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Abstract—In applications such as multi-receiver radars and
ultrasound array systems, the observed signals can often be
modeled as a linear convolution of an unknown signal which
represents the transmit pulse and sparse filters which describe the
sparse target scenario. The problem of identifying the unknown
signal and the sparse filters is a sparse multichannel blind
deconvolution (MBD) problem and is in general ill-posed. In this
paper, we consider the identifiability problem of sparse-MBD and
show that, similar to compressive sensing, it is possible to identify
the sparse filters from compressive measurements of the output
sequences. Specifically, we consider compressible measurements
in the Fourier domain and derive identifiability conditions in a
deterministic setup. Our main results demonstrate that L-sparse
filters can be identified from 2L2 Fourier measurements from
only two coprime channels. We also show that 2L measurements
per channel are necessary. The sufficient condition sharpens as
the number of channels increases asymptotically in the number of
channels, it suffices to acquire on the order of L Fourier samples
per channel. We also propose a kernel-based sampling scheme
that acquires Fourier measurements from a commensurate num-
ber of time samples. We discuss the gap between the sufficient and
necessary conditions through numerical experiments including
comparing practical reconstruction algorithms. The proposed
compressive MBD results require fewer measurements and fewer
channels for identifiability compared to previous results, which
aids in building cost-effective receivers.

Index Terms—Sparse multichannel blind deconvolution, iden-
tifiability, deterministic sparsity model, subsampling, blind gain
and phase calibration

I. INTRODUCTION

In a wide range of applications, an unknown signal is
observed through multiple channels. The output signal in each
channel is given as the linear convolution of the unknown sig-
nal and the filter corresponding to the impulse response of the
channel. The problem of identifying both the unknown signal
and the filters is known as multichannel blind deconvolution
(MBD). In general, this problem is ill-posed. It can be solved
by imposing models on the source and the filters. In this paper,
we consider the sparse-MBD problem, where the filters are
assumed to be sparse.

Sparse-MBD models arise in many practical applications
such as radar imaging [1], [2], seismic signal processing
[3], room impulse response modeling [4], sonar imaging [5],
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and ultrasound imaging [6], [7], where a transmit signal
is observed through multiple receivers after reflecting from
sparsely located targets. The filters indicate the locations of the
targets relative to the position of the receivers. Typically, the
transmit signal is assumed to be known, however, in practice,
it is often distorted while transmission and propagation [8].
Hence, the output signals from the receivers can be modeled
within the sparse MBD framework.

In the aforementioned applications, the implementation cost
is determined by the number of receivers (or equivalently the
number of channels) and the computational cost is governed
by the length of the output sequences. Hence, it is desirable
to identify the MBD problem from a minimal number of
channels and minimal number of samples per channel. We
study the problem of identifying the sparse filters from fewer
measurements of the output sequences compared to their
ambient dimension, which we call as compressive MBD. We
show that compressive MBD is possible by combining the
deterministic MBD approach developed for the non-sparse
case [9] and the sparse signal identifiability results from
compressive sensing framework [10].

Any blind deconvolution linear measurements of the output
signal suffers from shift and scaling ambiguity. Having redun-
dant observations through multiple channels does not remove
this fundamental ambiguity. Hence, the identifiability of the
MBD problem is considered within fundamental ambiguity
class. Even though the fundamental ambiguities are accept-
able, in general, MBD is still an ill-posed problem and can be
solved only by imposing additional conditions on the source
and the filters. Several MBD results have been discussed in
the literature where the source and the filters are assumed to
have different structures in addition to the assumption that the
filters have finite impulse responses (FIRs).

During the 90s several identifiability results and reconstruc-
tion algorithms for MBD have been presented, largely in the
context of blind channel identification where the goal is to
uniquely identify the filters [9], [11]–[16]. The methods are
classified as statistical [11]–[14] or deterministic [9], [15],
depending on whether statistics of the source signal is used
to identify the unknown filters (cf. [16] for a comprehensive
review of classical MBD results). In the statistical framework,
it has been shown that an MBD problem is identifiable up to
the fundamental ambiguities of scaling and shift if the source
is zero-mean and white random process, and the filters are
deterministic and coprime [16]. A set of sequences are coprime
if their z-transform do not share any common zeros except
the zeros at z = 0. In this framework, first, the second-order
statistics of the output sequences are estimated; the filters are

ar
X

iv
:2

00
1.

00
61

3v
1 

 [e
es

s.S
P]

  2
 Ja

n 
20

20



DRAFT; 2

then estimated from their statistics. The estimation accuracy of
these approaches depends on how well the source statistics is
known a priori and how accurately the second-order statistics
are estimated from the available data. In applications where the
source statistics may vary over time or is difficult to estimate
from limited data, deterministic approaches are preferred.

Xu et al. [9] developed a deterministic MBD approach for
estimating FIR channels from their outputs to an unknown
deterministic sequence where the filters are FIR with length
Mx (without any further sparsity condition). Starting from
3Mx truncated convolutive measurements Xu et al. [9] showed
that the filters are uniquely identifiable under the following two
conditions: i) the filters are coprime; ii) the linear complexity
of the source, within the observation interval of the measure-
ments, is greater than twice the order of the filters. The linear
complexity of any sequence is a measure of its predictability
and is given by the minimum number of exponentials which
the signal consists of. In this paper, we show that the filters
under the same FIR model are identifiable from 2Mx−1 linear
measurements with less restrictive condition on the source
sequence compared to the linear complexity condition.

During the last decade, there has been renewed interest in
MBD and, particularly in blind gain and phase calibration
(BGPC) problems with sparsity and subspace constraints (e.g.,
[17]–[29]). A BGPC is a bilinear inverse problem arising in
a multi-sensor or multi-receiver system where the objective is
to determine the unknown gains and phases of the sensing
system as well as the unknown observed signals from the
sensors. It can be shown that the Fourier-domain formulation
of an MBD problem is a special case of BGPC. In this
case, the unknown gains and phases are given by the Fourier
coefficients of the common source sequence and the unknown
observed signals are Fourier transforms of the filters. Recent
results analyzed the case of uniform samples in the Fourier
domain under the assumption that the sparse filters are random
or generic [19]–[22]. In these works, it is assumed that the
output sequences are obtained by the circular convolution
between the source and the sparse filters. Assuming that all
the output samples are available and the filters are random
and sparse, identifiability results have been derived in terms
of a sufficient number of channels. Specifically, in [21] and
[22], it is shown that the sparse MBD problem is uniquely
identifiable provided that the filter coefficients are modeled
as independent and identically distributed Bernoulli-Gaussian
random variables and all M output samples are available from
N = O(M log4M) channels. In addition, they have shown
that sparse MBD and the corresponding BGPC problem can
be solved by a practical algorithm [21], [25].

BGPC can also be posed as a blind dictionary calibration
(BDC) problem where the goal is to recover the calibration
weights for a known dictionary together with the sparse
vectors. Gribonval et al. [29] showed that a BDC problem
can be posed as a convex optimization problem and a solution
can be achieved by using off-the-shelf optimization solvers.
However, identifiability results are not derived in [29]. We
will apply the algorithm in [25] and an alternate minimization
approach for the problem formulation in [29] to compressive
MBD in Section VI.

There are three major limitations in applying the existing
results [20]–[22] to our setting.

1) The sparsity was introduced to solve sparse-MBD from
fully observed output sequences. Their results do not
apply to the case where it is enforced or desired to
identify the signals from partial observations.

2) Their identifiability result has been derived with the
number of channels increasing in the signal length.
This sufficient condition is conservative in the sense
that sparse-MBD can be solved empirically with fewer
channels, that is, only two channels.

3) Their analysis of sparse-MBD assumed that the filters
follow certain stochastic models, which are not relevant
to practical applications of our interest. Therefore their
results do not apply due to the model mismatch.

Our main results, summarized below, overcome the above
limitations in the existing results on sparse MBD.

We present a set of identifiability results on sparse MBD that
apply uniformly to any instance satisfying given constraints.
In other words, unlike some of the recent results relying
on certain stochastic models, our identifability results are
purely deterministic. We show that the sparsity constraint
enables compressive-MBD similar to compressive sensing.
Specifically, it is possible to recover the filters and the source
from a small number of Fourier measurements.

In the sparse and deterministic setup, we consider two sub-
problems. The first is to uniquely identify only the filters. Such
a problem is useful in the radar and sonar applications where
the filters contain the information about the targets and the
source need not be identified. We combine the ideas of Xu et
al. [9] and compressive sensing to derive identifiability results.
By applying a cross-convolution approach, the identifiability
problem reduces to the recovery of a superposition of convolu-
tions of sparse filters from their partial Fourier measurements.
Our main results follow by applying the full spark property
of partial Fourier matrices and the coprimeness condition of
the filters. We show that to identify the filters, two channels
(N = 2) are sufficient. When N = 2, taking 2L2 Fourier
samples per channel are sufficient. Furthermore, we show that
the problem is not uniquely identifiable from fewer than 2L
measurements per channel. For N � 2, we demonstrate a
gain and establish that on average (averaged over the number
of channels) we need order L measurements per channel.

Second, we consider the simultaneous identification of both
the source and the filters. Using the results of filter identifia-
bility, we propose a pairwise measurement strategy where we
consider different Fourier measurements from each unique pair
of channels. Starting from N ≥ 2 channels, we show that 2L2

Fourier measurements are sufficient from max{Ms−L2−1
L2−1 , 2}

channels and 2L from the rest. Here Ms is length of the source.
We discuss practical algorithms to identify the source and
the filters for the two-channel case [25], [29]. By applying
these algorithms, we discuss the gap between the necessary
and sufficient conditions through simulations.

Our main results are derived by assuming that only partial
Fourier measurements of the output sequences are available.
However, in certain applications, the output sequences can be
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measured only in the time domain. We propose a sampling-
kernel based technique that computes partial Fourier measure-
ments without accessing all time samples. Then we obtain the
analogous identifiability result from time-domain samples.

We also specialize our results to the non-sparse FIR case.
Our frequency-domain approach requires fewer measurements
compared to the classical time-domain approach by Xu et al.
[9]. Moreover, our approach is guaranteed when the Fourier
transform of the source signal does not vanish at the observed
frequencies, which is a milder condition than the analogous
condition on the linear complexity of the source [9].

The rest of the paper is organized as follows. In the
next section, we present the problem formulation along with
relevant mathematical preliminaries. In Section III we show
how to achieve compressive Fourier measurements from a
finite set of time-domain samples. Identifiability results for
compressive MBD are discussed in Section IV. In Section V,
we present a detailed comparison of the proposed results with
the recent sparse and classical non-sparse results. Simulations
are shown in Section VI followed by the proof of the main
results in Section VII.

Throughout the paper, we use the following notations. For a
positive integer M , let [M ] denote the set {0, 1, . . . ,M − 1}.
For a sequence x, its support denoted by supp(x) is defined
by {k ∈ Z | x[k] 6= 0}. The `0 pseudo-norm of x, denoted
by ‖x‖0, counts the number of its nonzero elements. the z-
transform and the discrete-time Fourier transform (DTFT) of
x are denoted by X(z) and X(ejω) respectively.

II. COMPRESSIVE MBD FROM FOURIER MEASUREMENTS

In this section, we formulate the compressive MBD problem
and discuss the assumptions made to deriving the main results.

A. Problem Statement

Let y1, . . . , yN denote multichannel output sequences from
a common source sequence s. Let x1, . . . , xN denote the filters
corresponding to the impulse responses of the channels. Then

yn = s ∗xn, n = 1, . . . , N, (1)

where ∗ denotes the linear convolution. The MBD problem is
to identify s and {xn}Nn=1 from the output sequences {yn}Nn=1.

Let

C
(
s, {xn}Nn=1

)
=
{(

α−1S−m(s), {αSm(xn)}Nn=1

) ∣∣
α 6= 0, m ∈ Z

} (2)

denote the orbit of (s, {xn}Nn=1) by the actions of shift and
scaling, where Sm denotes a shift operator that maps a se-
quence to its shifted version by m samples. Then any element
in C(s, {xn}Nn=1) generates the same output sequences. There-
fore, we aim to identify (s, {xn}Nn=1) up to the fundamental-
ambiguity class given by (2), that is, to find any element in
C(s, {xn}Nn=1) that satisfies (1). Unique identification hereafter
will be referred to as this case.

When all time-samples of yn are available, one can uniquely
identify the filters (resp. both the source and the filters) by the

method by Xu et al. [9] (resp. recent sparse MBD methods
by [20]–[22]) provided that the assumed conditions on s and
{xn}Nn=1 therein are satisfied (cf. Section V for details).

The main question of our interest is whether one can de-
convolve s and {xn}Nn−1 from the compressive measurements
of {yn}Nn=1, which will be referred to as compressive MBD.

We specifically consider partial Fourier measurements given
as the DTFT of yn at selected frequencies, that is, the set of
linear measurements is written as

{Yn(ejkω0) | k ∈ Kn, n = 1, . . . , N}, (3)

where Kn denotes the index set {mn,1,mn,2, . . . ,mn,Kn
} ⊂

Z for n = 1, . . . , N . We are particularly interested in the
setting when |Kn| �M where M is length of yn.

Our choice of the partial Fourier measurements is motivated
by the following two reasons. First, in the Fourier-domain, the
measurements in (3) are written as the product of the Fourier
transforms of the source and the filters, that is,

Yn(ejkω0) = S(ejkω0)Xn(ejkω0), k ∈ Kn, n = 1, . . . , N. (4)

The entrywise product form in (4) allows the flexibility to
design sampling patterns. For any n1 6= n2 and k ∈ Kn1

∩Kn2
,

we have

Yn2(ejkω0)Xn1(ejkω0) = Yn1(ejkω0)Xn2(ejkω0),

which enables to apply the cross-convolution approach by Xu
et al. [9] even with sampling in the Fourier domain for any
{Kn}Nn=1. Second, due to the uncertainty principle, the Fourier
transforms of the filters are well spread in the Fourier domain
as they are sparse in the time domain. This helps recover the
filters from fewer Fourier coefficients.

In order to uniquely identify the solution to compressive
MBD, we impose the following structural assumptions on the
filters {xn}Nn=1 and the source s:

(A1) Sparse filters: ‖xn‖0 ≤ L and supp{xn} ⊂ [Mx]
for n = 1, . . . , N .

(A2) Finite-length source: s is supported within [Ms].
(A3) Coprime filters: X1(z), . . . , XN (z) do not share

any common zeros except at z = 0.
(A4) Non-vanishing source: S(ejkω0) 6= 0 for all k ∈

∪Nn=1Kn.
(A5) Universal sampling: The sampling interval ω0 and

index sets {Kn}Nn=1 form the universal sampling
sets. Such sets are defined in Section II-B.

A few remarks on these assumptions are in order.
• (A1) and (A2) imply that each yn is supported on [M ],

where M = Mx +Ms − 1.
• (A2) is not necessary if one only concerns the identifica-

tion of the filters.
• (A3) is a necessary condition for unique identifiability

without (A1) and (A2). See Section II-C for more details.
• (A4) avoids the case where the Fourier measurements at

a sampled frequency are zero for all channels.
• (A5) enables to solve sparse MBD from compressive

Fourier measurements.
Unique identification in compressive MBD is then defined

as follows.
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Definition 1 (Identifiability of Compressive MBD). Com-
pressive MBD is uniquely identifiable if any feasible solution
(ŝ, {x̂n}Nn=1), which satisfies (A1)-(A4) and is consistent with
the measurements in (3), belongs to the fundamental ambiguity
class C

(
s, {xn}Nn=1

)
of the ground-truth signals (s, {xn}Nn=1)

defined in (2).

Our objective is to derive necessary and sufficient conditions
on the index sets {Kn}Nn=1 such that either only the filters
{xn}Nn=1 or both the source s and the filters are uniquely
identifiable according to Definition 1 under (A5).

Simultaneous identification of both the source and the filters
requires extra conditions, which go beyond universal sampling
(see Section IV-B). We first derive conditions for the unique
identification of the filters followed by those extra conditions
for the identification of the source signal. Note that recovery
of the filters is equivalent to the simultaneous recovery of both
the filters and the DTFT of the source signal at the observed
frequencies. Therefore partial identifiability is as follows.

Definition 2 (Partial Identifiability Only for Filters). Compres-
sive MBD is partially identifiable if for any feasible solution
(ŝ, {x̂n}Nn=1), there exists s̃ such that

1) S̃(ejkω0) = Ŝ(ejkω0) for k ∈ ∪Nn=1Kn.
2) (s̃, {x̂n}Nn=1) ∈ C

(
s, {xn}Nn=1

)
.

B. Universal Sets
Universal sampling sets have been introduced for com-

pressed sensing from partial Fourier measurements (e.g., see
[10, Def. 14.1]). The partial Fourier measurement matrix
corresponding to the nth channel measurements in (3) is given
as a |Kn| × M̄ Vandermonde matrix Vn whose (k,m)th
element is given as ejkmω0 . In our settings, it is satisfied that
M̄ ≥ |Kn|, where M̄ = max{2Mx − 1,Ms} (See Section
IV-B for details). To avoid aliasing, ω0 is chosen such that
the elements of the set {emω0}M̄−1

m=0 are distinct. For each
n ∈ {1, . . . , N}, the index set Kn is called universal if every
submatrix of Vn obtained by taking |Kn| columns has full
rank [10, Def. 14.1], that is, Vn has full spark [30]. Note that
the universal sets depend on the frequency interval ω0.

For example, if Kn is a set of consecutive integers and
ω0 = 2π/M̄ then each index set Kn is universal. Various
alternative constructions of universal sets have been studied
(e.g., [31]–[34], also see [10]).

C. Coprimeness of the Filters
In an MBD framework, unless any further restriction is

imposed on the supports of the source and the filters, the
coprime condition on the filters is a necessary for the unique
identification of the solution. To elaborate, let the filters
{xn}Nn=1 share nontrivial common zeros in the z-domain.
Specifically, each filter can be decomposed as

xn = h0 ∗ x̂n, (5)

where the sequence h0 contains the common zeros except at
z = 0 and x̂n is the novel factor. As a result, the outputs
{yn = s ∗ xn}Nn=1 can also be decomposed as

yn = s ∗ xn = s ∗ h0 ∗ x̂n = ŝ ∗ x̂n, (6)

yn h
ȳn

V�1
Yn(e

jk!0)

m 2 {M � 1, · · · ,Mh � 1}

Fig. 1. Compressive measurements of Fourier samples of yn by using
discrete-SOS filter h: the sequence yn of dimension of M is passed through
an FIR kernel of length Mh defined as in (7). The output sequence ȳn has
length Mh +M−1 out of which few measurements are taken by closing the
switch at sample indices m ∈ {M − 1, . . . ,Mh − 1}. From the truncated
samples Yn(ejkω0 ) is computed by inverting a linear system of equations
governed by matrix V considered in Section II-B.

where ŝ = s∗h0 and {x̂n}Nn=1 provide an alternative solution
that produces the same outputs. Hence, without any assump-
tions on the source and the filters, coprimeness is a necessary
condition. With (A1) and (A2), it is no longer a necessary
condition as the alternative solution may not satisfy these
assumptions. However, we keep the coprimeness assumption
to our settings to derive the identifiability conditions.

III. COMPRESSIVE MBD FROM TIME DOMAIN
MEASUREMENTS

In this section we propose a method that acquires the com-
pressive Fourier measurements of an FIR sequence without
explicitly observing the entire sequence. The number of time
samples can be as small as the number of Fourier measure-
ments. Our approach is inspired by the kernel-based sampling
and reconstruction approach for finite-rate-of-innovation (FRI)
signals [6], [35]. It has been shown that Fourier measurements
of FRI signals can be computed from time samples at a sub-
Nyquist rate by applying a suitable sampling kernel. Then
the parameters of FRI signals can be computed from Fourier
measurements on a grid.

Let y be an FIR signal supported on [M ] and K ⊂ Z be
a finite set. The DTFT coefficients Y (ejkω0) of y for k ∈ K
are computed from |K| consecutive time samples of y with an
appropriate sampling kernel.

Let h be an FIR filter supported on [Mh], where Mh > M ,
which satisfies

h[m] =
∑
k∈K

ejkω0m, m ∈ [Mh]. (7)

The filter h in (7) is a discrete-time analog of the sum-of-sincs
(SOS) filter proposed by Tur et al. [6]. The filtered version of
y by h, denoted ȳ, satisfies

ȳ[m] =
M−1∑
p=0

y[p]h[m− p] =
∑
k∈K

ejkω0m Y (ejkω0) (8)

for M − 1 ≤ m ≤ Mh − 1. Then the vectors respectively
containing {Y (ejkω0)}k∈K and {ȳ[m]}Mh−1

m=M−1 are related
through a Vandermonde matrix V of size (Mh−M+1)×|K|
with its (m, k)th element given as ejmkω0 . Therefore if ω0 and
K form the universal set then the condition Mh ≥M+|K|−1
ensures that {Y (ejkω0)}k∈K are computed uniquely from
{ȳ[m]}Mh−1

m=M−1. In other words, |K| observations of the ȳ are
sufficient to compute |K| Fourier measurements of y without
observing the entire sequence.
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A schematic of the sampling mechanism is shown in Fig. 1.
The switch is closed for the samples at m ∈ {M−1, . . . ,Mh−
1}. If we further assume that K is a universal set, any |K| time
samples of ȳ from [M − 1,Mh − 1] will make the resulting
matrix V full rank. This enables optimizing the sampling
pattern to improve the condition number of V.

IV. IDENTIFIABILITY OF COMPRESSIVE MBD
We consider a two-step approach to the compressive MBD

problem. The first step identifies only the filters corresponding
to the impulse responses of the channels, similarly to blind
channel estimation in communications (e.g., [9], [15]). Once
the filters are identified, then the second step reconstructs the
common input source to the channels.

A. Identifying Sparse Filters
We identify the filters from the Fourier measurements in

(4) under the assumptions (A1) to (A5) except (A2). The
following theorem presents the result in the two-channel case.

Theorem 1 (Partial Identifiability of Compressive MBD).
Suppose that (A1), (A3), (A4), and (A5) hold with K1 = K2 =
K and L <

√
Mx.

1) If |K| ≥ 2L2, then compressive MBD is partially
identifiable from the Fourier measurements according to
Definition 2.

2) If |K| < 2L, then compressive MBD is not partially
identifiable.

Recall that {S(ejω0k)}k∈K, x1, and x2 were arbitrary in
Definition 2. Therefore, the partial identifiability in Theorem 1
implies that for any instance within the assumed model, the
filters are uniquely identified up to the ambiguity class. When
it is not partially identifiable, there exists an instance where
the filters are not uniquely determined.

Next, by combining the Fourier domain identifiability re-
sults of Theorem 1 with the kernel-based measurement scheme
proposed in Section III, we obtain the following corollary,
which provides the analogous results for compressive MBD
from time-domain measurements.

Corollary 1 (Time-Domain Compressive MBD). Suppose that
the hypotheses of Theorem 1 and (A2) hold. Let h be an FIR
filter of length |K| with impulse response defined in (7). Then
compressive MBD is partially identifiable from |K| consecutive
time-samples of y1∗h and y2∗h, where the samples are indexed
by the set {M − 1, . . . ,M + |K| − 2}, if |K| ≥ 2L2. On the
other hand, compressive MBD is not partially identifiable if
|K| < 2L.

The time-domain results are similar to the result in the
context of FRI signal sampling where the number of Fourier
coefficients needed for the identification governs the desired
number of time samples and the sampling rate [6].

The proof of Theorem 1 directly follows from the results
on the following feasibility problem:

find {S̃(ejω0k)}k∈∪nKn
and (x̃1, x̃2, . . . , x̃N )

s.t. Yn(ejω0k) = S̃(ejω0k)X̃n(ejω0k), k ∈ Kn, ∀n,
(A1), (A3), (A4) and (A5) are satisfied,

(9)

where the tilde is used to distinguish the variables of the prob-
lem from the corresponding ground-truth signals. If the solu-
tion to (9) is unique up to a scaling and shift ambiguity, then
({S(ejω0k)}k∈⋃N

n=1 Kn
, {xn}Nn=1) is uniquely identifiable, up

to a shift and scaling ambiguity, from the measurements in (4).
The following lemma, whose proof is deferred to Section VII,
provides necessary and sufficient conditions for the uniqueness
of the feasibility problem in (9) when N = 2.

Lemma 1. Let ω0, K1, K2, and K be as in Theorem 1. If
|K| ≥ min{2L2, 2Mx− 1}, then the feasibility problem in (9)
has a unique solution. On the other hand, if |K| < 2L, then
the problem in (9) is not uniquely identifiable.

The ground-truth signals ({S(ejω0k)}k∈K1

⋃K2
, {x1, x2})

are feasible to (9). Let

q = x1 ∗ x̂2 − x2 ∗ x̂1, (10)

where ({Ŝ(ejω0k)}k∈K, x̂1, x̂2) is another feasible solution
to (9). In the proof of Lemma 1, we have shown that the
number of Fourier measurements for the unique identification
is determined as the worst-case ‖q‖0 maximized over all
feasible (x̂1, x̂2). Since x1, x2, x̂1, and x̂2 are L-sparse vectors
with support over [Mx], in general, the worst case support of q
is min{2L2, 2Mx − 1}. For high sparse signals, that is, when
L�Mx or L <

√
Mx, we have that ‖q‖0 = 2L2. Therefore

by modifying constraints on x̃1 and x̃2 in (9), we obtain similar
results in a different scenario as an immediate corollary.

Corollary 2 (Sufficient Conditions for General Sparsity Case).
Let ω0, K1, K2, and K be as in Theorem 1. Let L ≤ Mx

without the restriction L <
√
Mx. If |K| ≥ min{2L2, 2Mx −

1}, then the feasibility problem in (9) has a unique solution.
On the other hand, if |K| < 2L the problem in (9) is not
uniquely identifiable.

Without assuming that x1 and x2 are sparse, the worst-
case ‖q‖0 becomes 2Mx − 1, which results in the following
corollary.

Corollary 3 (Non-Sparse FIR Filters). Assume the hypotheses
of Theorem 1. Let L = Mx. Then the same identifiability result
as in Theorem 1 holds if and only if |K| ≥ 2Mx − 1.

Compared with the results of [9], where 3Mx time-samples
are sufficient to identify the filters, in our frequency-domain
approach 2Mx − 1 Fourier measurements are necessary and
sufficient. Further, the Fourier measurements can be com-
puted uniquely from 2Mx − 1 time-measurements by using
a sampling kernel as shown in Section III. Hence, for a large
Mx, we gain significantly in terms of reducing the number of
measurements compared with the approach in [9]. A detailed
comparison of these methods is presented in Section V.

Next we show how the identifiability result in Theorem 1
for the two-channel case generalizes to the case of more than
two channels. We obtain a particular sufficient condition by
assuming that there exists a pair of coprime channels from
which at least 2L2 Fourier measurements are available.

Theorem 2. Suppose (A1), (A3), (A4), and (A5) hold for
N ≥ 2 and L <

√
Mx. Then compressive MBD is partially
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identifiable from the Fourier measurements if the following
conditions are satisfied: i) There exist 1 ≤ n1 < n2 ≤ N
such that Kn1 = Kn2 = K for a universal set K with
|K| ≥ min{2L2, 2Mx − 1}; ii) Kn is a universal set such
that Kn ⊆ K and |Kn| ≥ 2L for all n 6∈ {n1, n2}.
Proof. By Theorem 1, the triplet ({S(ejkω0)}k∈K, xn1

, xn2
)

is uniquely identified. Then for an appropriate choice of
the sets Kn, the recovery of the filters for the rest of the
channels (those indexed by n 6∈ {n1, n2}) reduces to a
non-blind problem. Since Yn(ejkω0) = S(ejkω0)Xn(ejkω0),
if the sets Kn are chosen such that Kn ⊆ Kn1

, then
we can compute {X(ejkω0)}k∈Kn

from {Yn(ejkω0)}k∈Kn

as {S(ejkω0)}k∈Kn1
is already identified. Next, from the

measurements {X(ejkω0)}k∈Kn , the filters are identifiable
uniquely if |Kn| ≥ 2L.

Theorem 2 implies that a total 4L2 + (N − 2)2L Fourier
measurements from N channels are sufficient for unique
identification of the filters. Therefore on average it suffices
to take (4L2 + (N − 2)2L)/N measurements per channel.
Particularly, with sufficiently many channels (N & L), the
average number of measurements per channel is of the order
of L which is the same as required by the necessary condition.
Note that when the source is known, a minimum of 2L Fourier
measurements are necessary to uniquely identify the filters.
Hence, for N & L the requirement on the average number of
measurements per channel matches that of the known source
case in order.

B. Recovering the Common Source Signal

As discussed in the introduction, in certain applications such
as radar, sonar, and ultrasound, it suffices to identify only the
filters, which describe the target. On the other hand, there
exist applications where the recovery of the source signal
is important. For example, in communications or imaging,
the source signal carries information and the filters describe
the channel impulse response or sensitivity functions. In this
section, we present conditions under which the source and
filters are simultaneously identified.

The results in Theorems 1 and 2 guarantee that the filters
are fully identified but the source signal is partially identified
up to its Fourier measurements at the selected frequencies. In
general, the recovery of the source s from its partial Fourier
measurements is ill-posed. However, recovery becomes feasi-
ble by introducing further restrictions on s.

For example, suppose that s is supported within [Ms]
for a finite integer Ms > 0. To uniquely determine an
arbitrary source signal s supported within [Ms], the number
of measurements needs to be at least Ms. On the other
hand, since we choose ω0 and K such that the elements in
{ejω0k}Ms−1

k=0 are distinct, the linear system that generates the
Fourier measurements at Kω0 corresponds to a Vandermonde
matrix of full column rank and s is uniquely determined.

Combining the above argument with Theorem 1 provides
the following result in the two-channel case: All s, x1, and x2

are identified from the sampling pattern given by K1 = K2 =
K if and only if |K| ≥ max{Ms, 2L

2} and (A5) is satisfied.

Below we show that when there are more than two channels,
with a carefully designed sampling pattern, one can signifi-
cantly reduce the peak number of measurements per channel,
where the gain is almost proportional to the number of
channels. This is interesting, particularly when Ms dominates
L, that is, Ms � 2L2.

A naı̈ve approach is to consider Ms Fourier measurements
from any pair of channels and to apply Theorem 1 to identify
the corresponding filters and the source s. As the source
is identified, the problem is reduced to a non-blind one
for the remaining channels, and to identify the filters in
those channels, 2L Fourier measurements are necessary and
sufficient. However, this naive approach may not be well
suited for practical applications. For example, in the radar
and ultrasound applications, the Fourier measurements are
computed as follows: The analog signal is first pre-filtered with
a kernel followed by an analog-to-digital converter (ADC).
Then, as discussed in Section III, the time-domain samples
are linearly combined to give the Fourier measurements [6],
[35]. Here the sampling rate is determined by the number of
Fourier measurements. In practice, it has been shown that the
bit resolution of ADCs is limited when the sampling rate is
high [36]. Therefore, it is desirable to minimize the maximum
number of Fourier measurements per channel.

To achieve recovery we consider a pairwise strategy. For
example, assume there are four channels (N = 4). Consider
universal sets {Kn}4n=1 such that they satisfy the following
conditions: (i) K1 = K2 and K3 = K4 ; and (ii) |Kn| ≥ 2L2

for n = 1, 2, 3, 4. By applying Theorem 1, independently to
the measurements from the pair channels (1, 2) and (3, 4), we
identify the filters {xn}4n=1 as well as the Fourier measure-
ments {s(ejkω0)}k∈K1

and {s(ejkω0)}k∈K3
. These two sets of

partial Fourier measurements may be differently scaled due
to shift and scaling ambiguities. Let us assume that there
are no such inter-pair ambiguities. Then we have overall
{s(ejkω0)}k∈K1∪K3

Fourier measurements of the source. If
|K1 ∪ K3| ≥ Ms, then we can uniquely recover the source.
Here, the maximum number of the Fourier measurements can
be 2L2. In this particular case, if we consider more channels, it
is necessary and sufficient to consider 2L measurements from
the additional channels to identify the corresponding filters
as the source is identified from the first four channels. We
generalize the example to any N channels and show how to
choose the universal sets {Kn}Nn=1 to eliminate the inter-pair
ambiguity and uniquely identify the source and the filters.

To this end, to apply the pairwise strategy for any N ≥
2 channels, we consider the Fourier-domain sampling grids
given by

K2r−1 = K2r, |K2r−1| = K, K2r−1 is a universal set,
and |K2r−1 ∩ K2r+1| = 2, r = 1, 2, . . . , R,

(11)

where R ≤ bN/2c. The first three conditions with K ≥ 2L2

are necessary and sufficient for the recovery of the filters
and the partial Fourier measurements of the source. The last
condition is that there should be overlap of two samples in
successive pairs of sample sets. We show that this overlap
aids in removing inter-pair ambiguity of shift and scaling.
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The identifiability result for both the source and filter for
compressive MBD is stated in the following theorem.

Theorem 3. Suppose that (A1) to (A5) hold for N ≥ 2 and
L <

√
Mx. Then compressive MBD is uniquely identifiable

according to Definition 1 from the Fourier measurements
if the following conditions are satisfied: i) For at least
max

{
Ms−K
K−2 + 1, 1

}
pair of channels, the corresponding

sampling sets satisfy the conditions in (11) with K ≥ 2L2;
and ii) At least 2L Fourier measurements are available from
the rest of the channels.

Proof. Let us assume that we can recover Ms Fourier mea-
surements of s from the first 2R channels together with the
corresponding filters where 2R ≤ N . For these channels, the
sampling pattern is chosen such that K2r−1 = K2r for r =
1, . . . , R with |K2r| = K ≥ 2L2. For each pair of (2r − 1)th
and 2rth channels for r = 1, . . . , R, the assumptions imply
via Theorem 1 that x2r−1, x2r, and S(ejkω0) for k ∈ K2r−1

are uniquely identified up to a scaling and shift ambiguity.
In other words, S(ejkω0) is identified up to multiplication by
αre

jkω0pr for k ∈ K2r−1 for unknown constants αr 6= 0
and pr ∈ Z. Due to the overlaps |K2r−1 ∩ K2r+1| = 2 for
r = 1, . . . , R in the design of {K2r−1}Rr=1. These inter-pair
ambiguity constants can be removed up a global constant
in a sequential manner. For example, let us assume that
K1 ∩ K3 = {k1, k2}. In other words, for the channel pairs
(1, 2) and (3, 4), Fourier measurements are taken at the over-
lapped frequencies k1ω0 and k2ω0. By applying Theorem 1
to these pairs, we obtain the Fourier measurements of the
source at the overlapped frequencies up to inter-pair ambi-
guities, which are α1S(ejk2ω0)ejk2ω0p1 , α1S(ejk1ω0)ejk1ω0p1 ,
α2S(ejk2ω0)ejk2ω0p2 , and α2S(ejk1ω0)ejk1ω0p2 . Then α1/α2

and p1 − p2 are computed from the ratios among these
measurements and enable to obtain {α1S(ejkω0)ejkp1ω0}k∈K3

from {α2S(ejkω0)ejkp2ω0}k∈K3
, where the former is aligned

to the first pair.
Applying this process successively, we identify the filters

x1, x2, . . . , x2R, up to a global scaling factor 1/α1 and
a shift by −p1, together with the Fourier measurements
α1S(ejkω0)ejkp1ω0 for k ∈ ⋃Rn=1Kn.

To identify s from the above Fourier measurements, it is
sufficient to satisfy

N1⋃
r=1

K2r−1 = (R− 1)(K − 2) +K ≥Ms. (12)

In other words the source can be identified from a minimum
2R ≥ 2 ·Ms−K

K−2 +2 channels if K ≥ 2L2. From the remaining
N − 2R channels it is sufficient to consider any 2L Fourier
measurements to identify the corresponding filters.

The maximum number of measurements per channel in
Theorem 3 can be restricted to 2L2. The inequality in (12)
implies that when K increases beyond 2L2, the number of
channels for the identifiability can be reduced. In other words,
one can trade-off between the number of measurements per
channel and the number of channels. For K = 2L2 the source
and the filters are identifiable if N ≥ max

{
Ms−2L2

L2−1 + 2, 2
}

.

By Corollary 3, we obtain an immediate extension of
Theorem 3 to the non-sparse case.

Corollary 4 (Identifiability Results for Source and Non-S-
parse Filters). In Theorem 3, let supp{xn} = [Mx], where
Mx ≤ M/2. Then compressive MBD is uniquely identifiable
from 2Mx − 1 Fourier measurements from each of N ≥
2 · Ms−2Mx+1

2Mx−3 + 2 channels.

Even in the non-sparse case, the measurement system can
be compressive when the number of Fourier measurements
2Mx − 1 is smaller than the available time-domain measure-
ments M = Mx +Ms − 1, that is, Ms > Mx.

C. Extension to Sparse MBD with Circular Convolution
The MBD problem considered in the previous sections

assumes that the measurements consist of a linear convo-
lution of the source and filters, whereas, the recent results
in the literature consider the MBD problem with circular
convolutions. Here we extend our results to the case of
circular convolution. In this setup, the N -channel MBD time-
domain outputs are given as {yn = s ~ xn}Nn=1, where ~
denotes circular convolution, and the supports of the filters
and source are within the set [M ]. In other words, we
assume that supp{s} ⊆ M and supp{xn} ⊆ M . Due to
circular convolution, the measurements yn = s ~ xn are
M -periodic. We further assume that the filters are L-sparse
and they are coprime. In this case, the goal is to derive
identifiability conditions to uniquely recover the source s
and the filters {xn}Nn=1 from the discrete Fourier transform
(DFT) measurements {Yn(ejkω0)}k∈Kn

, where ω0 = 2π
M and

Kn ⊆ [M ]. With these settings, for N = 2, following the steps
in the proof of Lemma 1, the sequence q in (10) is given as
q = x1 ~ x̂2 − x2 ~ x̂1. To follow the remaining steps of the
proof and prove the identifiability results, we have to ensure
that q = x1 ~ x̂2 − x2 ~ x̂1 = x1 ∗ x̂2 − x2 ∗ x̂1. This is
indeed true if we assume that the filters are supported within
the set bM/2c. With these assumptions, we state the extension
of Theorem 2 for the circular convolution case.

Theorem 4. Let N ≥ 2 and M ∈ N. Let (s, {xn}Nn=1) be
arbitrary while satisfying (A1) to (A5) with Mx = bM/2c
and Ms = M . Let yn = s ~ xn for n = 1, 2, . . . , N . Then
s and {xn}Nn=1 are simultaneously identified from the DFT
measurements {Yn(ejω0k)}k∈Kn if the following conditions
are satisfied: (i) For at least max

{
M−K
K−2 + 1, 1

}
pair of

channels, the corresponding sampling sets Kn satisfy the
conditions in (11) where K ≥ 2L2; and (ii) a minimum of 2L
DFT measurements are available from the rest of the channels.

Then the following result for the non-sparse case is obtained
as an immediate corollary.

Corollary 5 (Non-Sparse FIR with Circular Convolution).
Consider the assumptions of Theorem 4. Let supp{xn} = [Mx]
where Mx ≤M/2. Suppose that N ≥ 2M−4

2Mx−3 . Then both the
source and the filters are identifiable iff the number of Fourier
measurements are greater then or equal to 2Mx − 1.

Note that the condition supp{xn} = [Mx] implies that the
filters are in a low-dimensional subspace of dimension Mx.
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D. Recovery from Samples in the z-Domain

A DTFT can be considered as a special case of the z-domain
sample evaluated at a complex number of unit modulus. In
this section we show that the results in the previous sections
generalize to the case where the measurements of the output
channels are given as samples in the z-domain

For example, as in (9), let us consider the filter iden-
tification problem for the two-channel case from samples
{Yn(zk) = S(zk)Xn(zk)}k∈[K] where {zk}k∈[K] denotes
sampling grid in the z-domain. We assume that {S(zk)}k∈[K]

is non vanishing. To show the identifiability, we can follow the
lines of the proof of Theorem 1 by substituting ejkω0 by zk.
With the z-domain measurements, all the steps of the proof
of Theorem 1 remain valid except the spark properties of the
resulting A matrix (see (25)).

With z-domain sampling, the matrix A is given as

A =


1 z1 z2

1 . . . z2Mx−1
1

1 z2 z2
2 . . . z2Mx−1

2
...

...
...

. . .
...

1 zK z2
K . . . z2Mx−1

K

 ∈ CK×2Mx . (13)

The matrix A in (13) need not have full spark for any arbitrary
choice of zk. Here we show a particular choice of zks such
that the matrix has full spark.

Let us assume that z0 ∈ C such that z0 6= 1. Let K ∈ [2Mx]
be a distinct set of integers such that |K| = K. Let zk = zpk0

for pk ∈ K. Then the matrix A in (13) has full spark if K is a
universal set. To show the full spark property, let us consider a
submatrix of A which consists of K distinct columns indexed
by m1,m2, . . . ,mK . With zk = zpk0 , the submatrix is given
as 

zp1m1

0 zp1m2

0 . . . zp1mK

0

zp2m1

0 zp1m2

0 . . . zp1mK

0
...

...
. . .

...
zpKm1

0 zpKm2

0 . . . zpKmK

0

 ∈ CK×K . (14)

Since the choice of the columns is arbitrary, the matrix A
will have full spark if the submatrix is invertible. Since z0 6=
1, the submatrix is similar to matrix V in Section II-B with
seeds {zmk

0 }Kk=1. Since K is a universal set and pk ∈ K, the
submatrix has full spark and is invertible. Hence, the matrix
A with the particular choice of sampling grid in the z-domain
has full spark which implies that the filters can be uniquely
identifiable in the two-channel case if K ≥ 2L2. The problem
is not identifiable if K < 2L. Similarly, we can extend the
results of Theorem 2 and Theorem 3 to the case where the
samples are measured in the z-domain.

A major difference between the identifiability results from
the Fourier measurements and from the measurements in the
z-domain is that the sampling grid in the former case depends
on the support of the source and the filters. For example,
the results in Theorem 3 assumes that the sampling interval
ω0 is selected such that the set {ejω0k}max{2Mx−2,Ms−1}

k=0

has distinct elements. However, with z-domain sampling, the
sampling grid can be designed independent of the support of
the source or the filters.

V. COMPARISON WITH PRIOR ART

We first compare our results for non-sparse cases and then
provide a comparison for sparse MBD.

A. Comparison of Non-Sparse Case

Xu et al. [9] considered the problem of estimating fil-
ters only without sparsity assumption with linear-convolution.
They made the assumptions that the filters are coprime and
the source has a linear complexity1 greater than or equal to
2Mx, which implies that Ms ≥ 4Mx. With these assumptions,
the authors show that the filters are identifiable from N = 2
channels if 3Mx consecutive measurements of yn are avail-
able. Note that with Ms ≥ 4Mx, the length of yn is given by
M ≥ 5Mx−1 out of which 3Mx are sufficient to identify the
filters.

In comparison, our results in Corollary 3, together with the
time-domain results in Corollary 1, state that we can identify
the filters with 2Mx−1 time samples. As in [9], we too impose
the coprimeness condition on the filters. However, we do not
restrict the filter to have a longer support. In our approach,
the support of the source could be either larger or smaller
compared with the support of the filters. Furthermore, our
results are valid for any source signal whose DTFT samples
do not vanish at a given frequency location. The source need
not satisfy a linear complexity constraint.

For example, let us assume that the source s has linear-
complexity of one, that is, the samples of the source sequence
are given as s[m] = c1r

m
1 for m ∈ [Ms]. In addition, let

us assume that r1 = ejω1 . In this case, the DTFT of the
source sequence is given as S(ejω) = c1

1−ej(ω−ω1)Ms

1−ej(ω−ω1) . The
DTFT vanishes at ω = p 2π

Ms + ω1 where p ∈ Z \ {0}. If
we chose our sampling set K and ω0 such that the set Kω0

does not have zeros of S(ejω) then our method identifies
the filters. In particular, let the cardinality of the set K be
given, that is, the number of Fourier measurements to be
taken is known. For a given ω1 and Ms, if ω0 and K are
chosen as min

{
4π

Ms|K| ,
2π

2Mx−1

}
and

⌈
ω1−2π/Ms

ω0

⌉
+ [|K|],

then {S(ejkω0)}k∈K does not vanish. Hence, our approach
identifies the filters for Lc = 1, whereas, the method by Xu
et al. [9] cannot identify the filters uniquely.

Recently, Xia and Li [18] considered MBD problem with
circular convolution in a deterministic setup where the source
and filters are real and deterministic, but not sparse. Similar to
our assumption in the case of non-sparse circular MBD setup,
they assumed that supp{xn} = [Mx] with Mx < M . They
showed that by using all M time samples from each channel
almost all the sources and the filters are uniquely identifiable
iff N ≥ M−1

M−Mx
. The authors used the conjugate symmetry

property of the Fourier transform of real signals to restrict the
feasible solution sets. The results show that there exist source
and filters such that the identifiability results fail. However,
our results hold for any source filter pairs, which satisfy the
desired conditions (cf. Corollary 5). We show that N ≥ 2M−4

2Mx−3

1Mathematically, the linear complexity of a sequence s is defined as the
smallest integer Lc such that there exists a set of complex-valued amplitudes
{c`}Lc

`=1 and complex-valued roots {r`}Lc
`=1 such that s[m] =

∑L
`=1 c`r

m
` .
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channels are sufficient for unique identification of the source
and filters iff 2Mx − 1 Fourier measurements per channel are
available. For Mx = M/2, both the results work for N = 2
channels and require all the measurements. On the other hand,
when Mx �M , our result requires more number of channels
but with fewer measurements per channel than that by Xia and
Li [18] with two channels.

B. Comparison with Recent Results on Sparse MBD

All the results discussed in this section consider the MBD
setup with circular convolution. Hence, we compare them with
our results in Theorem 4. The results in [19]–[22] consider
identifiability of MBD problems with the assumption that the
filters are random and sparse. Balzano and Nowak [19] con-
sidered a BGPC problem with oversampled DFT matrix and
showed that when L-sparse signals xns are generic and have
common known support, it is necessary to have measurements
from N ≥ d(M − 1)/(M −L)e channels for perfect recovery
of unknown gains. Li et al. [22] studied the identifiability
conditions for a general BGPC problem with subspace and
sparsity constraints. The authors showed that under generic
sparsity constraints on the filters, the problem is identifiable
with high-probability up to acceptable ambiguities as long as
N = O(M logM). In [20], [21], the authors considered a
sparse MBD problem with circular convolution by assuming
that the source is invertible and the filters are sparse with
randomly chosen support and amplitudes. Specifically, Wang
and Chi [21] assumed that the sparsity of the filters follows
a Bernoulli-subgaussian model. With the assumption that the
source s is approximately flat in the Fourier domain, the au-
thors show that the problem could be efficiently solved through
an `1-minimization approach, as long as N = O(M log4M).
Cosse [20] assumed that the source is invertible and the
location of the non-zero values of the sparse filters are chosen
uniformly at random over [M ]. The recovery is guaranteed
with high-probability as soon as the number of channels N and
the dimension of the filters M , satisfy N . M and N & L2

where the filters are assumed to be L-sparse.2

Our results is distinguished from the previous results as
follows:

1) The aforementioned recent results considered random
sparsity or subspace models on the filters, whereas, we
consider a deterministic sparsity model for the filters.

2) In [19]–[22], sparsity is introduced to derive the identi-
fiability results but not with the goal of compressing the
measurements. The results are derived by assuming that
all M time samples yn are available in all the channels.
We show that sparsity also helps in identifiability by us-
ing compressive measurements in the frequency domain.
Instead of using M time samples, we show identifiability
by using 2L2 Fourier samples of yn.

3) In [22] and [21], the number of channels required does
not depend on the sparsity level of the filters. We show
that the source and filters are identifiable from N ≥
max

{
M−2L2

L2−1 + 2, 2
}

channels.

2M & N ⇔ ∃c ∈ R s.t. M ≥ cN .

4) In [22] and [21], the total number of measurements
is on the order of O(M logM) and O(M log4M),
respectively, whereas, in our setup, we need 2L2 mea-
surements from at least max

{
M−2L2

L2−1 + 2, 2
}

channels,

which results overall (M−2)2L2

L2−1 measurements which is
on the order of M .

5) Comparing the results in the case of known support,
in [19], all M samples are considered per channel and
overall O(M) measurements are required. In our case,
we need only L2 measurements per channel with overall
measurements on the order M . We gain in terms of the
number of measurements per channel but we require
more channels compared with [19].

C. Relation to Blind CS
The proposed compressive MBD problem can be viewed

as a special case of blind compressive sensing (BCS) [37].
In BCS, a set of signals that are sparse in an unknown bases
are uniquely identified from their compressed measurements.
Similarly, in compressive MBD, the output sequences {yn =
s ∗xn}Nn=1 are sparse in the unknown dictionary that is given
by the convolution matrix corresponding to the sequence s,
the filters denote the sparse vectors, and the objective is to
identify them from compressive measurements in the Fourier
domain. However, the existing dictionary models in [37] do
not include convolutional dictionaries.

VI. NUMERICAL RESULTS

The main goal of this section is to compare the identifiability
results of Theorem 1 to empirical observations. While Theo-
rem 1 provides a set of necessary and sufficient conditions for
the identifiability in the worst case, in practice, it is not feasible
to test in the worst case scenario. Therefore, instead, we run a
set of Monte Carlo simulations and observed conditions under
which most cases are successful (We counted the frequency
of empirical successes). On the other hand, the identifiability
result by Theorem 1 implies the existence of a method that
uniquely determines the solution of compressive MBD, which
means one has to consider the optimal algorithm regardless of
its computational cost. This is also infeasible in practice. For
a set of small sized problems, we performed enumeration over
all possible supports, which provides an optimal reconstruction
algorithm. For larger scaled problems, we consider a few
selected heuristics described below. In the non-sparse case
with noisefree measurements, an optimal algorithm can be
obtained by a standard eigenvalue decomposition. Thus, we
use it for the study of the identifiability.

A. Practical algorithms for compressive MBD
To describe the algorithms used in the experiments, we

rewrite the measurements succinctly in a compact matrix form.
Let yn ∈ C|K| denote the compressible measurements from
the nth channel. Let s ∈ C|K| denote the column vector whose
entries are {S(ejkω0)}k∈K. The measurements in (4) can then
be compactly written as

Y = [y1 y2] = diag(s)ĀX, (15)
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where X = [x1 x2]. Estimating s and X from Y is a
BGPC or BDC problem with partial Fourier matrix. Practical
algorithms to solve the sparse MBD or BGPC/BDC problem
were proposed in [21], [25], [29]. The algorithm proposed
in [21] is based on `1-norm minimization and requires the
matrix Ā to be a full DFT matrix. Hence, the algorithm is
not applicable to compressive MBD. In [29] and [25], the
authors proposed algorithms based on BDC and truncated-
power iteration (TPI), respectively. We will use modifications
of these two approaches to our setting in the simulation.

The BDC problem is similar to a sparse dictionary learning
(DL) problem [38]; however, there is a major difference. In the
DL problem, the composite matrix diag(s)Ā is unknown and
needs to be estimated along with the sparse vectors X. In con-
trast, BDC requires to estimate only s with known Ā. In [29],
the authors proposed a convex optimization based solution to
the BDC problem. However, we experimentally observed that
for N = 2 solving the BDC problem in (15) by using an alter-
nate minimization approach provides desirable identifiability
results. Hence, we consider the alternate minimization-based
BDC approach as one of the practical algorithms for assessing
the results. In alternating minimization, first, we estimate the
sparse vectors by assuming that s is known and then, in the
dictionary update step, we estimate s by using the estimated X.
We apply orthogonal matching pursuit (OMP) [39] to estimate
the sparse vectors. Then s is estimated as a minimizer of the
error ‖Y−diag(s)ĀX‖22. We present the proposed approach in
Algorithm 1. The solution of the optimization problem in Step

Algorithm 1 BDC for solving (15).
Output: s and X
Input: Y, Ā L, and the initial estimate s(0)

1: Let i← 1
2: repeat
3: Estimate X(i) by applying OMP to diag(s(i−1))−1 Y

columnwise
4: s(i) ← argmins ‖Y − diag(s)ĀX(i)‖22
5: i← i+ 1
6: until convergence criterion is reached

4 is given as s(i) = D{ĀX(i)YH}./D{(ĀX(i))(ĀX(i))H}.
Here the operator D acts on a square matrix to output a vector
consisting of the diagonal elements of the matrix, and the sym-
bol ./ denotes element-wise division. In our simulations, the
algorithm stops at the ith iteration if ‖X(i)−X(i−1)‖2 ≤ 10−3.

Next, we discuss an alternative method to identify the filters
from the measurements Y. By applying cross-correlation, as
in the proof of our main results (cf. Section VII), (15) can be
rewritten as[

diag(y2)Ā −diag(y1)Ā
]︸ ︷︷ ︸

B

[
x1

x2

]
︸ ︷︷ ︸

γ

= 0. (16)

In the sparse MBD framework, identifying the filters from the
matrix B is equivalent to identifying a 2L-sparse null vector of
B. The solution to the problem in (16) can be computed as the

Fig. 2. Phase transition for the identification of L-sparse filters by exhaustive
search (L = 4): K ≥ 2L is necessary and sufficient.

solution to the following non-convex optimization problem:

minimize
γ1,γ2∈CMx

[
γH

1 γH
2

]
BHB

[
γ1

γ2

]
subject to ‖γ1‖0 ≤ L, ‖γ2‖0 ≤ L,

∥∥∥∥[γ1

γ2

]∥∥∥∥
2

= 1.
(17)

Problem (17) can be solved by adapting the truncated power
iteration (TPI) algorithm proposed in [40]. In its original
version, TPI is developed to compute the largest sparse eigen-
vector of a positive semidefinite matrix. In [25], Li et al. adopt
the TPI algorithm in [40] to solve the BGPC problem by
assuming that measurement matrix is random Gaussian and
the filters are jointly sparse. We present TPI to solve the
optimization problem in (17).

The TPI algorithm in [40] is developed for a single sparse
vector. In (17) the vector to be estimated is a concatenation of
two sparse vectors. By adopting the original TPI algorithm,
the sparsity constraints on γ in (17) are imposed by the
composite sparse projector P̃L : C2Mx → C2Mx . For any
vector γ ∈ C2Mx , the output of the sparse projector, P̃L{γ},
is an 2L sparse vector computed by independently retaining
the L largest entries over the sets [Mx] and Mx + [Mx] from
the support of γ and setting the rest of the entries to zero. The
truncated power iteration method is presented in Algorithm 2.

Algorithm 2 Truncated Power Iteration to solve (17).
Output: γ; Parameter: β
Input: B,Mx, L, and the initial estimate γ(0)

1: Set G← βI2Mx
−BHB

2: Let i← 1
3: repeat
4: γ(i) ← Gγ(i−1)/‖Gγ(i−1)‖2
5: γ(i) ← P̃L{γ(i)}/‖P̃L{γ(i)}‖2
6: i← i+ 1
7: until convergence criterion is reached

In Step 2, we denote by I2Mx
the identity matrix of size

2Mx × 2Mx. As was suggested in [25], a safe choice of the
parameter β is ‖B‖. We initialize γ as the concatenation of
the outputs of the OMP algorithm to the inputs y1 and y2.
The algorithm stops when the update in γ is not significant in
successive iterations. Specifically, we stop at the ith iteration
if ‖γ(i) − γ(i−1)‖2 ≤ 10−3.
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Fig. 3. Phase transition for the identification of L-sparse filters by NB-OMP,
BDC, and TPI with known source (L = 4, Mx = 2L2); K ≥ 2L is
necessary and K > 2L2 is sufficient.
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Fig. 4. Phase transition for the identification of L sparse filters in the two-
channel case: K > 2L is necessary and K > 2L2 is sufficient.
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Fig. 5. Phase transition in the non-sparse FIR case: The success rate is plotted
as a function of the linear complexity Lc of the source and the number of
measurements Ms−Mx. Compressive MBD identifies the filter from at least
2Mx − 1 measurements and is independent of Lc. The approach by Xu et
al. [9] requires at least 3Mx measurements and Lc ≥ 2Mx − 1.

B. Comparison of Sparse MBD

1) Exhaustive Search for Compressive MBD: The exhaus-
tive search can be applied to either the measurement Y in
(15) or to B in (16) to identify the unknowns. In the former
case, one needs to search over three unknowns, s, x1, and

x2, whereas, the search reduces to two unknowns x1 and x2

in the latter case. Hence, we apply the exhaustive search to
identify the sparse filters from B and compare the results with
Theorem 1.

In this experiment, the measurements are directly generated
by using (15) upon setting Mx = 2L2, L = 4, and M = 2Mx.
We choose K as {1, 2, . . . ,K}. We assume that the full
Fourier measurements of the source consist of a sum of two
Gaussian pulses with their amplitudes, means, and variances
given by the triplets: (4,M/2, 0.001) and (1, 2M/3, 0.01).
We choose the sum of Gaussian pulses to make sure that the
source spectrum is not flat and non-vanishing. The experiment
can also be performed for any other choices of the source.
The support and the coefficients of the filters are generated
randomly. Specifically, for each filter L non-zero values are
chosen uniformly at random over the set [Mx] and their
amplitudes are chosen uniformly at random between 1 and 2.
Out of the available M Fourier measurements, we use K ≤M
to identify the filters. If the filters are uniquely identifiable
up to scaling and shift of the original filters, we consider
the experiment to be successful or else we assume that the
experiment has failed for that particular K.

Figure 2 shows the success rate averaged over 200 indepen-
dent experiments. Interestingly, we observe that 2L Fourier
samples are necessary and sufficient to identify the filters.

2) TPI and BDC to Solve Compressive MBD: In this
section, we compare the performance of the TPI and BDC
approaches to solve compressive MBD. We compare the
performance of these two algorithms to that by OMP in the
non-blind case where the source s is known. We call this
method non-blind OMP (NB-OMP).

We use the same simulation settings as in the exhaus-
tive search experiment. Let X̃ is an estimate of X, then
the filters are assumed to be identified if the normalized
mean-squared error (MSE) is less than −50 dB, that is, if
20 log(‖X− X̃‖2/‖X‖2) ≤ −50. Figure 3 shows the average
success rate computed over 200 independent realizations of the
sparse filters for L = 4. Performances of both TPI and BDC
methods follow closely that of NB-OMP. We observe that the
success rate gradually increases for K ≥ 2L up to K = 2L2.
For K > 2L2, both BDC and TPI algorithms always identify
the filters uniquely. The curve shows that 2L measurements
are necessary and 2L2 compressive MBD measurements are
sufficient to uniquely identify the sparse filters.

Figure 4 shows the success rate for different values of
sparsity levels. We note that for L = 2, for some realizations
of the filters, the algorithms are able to identify the filters for
K = 2L. Except for the BDC method in the case of L > 8,
we observe that K > 2L2 measurements are sufficient. The
results also show that 2L measurements are necessary.

C. Comparison of Non-Sparse FIR MBD

Next, we show simulation results for the non-sparse case.
As the present frequency-domain approach to derive the
identifiability results and the time-domain approach taken
by Xu et al. [9] are based on cross-correlation method we
compare these two techniques. In both approaches, the solution
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is computed by solving a homogeneous equation. In our
frequency-domain settings, the solution is obtained by solving
the homogeneous equation (16) via the optimization problem
(17) without imposing the sparsity assumption. The solution
is given as the eigenvector corresponding to the minimum
eigenvalue of the matrix BHB. A similar technique is applied
in Xu et al. by replacing the matrix B by a data matrix that
consists of time-domain samples (cf. equations (7) and (20)
in [9]). The identifiability results in the time-domain approach
strongly depend on the linear complexity Lc of the source
and on the length Mx of the source compared with the length
of the filters Mx. We claim that our results do not depend on
these parameters, but depend only on the number of frequency-
measurements and non-vanishing property of the source at
those frequencies. To justify our claim, we compare the MSE
in estimating the filters by both approaches as a function of Lc
and the number of measurements. To have a fair comparison,
we use the same number of measurements for each experiment
in both the methods. In [9], the number of measurements
is given by Ms − Mx by assuming that Ms > Mx. In the
proposed frequency-domain approach, we choose K as set of
K = Ms −Mx consecutive integers. In the simulations, the
source sequence s of length Ms with a linear complexity Lc
is generated using the following model:

s[m] =

Lc∑
`=1

c`r
m
` for m = 0, 1, . . . ,Ms − 1. (18)

In the simulations, both c` and r` as well as the filters are
generated randomly.

In both approaches, we assume that the filters are uniquely
identifiable if the normalized MSE is less than −50 dB. Fig. 5
shows the success rate over 200 independent realizations of the
source and filers for Xu’s [9] and the proposed methods. We
observe that Xu’s method is successful if Lc ≥ 2Mx − 1 and
Ms ≥ 4Mx, whereas our approach identifies the filters as long
as K = Ms−Mx > 2Mx− 1 and the results are independent
of the linear complexity of the source.

VII. PROOF OF LEMMA 1
Theorem 1 states that ({S(ejω0k)}k∈K, x1, x2) is the unique

solution to (9) up to the fundamental ambiguity in (2). Let
({Ŝ(ejω0k)}k∈K, x̂1, x̂2) be another solution to (9). Then there
exist α 6= 0 and m0 ∈ Z such that

S(ejω0k) = αejω0km0 Ŝ(ejω0k), ∀k ∈ K, (19)

and
Xn(z) = α−1z−m0X̂n(z), n = 1, 2, (20)

if |K| ≥ 2L2.
Sufficiency part: Since both ({S(ejω0k)}k∈K, x1, x2) and

({Ŝ(ejω0k)}k∈K, x̂1, x̂2) are solutions to (9), we have

Yn(ejω0k) = S(ejω0k)Xn(ejω0k) = Ŝ(ejω0k)X̂n(ejω0k), (21)

for n = 1, 2, and k ∈ K. We have assumed that
{S(ejω0k)}k∈K and {Ŝ(ejω0k)}k∈K are nonzero. Therefore it
follows from (21) that

X1(ejω0k)X̂2(ejω0k) = X̂1(ejω0k)X2(ejω0k), k ∈ K. (22)

Let Q(ejω0k) denote the sample of DTFT of

q = x1 ∗ x̂2 − x2 ∗ x̂1 (23)

at frequency kω0. Then by the convolution theorem and the
linearity of DTFT, the identity in (22) is equivalently rewritten
as

Q(ejω0k) = 0, k ∈ K. (24)

Let A ∈ C|K|×2Mx−1 denote a Vandermonde matrix with its
(k,m)th entry given as ej(k−1)(m−1)ω0 . Then we can rewrite
(24) as

Aq = 0, (25)

where q = [q[0], q[1], . . . , q[2Mx − 2]]T ∈ C2Mx−1. Since
A is a Vandermonde matrix constructed by 2Mx − 1 distinct
generators {ejmω0}m∈[2Mx] and K is a universal set, A has
full spark. Therefore, if |K| ≥ |supp{q}|, then (25) implies
q = 0. Furthermore, since supp{q} ⊂ [2Mx], it follows that
q = 0, that is,

x1 ∗ x̂2 = x2 ∗ x̂1, (26)

which implies via the z-transform that

X1(z)/X2(z) = X̂1(z)/X̂2(z). (27)

For brevity, we introduce the following notation. For an FIR
sequence x, let Zx denote the set of the zeros of its z-transform
X(z).

Since X1(z) and X2(z) do not share any common zeros,
we obtain

Zx1
⊆ Zx̂1

. (28)

Hence, there is a polynomial H(z) that satisfies

X̂1(z) = X1(z)H(z).

Then it follows from (27) that

X̂2(z) = X2(z)H(z).

Since X̂1(z) and X̂2(z) do not share any common zeros except
at z = 0, we conclude that H(z) = αzm0 for some m0 ∈ N
and α ∈ C \ {0}. It remains to show that ‖q‖0 = |supp{q}| ≤
2L2. Without any assumption on the support structure of the
filters the support of sequence q depends only on L. Since
L <

√
Mx, we have ‖x1 ∗ x̂2‖0 = ‖x2 ∗ x̂1‖0 ≤ L2. Hence

‖q‖0 = ‖x1 ∗ x̂2 − x2 ∗ x̂1‖0 ≤ 2L2. (29)

Necessity part: We show that if |K| < 2L, then
there exist distinct solutions ({S(ejω0k)}k∈K, x1, x2) and
({Ŝ(ejω0k)}k∈K, x̂1, x̂2) to (9) such that (19) and (20) are not
satisfied for any α and n0. It suffices to show that

q = x1 ∗ x̂2 − x2 ∗ x̂1 6= 0, but Q(ejω0k) = 0, ∀k ∈ K.

Before proceeding further, we define the following notations
to prove the necessary part. Let Ā denotes the |K| × Mx

matrix that consists of first Mx columns of matrix A. Next,
let x1, x2, x̂1, and x̂2 denote L-sparse vectors in CMx that
are constructed by considering the first Mx values of the
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sequences x1, x2, x̂1, x̂2, respectively.
Since the matrix Ā has full spark, there exist distinct pairs of

L-sparse vectors (x1, x̂1) and (x2, x̂2) such that Āx1 = Āx̂1

and Āx2 = Āx̂2 as long as |K| < 2L. Hence, we have that

Āx1./Āx2 = Āx̂1./Āx̂2, (30)

which is equivalent to (22) or Q(ejω0k) = 0 for all k ∈ K.
Since x1 6= x̂1 and x2 6= x̂2, we also have that corresponding
sequence q 6= 0. Hence, for |K| < 2L the problem in (9) does
not have unique solution for all the filter pairs (x1, x2).

VIII. CONCLUSIONS

In this paper, we derived identifiability conditions for
multichannel blind deconvolution when the filters follow a
fully deterministic sparsity model and the source has finite
support. We showed that when there exist at least a pair
of two mutually coprime filters, it is sufficient to take 2L2

Fourier measurements from those channels for the unique
identification of the filters. To identify the source uniquely, we
derive conditions on the number of measurements and number
of channels in terms of the support of the source and sparsity
of the filters. The results improve upon existing MBD results
both in terms of the number of measurements and the number
of channels required for unique identifiability and also apply
to the non-sparse settings.
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