F; gia;b}Vo|| +E

F

+ ||A2||F H ZE'LUOa’Zb*
2 1/2
F)
2 1/2
F)
(dl + d?)rv

where the second step follows by the Cauchy-Schwarz inequality, the fourth step is obtained by
Jensen’s inequality, and the last step holds since (g;)I"; is a Rademacher sequence and (a,b)
satisfies (48).

F F

2

Z aibf%

f ZEZUO a;b;

%\

Zeon a;b;
i=1

B.3 Proof of Lemma 4

This lemma basically follows from requiring stationarity at ¢ = I which is away from singu-
larities of the objective. However, to avoid complications arising from derivatives with respect
to complex-valued variables, we provide a “lower level” proof. To show this claim, first observe
that any (X,Y) satisfying XY™* = M) can be parameterized by an invertible r x r matrix Q

s (X,Y) = (X0Q,YoQ ™). Let (Xo,Yp) be the maximizer considered in the statement of the
lemma. Therefore, for any invertible Q in GL,(C), the set of invertible r x r complex matrices, we
should necessarily have

N N — % 1 * ¢k 2 1 —1y % 2
(Xo, X0Q) + (Y0, YoQ ™) — %HQ Xy Al — %HQ Y, BHF
v N 1 * 2 1 * 2
< {Xo, Xo) + (¥, Y0) — o~ | Xg Allr — o - |Y0" Bl ,
which is equivalent to
(X0, X0Q — Xo) + (Y0, YoQ " — Yp) — *<(Q )" X;A, X;A)
- Q7 - IYB Y B~ (@~ 1) Xi AR~ @~ 1w B <0.
To simplify the notation let us define the short-hands
Ox = X; (520 — 1AA*X0) ,
n
and )
Oy =Y (?0 - BB*Y0> .
n
The necessary inequality can be expressed as
(©x,Q ~ I) + (B, (Q‘1 - )*>

1 (54)
< I@- Ly X; Al

1) B,
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Choosing @ within an arbitrarily small neighborhood of I,. allows us to use the identity

[e.9]

Qil - I, = Z(_l)k(Q - Ir)k'

k=1

Applying this identity in (54) yields

Ox — 04, Q- L) + 3 (1)} O, (Q - 1))
k=2

1 * vk 2 1 —1 * 2
< o Q- Ly X5 Al + o ||(@ '~ Yy B

1 2w A2 4 L 2l A=11? v+ =112
< _ — —_
< 5 1Q - LIPIXG Al + o-1Q - LI*| @' 1Y Bl

As Q — I, the terms linear in Q — I, dominate and the terms with superlinear dependence on
|Q — I,.|| vanish faster. Therefore, the inequality above implies

Ox = O . (55)

Let us express (31) as E = [Ex; Ey] with Ex = 5(/0 — %AA*XO and Ey = ?0 - %EBT?O.
Then (55) implies that [Ex; FEy]| belongs to the subspace

W &t {[El; Eg} : By € ChX" By € CBRXT XEE, = E;YO} .

It only remains to show that W coincides with V = null(£)+ defined in (34).
We first verify that V C W. By the definition of 7, we can express V equivalently as

\/:{[ZYO; ZTYO} :ZeT}.

Suppose that [E;; Es] belongs to V. Then there exists Z € T such that E; = ZYy and Ey = Z7 X,.
Therefore,
X(E,=X(2ZYy=(Z"X0)"'Yy = EJY,,

which implies [El; E2i| is contained in W. Since [E;; Es] can be chosen arbitrarily in V, we have
shown V C W.

Furthermore, the orthogonal complement of W within C(d1+d2)x

" can be written as
wt = {[XOS; —TOST] . Se C”"X’"} .

Since both X and Y} are full column rank (otherwise, the rank of My = XY would be smaller
than r), we deduce that the dimension of W+ is 2, thereby the dimension of W is r(dy + dy — 7).
In view of the inclusion V C W, it only remains to show that the dimension of V is r(d; + da — 7).
We do so by arguing that the linear function Z +— [ZYy; Z"Xy] is a bijection from T to V, or
equivalently if Z € T is mapped to 0 € V, then Z = 0. If for some Z = A Yy + XoA5 € T we
have X¢Z = 0 and ZY; = 0, then we should have || Z||z = tr(Z*Z) = 0, and consequently Z = 0.

Therefore, we have shown that V = W, and particularly

E=|[Ex; BEy]eW=V.
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Next we prove the second part of the lemma. By (26), we have
(1—mn) HXO - )A(/oui +(1=mn) HYO - ?oHi

< acxe xoff+ o]
|

1 * 2 1 * v 1 * 3 2
= A X2 —2({ Xy, ~AA* X, ) + - A XOH
n n n F

1 * 2 1 O 1 *xS 2
+ = |B*Y |2 —2{Yy,-BB*Y ) + — ‘B YOH
n n n F
1 * 2 ~ 1 «\ = 1 . 2
= — HA XOHF — 2<X0,X0> + 2 X(), Id1 ——AA XO + — HA X()H
n n n F
1 * 2 N 1 *\ v 1 *y 7 2
+ — |B*Yoll} — 2(¥0, Yo) +2( Yo, (I, - ~BB* ) Yo ) + - | B'Yy| .
n n n F

Since (X, Yp) is the maximizer, for any X € CT*" and Y € C%*" satisfying XY * = My, we can
continue by

— 2 |12
(1= ) || X0 = Xo| + (1 =) | ¥o - Yo

1

1 —
< HA*XH% 20, Xo) 42 (%o, (1 - 244 ) Ko) 4 LX)

- ||B Y2 - 2(Y, Y) +2<Yo (Id2 — %BB )Yo HB Y[)H

)
)

:EHA (X — Xo) HF+2<X0 <Id1 —%AA

5

B Rl +2 (vo-v (1 1mBY) ¥
e - K x5 5,
) [v =Kol + 2y - Bl 5]
where the last step follows from (26). Finally note that
| = Xol o[ %o, + ¥ =] %]
2 2\ Y2 s~ 2 =2\ /2
< (=%l + = wll) (1%l + 9]

This completes the proof.

C Proofs of the supporting lemmas

C.1 Proof of Lemma 6

It suffices to show the upper bound for some Q in the orthogonal group O,(C). Let Q be given by
Uy Uy

R |
[VO] [VJ
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Q € argmin {

RER™*"

:R*R:Ir}.
F



Then it follows that

Uo| w12 |Uo| s1/2
H )5 ] =
<

(8- )=
2],

Since 2'10/2 (resp. Q*SOI/2Q) is the matrix square root of X (resp. Q@*XvQ), by the pertur-
bation bound by Schmitt [43, equation (1.3)], we obtain

_ U 1/2 1/2
) = [ aarme

F

Uy 1/2
+ VO]Q( - Q"X Q)

F

F

|si-@sial,

|- mef,[|%o-Q =
Jor (B) + N/UTSO Vo (o)

On the other hand, by the triangle inequality, we have

|5 - @ =l <

| Mo — Mollr = |[Us Zo V5 — UsQQ* Z0QQ" Vi ||
> [UnQ(Z0 — Q" Z0Q) Vi Ik — [|(To — UoQ) Zo Vi ||
— [UQQ" Z0Q(Vy — VoQ)*||r
> (|20 — Q" Z0Qllr — 01(X0) [|Us — UsQllr — 01(Z0) Vo — VoQlr-

By rearranging the above inequality, we obtain
120 — Q" Z0Q|lr < [ Mo — Myl|r + 01(Xo) [Uo — UoQlr + 01(Z0) | Vo — VoQ|r-
By combining the results with Weyl’s inequality, we obtain
) =[] =), = o | ] -[3] o,
N 1My — Mo + o1(Z0) HUO —UpQ|lr + 51(Z0) [Vo — oQ|lr
or(Xo)

1M,y — M| a1(20)\ [[To] _[U
< 10— Shle 1 otz (1022420 | [%] - [%] @

(#)

=2

F

Finally, (4) is bounded by a variant of the Davis-Kahan theorem by Dopico [22, Theorem 2.1]

as follows:
Uo| [Uo
HM MQ

_ V20 (Mo — MyVollt + 1T (M — M) )
P o (Xo) — | My — My

26



C.2 Proof of Lemma 7

Since (X, Yp) is a maximizer to (32), we have

<§07X0_X>+<?>YE)_Y>

1 * 2 * 2 * 2 * 2

> o (14" X0 7~ |AX 7 + 1B Y517 — | BY[7) (56)
1 * 1—n 2 1 * I—n 2

> (AA'X, Xo-X) + 5 | Xo-X[; + ~ (BB'Y.Yo-Y) + — |[Yo- Y|,

where the second inequality follows from the strong convexity of |A*Xo||% and ||[B*Yp||%, which
are quadratic functions of X and Yj, respectively. Then (56) is rearranged to

1—n 1—n
e e
> 1 - 1
<(X-—-AA'X, Xo—-X)+ (Y- —BB'Y Y, -Y)
n n

2 2

)

— 1
< IXo— X2 + Yo - Y- ¢ X - Saax
F

= 1
Yy — —-BB*Y
n

|

F

where the last step follows from the Cauchy-Schwarz inequality.
Therefore it follows that

-~ 1 ~ 1 1-—
[%o-aaxi ¥ BBy =0 IX0- X Yo - Yl
n n F 2
Finally by the triangle inequality we obtain

~ 1 — 1
H [XO ~CAAXy Yo — BB*YO}
n n

F

< |1X - lAA*X; Y, — 1BB*Y] + H [1AA*(X0 —X); lBB*(Y0 — Y)]
L n n F n n F
— 1 — 1
<||[Ko- AAX: Y- L BBY|| + (40X - X: Yo Y]
L F
1 — 1 2(1 ~ 1 1
<|[|X-=A44*x; Y—BB*Y} 4 204 H{XO—AA*X; Y—BB*Y}
L n n F 1—n n n F
2(1 . — 1 1
< (1+(+”)> {H[XO X Y, —Y]H + H[X— CAATX Y — BB*Y] } .
1—n F n n F

Finally note that
1 1
H [X — CAA*X: Y - BB*Y] H <nl[X; Y],
n n F

which completes the proof.
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