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ABSTRACT:

A general blind deconvolution algorithmic framework is developed for sources of opportunity (e.g., ships at known
locations) in an ocean waveguide. Here, both channel impulse responses (CIRs) and unknown source signals need to
be simultaneously estimated from only the recorded signals on a receiver array using blind deconvolution, which is
generally an ill-posed problem without any a priori information or additional assumptions about the underlying
structure of the CIRs. By exploiting the typical ray-like arrival-time structure of the CIRs between a surface source
and the elements of a vertical line array (VLA) in ocean waveguides, a principle component analysis technique is
applied to build a bilinear parametric model linking the amplitudes and arrival-times of the CIRs across all channels
for a variety of admissible ocean environments. The bilinear channel representation further reduces the dimension of
the channel parametric model compared to linear models. A truncated power interaction deconvolution algorithm is
then developed by applying the bilinear channel model to the traditional subspace deconvolution method. Numerical

and experimental results demonstrate the robustness of this blind deconvolution methodology.
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I. INTRODUCTION

Acoustic remote sensing methods typically use a known
source signal to probe the environment, and then directly
estimate the time-domain channel impulse responses
(CIRs)—also referred to as the time-domain Green’s func-
tion—from the measurements obtained on a receiver array,
which are modeled as the convolution of the source signal
and the CIRs when the channels are time invariant during
the observation period. In this paper, for the sake of simplic-
ity, the CIR refers to the band-limited version of the infinite
bandwidth CIR within the bandwidth defined by the source
and receiver frequency responses. However, in many situa-
tions, a known active source signal is not available because
of either environmental concerns or hardware constraints,
while only sources of opportunity (e.g., radiating ships at
known locations) are available. Hence, sources of opportu-
nity offer an attractive alternative for acoustic remote sens-
ing applications (e.g., such as passive acoustic thermometry
or ocean acoustic tomography, as well as geoacoustic inver-
sions). The main challenge is that the precise radiated wave-
forms (i.e., acoustic signatures) of these opportunistic
source signals are unknown; therefore, both the CIR and the
unknown source signal need to be simultaneously estimated
from only the recorded waveforms on a receiver array using
blind deconvolution, which is generally an ill-posed prob-
lem if no a priori information or additional assumptions
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about the underlying structure of the CIRs are available. In
ocean waveguide environments, the typical ray-like arrival
structure of the broadband CIRs wavefronts between a sur-
face source and the elements of a vertical line array
(VLA;Godin, 2007; Roux et al., 2008) provides such a pri-
ori information about the CIRs, which can be used to turn
this ill-posed problem into a feasible one. This paper
presents a general algorithmic blind deconvolution frame-
work for acoustic remote sensing using sources of opportu-
nity and a priori information about the arrival-time structure
of the CIRs in an ocean waveguide.

The general blind deconvolution problem under a
multiple-channel receiver framework (hereafter referred to
as the multichannel blind deconvolution problem) has been
studied in various areas, and the selected solutions by previ-
ous studies are usually application dependent. In digital
communication applications, multichannel blind deconvolu-
tion methods do not require the transmission of a training
sequence, and they are adaptive to fast varying channels
(Giannakis and Serpedin, 1997; Moulines et al., 1995; Xu
et al., 1995). In image restoration, image denoising, image
deblurring, and medical image reconstruction, multichannel
deconvolution methods aim to recover the image (source)
from convolutions with multiple unknown finite impulse
response (FIR) filters (Katsaggelos, 1991; Souidene et al.,
2009). Applications in seismology (Mendel, 2013) have also
been reported. In underwater acoustics applications, the
multichannel blind deconvolution problem has also been
investigated using various approaches and assumptions on
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the CIR features (Abadi et al., 2012; Broadhead and Pflug,
2000; Byun et al., 2017; Cazzolato et al., 2001; Roan et al.,
2003; Sabra and Dowling, 2004; Sabra et al., 2010; Smith,
2000). A subset of the authors of this study have previously
developed a fast multichannel myopic deconvolution
method via a low-rank recovery technique (Tian et al.,
2017), in which the CIRs for channels were independently
parametrized. However, this deconvolution method via low-
rank recovery did not take into account the inherent relation-
ships between the CIRs across all channels (e.g., such as the
arrival-times of each CIR along a VLA being aligned along
common ray-like wavefront arrivals), which can be
exploited as a further constraint for jointly parametrizing the
CIR between the source of opportunity and the receiver
array elements for the selected channel model (here, an
ocean waveguide).

In order to develop a more robust multichannel blind
deconvolution method for ocean waveguides, this paper lev-
erages the inherent linking of the amplitude and arrival-
times of the CIRs across all channels of a VLA to develop a
bilinear channel model for the CIRs. This approach further
reduces the dimension of the channel parametric model
compared to the previously proposed linear model (Tian
et al., 2017) and, hence, ultimately improves upon the
robustness of the proposed multichannel blind deconvolu-
tion method. To justify the selection of this bilinear channel
model for the CIRs, it can be noted that the arrival-time
structure of the broadband CIRs is composed of stable ray-
like wavefront arrivals between a surface source and the ele-
ments of a VLA (Godin, 2007; Roux et al., 2008). The pri-
mary envisioned application for this method is the use of
surface sources of opportunity [e.g., radiating ships with
known locations inferred from the automatic identification
system (AIS); Verlinden et al., 2015] to perform acoustic
tomography (or thermometry) of the ocean, as well as geoa-
coustic inversions, passively. In this context, it is expected
that prior information of the amplitude and arrival-time
structure of the CIR is available and can be obtained either
using a sufficiently accurate numerical model that describes
the baseline acoustic propagation in the selected environ-
ment (as it is done for acoustic tomography applications) or
from in situ measurements (collected in the vicinity of the
actual location of source of opportunity of interest) using
the ray-based blind deconvolution (RBD) method (Abadi
et al., 2012; Byun et al., 2017; Sabra et al., 2010). In either
case, it is expected that the proposed multichannel blind
deconvolution method will provide a more accurate estimate
of the actual CIR for the selected source of opportunity than
the prior information available obtained from the CIR
parametrization. The multichannel blind deconvolution
problem solved in this paper uses a truncated power iteration
deconvolution algorithm specifically developed for a con-
strained eigenvalue decomposition given by the cross-
convolution formulation for solving the multichannel blind
deconvolution problems, which has been researched exten-
sively in the 1990s (Giirelli and Nikias, 1995; Moulines
et al., 1995; Xu et al., 1995). However, both the empirical
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performance and theoretical guarantees of these classical
methods were restricted to the noiseless case, and these
methods are not robust in the presence of additive measure-
ment noise. We overcome this limitation by imposing data-
adaptive structural models in the estimation. The proposed
numerical implementation is both fast and scalable. Similar
approaches to model-based multichannel blind deconvolu-
tion have been developed in the context of various imaging
modalities and image processing applications (Kazemi and
Sacchi, 2014; Morrison et al., 2007; She et al., 2015;
Sroubek et al., 2007; Sroubek and Milanfar, 2011). They
proposed sophisticated iterative algorithms that provide esti-
mates for both the source signal and the channels by alter-
nating between optimization programs (She et al., 2015;
Sroubek and Milanfar, 2011), taking advantage of expected
sparse structure in one or both parts of the optimization. In
this paper, we are interested only in recovering the channel
responses and use a completely different model for their
structure. We model the channels as jointly living in a low-
dimensional subspace derived from a priori information
about the CIRs (e.g., a window of arrival-times—the result
is a “block rank-1” model for the channels. The algorithm
we provide below is simple in that it estimates the channels
only once, but, in principle, it could be used as a sub-step in
an alternating optimization algorithm such as those in the
references above. As we demonstrate in the numerical result
section below, though, the algorithm already provides satis-
factory reconstruction results. Thus, in order to keep the
computational cost low, we did not pursue further iterative
refinements. Finally, the proposed approach notably differs
from previous sparse blind deconvolution techniques, which
typically consider the single channel blind deconvolution
problem where the CIR is sparse in the canonical basis
(Choudhary and Mitra, 2012, 2014; Li et al., 2016). Instead,
the proposed blind deconvolution technique in this paper
relies on a different model than the sparsity model by using
a low-dimensional subspace model, which is already
leveraging the extra a priori information contained in the
CIRs (e.g., specific arrival-time structure). As we
explained above, this subspace model fits well to the data
measured in an underwater acoustic channel and consid-
ered in this paper. Furthermore, even when using this extra
a priori information, accurately estimating the arrival-
times structure of the actual CIRs (e.g., for tomography
purposes) under a low signal-to-noise ratio (SNR) is still
quite challenging in practice.

The remainder of this paper is organized as follows.
Section II presents the bilinear channel model—motivated
by the acoustic remote sensing scenario using a VLA—and
the formulation of the blind deconvolution problem using
the cross convolution method under the bilinear channel rep-
resentation. Section III introduces the truncated power itera-
tion method algorithm and discusses the initialization step.
Section IV then presents results for the case of bottom-
mounted short VLAs in shallow water waveguides using
either numerical simulations or in situ CIR estimates
obtained experimentally with the RBD method to
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parametrize the CIRs arrival structure. Finally, Sec. V sum-
marizes the findings of this paper.

Il. THEORY

In this section, we first introduce a bilinear channel
model, which is motivated by an acoustic remote sensing
scenario using a VLA listening to a source of opportunity in
the far-field. A full theoretical analysis of this bilinear
recovery problem can be found in Lee er al. (2018). We
then mathematically recast the multichannel blind deconvo-
lution problem as an optimization problem.

A. An example of the bilinear channel model

In order to illustrate the concept of the bilinear channel
model, we first consider the simple case where the wave-
fronts composing the CIRs between the source of opportu-
nity and the receiver array elements can be well
approximated by propagating rays (i.e., for sufficiently high
frequencies; Jensen et al., 2011). In the far-field of the
source for any given ray, the individual arrivals along each
wavefront can be considered as time-shifted and amplitude-
scaled replicas of each other. The incident angle of this
incoming ray is determined by the source-receiver configu-
ration (i.e., VLA geometry and source and receiver range),
as well as environmental parameters [e.g., local sound speed
profile (SSP) at the VLA]. For instance, for the case of a sin-
gle ray arrival, the CIR for channel m is written as

hm(t) = amp(t - tm)v (1)

where p() denotes the baseline pulse waveform [Fig. 1(a)]
that is determined by the frequency response of the
receivers, and ¢, [Fig. 1(c)] and a,, [Fig. 1(b)] are, respec-
tively, the values of the arrival-time and amplitude of the
ray arrival for channel m. While the true channel response is
an impulse a,, (¢ — t,,) (or, more generally, a linear combi-
nation impulse at different delays), we are combining it with
the (known) receiver response p(f) to get our CIR model
[Eq. (1)]. As we will see below, this allows us to build an
efficient data-adaptive structural model on the channels.
Furthermore, the arrival-time variations and amplitude var-
iations of this ray arrival, shown in Fig. 1, were arbitrarily
selected to represent an idealized ocean waveguide arrival
for the sake of illustration).

We assume that the arrival-times across channels are

linked by a function ¢, =f(m), where the function f

describes the relation of the arrival-times across channels.
Then, we can build a parametric model for the CIRs using
this relation. For instance, when the source of opportunity is
in the far-field of the array and the local SSP along the array
is quasi-constant, it can be assumed that the arrival-time ¢,
falls along a line whose slope k is determined by the ray
incident angle (Jensen et al., 2011). Furthermore, if the
receivers are equally spaced in a vertical array, this relation-
ship can be expressed as
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tm = t1 + (m — 1)k, 2)

where #; is the arrival-time for the first channel, and & is the
slope of the line in Fig. 1(c).

Combining Egs. (1) and (2) forms the basis for build-
ing a bilinear model for a given ray arrival of the CIR
using one variable vector @ = [a,,] to represent the discrete
ray amplitudes a,, and one variable vector ¢ = [t,,] to rep-
resent the linked ray arrival-times ¢,. Furthermore, we
also discretize each time-shifted pulse profile p(7 — 1)
[see Eq. (1), m=1,...,M] recorded on the M receivers
into a vector p,, of length K (the number of samples).
Since the channels are treated jointly in the bilinear model,
we concatenate the M discretized pulses p,, into a single
pulse basis vector p,

p= [plT,...,p;,]TeRMK. 3)

Similarly, we discretize each time-domain CIR #,,(¢) into a
vector h,,, where each arrival is determined by the product
of the amplitude coefficient a,, and the pulse shape p,,. [e.g.,
given by Eq. (1) for the ray-model].

B. General formulation for bilinear channel models

The linear relation for arrival-times across channels was
provided in Sec. I A as an illustration of a bilinear channel
model, but it is not a necessary assumption in order for the
method to work. Indeed, even if neither an explicit function
fnor any other parametric function describing the relation of
the arrival-times across channels is available a priori, a
bilinear channel model can still be built by using a collec-
tion of realizations of CIRs (i.e., a library of a priori known
CIRs obtained from experimental measurements or numeri-
cal simulations) to extract the actual pulse arrival-times,
which are representative of the source-receiver configuration
and variability of the environment of interest (e.g., poten-
tially including the effects of the intermittent micro-multi-
path). Using this a priori information of arrival-times, the
linear subspace containing the entire pulse vector p [Eq. (3)]
can still be learned, and a bilinear channel model can then
be constructed. In ocean waveguide environments, the typi-
cal ray-like arrival structure of the broadband CIR wave-
fronts between a surface source and the elements of a VLA
(Godin, 2007; Roux et al., 2008) provides such a priori
information about the CIRs.

Specifically, if i/ indexes the specific CIR realization for
a given set of environmental parameters and source-receiver
configuration, the associated pulse vector is denoted as p'.
For instance, using the ray-model from Sec. ITA [see Eq.
(1)] and assuming a priori information is available to bound
the fluctuations of ray arrival-times [and, hence, slope k—
see Eq. (2)] due to environmental fluctuations (e.g., using
historical values of SSPs at the test site or more sophisti-
cated dynamic ocean simulations), we can determine the
time-window containing a collection of possible arrival-
times # (Fig. 2) by varying the ray slope k accordingly. In
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general, although the total number of realizations can be
large, the individual realizations p' are highly correlated;
hence, they lie on a lower dimension manifold, which can
be approximated by a linear subspace using the principal
component analysis (PCA) technique (Jolliffe, 2011) to
reduce the dimensionality of the search space for the blind
deconvolution method. We denote the basis matrix of this
subspace as @ € RM&*W (where M is the number of chan-
nels and K is the sample length of each discretized CIR),
which is constructed by using the first W orthonormalized
vectors in the PCA expansion, and for a certain set p, we
can write it as B

p=u, @

where u € R" is the coefficient vector that fully describes
the corresponding realization of arrival-times .

For instance, assuming a total of 26 realizations
[arbitrarily generated by varying the coefficients in Eq. (2)
to account for sound-speed fluctuations on the order of =3
m/s for the experimental source-receiver configuration
shown in Fig. 4] and using the ray-model for the CIR, the
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40 60 80 100
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(d)

first W =06 basis vectors of the PCA expansion are shown
in Fig. 3.

If all discretized vectors of time-domain CIR A, s [as
defined after Eq. (3)] are concatenated as follows, the bilin-
ear channel model can be written as

h a; @,
h2 a2(I)2

= . &)
hM aMCI)M

where ((I),,,)f:':1 € R®W are the blocks of the subspace
matrix @ defined in Eq. (4), u € R" is the coefficient vector
that determines the pulse arrival-times for one ray path
across all channels, and each element of the vector
a=ay,..., aM]T € RM with a,, > 0 is the arrival amplitude
a,,. Furthermore, let h € RMK denote the concatenation of
the CIR coefficients for all channels, i.e.,

h=1[h, .. n]" (6)
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FIG. 2. The black shaded region indicates the range of possible arrival-
times variations for sound-speed fluctuations on the order of =3 m/s for the
experimental source-receiver configuration shown in Fig. 4.

Equation (5) can then be equivalently rewritten as a more
concise form using the Kronecker product as

h=Y¥(@a®u), (7
where
@, 0 0
0 d, ... 0
L . N (3)
0 0 dy

The formulation above only represents a single wavefront of
the CIR. For a more general multipath environment (i.e.,
where the number of identifiable paths is N > 1), the bilinear
channel model still holds, and the concatenation of CIR vec-
tors h can be written as

B T
h=VY (a1®u1)T,...,(aN®uN)T R )
where
D, 0 0o ...... Dy, 0 0
~ 0 D) 0o ...... 0 D, 0
Y .=
0 0 Dy 0 0 Dy
(10)

Equation (9) describes the general bilinear channel model
that exploits the inherent pulse arrival-times relation across
channels (e.g., along a single ray-arrival or any more com-
plex wavefront). This bilinear model differs from the linear
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channel model studied in previous research (Tian et al.,
2017) and further reduces the dimension of the subspace for
all CIRs by constraining the model parameter space com-
pared to the linear model. However, under this bilinear
channel model, a new multichannel blind deconvolution
algorithm for the CIR recovery is needed and is presented in
Sec. III.

lll. TRUNCATED POWER ITERATION ALGORITHM
FOR MULTICHANNEL BLIND DECONVOLUTION

Our blind deconvolution method combines the model in
Eq. (7) with a classical cross-convolution technique (Gtirelli
and Nikias, 1995; Moulines et al., 1995; Xu et al., 1995).
Cross-convolution takes advantage of an invariance that is a
straightforward consequence of the commutivity of convolu-
tion operations. In the noiseless case, we have y;, = s* h;
and, therefore, for any j # i,

yixh;=5sx*h;xh, :s*h]»*hi:yi*hi.
Thus, the true unknown channels h; and h; must obey the
homogenous linear system of equations

Tyh;—Tyh; =0,
where T, is the (Toeplitz) matrix whose action corresponds
to convolving with the channel output y;. This relation holds

for each of the M(M — 1)/2 pairs of channels; we can
express them jointly using
Myh = 0y 1)2/2%15 (1)

where M, is the block-sparse matrix

T,, -T,, 0 0 0 0

T, 0 -T, 0 0 0
y_ |0 Do T 0 0 0
»=lo 1, 0 -T, 0 0

0 0 0 0 r,, -Ty,
In other words, we know that when there is no noise, & is a
null vector of M,. In Xu et al. (1995), it is shown that under
a mild algebraic condition on the channels (namely, that
they have no common null in their frequency response), the
true channel responses k are the unique (up to a scaling
coefficient) vectors that obey this condition. In the presence
of noise, M, in general, will not have a null space. So
instead of directly computing for the null space of M,, we
estimate the channels by solving an approximate constrained

problem to approximate this null space
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minimize ||M,h||5  subjectto ||k, = 1, (12)

which, in turn, is equivalent to actually finding the eigenvec-
tor corresponding to the minimum eigenvalue of M ; M,.
When there is zero-mean white noise added to the channel
outputs, we know that the estimate above is consistent (as the
corresponding perturbation to MyTM y will average out as the
number of measurements L goes to infinity), but without addi-
tional modeling assumptions in place, it will be very sensitive
to noise when working with a finite number of samples.

We implicitly regularize this problem by applying the
bilinear channel model in Eq. (9) to the optimization pro-
gram in Eq. (12). Our proposed multichannel blind deconvo-
lution technique is to solve the optimization problem,

~ T2
minimize HMy‘l’ {(al @u)', ..., (ay® uN)T} ’ 2’
: i i e
subject to H‘I’[(al up) ..., (ay @ uy) } Hz =1,
an >0, Ym=1,....M, (13)

where @ is defined in Eq. (10). If, indeed, our ensemble of
channel responses follows (or comes close to following) this
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model, restricting the set of channel responses that we
search over can increase the robustness of the estimate.

The optimization problem stated in Eq. (13) can no lon-
ger be solved using a standard eigenvalue decomposition
problem. It is also non-convex and so falls outside of the
purview of most off-the-shelf solvers. But the problem
structure that [(a; ® uy) ', ..., (ay @ uy)']" is block rank-1
allows a natural approach that is a modification of the
power method for finding the smallest eigenvector of a
matrix. The power method for finding the smallest eigen-
vector of a (symmetric positive semi-definite) matrix M
simply applies (AI — M) to an initial vector repeatedly,
renormalizing after each application. Our truncated power
method is the same with an additional step of enforcing the
block rank-1 structure. Our iterative truncated power
method is summarized in Algorithm 1 and is not univer-
sally guaranteed to solve Eq. (13), but under certain condi-
tions on the channel bases specified by W, it is provably
effective (Lee et al., 2018).

The matrices in the algorithm do get very large, but
everything is structured in such a way that it scales well.
Algorithm 1 is iterative with the cost of each iteration domi-
nated by two specific computations: the application of the
matrix B and the block rank-1 approximation (the norm of
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the matrix B in step 3 refers to the nuclear norm, that is, the
LI-norm of the vector of its eigenvalues). More specifically,
the matrix B is fixed and has dimensions NMW x NMW,
where N is the number of paths, M is the number of chan-
nels, and W is the number of coefficients used in the joint
channel representation. The number of paths N is, in gen-
eral, pretty small for most ocean waveguides, especially in
shallow water where bottom attenuation typically limits the
number of observable multipath arrivals, especially for long
range propagation. The matrix B, however, never has to be
formed—nor stored—explicitly as it consists of an applica-
tion of ¥ (which generates the channels from their coeffi-
cients) and M, (which convolves all of the y,, with all of the
different channels) and their adjoints. The cost of applying

¥ (and ‘i‘T) is OINMKW), while the cost of applying M,
(and M}T,) is M? /2 length-L convolutions, O(M?L log L). As
K < L, we have

costof applying B = O(LM(NW + M log L)).

For large arrays and observation times, the M log L term
above will dominate, so the cost of applying B is roughly
the same as M~ convolutions of length L. This is similar
to every blind deconvolution technique using spectral
methods, e.g., as used in Xu et al. (1995). Furthermore,
the block rank-1 approximation also scales. The optimi-
zation variable X is a length NMW vector; this step corre-
sponds to taking this vector, reorganizing it as N
different M x W matrices, and then finding the leading
singular vectors in each of these matrices. Computing
these exactly requires on the order of max(M?, W?) opera-
tions (and they can oftentimes be approximated to suffi-
cient accuracy using the power method, which might
require only a modest number of applications of the M
x W matrix). For large arrays, we expect NW < M. It is
also generally true that the number of samples taken per
channel is more than the number of channels, L > M.
Thus, the cost of the block rank-1 approximation is typi-
cally less than applying B.

ALGORITHM 1: Iterative truncated power method.

input: M]M,, ¥, M, L, ity,..., ity, @, ..., ay
output: A
1Xg— (@ @), ..., (ay @ ity
2B ¥ (M]M,)¥;
37 |Bll.:
4 while stop condition not satisfied do
5 X — Mo 7BX0;
6 u,...,uy,a, ..., ay — BlockRank1Approx(X);
7 Xo—(@ou) ... (ayoay)]";
8 Xo — Xo/l[Xoll,,
9 end
10h —¥[(a @u)',...,(ay @uy)']";

IRE

5

Furthermore, designing a good initialization scheme is
critical so that the iterates will not get stuck in a local
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minimum. We propose a variant of the so-called “spectral”
method. Let x denote the common source signal provided to
the unknown multichannel system. Each output y,,...,y,,
can (in the noiseless case) be written as a linear operator
applied to the tensor u®x®aec RP*PM  With
y= NIT, ey j}AT,,}T as the set of concatenated channel outputs
and P as the length of y, there are tensors (M, M, ..., Mp)
with the same dimensions as # ® x ® a such that

ym = </\/l1,u ®x®a> = Z nzf[il,i27i3}*u[i1]x[i2}a[i3},

i1,02,i3

where myli}, iy, i3] are the entries of M,. The action of
these linear functionals can be collected into a single lin-
ear operator A:RPM _ R”  The adjoint of A
applied to a measurement vector y = [y] ...,y  is the
tensor given by

A*y _ ZY[I]MI c RDXLXM.
l

Note that the applications of both A and its adjoint A"
involve only a set of convolutions and can be implemented
by using a fast algorithm. The standard spectral method
computes the best rank-1 tensor approximation of A”y.
However, there is no guaranteed algorithm that computes
the best rank-1 approximation of a three-way tensor exactly.
Thus, we instead propose to estimate just one factor u
through the following procedure.
Let

Z = Ayxsly, (14)

where x3 denotes the tensor multiplication along the third
mode. In other words, we fold the tensor A‘y € RP*FM by
summing M slices of size D x L along the third mode with
the same weight 1. The choice of the equal unit weight on
each slice is justified by the fact that the vector @ € R of
unknown channel gains has positive entries. In the noiseless
case, we compute an estimate # of u as the first dominant
eigenvector of ZZ'. By the construction of A, it follows
from Eq. (14) that

Z=AAu®x®a)x;1y + A'w,

where w denotes the additive noise to the measurements.
Intuitively, if A" A is approximated as the identity operator
and there is no noise, then Z is proportional to u ® x = ux'.
This is why one can estimate u as the dominant eigenvector
of ZZ'.

Once an estimate of @ is obtained, the estimation of a
reduces to the conventional multichannel blind deconvolu-
tion with a linear model. Thus, it is computed by an ordinary
eigenvalue decomposition. The resulting initialization algo-
rithm is summarized in Algorithm 2.
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ALGORITHM 2: Initialization.

input: A”,y, ¥, M, L

output: u, a
1 Z — folding A"y into a matrix by Eq. (14);
201277,
3y, ..., uy — FindMaxEigenvector(Q);
AV — Iy @iy, ... Iy @ iy];
SE— VI (M]M,)¥V,;

6a, ..., ay — FindMinEigenvector(Z);

IV. RESULTS

In this section, we implement the truncated power iter-
ation method presented in Sec. III to solve the multichan-
nel blind deconvolution problem using the bilinear channel
model introduced in Sec. II. The proposed approach is
demonstrated using at-sea data from a shipping source of
opportunity: the Anna Maersk—a passing container ship.
Data were recorded on a 32-element VLA moored in
between the north- and southbound shipping lanes of the
Santa Barbara shipping channel (depth ~ 580 m) during an
experiment performed mid-September 2016—see Fig. 4(a).
The selected VLA consisted of 2 16-element sub-arrays, one
of large aperture (=56 m) and one of small aperture (=15 m)
with uniform 3.75 m and 1 m element spacing, respectively.
A representative SSP averaged from multiple CTD casts,
which measure conductivity, temperature, and depth, is
shown in Fig. 4(b). Data processing and signal analysis were
performed in the frequency band from 150 Hz to 3 kHz.

Two different approaches are used to generate the a pri-
ori arrival-time information of the CIR used to construct the
subspace basis ® in Eq. (4). For the first data-derived
approach, the a priori information for the arrival-times and
amplitudes values for the direct path of the CIR were
directly obtained using a library of 500 estimated CIRs

independently obtained from the RBD method (Byun et al.,
2017) since the true CIRs between the Anna Maersk loca-
tion and the VLA elements were not available otherwise. An
example of such estimated CIR from RBD is displayed in
Fig. 5, which shows that the first direct arrival is the only
dominant wavefront while the subsequent arrival associated
with the bottom bounce is much weaker (=~ 35 dB below the
direct arrival’s amplitude). Hence, only the direct-arrival is
used hereafter to construct and parametrize the CIR library.
Specifically, the library of 500 estimated CIRs corresponds
to ship locations linearly spaced throughout the course of
one minute (12:15:18-12:16:18 on September 16) and cov-
ering ranges from 1.71 to 1.94km as the vessel Anna
Maersk cruises away from the VLA at a nearly constant
speed of 10 m/s. Speed and position information of the
Anna Maersk were obtained using data from the AIS. The
superimposed arrival-times profiles for the direct-arrival all
500 estimated CIRs are shown in Fig. 6(a), where the delay-
time for the first receiver was arbitrarily set to 20 ms. The
relative nature of the CIRs is a consequence of the RBD
method because the absolute arrival time of the ray cannot
be recovered (Byun et al., 2017).

First, using the method described in Sec. II, a subspace
basis matrix ®—reduced to a 42-dimensional space here as
the first 42 singular values of the PCA represented over 99%
of the total signal energy— was constructed using the PCA
of the data library containing the 500 arrival-times profiles
[shown superimposed in Fig. 6(a)], which were obtained
from the a priori CIRs computed with the RBD method
(Byun et al., 2017). For one arbitrarily chosen ship location
(located near the middle of the section of the Anna Maersk
vessel’s track shown in Fig. 4(a) but not part of the 500 loca-
tions used to construct the aforementioned CIR data library),
Fig. 6(b) compares the a priori CIR h; (obtained from the
ray-based deconvolution) to the estimated CIR Ay ...
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FIG. 4. (Color online) (a) Illustration of the Santa Barbara Channel Experiment. Four 32-elements are deployed in the Santa Barbara shipping channel. In
our simulation, we used data collected from VLA3 from the source of opportunity, which is the passing container ship Anna Maersk represented by the blue
line. (b) A representative SSP averaged from multiple measurements at the experiment site along with the bottom geoacoustic parameters used for numerical
simulations. (¢) Geometry of the bottom-mounted VLAs deployed in the SBC experiment.
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Anna Maersk at ~1812 m range

0 5 10 15 20 25 30 35
Time (ms)

obtained using the multichannel blind deconvolution
method (introduced in Secs. II and III) applied indepen-
dently to the raw shipping noise recordings on the VLA.
The percentage error between these two CIR (RBD estimate
and multichannel-blind method) is very low (~0.3%). This
is to be expected as the subspace basis matrix ®—directly
obtained from in situ data—provides a very accurate
description of the CIR arrival-time structure over the
selected Anna Maersk track section, which, in turn, enables
a near-perfect recovery of the CIR using the proposed multi-
channel blind deconvolution method. It should be noted that
since no ground truth was available for the CIR (as no active
source was used here), the very good agreement between the
two independently obtained CIRs shown in Fig. 6(b) can
only be interpreted as a simple experimental validation of
the proposed multichannel blind deconvolution method but
does not serve as an exact error analysis.

On the other hand, building the subspace basis matrix
@ directly from data-derived estimates of the CIRs may not
always be available. Instead, now we use a model-based
approach as the second approach to generate the a priori
arrival-time information of the CIR. Since the VLA is in the
far-field of the Anna Maersk for the selected track section,
we can well model the direct-path arrival as a straight line

490 Snapsh?t Arrival-lime‘s region

490

FIG. 5. (Color online) Envelope of a
relative CIR estimated via the RBD
method (Sabra er al., 2010). At the
time of the snapshot, the source of
opportunity (Anna Maersk) was nearly
1.8km from the VLA. Note that the
first arrival on the top-most hydro-
phone element has been arbitrarily
aligned with =20 ms.

40 45

using the ray-approximation of the CIR presented in Sec.
ITA [see Eq. (2)]. Under this assumption, the estimated
arrival-time uncertainty for each ray-path of the CIRs is
obtained by simulating the direct arrival-time and amplitude
using the software BELLHOP (Porter, 2011) for the same
500 source locations using the environmental parameters
shown in Fig. 4(b) and assuming a source depth of 5 m. The
simulated direct arrival profile computed from Bellhop are
shown superimposed in Fig. 7(a). For this simple linear
arrival model, all 500 simulated direct-path arrivals are
highly correlated; hence, the associated subspace matrix @
for this model-based approach has a much smaller dimen-
sion of 12 than does the subspace matrix obtained with the
data-derived approach (whose dimension was 42). However,
this model-based subspace matrix ® is less accurate than
the data-derived one as it does not actually account for all
experimental variations and actual deviations of the direct
path wavefront from a simple straight line, which explains
the relatively larger percentage error (212%) shown Fig.
7(b) for this model-based approach between the CIR
obtained from the ray-based deconvolution to the estimated
CIR obtained using the multichannel blind deconvolution
method for one arbitrarily selected ship location (located
near the middle of the section of the Anna Maersk vessel’s
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FIG. 6. (Color online) Recovery of
M =31 CIRs using the bilinear channel
model (one channel discarded from the
VLA because of a hardware problem).
(a) 500 snapshots of arrival-times for
CIRs when the ship is cruising away

5501 1 5501 from VLA3 at range 1.71 km—1.94 km.
T (b) The estimated CIRs (red) plot on

seor 1 560 BSOS top of the original CIRs, and the recov-
- ery SNR is 25 dB.
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(a) Arrival-times of 500 snapshots (b) CIRs recovery
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track shown in Fig. 4(a) but not part of the 500 locations
used to construct the aforementioned CIR model-based
library). Hence, these results demonstrate that the model-
based approach can provide acceptable deconvolution esti-
mates of the CIR for surface sources of opportunity—such
as a shipping vessel—provided that the environmental and
geoacoustic parameters used as input for the numerical
simulations are sufficiently accurate (which is a classical
and known limitation for all types of model-based
approaches).

The results from Figs. 6(b) and 7(b) indicate that the
primary source of error for the multichannel blind deconvo-
lution method is the inaccuracy of the subspace basis matrix
® such that it cannot accurately represent the actual arrival-
times of the in situ CIR for the location of interest. In order
to further quantify this effect, numerical simulations were
conducted using the same model-based subspace basis
matrix @, which was obtained from the arrival-time profiles
shown in Fig. 7(a), and applying the multichannel blind
deconvolution method to deconvolve a simulated CIR hy
whose arrival-times deviate from the straight line approxi-
mation by adding an increasing amount of random fluctua-
tions [expressed as an off-line coefficient, indicating the
percentage of fluctuations of the linear slope angle com-
pared to the reference CIR obtained using the environmental
parameters shown in Fig. 4(b)]. Such arrival-time fluctua-
tions can be representative of, for instance, array element
position uncertainties or localized sound-speed fluctuations
unaccounted for by the reference SSP shown in Fig. 4(b).
The simulated received signals on the VLA were synthe-
sized by convolving the simulated CIR h; with a Gaussian
white noise signal filtered the same bandwidth
(150-3000 Hz) representative of shipping noise spectra.
Despite the noise being predominately low frequency (<1
kHz), using a large frequency band improves the SNR of the
RBD estimated CIR (Durofchalk et al., 2019). A Monte
Carlo simulation with 100 trials for each noise level was
performed.

Linear Arrival-times region to build Phi
490 T T

490

Two types of relative errors can be defined and expressed
in terms of the SNR (i.e., by taking the decimal logarithm of
the inverse of the relative error). First, the model approxima-
tion SNR is defined as 10 log,o(||h«||,/||hr — Bk.approx|]>)
where hy approx 18 the approximation of CIRs using the sub-
space basis @. This first SNR quantifies how well the sub-
space basis @, constructed from linear arrival-time profiles,
describes the actual CIR hj, which has the random variations
in arrival-times. Second, the CIR estimation SNR is defined
as 10 log,o(||fe]l5/||Ak — Biest|],), Where hyeq is the esti-
mated CIR using the multichannel blind deconvolution
method. This second SNR quantifies how accurate the CIR
recovery is. As expected, both SNR values decrease (i.e., the
corresponding error increases) for increasing percentage of
the arrival-times off-line error (see Fig. 8).

Here, for the selected simulation parameters and
source-receiver configuration, as long as the arrival-time
fluctuations of the actual CIR h; remains below 7%, the
model approximation SNR remains approximately over 9
dB (i.e., the actual CIR B, fits the subspace approximation
with less than 12% relative error) and the CIR estimation
SNR remains approximately over 7 dB (i.e., the actual CIR
hy, fits the subspace approximation with less than 20% rela-
tive error). Furthermore, the multichannel blind deconvolu-
tion method is also able to cope with larger arrival-times
variations in the library CIRs (e.g., for the case of a longer
section of the shipping track), but this increases the dimen-
sion of the subspace matrix @ basis and, thus, makes the
recovery less computationally tractable. For instance, when
doubling the spread of the arrival-angle of the direct path
[see Fig. 9(a)], Fig. 9(b) shows that both the model approxi-
mation SNR and CIR estimation SNR values get worse than
the results in Fig. 8. In this case, as long as the arrival-time
fluctuations of the actual CIR h; remains below 7%, the
model approximation SNR remains approximately over 8.5
dB (i.e., the actual CIR h; fits the subspace approximation
with less than 14% relative error) and the CIR estimation
SNR remains approximately over 4 dB (i.e., the actual CIR
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FIG. 7. (Color online) Recovery of
M =31 CIRs using the bilinear channel
model (one channel discarded from the
VLA because of a hardware problem).
(a) Linear approximations of arrival-
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km away from VLA3, this approxima-
— tion accounts for the predicted envi-
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FIG. 8. (Color online) Illustration of the blind deconvolution algorithm
robustness performance when arrival-times are not exactly on a line,
whereas the bilinear model is formed with the assumption that all arrival-
times fall along a line. The red dots indicate the approximation errors when
using such a channel model, and the blue dots are the estimation errors
using such a channel model to perform blind deconvolution. The model
errors are measured by an off-line coefficient, which indicates the ratio
between the off-line time and the arrival-time differences among channels.

hy fits the subspace approximation with less than 40% rela-
tive error).

Finally, as discussed at the beginning of Sec. III, classi-
cal cross-convolution methods for multichannel blind
deconvolution (which are based on the commutativity of the
convolution) are very sensitive to the noise level present in
the measurement (referred to hereafter as measurement
noise). To address this limitation, Sec. III introduced the
truncated power iteration method under the bilinear channel
model to solve the multichannel blind deconvolution prob-
lem. Using the same parameters and subspace basis ® con-
structed to generate the results from Fig. 6(b), Fig. 10
demonstrates the robustness of the proposed approach. The
measurement SNR (which is used to quantify the noise level
along the horizontal axis) is defined as the decimal

490 Linear Arrival-times region to build Phi

logarithm of the ratio of the amplitude of the boat signal to
the variable amplitude of the additive white Gaussian noise
used to synthesize the noisy measurements. For each mea-
surement SNR value, 100 Monte Carlo realizations of noisy
measurements were synthesized—assuming that the noise
waveforms are uncorrelated among each receiver—and the
corresponding averaged value of the CIR estimation SNR,
obtained using the truncated power iteration method, is dis-
played along the vertical axis. Figure 10 demonstrates that
the CIR estimation SNR smoothly decays as the measure-
ment SNR increases, which confirms the stability of the
truncated power iteration method for solving the multichan-
nel blind deconvolution problem in the presence of an
increasing level of additive noise in the original
measurements.

V. CONCLUSIONS

This study introduced a multichannel blind deconvolu-
tion algorithm that imposes a bilinear model on the arrival
structure of the CIRs and demonstrated its robustness using
experimental recordings of a shipping source of opportunity
on a bottom-mounted short VLAs in an ocean waveguide.
Such a bilinear model was obtained, for example, by embed-
ding a parametric model for the arrival-time structure of the
CIR wavefronts—i.e., jointly across receivers—into a low-
dimensional subspace using PCA while the receiver-
dependent arrival amplitudes are treated as independent var-
iables. Furthermore, under the bilinear channel model, the
truncated power iteration method was developed as a modi-
fication to the cross-convolution method for blind deconvo-
lution algorithms introduced by previous studies in order to
mitigate their high sensitivity to measurement noise. The
bilinear system model imposes a strong prior on the arrival
structure of the CIR, which enables us to efficiently narrow
the search space using the PCA and ultimately estimate the
unknown CIR with short observation times (i.e., using short
snapshot duration), which can be advantageous for the case
of a moving source. Hence, it is expected that this multi-
channel blind deconvolution method will perform well
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CIRs SNR (dB)

10
Measurement SNR

FIG. 10. (Color online) Evolution of the SNR of the estimated CIR from
the multichannel blind deconvolution vs the measurement SNR, which
quantifies the amount of uncorrelated white noise added to the raw receiver
data used for deconvolution.

when sufficient a priori information of the CIR arrival struc-
ture is available; and, thus, this method may potentially be
relevant for passive ocean acoustic tomography using sour-
ces of opportunity as tomography applications typically rely
on accurately knowing the CIR (i.e., a known reference set
of environmental parameters) to invert for first-order fluctu-
ations of the environmental parameters from in situ
observations.
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