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ABSTRACT:
A general blind deconvolution algorithmic framework is developed for sources of opportunity (e.g., ships at known

locations) in an ocean waveguide. Here, both channel impulse responses (CIRs) and unknown source signals need to

be simultaneously estimated from only the recorded signals on a receiver array using blind deconvolution, which is

generally an ill-posed problem without any a priori information or additional assumptions about the underlying

structure of the CIRs. By exploiting the typical ray-like arrival-time structure of the CIRs between a surface source

and the elements of a vertical line array (VLA) in ocean waveguides, a principle component analysis technique is

applied to build a bilinear parametric model linking the amplitudes and arrival-times of the CIRs across all channels

for a variety of admissible ocean environments. The bilinear channel representation further reduces the dimension of

the channel parametric model compared to linear models. A truncated power interaction deconvolution algorithm is

then developed by applying the bilinear channel model to the traditional subspace deconvolution method. Numerical

and experimental results demonstrate the robustness of this blind deconvolution methodology.
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I. INTRODUCTION

Acoustic remote sensing methods typically use a known

source signal to probe the environment, and then directly

estimate the time-domain channel impulse responses

(CIRs)—also referred to as the time-domain Green’s func-

tion—from the measurements obtained on a receiver array,

which are modeled as the convolution of the source signal

and the CIRs when the channels are time invariant during

the observation period. In this paper, for the sake of simplic-

ity, the CIR refers to the band-limited version of the infinite

bandwidth CIR within the bandwidth defined by the source

and receiver frequency responses. However, in many situa-

tions, a known active source signal is not available because

of either environmental concerns or hardware constraints,

while only sources of opportunity (e.g., radiating ships at

known locations) are available. Hence, sources of opportu-

nity offer an attractive alternative for acoustic remote sens-

ing applications (e.g., such as passive acoustic thermometry

or ocean acoustic tomography, as well as geoacoustic inver-

sions). The main challenge is that the precise radiated wave-

forms (i.e., acoustic signatures) of these opportunistic

source signals are unknown; therefore, both the CIR and the

unknown source signal need to be simultaneously estimated

from only the recorded waveforms on a receiver array using

blind deconvolution, which is generally an ill-posed prob-

lem if no a priori information or additional assumptions

about the underlying structure of the CIRs are available. In

ocean waveguide environments, the typical ray-like arrival

structure of the broadband CIRs wavefronts between a sur-

face source and the elements of a vertical line array

(VLA;Godin, 2007; Roux et al., 2008) provides such a pri-
ori information about the CIRs, which can be used to turn

this ill-posed problem into a feasible one. This paper

presents a general algorithmic blind deconvolution frame-

work for acoustic remote sensing using sources of opportu-

nity and a priori information about the arrival-time structure

of the CIRs in an ocean waveguide.

The general blind deconvolution problem under a

multiple-channel receiver framework (hereafter referred to

as the multichannel blind deconvolution problem) has been

studied in various areas, and the selected solutions by previ-

ous studies are usually application dependent. In digital

communication applications, multichannel blind deconvolu-

tion methods do not require the transmission of a training

sequence, and they are adaptive to fast varying channels

(Giannakis and Serpedin, 1997; Moulines et al., 1995; Xu

et al., 1995). In image restoration, image denoising, image

deblurring, and medical image reconstruction, multichannel

deconvolution methods aim to recover the image (source)

from convolutions with multiple unknown finite impulse

response (FIR) filters (Katsaggelos, 1991; Souidene et al.,
2009). Applications in seismology (Mendel, 2013) have also

been reported. In underwater acoustics applications, the

multichannel blind deconvolution problem has also been

investigated using various approaches and assumptions ona)Electronic mail: ningtian@gatech.edu, ORCID: 0000-0003-4150-5710.
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the CIR features (Abadi et al., 2012; Broadhead and Pflug,

2000; Byun et al., 2017; Cazzolato et al., 2001; Roan et al.,
2003; Sabra and Dowling, 2004; Sabra et al., 2010; Smith,

2000). A subset of the authors of this study have previously

developed a fast multichannel myopic deconvolution

method via a low-rank recovery technique (Tian et al.,
2017), in which the CIRs for channels were independently

parametrized. However, this deconvolution method via low-

rank recovery did not take into account the inherent relation-

ships between the CIRs across all channels (e.g., such as the

arrival-times of each CIR along a VLA being aligned along

common ray-like wavefront arrivals), which can be

exploited as a further constraint for jointly parametrizing the

CIR between the source of opportunity and the receiver

array elements for the selected channel model (here, an

ocean waveguide).

In order to develop a more robust multichannel blind

deconvolution method for ocean waveguides, this paper lev-

erages the inherent linking of the amplitude and arrival-

times of the CIRs across all channels of a VLA to develop a

bilinear channel model for the CIRs. This approach further

reduces the dimension of the channel parametric model

compared to the previously proposed linear model (Tian

et al., 2017) and, hence, ultimately improves upon the

robustness of the proposed multichannel blind deconvolu-

tion method. To justify the selection of this bilinear channel

model for the CIRs, it can be noted that the arrival-time

structure of the broadband CIRs is composed of stable ray-

like wavefront arrivals between a surface source and the ele-

ments of a VLA (Godin, 2007; Roux et al., 2008). The pri-

mary envisioned application for this method is the use of

surface sources of opportunity [e.g., radiating ships with

known locations inferred from the automatic identification

system (AIS); Verlinden et al., 2015] to perform acoustic

tomography (or thermometry) of the ocean, as well as geoa-

coustic inversions, passively. In this context, it is expected

that prior information of the amplitude and arrival-time

structure of the CIR is available and can be obtained either

using a sufficiently accurate numerical model that describes

the baseline acoustic propagation in the selected environ-

ment (as it is done for acoustic tomography applications) or

from in situ measurements (collected in the vicinity of the

actual location of source of opportunity of interest) using

the ray-based blind deconvolution (RBD) method (Abadi

et al., 2012; Byun et al., 2017; Sabra et al., 2010). In either

case, it is expected that the proposed multichannel blind

deconvolution method will provide a more accurate estimate

of the actual CIR for the selected source of opportunity than

the prior information available obtained from the CIR

parametrization. The multichannel blind deconvolution

problem solved in this paper uses a truncated power iteration

deconvolution algorithm specifically developed for a con-

strained eigenvalue decomposition given by the cross-

convolution formulation for solving the multichannel blind

deconvolution problems, which has been researched exten-

sively in the 1990s (G€urelli and Nikias, 1995; Moulines

et al., 1995; Xu et al., 1995). However, both the empirical

performance and theoretical guarantees of these classical

methods were restricted to the noiseless case, and these

methods are not robust in the presence of additive measure-

ment noise. We overcome this limitation by imposing data-

adaptive structural models in the estimation. The proposed

numerical implementation is both fast and scalable. Similar

approaches to model-based multichannel blind deconvolu-

tion have been developed in the context of various imaging

modalities and image processing applications (Kazemi and

Sacchi, 2014; Morrison et al., 2007; She et al., 2015;

Sroubek et al., 2007; Sroubek and Milanfar, 2011). They

proposed sophisticated iterative algorithms that provide esti-

mates for both the source signal and the channels by alter-

nating between optimization programs (She et al., 2015;

Sroubek and Milanfar, 2011), taking advantage of expected

sparse structure in one or both parts of the optimization. In

this paper, we are interested only in recovering the channel

responses and use a completely different model for their

structure. We model the channels as jointly living in a low-

dimensional subspace derived from a priori information

about the CIRs (e.g., a window of arrival-times—the result

is a “block rank-1” model for the channels. The algorithm

we provide below is simple in that it estimates the channels

only once, but, in principle, it could be used as a sub-step in

an alternating optimization algorithm such as those in the

references above. As we demonstrate in the numerical result

section below, though, the algorithm already provides satis-

factory reconstruction results. Thus, in order to keep the

computational cost low, we did not pursue further iterative

refinements. Finally, the proposed approach notably differs

from previous sparse blind deconvolution techniques, which

typically consider the single channel blind deconvolution

problem where the CIR is sparse in the canonical basis

(Choudhary and Mitra, 2012, 2014; Li et al., 2016). Instead,

the proposed blind deconvolution technique in this paper

relies on a different model than the sparsity model by using

a low-dimensional subspace model, which is already

leveraging the extra a priori information contained in the

CIRs (e.g., specific arrival-time structure). As we

explained above, this subspace model fits well to the data

measured in an underwater acoustic channel and consid-

ered in this paper. Furthermore, even when using this extra

a priori information, accurately estimating the arrival-

times structure of the actual CIRs (e.g., for tomography

purposes) under a low signal-to-noise ratio (SNR) is still

quite challenging in practice.

The remainder of this paper is organized as follows.

Section II presents the bilinear channel model—motivated

by the acoustic remote sensing scenario using a VLA—and

the formulation of the blind deconvolution problem using

the cross convolution method under the bilinear channel rep-

resentation. Section III introduces the truncated power itera-

tion method algorithm and discusses the initialization step.

Section IV then presents results for the case of bottom-

mounted short VLAs in shallow water waveguides using

either numerical simulations or in situ CIR estimates

obtained experimentally with the RBD method to
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parametrize the CIRs arrival structure. Finally, Sec. V sum-

marizes the findings of this paper.

II. THEORY

In this section, we first introduce a bilinear channel

model, which is motivated by an acoustic remote sensing

scenario using a VLA listening to a source of opportunity in

the far-field. A full theoretical analysis of this bilinear

recovery problem can be found in Lee et al. (2018). We

then mathematically recast the multichannel blind deconvo-

lution problem as an optimization problem.

A. An example of the bilinear channel model

In order to illustrate the concept of the bilinear channel

model, we first consider the simple case where the wave-

fronts composing the CIRs between the source of opportu-

nity and the receiver array elements can be well

approximated by propagating rays (i.e., for sufficiently high

frequencies; Jensen et al., 2011). In the far-field of the

source for any given ray, the individual arrivals along each

wavefront can be considered as time-shifted and amplitude-

scaled replicas of each other. The incident angle of this

incoming ray is determined by the source-receiver configu-

ration (i.e., VLA geometry and source and receiver range),

as well as environmental parameters [e.g., local sound speed

profile (SSP) at the VLA]. For instance, for the case of a sin-

gle ray arrival, the CIR for channel m is written as

hmðtÞ ¼ ampðt� tmÞ; (1)

where p(t) denotes the baseline pulse waveform [Fig. 1(a)]

that is determined by the frequency response of the

receivers, and tm [Fig. 1(c)] and am [Fig. 1(b)] are, respec-

tively, the values of the arrival-time and amplitude of the

ray arrival for channel m. While the true channel response is

an impulse amdðt� tmÞ (or, more generally, a linear combi-

nation impulse at different delays), we are combining it with

the (known) receiver response p(t) to get our CIR model

[Eq. (1)]. As we will see below, this allows us to build an

efficient data-adaptive structural model on the channels.

Furthermore, the arrival-time variations and amplitude var-

iations of this ray arrival, shown in Fig. 1, were arbitrarily

selected to represent an idealized ocean waveguide arrival

for the sake of illustration).

We assume that the arrival-times across channels are

linked by a function tm ¼ f ðmÞ, where the function f
describes the relation of the arrival-times across channels.

Then, we can build a parametric model for the CIRs using

this relation. For instance, when the source of opportunity is

in the far-field of the array and the local SSP along the array

is quasi-constant, it can be assumed that the arrival-time tm
falls along a line whose slope k is determined by the ray

incident angle (Jensen et al., 2011). Furthermore, if the

receivers are equally spaced in a vertical array, this relation-

ship can be expressed as

tm ¼ t1 þ ðm� 1Þk; (2)

where t1 is the arrival-time for the first channel, and k is the

slope of the line in Fig. 1(c).

Combining Eqs. (1) and (2) forms the basis for build-

ing a bilinear model for a given ray arrival of the CIR

using one variable vector a ¼ ½am� to represent the discrete

ray amplitudes am and one variable vector t ¼ ½tm� to rep-

resent the linked ray arrival-times tm. Furthermore, we

also discretize each time-shifted pulse profile pðt� tmÞ
[see Eq. (1), m ¼ 1;…;M] recorded on the M receivers

into a vector pm of length K (the number of samples).

Since the channels are treated jointly in the bilinear model,

we concatenate the M discretized pulses pm into a single

pulse basis vector p,

p ¼ p>1 ;…; p>M
� �> 2 RMK: (3)

Similarly, we discretize each time-domain CIR hmðtÞ into a

vector hm, where each arrival is determined by the product

of the amplitude coefficient am and the pulse shape pm. [e.g.,

given by Eq. (1) for the ray-model].

B. General formulation for bilinear channel models

The linear relation for arrival-times across channels was

provided in Sec. II A as an illustration of a bilinear channel

model, but it is not a necessary assumption in order for the

method to work. Indeed, even if neither an explicit function

f nor any other parametric function describing the relation of

the arrival-times across channels is available a priori, a

bilinear channel model can still be built by using a collec-

tion of realizations of CIRs (i.e., a library of a priori known

CIRs obtained from experimental measurements or numeri-

cal simulations) to extract the actual pulse arrival-times,

which are representative of the source-receiver configuration

and variability of the environment of interest (e.g., poten-

tially including the effects of the intermittent micro-multi-

path). Using this a priori information of arrival-times, the

linear subspace containing the entire pulse vector p [Eq. (3)]

can still be learned, and a bilinear channel model can then

be constructed. In ocean waveguide environments, the typi-

cal ray-like arrival structure of the broadband CIR wave-

fronts between a surface source and the elements of a VLA

(Godin, 2007; Roux et al., 2008) provides such a priori
information about the CIRs.

Specifically, if i indexes the specific CIR realization for

a given set of environmental parameters and source-receiver

configuration, the associated pulse vector is denoted as pi.

For instance, using the ray-model from Sec. II A [see Eq.

(1)] and assuming a priori information is available to bound

the fluctuations of ray arrival-times [and, hence, slope k—

see Eq. (2)] due to environmental fluctuations (e.g., using

historical values of SSPs at the test site or more sophisti-

cated dynamic ocean simulations), we can determine the

time-window containing a collection of possible arrival-

times ti (Fig. 2) by varying the ray slope k accordingly. In
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general, although the total number of realizations can be

large, the individual realizations pi are highly correlated;

hence, they lie on a lower dimension manifold, which can

be approximated by a linear subspace using the principal

component analysis (PCA) technique (Jolliffe, 2011) to

reduce the dimensionality of the search space for the blind

deconvolution method. We denote the basis matrix of this

subspace as U 2 RMK�W (where M is the number of chan-

nels and K is the sample length of each discretized CIR),

which is constructed by using the first W orthonormalized

vectors in the PCA expansion, and for a certain set p, we

can write it as

p ¼ Uu; (4)

where u 2 RW is the coefficient vector that fully describes

the corresponding realization of arrival-times t.
For instance, assuming a total of 26 realizations

[arbitrarily generated by varying the coefficients in Eq. (2)

to account for sound-speed fluctuations on the order of 63

m/s for the experimental source-receiver configuration

shown in Fig. 4] and using the ray-model for the CIR, the

first W¼ 6 basis vectors of the PCA expansion are shown

in Fig. 3.

If all discretized vectors of time-domain CIR hm s [as

defined after Eq. (3)] are concatenated as follows, the bilin-

ear channel model can be written as

h1

h2

..

.

hM

2
666664

3
777775
¼

a1U1

a2U2

..

.

aMUM

2
666664

3
777775
u; (5)

where ðUmÞMm¼1 2 RK�W are the blocks of the subspace

matrix U defined in Eq. (4), u 2 RW is the coefficient vector

that determines the pulse arrival-times for one ray path

across all channels, and each element of the vector

a ¼ ½a1;…; aM�> 2 RM with am > 0 is the arrival amplitude

am. Furthermore, let h 2 RMK denote the concatenation of

the CIR coefficients for all channels, i.e.,

h ¼ h>1 ;…; h>M
� �>

: (6)

FIG. 1. (a) (Color online) Baseline

pulse waveform used for the numerical

simulations. (b) Variations of the

received amplitude parameters am for a

single ray assuming 16 receivers. (c)

Variations of the ray arrival-times

parameters tm. (d) Synthesized ray

arrival using Eq. (1) with the parame-

ters shown in (a)–(c).
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Equation (5) can then be equivalently rewritten as a more

concise form using the Kronecker product as

h ¼ Wða� uÞ; (7)

where

W :¼

U1 0 … 0

0 U2 … 0

..

. ..
. . .

. ..
.

0 0 … UM

2
666664

3
777775
: (8)

The formulation above only represents a single wavefront of

the CIR. For a more general multipath environment (i.e.,

where the number of identifiable paths is N > 1), the bilinear

channel model still holds, and the concatenation of CIR vec-

tors h can be written as

h ¼ ~W ða1 � u1Þ>;…; ðaN � uNÞ>
h i>

; (9)

where

~W :¼

U11 0 … 0 …… UN1 0 … 0

0 U12 … 0 …… 0 U22 … 0

..

. ..
. . .

. ..
. . .

. ..
. ..

. . .
. ..

.

0 0 … U1M …… 0 0 … UNM

2
6666664

3
7777775
:

(10)

Equation (9) describes the general bilinear channel model

that exploits the inherent pulse arrival-times relation across

channels (e.g., along a single ray-arrival or any more com-

plex wavefront). This bilinear model differs from the linear

channel model studied in previous research (Tian et al.,
2017) and further reduces the dimension of the subspace for

all CIRs by constraining the model parameter space com-

pared to the linear model. However, under this bilinear

channel model, a new multichannel blind deconvolution

algorithm for the CIR recovery is needed and is presented in

Sec. III.

III. TRUNCATED POWER ITERATION ALGORITHM
FOR MULTICHANNEL BLIND DECONVOLUTION

Our blind deconvolution method combines the model in

Eq. (7) with a classical cross-convolution technique (G€urelli

and Nikias, 1995; Moulines et al., 1995; Xu et al., 1995).

Cross-convolution takes advantage of an invariance that is a

straightforward consequence of the commutivity of convolu-

tion operations. In the noiseless case, we have yi ¼ s � hi
and, therefore, for any j 6¼ i,

yi � hj ¼ s � hi � hj ¼ s � hj � hi ¼ yj � hi:

Thus, the true unknown channels hi and hj must obey the

homogenous linear system of equations

Tyihj � Tyjhi ¼ 0;

where Tyi is the (Toeplitz) matrix whose action corresponds

to convolving with the channel output yi. This relation holds

for each of the MðM � 1Þ=2 pairs of channels; we can

express them jointly using

Myh ¼ 0MðM�1ÞL=2�1; (11)

where My is the block-sparse matrix

My ¼

Ty2
�Ty1

0 0 � � � 0 0

Ty3
0 �Ty1

0 � � � 0 0

..

. ..
. ..

. ..
. . .

. ..
. ..

.

0 Ty3
�Ty2

0 � � � 0 0

0 Ty4
0 �Ty2

� � � 0 0

..

. ..
. ..

. ..
. . .

. ..
. ..

.

..

. ..
. ..

. ..
. . .

. ..
. ..

.

0 0 0 0 � � � TyM �TyM�1

2
66666666666666664

3
77777777777777775

:

In other words, we know that when there is no noise, h is a

null vector of My. In Xu et al. (1995), it is shown that under

a mild algebraic condition on the channels (namely, that

they have no common null in their frequency response), the

true channel responses h are the unique (up to a scaling

coefficient) vectors that obey this condition. In the presence

of noise, My, in general, will not have a null space. So

instead of directly computing for the null space of My, we

estimate the channels by solving an approximate constrained

problem to approximate this null space

FIG. 2. The black shaded region indicates the range of possible arrival-

times variations for sound-speed fluctuations on the order of 63 m/s for the

experimental source-receiver configuration shown in Fig. 4.
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minimize
h

jjMyhjj22 subject to jjhjj2 ¼ 1; (12)

which, in turn, is equivalent to actually finding the eigenvec-

tor corresponding to the minimum eigenvalue of M>y My.

When there is zero-mean white noise added to the channel

outputs, we know that the estimate above is consistent (as the

corresponding perturbation to M>y My will average out as the

number of measurements L goes to infinity), but without addi-

tional modeling assumptions in place, it will be very sensitive

to noise when working with a finite number of samples.

We implicitly regularize this problem by applying the

bilinear channel model in Eq. (9) to the optimization pro-

gram in Eq. (12). Our proposed multichannel blind deconvo-

lution technique is to solve the optimization problem,

minimize
u;a

���My
~W ða1 � u1Þ>;…; ðaN � uNÞ>
h i>���

2

2
;

subject to
��� ~W ða1 � u1Þ>;…; ðaN � uNÞ>

h i>���
2
¼ 1;

am � 0; 8m ¼ 1;…;M; (13)

where ~U is defined in Eq. (10). If, indeed, our ensemble of

channel responses follows (or comes close to following) this

model, restricting the set of channel responses that we

search over can increase the robustness of the estimate.

The optimization problem stated in Eq. (13) can no lon-

ger be solved using a standard eigenvalue decomposition

problem. It is also non-convex and so falls outside of the

purview of most off-the-shelf solvers. But the problem

structure that ½ða1 � u1Þ>;…; ðaN � uNÞ>�> is block rank-1

allows a natural approach that is a modification of the

power method for finding the smallest eigenvector of a

matrix. The power method for finding the smallest eigen-

vector of a (symmetric positive semi-definite) matrix M
simply applies ðkI�MÞ to an initial vector repeatedly,

renormalizing after each application. Our truncated power

method is the same with an additional step of enforcing the

block rank-1 structure. Our iterative truncated power
method is summarized in Algorithm 1 and is not univer-

sally guaranteed to solve Eq. (13), but under certain condi-

tions on the channel bases specified by ~W, it is provably

effective (Lee et al., 2018).

The matrices in the algorithm do get very large, but

everything is structured in such a way that it scales well.

Algorithm 1 is iterative with the cost of each iteration domi-

nated by two specific computations: the application of the

matrix B and the block rank-1 approximation (the norm of

FIG. 3. (Color online) First six basis

vectors of the PCA expansion of the

library of time-shifted ray arrivals

shown in Fig. 2.
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the matrix B in step 3 refers to the nuclear norm, that is, the

L1-norm of the vector of its eigenvalues). More specifically,

the matrix B is fixed and has dimensions NMW � NMW,

where N is the number of paths, M is the number of chan-

nels, and W is the number of coefficients used in the joint
channel representation. The number of paths N is, in gen-

eral, pretty small for most ocean waveguides, especially in

shallow water where bottom attenuation typically limits the

number of observable multipath arrivals, especially for long

range propagation. The matrix B, however, never has to be

formed—nor stored—explicitly as it consists of an applica-

tion of ~W (which generates the channels from their coeffi-

cients) and My (which convolves all of the ym with all of the

different channels) and their adjoints. The cost of applying

~W (and ~W
T
) is O(NMKW), while the cost of applying My

(and MT
y ) is M2=2 length-L convolutions, OðM2L log LÞ. As

K < L, we have

cost of applyingB ¼ OðLMðNW þM log LÞÞ:

For large arrays and observation times, the M log L term

above will dominate, so the cost of applying B is roughly

the same as M2 convolutions of length L. This is similar

to every blind deconvolution technique using spectral

methods, e.g., as used in Xu et al. (1995). Furthermore,

the block rank-1 approximation also scales. The optimi-

zation variable X is a length NMW vector; this step corre-

sponds to taking this vector, reorganizing it as N
different M � W matrices, and then finding the leading

singular vectors in each of these matrices. Computing

these exactly requires on the order of maxðM3;W3Þ opera-

tions (and they can oftentimes be approximated to suffi-

cient accuracy using the power method, which might

require only a modest number of applications of the M
� W matrix). For large arrays, we expect NW < M. It is

also generally true that the number of samples taken per

channel is more than the number of channels, L > M.

Thus, the cost of the block rank-1 approximation is typi-

cally less than applying B.

ALGORITHM 1: Iterative truncated power method.

input:M>y My; ~W, M, L, û1,…, ûN ; â1, …, âN

output: ĥ

1 X0  ½ðâ1 � û1Þ>;…; ðâN � ûNÞ>�>;

2 B ~W
>ðM>y MyÞ ~W;

3 k jjBjj�;
4 while stop condition not satisfied do

5 X kX0 � BX0;

6 û1,…, ûN ; â1, …, âN  BlockRank1Approx(X);

7 X0  ½ðâ1 � û1Þ>;…; ðâN � ûNÞ>�>;

8 X0  X0=jjX0jj2,

9 end

10 ĥ  ~W½ða1 � u1Þ>;…; ðaN � uNÞ>�>;

Furthermore, designing a good initialization scheme is

critical so that the iterates will not get stuck in a local

minimum. We propose a variant of the so-called “spectral”

method. Let x denote the common source signal provided to

the unknown multichannel system. Each output ~y1;…; ~yM
can (in the noiseless case) be written as a linear operator

applied to the tensor u� x� a 2 RD�L�M. With

~y ¼ ½~y>1 ;…; ~y>M�
>

as the set of concatenated channel outputs

and P as the length of ~y, there are tensors ðM1;M2;…;MPÞ
with the same dimensions as u� x� a such that

~y l½ � ¼ hMl;u� x� ai ¼
X
i1;i2;i3

m�l i1; i2; i3½ ��u i1½ �x i2½ �a i3½ �;

where ml½i1; i2; i3� are the entries of Ml. The action of

these linear functionals can be collected into a single lin-

ear operator A : RD�L�M ! RP. The adjoint of A
applied to a measurement vector y ¼ ½y>1 ;…; y>M�

>
is the

tensor given by

A�y ¼
X
l

y l½ �Ml 2 RD�L�M:

Note that the applications of both A and its adjoint A�
involve only a set of convolutions and can be implemented

by using a fast algorithm. The standard spectral method

computes the best rank-1 tensor approximation of A�y.

However, there is no guaranteed algorithm that computes

the best rank-1 approximation of a three-way tensor exactly.

Thus, we instead propose to estimate just one factor u
through the following procedure.

Let

Z ¼ A�y�31M; (14)

where �3 denotes the tensor multiplication along the third

mode. In other words, we fold the tensor A�y 2 RD�L�M by

summing M slices of size D � L along the third mode with

the same weight 1. The choice of the equal unit weight on

each slice is justified by the fact that the vector a 2 RM of

unknown channel gains has positive entries. In the noiseless

case, we compute an estimate û of u as the first dominant

eigenvector of ZZ>. By the construction of A, it follows

from Eq. (14) that

Z ¼ A�Aðu� x� aÞ�31M þA�w;

where w denotes the additive noise to the measurements.

Intuitively, if A�A is approximated as the identity operator

and there is no noise, then Z is proportional to u� x ¼ ux>.

This is why one can estimate u as the dominant eigenvector

of ZZ>.

Once an estimate of û is obtained, the estimation of a
reduces to the conventional multichannel blind deconvolu-

tion with a linear model. Thus, it is computed by an ordinary

eigenvalue decomposition. The resulting initialization algo-

rithm is summarized in Algorithm 2.
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ALGORITHM 2: Initialization.

input: A�, y, ~W, M, L

output: û; â

1 Z foldingA�y into a matrix by Eq. (14);

2 Q ZZ>;

3 û1; …; ûN  FindMaxEigenvector(Q);

4 Vû  ½IM � û1;…; IM � ûN �;
5 N V>û

~W
>ðM>y MyÞ ~WVû ;

6 â1; …; âN  FindMinEigenvector(N);

IV. RESULTS

In this section, we implement the truncated power iter-

ation method presented in Sec. III to solve the multichan-

nel blind deconvolution problem using the bilinear channel

model introduced in Sec. II. The proposed approach is

demonstrated using at-sea data from a shipping source of

opportunity: the Anna Maersk—a passing container ship.

Data were recorded on a 32-element VLA moored in

between the north- and southbound shipping lanes of the

Santa Barbara shipping channel (depth 	 580 m) during an

experiment performed mid-September 2016—see Fig. 4(a).

The selected VLA consisted of 2 16-element sub-arrays, one

of large aperture (	56 m) and one of small aperture (	15 m)

with uniform 3.75 m and 1 m element spacing, respectively.

A representative SSP averaged from multiple CTD casts,

which measure conductivity, temperature, and depth, is

shown in Fig. 4(b). Data processing and signal analysis were

performed in the frequency band from 150 Hz to 3 kHz.

Two different approaches are used to generate the a pri-
ori arrival-time information of the CIR used to construct the

subspace basis U in Eq. (4). For the first data-derived

approach, the a priori information for the arrival-times and

amplitudes values for the direct path of the CIR were

directly obtained using a library of 500 estimated CIRs

independently obtained from the RBD method (Byun et al.,
2017) since the true CIRs between the Anna Maersk loca-

tion and the VLA elements were not available otherwise. An

example of such estimated CIR from RBD is displayed in

Fig. 5, which shows that the first direct arrival is the only

dominant wavefront while the subsequent arrival associated

with the bottom bounce is much weaker (	 35 dB below the

direct arrival’s amplitude). Hence, only the direct-arrival is

used hereafter to construct and parametrize the CIR library.

Specifically, the library of 500 estimated CIRs corresponds

to ship locations linearly spaced throughout the course of

one minute (12:15:18–12:16:18 on September 16) and cov-

ering ranges from 1.71 to 1.94 km as the vessel Anna

Maersk cruises away from the VLA at a nearly constant

speed of 10 m/s. Speed and position information of the

Anna Maersk were obtained using data from the AIS. The

superimposed arrival-times profiles for the direct-arrival all

500 estimated CIRs are shown in Fig. 6(a), where the delay-

time for the first receiver was arbitrarily set to 20 ms. The

relative nature of the CIRs is a consequence of the RBD

method because the absolute arrival time of the ray cannot

be recovered (Byun et al., 2017).

First, using the method described in Sec. II, a subspace

basis matrix U—reduced to a 42-dimensional space here as

the first 42 singular values of the PCA represented over 99%

of the total signal energy— was constructed using the PCA

of the data library containing the 500 arrival-times profiles

[shown superimposed in Fig. 6(a)], which were obtained

from the a priori CIRs computed with the RBD method

(Byun et al., 2017). For one arbitrarily chosen ship location

(located near the middle of the section of the Anna Maersk

vessel’s track shown in Fig. 4(a) but not part of the 500 loca-

tions used to construct the aforementioned CIR data library),

Fig. 6(b) compares the a priori CIR hk (obtained from the

ray-based deconvolution) to the estimated CIR hkEstimation

FIG. 4. (Color online) (a) Illustration of the Santa Barbara Channel Experiment. Four 32-elements are deployed in the Santa Barbara shipping channel. In

our simulation, we used data collected from VLA3 from the source of opportunity, which is the passing container ship Anna Maersk represented by the blue

line. (b) A representative SSP averaged from multiple measurements at the experiment site along with the bottom geoacoustic parameters used for numerical

simulations. (c) Geometry of the bottom-mounted VLAs deployed in the SBC experiment.
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obtained using the multichannel blind deconvolution

method (introduced in Secs. II and III) applied indepen-

dently to the raw shipping noise recordings on the VLA.

The percentage error between these two CIR (RBD estimate

and multichannel-blind method) is very low (	0:3%). This

is to be expected as the subspace basis matrix U—directly

obtained from in situ data—provides a very accurate

description of the CIR arrival-time structure over the

selected Anna Maersk track section, which, in turn, enables

a near-perfect recovery of the CIR using the proposed multi-

channel blind deconvolution method. It should be noted that

since no ground truth was available for the CIR (as no active

source was used here), the very good agreement between the

two independently obtained CIRs shown in Fig. 6(b) can

only be interpreted as a simple experimental validation of

the proposed multichannel blind deconvolution method but

does not serve as an exact error analysis.

On the other hand, building the subspace basis matrix

U directly from data-derived estimates of the CIRs may not

always be available. Instead, now we use a model-based

approach as the second approach to generate the a priori
arrival-time information of the CIR. Since the VLA is in the

far-field of the Anna Maersk for the selected track section,

we can well model the direct-path arrival as a straight line

using the ray-approximation of the CIR presented in Sec.

II A [see Eq. (2)]. Under this assumption, the estimated

arrival-time uncertainty for each ray-path of the CIRs is

obtained by simulating the direct arrival-time and amplitude

using the software BELLHOP (Porter, 2011) for the same

500 source locations using the environmental parameters

shown in Fig. 4(b) and assuming a source depth of 5 m. The

simulated direct arrival profile computed from Bellhop are

shown superimposed in Fig. 7(a). For this simple linear

arrival model, all 500 simulated direct-path arrivals are

highly correlated; hence, the associated subspace matrix U
for this model-based approach has a much smaller dimen-

sion of 12 than does the subspace matrix obtained with the

data-derived approach (whose dimension was 42). However,

this model-based subspace matrix U is less accurate than

the data-derived one as it does not actually account for all

experimental variations and actual deviations of the direct

path wavefront from a simple straight line, which explains

the relatively larger percentage error (	12%) shown Fig.

7(b) for this model-based approach between the CIR

obtained from the ray-based deconvolution to the estimated

CIR obtained using the multichannel blind deconvolution

method for one arbitrarily selected ship location (located

near the middle of the section of the Anna Maersk vessel’s

FIG. 5. (Color online) Envelope of a

relative CIR estimated via the RBD

method (Sabra et al., 2010). At the

time of the snapshot, the source of

opportunity (Anna Maersk) was nearly

1.8 km from the VLA. Note that the

first arrival on the top-most hydro-

phone element has been arbitrarily

aligned with t¼ 20 ms.

FIG. 6. (Color online) Recovery of

M¼ 31 CIRs using the bilinear channel

model (one channel discarded from the

VLA because of a hardware problem).

(a) 500 snapshots of arrival-times for

CIRs when the ship is cruising away

from VLA3 at range 1.71 km–1.94 km.

(b) The estimated CIRs (red) plot on

top of the original CIRs, and the recov-

ery SNR is 25 dB.
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track shown in Fig. 4(a) but not part of the 500 locations

used to construct the aforementioned CIR model-based

library). Hence, these results demonstrate that the model-

based approach can provide acceptable deconvolution esti-

mates of the CIR for surface sources of opportunity—such

as a shipping vessel—provided that the environmental and

geoacoustic parameters used as input for the numerical

simulations are sufficiently accurate (which is a classical

and known limitation for all types of model-based

approaches).

The results from Figs. 6(b) and 7(b) indicate that the

primary source of error for the multichannel blind deconvo-

lution method is the inaccuracy of the subspace basis matrix

U such that it cannot accurately represent the actual arrival-

times of the in situ CIR for the location of interest. In order

to further quantify this effect, numerical simulations were

conducted using the same model-based subspace basis

matrix U, which was obtained from the arrival-time profiles

shown in Fig. 7(a), and applying the multichannel blind

deconvolution method to deconvolve a simulated CIR hk
whose arrival-times deviate from the straight line approxi-

mation by adding an increasing amount of random fluctua-

tions [expressed as an off-line coefficient, indicating the

percentage of fluctuations of the linear slope angle com-

pared to the reference CIR obtained using the environmental

parameters shown in Fig. 4(b)]. Such arrival-time fluctua-

tions can be representative of, for instance, array element

position uncertainties or localized sound-speed fluctuations

unaccounted for by the reference SSP shown in Fig. 4(b).

The simulated received signals on the VLA were synthe-

sized by convolving the simulated CIR hk with a Gaussian

white noise signal filtered the same bandwidth

(150–3000 Hz) representative of shipping noise spectra.

Despite the noise being predominately low frequency (<1

kHz), using a large frequency band improves the SNR of the

RBD estimated CIR (Durofchalk et al., 2019). A Monte

Carlo simulation with 100 trials for each noise level was

performed.

Two types of relative errors can be defined and expressed

in terms of the SNR (i.e., by taking the decimal logarithm of

the inverse of the relative error). First, the model approxima-

tion SNR is defined as 10 log10ðjjhkjj2=jjhk � hk;approxjj2Þ,
where hk;approx is the approximation of CIRs using the sub-

space basis U. This first SNR quantifies how well the sub-

space basis U, constructed from linear arrival-time profiles,

describes the actual CIR hk, which has the random variations

in arrival-times. Second, the CIR estimation SNR is defined

as 10 log10ðjjhkjj2=jjhk � hk;estjj2Þ, where hk;est is the esti-

mated CIR using the multichannel blind deconvolution

method. This second SNR quantifies how accurate the CIR

recovery is. As expected, both SNR values decrease (i.e., the

corresponding error increases) for increasing percentage of

the arrival-times off-line error (see Fig. 8).

Here, for the selected simulation parameters and

source-receiver configuration, as long as the arrival-time

fluctuations of the actual CIR hk remains below 7%, the

model approximation SNR remains approximately over 9

dB (i.e., the actual CIR hk fits the subspace approximation

with less than 12% relative error) and the CIR estimation

SNR remains approximately over 7 dB (i.e., the actual CIR

hk fits the subspace approximation with less than 20% rela-

tive error). Furthermore, the multichannel blind deconvolu-

tion method is also able to cope with larger arrival-times

variations in the library CIRs (e.g., for the case of a longer

section of the shipping track), but this increases the dimen-

sion of the subspace matrix U basis and, thus, makes the

recovery less computationally tractable. For instance, when

doubling the spread of the arrival-angle of the direct path

[see Fig. 9(a)], Fig. 9(b) shows that both the model approxi-

mation SNR and CIR estimation SNR values get worse than

the results in Fig. 8. In this case, as long as the arrival-time

fluctuations of the actual CIR hk remains below 7%, the

model approximation SNR remains approximately over 8.5

dB (i.e., the actual CIR hk fits the subspace approximation

with less than 14% relative error) and the CIR estimation

SNR remains approximately over 4 dB (i.e., the actual CIR

FIG. 7. (Color online) Recovery of

M¼ 31 CIRs using the bilinear channel

model (one channel discarded from the

VLA because of a hardware problem).

(a) Linear approximations of arrival-

times for CIRs when the ship is 	1:8
km away from VLA3, this approxima-

tion accounts for the predicted envi-

ronmental variability affecting the CIR

at the test site for the track section of

the Anna Maersk vessel shown in Fig.

4(a). (b) The estimated CIRs (red) plot

on top of the original CIRs, and the

recovery SNR is 	12 dB.
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hk fits the subspace approximation with less than 40% rela-

tive error).

Finally, as discussed at the beginning of Sec. III, classi-

cal cross-convolution methods for multichannel blind

deconvolution (which are based on the commutativity of the

convolution) are very sensitive to the noise level present in

the measurement (referred to hereafter as measurement

noise). To address this limitation, Sec. III introduced the

truncated power iteration method under the bilinear channel

model to solve the multichannel blind deconvolution prob-

lem. Using the same parameters and subspace basis U con-

structed to generate the results from Fig. 6(b), Fig. 10

demonstrates the robustness of the proposed approach. The

measurement SNR (which is used to quantify the noise level

along the horizontal axis) is defined as the decimal

logarithm of the ratio of the amplitude of the boat signal to

the variable amplitude of the additive white Gaussian noise

used to synthesize the noisy measurements. For each mea-

surement SNR value, 100 Monte Carlo realizations of noisy

measurements were synthesized—assuming that the noise

waveforms are uncorrelated among each receiver—and the

corresponding averaged value of the CIR estimation SNR,

obtained using the truncated power iteration method, is dis-

played along the vertical axis. Figure 10 demonstrates that

the CIR estimation SNR smoothly decays as the measure-

ment SNR increases, which confirms the stability of the

truncated power iteration method for solving the multichan-

nel blind deconvolution problem in the presence of an

increasing level of additive noise in the original

measurements.

V. CONCLUSIONS

This study introduced a multichannel blind deconvolu-

tion algorithm that imposes a bilinear model on the arrival

structure of the CIRs and demonstrated its robustness using

experimental recordings of a shipping source of opportunity

on a bottom-mounted short VLAs in an ocean waveguide.

Such a bilinear model was obtained, for example, by embed-

ding a parametric model for the arrival-time structure of the

CIR wavefronts—i.e., jointly across receivers—into a low-

dimensional subspace using PCA while the receiver-

dependent arrival amplitudes are treated as independent var-

iables. Furthermore, under the bilinear channel model, the

truncated power iteration method was developed as a modi-

fication to the cross-convolution method for blind deconvo-

lution algorithms introduced by previous studies in order to

mitigate their high sensitivity to measurement noise. The

bilinear system model imposes a strong prior on the arrival

structure of the CIR, which enables us to efficiently narrow

the search space using the PCA and ultimately estimate the

unknown CIR with short observation times (i.e., using short

snapshot duration), which can be advantageous for the case

of a moving source. Hence, it is expected that this multi-

channel blind deconvolution method will perform well

FIG. 8. (Color online) Illustration of the blind deconvolution algorithm

robustness performance when arrival-times are not exactly on a line,

whereas the bilinear model is formed with the assumption that all arrival-

times fall along a line. The red dots indicate the approximation errors when

using such a channel model, and the blue dots are the estimation errors

using such a channel model to perform blind deconvolution. The model

errors are measured by an off-line coefficient, which indicates the ratio

between the off-line time and the arrival-time differences among channels.

FIG. 9. (Color online) (a) A subspace

with a larger dimension is used in this

simulation, which is generated from a

wider range of arrival time fluctuations

when compared to Fig. 7(a). (b) The

red dots indicate the approximation

errors when using such a channel

model, and the blue dots are the esti-

mation errors using such a channel

model to perform blind deconvolution.

The model errors are measured by an

off-line coefficient, which indicates the

ratio between the off-line time and the

arrival-time differences among

channels.
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when sufficient a priori information of the CIR arrival struc-

ture is available; and, thus, this method may potentially be

relevant for passive ocean acoustic tomography using sour-

ces of opportunity as tomography applications typically rely

on accurately knowing the CIR (i.e., a known reference set

of environmental parameters) to invert for first-order fluctu-

ations of the environmental parameters from in situ
observations.
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