
Computer Aided Geometric Design 80 (2020) 101875
Contents lists available at ScienceDirect

Computer Aided Geometric Design

www.elsevier.com/locate/cagd

Variational shape approximation of point set surfaces

Martin Skrodzki a,∗, Eric Zimmermann b, Konrad Polthier b

a ICERM, Brown University, Providence, RI, USA
b Freie Universität Berlin, Berlin, Germany

a r t i c l e i n f o a b s t r a c t

Article history:
Available online 13 May 2020

Keywords:
Variational shape approximation
Point set segmentation
Simplification

In this work, we present a translation of the complete pipeline for variational shape
approximation (VSA) to the setting of point sets. First, we describe an explicit example
for the theoretically known non-convergence of the currently available VSA approaches.
The example motivates us to introduce an alternate version of VSA based on a switch
operation for which we prove convergence. Second, we discuss how two operations—split
and merge—can be included in a fully automatic pipeline that is in turn independent of the
placement and number of initial seeds. Third and finally, we present two approaches how
to obtain a simplified mesh from the output of the VSA procedure. This simplification is
either based on simple plane intersection or based on a variational optimization problem.
Several qualitative and quantitative results prove the relevance of our approach.

© 2020 Elsevier B.V. All rights reserved.

1. Introduction

Point sets arise naturally in almost all kinds of three-dimensional acquisition processes, like 3D laser-scanning. As early
as 1985, they have been recognized as fundamental shape representations in computer graphics by Levoy and Whitted
(1985). Ever since, they have found manifold applications e.g. in face recognition, traffic accident analysis, archaeology, and
several other fields.

However, in many applications, large parts of the point set carry redundant information. For example, a flat area of a sur-
face can be sampled sparsely without—compared to an area of high curvature—loosing information. In several applications,
it is not even necessary to consider all details carried by the point set. For instance, in architecture—for a first draft—the
rough outline of a building suffices and there is no need to send more detailed geometries. In general, when transmitting
geometries e.g. to give an overview of a certain portfolio, the general outlines of the geometries suffice and sending only
these saves on bandwidth during transmission. In this sense, algorithms are necessary that reduce a complex geometry to
several basic shapes that still retain the most important features of the input. Towards this end, Cohen-Steiner et al. (2004)
proposed their Variational Shape Approximation (VSA) for meshes.

The VSA procedure segments a mesh into a given number of flat proxy regions, see Section 3. Finally, a simplified surface
is obtained with only one element for each region, see Section 5. A translation of the VSA method to the setting of point
sets was done by Lee and Bo (2016) with the explicit goal of feature curve extraction. While VSA is able to provide an
easy to implement simplification of any geometry, it also has several downsides. First, it is dependent on the number of
proxies which has to be chosen a priori. Second, in the previous publications, the quality of the result depends heavily
on the manual placement of the starting seeds for the proxies (Cohen-Steiner et al. (2004); Lee and Bo (2016); Yan et al.

* Corresponding author.
E-mail address: mail@ms-math-computer.science (M. Skrodzki).
https://doi.org/10.1016/j.cagd.2020.101875
0167-8396/© 2020 Elsevier B.V. All rights reserved.

https://doi.org/10.1016/j.cagd.2020.101875
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/cagd
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cagd.2020.101875&domain=pdf
mailto:mail@ms-math-computer.science
https://doi.org/10.1016/j.cagd.2020.101875

2 M. Skrodzki et al. / Computer Aided Geometric Design 80 (2020) 101875
(2006)). Towards this end, two manual operations were proposed, which allow for splitting proxy regions of high error and
merging neighboring ones with a combined low error (Cohen-Steiner et al., 2004, Sec. 3.5). In the context of meshes, these
operations have been automatized (Yan et al., 2006, Sec. 3.1). Third and finally, the previous publications were not able to
construct a VSA algorithm with guaranteed convergence. This article closes these gaps. Our main contributions are:

• Providing an example of a growing error during the run of the VSA algorithm which applies to meshes and point sets
alike.

• Presentation of a modified VSA procedure including the switch operation and proof of its guaranteed convergence.
• Inclusion of the two operations, split and merge, as automatic parts in the point set processing pipeline, making the

initial choice of a fixed proxy number and the manual selection of seeds unnecessary.
• Extension of variational tangent plane intersection to the setting of point sets and inclusion of the procedure in the VSA

pipeline for simplification.

This paper is an extension of a chapter in a PhD thesis (Skrodzki, 2019, Chapter 5). Some results of the paper have been
presented as a poster at the International Geometry Summit 2019 in Vancouver, Canada and have been published in the
corresponding poster proceedings, see Skrodzki et al. (2019).

2. Related work

The VSA procedure was introduced by Cohen-Steiner et al. (2004) as a method for concise, faithful approximation of
complex three-dimensional meshes. It does so by fitting a set of planar proxies to the input mesh. We will provide a
detailed discussion of the procedure in Section 3. As the resulting elements are oriented corresponding to all associated
faces of the original mesh, the effects of simplification are less drastic as in the classical approach of Garland and Heckbert
(1997). A next step towards even better approximations consisted of the inclusion of more than just planar shapes. In the
work of Wu and Kobbelt (2005), also e.g. cylinders and spheres are used as proxies to even better approximate the input
shape. This was generalized even further by Yan et al. (2006) who utilized general quadrics as proxies to be fitted to the
input. However, all these methods are implemented in the setting of surface meshes.

A translation of the VSA procedure to the setting of point sets was performed in an article by Lee and Bo (2016). The
authors studied the problem of computing smooth feature curves from CAD type point cloud models. Their reconstructed
curves arise from the intersections of developable strip pairs which approximate the regions along both sides of the features.
The generation of the developable surfaces is in turn based on VSA. While the presented results are convincing, it remains
unclear whether the approach of fitting developable surfaces works outside of the CAD realm. Furthermore, the work does
not provide details on how to obtain the used linear planar approximations or how to construct a watertight mesh from
them. These aspects motivate the present research.

Our proposed approach incorporates two different areas of point set processing. On the one hand, we aim at segmenting
the input into several flat—i.e. planar—parts. Thus, we will discuss related segmentation approaches in Section 2.1. On the
other hand, we want to construct a simplified mesh on the basis of the found flat surface patches. Therefore, we will present
corresponding work on mesh generation and simplification in Section 2.2.

2.1. Segmentation

Segmentation of point clouds is the process of classifying the input into multiple homogeneous regions, where points
in the same region will have the same properties. In real-world applications—like intelligent vehicles, autonomous map-
ping, and navigation—the problem is challenging because of high redundancy, uneven sampling density, and lack of explicit
structure in the input data. Methods for point set segmentation can roughly be classified as follows: edge-based, region-
based (seeded/bottom-up or unseeded/top-down), attribute-based, model-based, graph-based, or machine-learning-based,
see Nguyen and Le (2013), Grilli et al. (2017). Following this terminology, the VSA procedure is a seeded, region-based
method, which is characterized by starting the segmentation process from seed points and letting regions grow by adding
neighbors if they satisfy certain conditions—like normal similarity. We refer to the survey of Nguyen and Le (2013) for a dis-
cussion of several corresponding methods. In this work, the authors draw the following conclusion on seeded region-based
methods:

[They] are highly dependent on selected seed points. Inaccurate choosing seed points will affect the segmentation process and can
cause under or over segmentation.

The survey paper of Grilli et al. (2017) draws a similar conclusion for the corresponding set of discussed methods. Hence, in
contrast to the procedures covered in the mentioned surveys, we put an emphasis on the independence of both the number
and placement of seed points. See Section 4.3 for a corresponding discussion.

Point cloud segmentation can be considered either from a semantic or from a geometrical perspective. The former aims
at separating a model into its parts: A chair should for instance be segmented into four legs, a seating surface, and a
backrest. The geometric approach is to segment the model into different primitives as well as possible. A recent survey

M. Skrodzki et al. / Computer Aided Geometric Design 80 (2020) 101875 3
paper of Xie et al. (2019) provides a comprehensive list of methods following both approaches. In the terminology used in
their paper, the VSA approach creates a “plane point cloud segmentation”. While we cannot discuss all works mentioned, we
will consider two popular approaches in the following and refer to the survey of Xie et al. (2019) for a thorough discussion
of other related work.

Note that fitting different planar segments to a model can be considered as a natural approach in order to render the
model with a reduced set of planar patches. Naturally, those models are captured well that are comprised of mostly planar
surface parts. The presence of spherical or cylindrical shapes will cause for larger distortions when approximating only with
planar parts. Thus, a next step—after planar fitting—is the usage of other geometric primitives, like spheres, cylinders, cones,
or tori. Each of these primitives then require their own fitting. As the VSA approach only fits planes, we briefly discuss
different fitting concepts for this primitive. Note at this point that the method of Wu and Kobbelt (2005) utilizes the exact
same procedure for fitting of planes as the original VSA paper by Cohen-Steiner et al. (2004).

To fit a planar patch, the approach of Schnabel et al. (2007) considers three points pi, p j, p� ∈ P from an input point
set P and computes a normal of the plane spanned by these points. This normal is then compared to the respective normals
at pi , p j , and p� . A fitting plane is introduced if all three normal variations stay below a user-given angle. Clearly, the results
of this approach heavily depends on the choice of the three points.

In contrast, the approach of Attene and Patanè (2010) places a plane at the weighted barycenter b of a considered
subset {pi} ⊂ P of the input point set P . A weighted covariance matrix is used to determine a normal n and the fitting
error is computed as a weighted least-squares formulation. However, this computation neglects the normal information at
the points pi .

Another choice for the segmentation of point clouds is the algorithm of Rabbani et al. (2006). It is popular because
of its easily accessible implementation in the widely used Point Cloud Library (PCL) by Rusu and Cousins (2011). This
method can be seen as a reduced version of the VSA approach. Regions are also grown from seeds according to normal
information. However, the growing process is only executed once and not repeated from a different set of seeds, like in VSA
(see Section 3). Thus, the result is even more dependent on the initial seeding than in other, comparable techniques.

For the given reasons, the discussed methods have their respective downsides. Contrasting the presented algorithms, in
our translation of the VSA approach, we include the entire normal information of the input point set. Furthermore, we have
a setup of the pipeline that ensures independence of the initial seed points, which eliminates the major disadvantage of
seed-based region growing methods.

2.2. Meshing and simplification

As stated in Section 1, the ultimate goal of our VSA procedure for point sets is to create a simplified mesh from a
set of planar proxy regions. That is, a set of mesh vertices has to be created from the intersection of the proxy planes.
Then, these vertices have to be connected to represent face elements for the proxies respectively. While three pairwise non-
parallel planes intersect in a unique point in R3, this is not necessarily the case for more than three planes in R3. In the
context of planar panelization of freeform surfaces, Zimmer et al. (2012) confirm this statement, asserting that tangent plane
intersection is numerically not stable enough to obtain reliable results. The authors proceed to present a variational approach
and a corresponding minimization problem in order to obtain a planar representation of a given mesh structure. This method
improves the approach of Cutler and Whiting (2007) for constrained planar remeshing of architectural geometries, which is
itself based on VSA. Therefore, we turn to the work of Zimmer et al. (2012) to make the calculation of a simplified mesh
from the input point set as robust as possible. See Section 5 for a discussion of the technical details of the optimization and
also for our translation to the setting of point sets.

Aside from VSA, there are other approaches to obtain a simplified mesh from an input point set. For instance, a possibility
is to first mesh the input point set and then simplify the created mesh. An overview of methods for meshing of point sets is
presented in the survey of Berger et al. (2017). Several methods are available for the subsequent simplification of the mesh.
These mostly collapse edges in the mesh to reduce its complexity. By using quadric error metrics, it can be assured that
the collapses remove elements that carry the least amount of feature information, see Garland and Heckbert (1997). This
simple approach can be improved by adjusting the position of the vertex resulting from an edge collapse according to the
local curvature information, see Hua et al. (2015); Yao et al. (2015). However, as these methods perform their operations
in a greedy manner, they do not provide reliable results when performing a drastic number of simplifications. Also, these
approaches require a costly meshing operation on the unfiltered point set, which can introduce topological failures, like a
surface of wrong genus or flipped triangles.

Another possibility to obtain a simplified mesh from an input point set is to first simplify the point set and to then
create a mesh from this. A brief introduction and (error) analysis of different point set simplification algorithms can be
found in the work of Pauly et al. (2002). Important attributes in real-world applications are the performance and quality of
the rendering process. This requires a specific focus on features represented by the point sets. By utilizing bilateral filtering,
both Euclidean distances and normal information can be taken into account throughout a simplification process on a point
set to best preserve both the large-scale geometry and small-scale features, see Sosorbaram et al. (2010). While these
methods are feature-preserving, they are not robust in the presence of outliers or noise. Also, the construction of the mesh
cannot use the full information of the input point set anymore, as the majority of points will have been removed during the
simplification step.

4 M. Skrodzki et al. / Computer Aided Geometric Design 80 (2020) 101875
Because of the downsides of both the approaches, we aim at taking all points of the input into account when creating
planar proxies. From these, we then create a mesh by completely creating new vertices and connections on them without
going through a costly meshing operation on the original input, see Section 5.

3. The method

In this section, we will present the Variational Shape Approximation (VSA) as introduced by Cohen-Steiner et al. (2004)
and as used by Yan et al. (2006) for surfaces and surface meshes. Also, we present a translation of the procedure to the
setting of point sets, similar to the work of Lee and Bo (2016).

3.1. The VSA procedure for surfaces and surface meshes

The VSA procedure of Cohen-Steiner et al. (2004) acts on a surface S ⊆ R3. The goal is to partition S into m disjoint
regions Ri ⊆ S ,

⋃̇
Ri = S , where each region is associated a linear proxy (Ci,Ni) with a center Ci ∈R3 and a unit-length

normal Ni ∈R3, i ∈ {1, . . . ,m}. The authors propose two different metrics to find the optimal shape proxies, with the first
metric based on the L2 measure

L2(Ri,Ci,Ni) =
∫

x∈Ri

‖x− πi(x)‖22 dx, (1)

where πi(·) denotes the orthogonal projection of the argument on the plane with normal Ni centered at Ci . Thus, the
integral (1) measures the squared error between points in the region Ri and its linear approximation given by (Ci,Ni).

A second metric, denoted by L2,1, is based on the L2 measure when evaluated on the normal field. It is given by

L2,1(Ri,Ni) =
∫

x∈Ri

‖n(x) − Ni‖22 dx, (2)

where n(x) denotes the normal of the surface at point x ∈ S . As Cohen-Steiner et al. (2004) conclude that the L2,1 metric is
more effective, we will reduce the following discussion to this formulation.

In the discrete setting, the surface S is given by a finite set of T ∈N (triangular) elements t j , j ∈ [T] and the centers Ci

are found by randomly choosing a triangle t j as center Ci . Therefore, the second smooth formulation (2) can be discretized
to

L2,1(Ri,Ni) =
∑
t j∈Ri

∥∥n(t j) − Ni
∥∥2
2 · |t j|, (3)

with n(t j) the normal and |t j | the area of the element t j respectively.
The actual minimization of expression (3) with respect to the segmentation of S into regions Ri and with respect

to the proxies (Ci,Ni) is then performed iteratively. For this, a variation of Lloyd’s fixed point iteration given by Lloyd
(1982) is used. The first step is to pick a user-given number m of center elements C1, . . . , Cm randomly from the set of
triangles {t j | j ∈ [T]}. The normals Ni are set to the normals of corresponding center triangles Ci and the regions are
initialized as Ri = {ti}. The neighbors of the chosen center triangles are collected in a priority queue Q sorted increasingly
with growing L2,1-distance between neighboring triangle and center triangle:

∥∥n(t j) − Ni
∥∥2
2. Then, the following three steps

are performed iteratively until convergence:

1. Flood: As long as the queue Q is not empty, pop the first element t j from Q. Ignore it, if it has already been assigned to
a region. If it is not assigned yet, assign it to the region Ri that pushed it into the queue and push all neighboring ele-
ments of t j into Q, noting that they have been pushed by Ri . Without loss of generality, we assume S to be connected.
If that is not the case, the algorithm can simply be run on each connected component of S . For a connected surface S ,
after the queue Q has been emptied, all elements {t j | j ∈ [T]} have been assigned to some region respectively.

2. Proxy Update: The proxy normals Ni are updated according to

Ni =
∑

t j∈Ri
|t j|n(t j)∥∥∥∑

t j∈Ri
|t j|n(t j)

∥∥∥
2

,

where it is ensured that the updated Ni are unit-length normals. Note that as the surface will be segmented into a
large enough number of locally flat patches, the denominator of this expression will never be zero in practice.

3. Seed: For each region Ri , find some element t′ ∈ Ri such that∥∥n(t′) − Ni
∥∥2
2 ≤ ∥∥n(t j) − Ni

∥∥2
2

for all t j ∈ Ri . This ensures that the flooding in the next iteration is started from regions that best reflect the current
proxy normals.

M. Skrodzki et al. / Computer Aided Geometric Design 80 (2020) 101875 5
Finally, the iteration is stopped, when no region changes from one step to the next. From the converged regions Ri and
assigned proxies (Ci,Ni), a simplified mesh with corresponding m surface elements is constructed. Respective results are
shown in Cohen-Steiner et al. (2004).

3.2. The VSA procedure on point sets

We will now proceed to present a translation of the VSA procedure to the setting of point sets. A corresponding refor-
mulation can be found in Lee and Bo (2016), while we include weights to obtain a more general setup. Compared to the
VSA on meshes, several details have to be adjusted for the method to work on point sets. At first, consider the partition
problem as stated in Section 3.1. In the context of point sets, not elements, but the points themselves have to be assigned
to the proxies. That is, the given point set P = {p1, . . . , pℵ} will be partitioned into disjoint subsets

⋃̇m
i=1Pi = P , m ∈N .

Therefore, in the following expressions, the centers Ci denote points from the point set P , while the normals Ni at the
respective center points are those obtained from a normal field imposed on the point set. The normals of the points p j ∈ P
will be denoted by n j respectively.

Consider the energy as defined in Equation (3). For proxies obtained from point sets, the area term |t j | cannot be used.
Thus, we replace it by a weighting term ω j ∈R≥0 which is to approximate the area represented by the point p j ∈ P . We
obtain the following energy of a single proxy and the resulting energy formulation on the set of all proxies

L2,1(Pi,Ni) =
∑
p j∈Pi

ω j
∥∥n j − Ni

∥∥2
2 , (4)

E({(Pi,Ni) | i = 1, . . . ,m}) =
m∑
i=1

L2,1(Pi,Ni). (5)

An approximation of the area term can be obtained by

ω j =
∑

�∈N (j)

∥∥p� − p j
∥∥2
2 , (6)

where N (j) ⊂ P denotes the neighborhood of p j in P . Including weights reflects the area are of interest, which changes
because of varying densities in the point set. Therefore, another possible weighting scheme could be the incorporation of
directional density measures proposed in Skrodzki et al. (2018). This could be coupled in a bilateral manner together with
the Euclidean distances mentioned before. In contrast, weight determination via normal deviations should not be used, as
the energy is defined by the latter, i.e. weighting these terms in the same fashion seems counterproductive.

The initial seeding as outlined above can still be done in the point cloud setting, but instead of triangles, now, m ∈ N
points p j ∈ P are chosen for the initial position of the center points Ci . Also, those points from P are pushed to the
priority queue Q that are neighbors, but not identical, to the chosen center points Ci . For this neighborhood relation, any
neighborhood concept such as combinatorial k-nearest neighborhoods or geometric neighborhoods of radius r can be used.
Denote the neighborhood of pi by N (i) ⊂ P . Again, the points in Q are sorted increasingly with L2 distance between their
own normal and the normal of the proxy that pushed them into the queue:

∥∥n j − Ni
∥∥2
2. The following three iteratively

applied steps remain almost unchanged:

1. Flood: As long as the queue Q is not empty, pop the first element p from Q. Ignore it, if it has already been assigned
to a subset Pi . If it is not assigned yet, assign it to the subset Pi that pushed it into the list and push all neighboring
points p j ∈N (i) into Q, noting that they have been pushed by Pi . As we assume S to be connected via the imposed
neighborhood relation (see above), after the queue Q has been emptied, all elements of P have been assigned to some
subset Pi .

2. Proxy Update: The proxy normals Ni are updated according to

Ni =
∑

p j∈Pi
ω jn j∥∥∥∑

p j∈Pi
ω jn j

∥∥∥
2

,

where we once again obtain unit-length normals and will not encounter a denominator equal to zero (see above).
3. Seed: For all subsets Pi , find some p� ∈ Pi , � ∈ [ℵ], such that

‖n� − Ni‖22 ≤ ∥∥n j − Ni
∥∥2
2

for all p j ∈ Pi . Again, this ensures that the next flooding step starts from regions that best reflect the current proxy
normals.

Finally, once the subsets Pi do not change anymore over two iterations, the process is stopped. From the converged sub-
sets Pi and assigned proxies (Ci,Ni), a simplified mesh with corresponding m surface elements is constructed. Respective
results are shown in Lee and Bo (2016), while our corresponding approach will be discussed in Section 5.

6 M. Skrodzki et al. / Computer Aided Geometric Design 80 (2020) 101875
Fig. 1. Example for a growth in the error measure after a flood and proxy update. (For interpretation of the colors in the figure(s), the reader is referred to
the web version of this article.)

4. Improved VSA pipeline

Having described the VSA procedure for both meshes and point sets in the previous chapter, we now turn to our contri-
butions for this pipeline. First, we will establish by an example that convergence of neither the meshed nor the point set
version is guaranteed. Following up on this, we propose an alternative formulation of VSA with guaranteed convergence.
Furthermore, we turn to a different issue of the VSA procedure. Namely, it is highly depended on both the number of ini-
tial seeds and their placement at the beginning of the procedure. We circumvent this dependency by including two more
operations in the point set pipeline that have already been used manually by Cohen-Steiner et al. (2004) and automatically
by Yan et al. (2006) in the context of meshes.

4.1. Example for failure of convergence of the VSA procedure

Concerning the convergence of their algorithm, Cohen-Steiner et al. (2004) state:

[. . .] Lloyd’s algorithm always converges in a finite number of steps, since each step reduces the energy E: the partitioning stage
minimizes E for a fixed set of centers ci , while the fitting stage minimizes E for a fixed partition.

While this statement holds for the original algorithm of Lloyd as presented in Lloyd (1982), it does not hold for neither the
VSA procedure on meshes as presented in Cohen-Steiner et al. (2004); Yan et al. (2006) nor for the translation to point sets
as given by Lee and Bo (2016). This is already recognized in the paragraph Convergence of Section 3.5 in Cohen-Steiner et
al. (2004). We will demonstrate this with the following concrete example, which is to the best of our knowledge the first
explicit example presented.

Consider the two-dimensional setup shown in Fig. 1a. It is given by n points connected on a line with normal 1√
2

(−1
1

)
next to a line of n points with normal

(0
1

)
. At the right end of the second line, there is a single point with normal

(−1
0

)
and

another single point with normal N given by the equation

N = 1∥∥∥n · (01) + (−1
0

) + N
∥∥∥
2

·
(
n ·

(
0

1

)
+

(−1

0

)
+ N

)
,

which solves to N = 1√
n2+1

(−1
n

)
. Now, two proxies will act on this example, with their initial seeds shown in yellow and

blue in Fig. 1a. They each start on one of the two lines of n points respectively. The result after a flood is shown in Fig. 1b,
where each line is completely covered by the proxy starting on it and the two single points are associated to the proxy with
normal

(0
1

)
. After updating the proxy normals, the yellow proxy has normal 1√

2

(−1
1

)
while the blue proxy has normal N

given by the equation above. Thus, the yellow proxy starts from an arbitrary point on its line while the blue proxy starts
from the rightmost point. The error after this first flood and proxy update is given by

E1 = n ·
∥∥∥∥
(
0

1

)
− N

∥∥∥∥
2

2
+

∥∥∥∥
(−1

0

)
− N

∥∥∥∥
2

2
= −2 ·

(√
n2 + 1− n − 1

)
,

where only the blue proxy contributes to the error, because the normals corresponding to the yellow proxy coincide with
their proxy normal and cancel out in energy E1. Starting from the new seed points, a second flood results in the situation
shown in Fig. 1c. Here, almost all points except for the rightmost one are associated to the yellow proxy with former
normal 1√

2

(−1
1

)
. Its new normal after a proxy update is

N ′ = 1∥∥∥ n√
2

· (−1
1

) + n · (01) + (−1
0

)∥∥∥ ·
(

n√
2

·
(−1

1

)
+ n ·

(
0

1

)
+

(−1

0

))
,

which amounts to an error after the second flood and proxy update given by

M. Skrodzki et al. / Computer Aided Geometric Design 80 (2020) 101875 7
Fig. 2. A regular 10-gon, built from the shape shown floating on top, which is a three-dimensional extension of the setup shown in Fig. 1a.

E2 = n ·
∥∥∥∥ 1√

2
·
(−1

1

)
− N ′

∥∥∥∥
2

2
+ n ·

∥∥∥∥
(
0

1

)
− N ′

∥∥∥∥
2

2
+

∥∥∥∥
(−1

0

)
− N ′

∥∥∥∥
2

2
.

Note that the error term for the blue proxy cancels out, as the one representative corresponds to the normal of the proxy it
belongs to. Choosing n = 100 points on each of the two lines, we obtain E1 ≈ 1.9900, but E2 ≈ 31.6782. Furthermore, the
corresponding error value after the flood is also growing. Thus, convergence cannot be proven by an always shrinking error
functional.

Note that this example is described as a curve in 2D, where neighborhood selection is generally more involved than for
surfaces in 3D. However, the example can easily be extended to a surface in 3D space, see Fig. 2. There, we also close the
loop and thereby cause the original VSA algorithm to run infinitely long. For the given example, the crucial step as depicted
in Fig. 1c can be resolved via a manual (Cohen-Steiner et al. (2004)) or automatic (Yan et al. (2006)) split of the large proxy.
Thus, this example only applies to the original VSA procedure without splits as described above.

4.2. VSA with guaranteed convergence

The example presented above highlights the main deficiency of the VSA procedure as used in Cohen-Steiner et al. (2004);
Yan et al. (2006); Lee and Bo (2016). Namely, if an outlier causes a proxy normal to be distorted, the new proxy seed can
end up to be a border point that does not actually reflect the normal behavior of the majority of points in the proxy. In
other words, the change of seeds before flooding is a problematic step. Thus, in the following, we aim at altering the VSA
procedure in a way such that no new seeds need to be found, but proxies can still move and alter. In particular, proxies
should be able to take over the original seed points of other proxies if necessary. These changes should finally lead to an
alternative VSA procedure with guaranteed convergence. In order to achieve this goal, we propose to alter the steps of the
algorithm as follows.

First, we perform an initial seeding and one flood step and proxy update as explained in Sections 3.1 and 3.2 above.
Instead of the seeding step in the following iterations, we perform a different procedure:

4. Switch: Consider the neighborhoods N (i) ⊂ P for all points pi ∈ P . Assume that pi is assigned to subset P� . If any
point p j ∈ N (i) is assigned to another subset Ph , compute the change of the error measure (5) resulting from reas-
signing pi from P� to Ph . Compare it to the current best known reassignment. After iterating through all points p ∈ P ,
reassign the point such that the error measure is reduced maximally.

This new switch step replaces the seed step and the flood step described in Sections 3.1 and 3.2 above. That is, it is only
iterated together with the proxy update. The iteration is continued until no further switch operations can be performed. For
this alternate procedure, we can prove the following statement.

Theorem 1 (Error reduction by switch and proxy update). Given a point set P = {p1, . . . , pℵ} with a neighborhood structure, such
that the neighborhood graph on P is connected and normals n1, . . . ,nℵ on P . Then, each proxy update step and each switch step as
defined above lead to proxies (Pi,Ci,Ni) with a smaller error measure in Equation (5).

Proof. Concerning the proxy update step, consider

8 M. Skrodzki et al. / Computer Aided Geometric Design 80 (2020) 101875
Fig. 3. A proxy being torn apart by another proxy under the repeated application of the switch operation.

∇E({(Pi,Ni) | i ∈ [m]}) = ∇
m∑
i=1

L2,1(Pi,Ni)

=
m∑
i=1

∑
p j∈Pi

∇ω j
∥∥n j − Ni

∥∥2
2

=
m∑
i=1

∑
p j∈Pi

2ω j(n j − Ni).

Setting Ni =
∑

p�∈Pi
ω�n�∑

p�∈Pi
ω�

, we obtain

∑
p j∈Pi

2ω j(n j − Ni) =
∑
p j∈Pi

2ω jn j −
∑
p j∈Pi

2ω j

(∑
p�∈Pi

ω�n�∑
p�∈Pi

ω�

)

=
∑
p j∈Pi

2ω jn j −
(∑

p�∈Pi
2ω�n�∑

p�∈Pi
ω�

)
·

∑
p j∈Pi

ω j

=
∑
p j∈Pi

2ω jn j −
∑
p�∈Pi

2ω�n� = 0.

Thus, at the chosen updated proxy normal, the energy reaches a (local) minimum. As the energy is convex as sum of norms,
which are convex, the found minimum is indeed its global minimum for the current choice of segmentation.

Concerning the switch step, only those points are reassigned which reduce the value of error measure (5). Thus, trivially,
after a switch operation the error is smaller. �

Finally, we note that there are only finitely many ways to partition the ℵ points of the point set P into m subsets. This
fact, together with Theorem 1 proves the convergence of our modified VSA procedure.

Consider the application of this alternative VSA version to the setup in Fig. 1a. After a first flood, which would still result
in the proxies shown in Fig. 1b, the only possible switch could be performed at the border between the blue and the yellow
region. However, a switch would already lead to an increase of the energy functional. Thus, the proxies remain as they are
after the first flood and the example converges immediately.

By replacing seed and flood with the switch operation, we can ensure convergence of the algorithm. While this result is
theoretically pleasing, it is not necessarily of practical value. Finding an ideal pair of points for a switch operation requires
to iterate at least over all points on the border of proxy regions. Depending on the number of proxies and on the shape of
the geometry, one such switch can reach the same time complexity as a flood operation while only altering a single point’s
proxy assignment. Thus, in practice, utilizing the switch operation causes a significantly longer runtime as trade-off to the
guaranteed convergence.

Furthermore, iterated application of the switch operation can tear a proxy apart, see Fig. 3. A converged state of the
algorithm might therefore include proxy regions that are not connected. In order to have a sensible result, a final step
has to be included that re-interprets connected regions as proxies and that might increase the number of proxies doing
so. However, a disconnectedness only arises if another proxy better reflects the local shape. Thus, a corresponding higher
number of connected proxy regions is desirable in order to faithfully approximate the input geometry.

M. Skrodzki et al. / Computer Aided Geometric Design 80 (2020) 101875 9
Fig. 4. The whole pipeline contains an initial random seed selection and an initial flooding. From there, a proxy update, one or more optional splits and/or
merges, and a switch are iterated until no further switches can be applied. Afterwards, we deduce a simplified model according to the proxies, which can
also be considered as a simplified surface reconstruction from the initial point set.

The presented switch operation provides one possible way to obtain guaranteed convergence. It remains as open question
whether another operation or alteration of the VSA procedure provides the same result while coming with a lower runtime.

4.3. User controlled level of detail

The requirements of proper seed placement and prescribed seed number naturally demand for a variable proxy-treatment
in terms of splits and merges. Both concepts were introduced in Cohen-Steiner et al. (2004) as means for manual adjustments
by the user. For meshes, these two operations are incorporated into the pipeline described in Yan et al. (2006). In the
following, we propose a translation to point sets. With both operations, we aim at adaptability of the constructed flat pieces
towards user input. That is, the user should be able to control the level of detail obtained from the flat regions. However,
in contrast to Cohen-Steiner et al. (2004), this control should be realized via a single input parameter instead of a time-
consuming manual interaction with the modeling process. For this, we use a user-given parameter η ∈ R≥0 which controls
the maximum deviation of a subset Pi from its flat approximation. It can be thought of as controlling the maximum bending
of a segment. This parameter is used in the following two steps:

(a) Split: Given a subset Pi ⊂ P such that L2,1(Pi,Ni) > η. We use weighted principal component analysis by Harris et al.
(2011) to compute the most spread direction of Pi . The set Pi is then split at the center of this direction into two
new sets Pi = P1

i ∪̇P2
i . The new normals are chosen as N1

i = ∑
p j∈P1

i

ω jn j∑
p j∈P1i

ω j
and N2

i respectively. The new centers C1
i

and C2
i are then placed at those points of P1

i and P2
i that have least varying normals from N1

i and N2
i respectively.

Note that the reasoning of Theorem 1 holds for this case, too. Thus, the procedure outlined above, with an additional
split step does continue to converge.

(b) Merge: Consider a pair Pi , P j of neighboring subset with their respective normals Ni , N j . If the subset P ′ = Pi ∪ P j

with normal N ′ = Ni+N j
2 achieves an Energy (5) strictly less than η, the two subsets are replaced by their union P ′ ,

with normal N ′ and a chosen center C ′ ∈ P ′ with its normal least deviating from N ′ .
Note that we could allow only those pairs of neighboring regions to merge such that

L2,1(Pi,Ni) +L2,1(P j,N j) ≤ L2,1(P ′,N ′).

Then, the energy would not increase and termination of the algorithm would be guaranteed by Theorem 1. However,
this would result in neighboring regions not observing the user-given η threshold. Therefore, we accept an increase of
the global energy in favor of a better region layout.

Both operations alter the number m of proxies. Thereby, a significant disadvantage of the algorithm of Lloyd (1982) is
eliminated as the user does not have to choose m a priori. It is replaced by the user’s choice of η, providing a semantic
guarantee on the regions being built by the algorithm. The user can prescribe a value of η based on the curvature and
number of points within a proxy. See Appendix A for a more detailed interpretation of η.

The possible presence of noise in the point set P gives yet another reason to refute Energy (1). For points distributed
around the xy-plane, with normals (0, 0, 1)T and just slight deviation from the plane, this energy would create larger values
for a growing number of points, while the Energy (5) does not suffer from this. Hence, with the chosen energy, noise on
the point positions is handled more robustly.

In the merge process outlined above, we asked for two neighboring regions. However, we have not defined any relation
on the regions yet. In the meshed case discussed in Section 3.1, two regions are neighbors if and only if they share an
edge in the mesh. In the context of point sets, we cannot rely on this, thus we have used the following approach. For every
proxy and each of its points, we query k of the point’s nearest neighbors and use the distance to the farthest of them for a
geometric neighborhood determination. From all the neighbors gathered that way, we ask for their proxy assignment. If the
current center point is assigned to a different proxy than one of its neighbors, we consider the two proxies to be neighbors.
This finishes the whole pipeline, including the additional two steps merge and split. See Fig. 4 for an illustration of the
complete pipeline.

10 M. Skrodzki et al. / Computer Aided Geometric Design 80 (2020) 101875
5. Simplification

We will now investigate the creation of a simplified mesh based on the segmentation generated before. Both works
of Cohen-Steiner et al. (2004) and Lee and Bo (2016) present simplified meshed geometries with m faces, one representing
each proxy. The work of Yan et al. (2006) also presents simplified meshes, utilizing their proxy quadrics. However, the
approaches of Cohen-Steiner et al. (2004) and Yan et al. (2006) are not suitable for our context as they work on meshes.
The authors of Lee and Bo (2016) do not elaborate on the computation of their meshes. They only state that

(. . .) a polygonal mesh is easily generated by computing intersections of proxy planes of neighboring clusters of data points.

In the following, we will see that only simple cases allow for this approach while the general case is more involved. First,
we will discuss the creation of vertices for the simplified mesh (Section 5.1). Subsequently, we will connect these vertices
to faces in order to obtain the complete mesh (Section 5.2). In both section we also address corresponding challenges as
well as possible solutions.

5.1. Vertices for a simplified mesh

The intuitive way to determine simplified mesh vertices is the intersection of neighboring proxies, as used by Lee and
Bo (2016). In the following, we will use the notion of neighborhood for proxies as introduced at the end of Section 4.3.

Intersecting planes A first naive solution for the creation of vertices for the simplified mesh is to consider the intersection
of neighboring proxies and the construction of vertices in these intersection points. In the general case, where q > 3 proxy
planes meet, we cannot simply consider the intersection as it will be mostly empty.

We call such a situation obtained via the proxy-neighborhood relation a q-tuple. In detail, let I be the index set la-
beling the proxies given by subset Pi ⊆ P , proxy center Ci , and proxy normal Ni . Further, consider all neighborhood
relations (i, j) ∈ I × I between proxies. A q-tuple is a subset {i1, . . . , iq} of I such that the proxies i j and i� are neigh-
bors for all i j, i� ∈ {i1, . . . , iq} where i j �= i� . Enumerate all such q-tuples I j by an index set J in a way such that if there
are j, j′ ∈ J with I j � I j′ , then the larger set I j′ is kept and j is not stored in J . These tuples hold inclusion maximal
candidates for intersection points with proxy indices contributing to the intersection.

Now, for the case of q > 3, we select three indices at random for each tuple, intersect them, and make the resulting
vertex known to all proxy members of the tuple. As this might cause degenerate faces in the face creation stage—as the
vertex does not lie within all of the proxies it is associated to—we use a triangulation of all created faces (see Section 5.2)
to obtain triangles, which are planar.

Intersecting point optimization A second, more involved solution for the creation of simplified mesh vertices is based on
optimization. The intersection of more than three planes is numerically unstable as discussed above. In the work of Zimmer
et al. (2012), the authors turn to a variational approach, start from a triangle mesh, and aim at computing the intersection
points x j of the vertex tangent planes of all triangles. Thus, exactly three tangent planes—corresponding to each of the
three vertices vi of a triangle—contribute to an intersection point. Denoting the normal at vi by ni , they solve the following
minimization problem

minimize:
∑
t j

⎛
⎝∑

vi∈t j

∥∥x j − vi
∥∥2
2

⎞
⎠

subject to: nT
i (vi − x j) = 0 ∀t j, ∀vi ∈ t j

‖ni‖22 = 1 ∀vi

(7)

where the normals are variables in the minimization. Note that the original normals at the vertices are not taken into
account at all during the minimization. The requirement of unit-length normals is necessary, however, as otherwise ni = 0
would trivially satisfy all conditions.

We generalize this approach in the following way to our setup. First of all, we use the concept of q-tuples introduced in
the previous paragraph. Then, we consider the following energy

F ({x1, . . . , x j}) =
∑
j∈ J

⎛
⎝∑

i∈I j

∥∥x j − Ci
∥∥2
2

⎞
⎠ +

∑
i∈I

w̃ i
∥∥Ni − ñi

∥∥2
2 , (8)

with sought-for intersection points x j for each maximal tuple I j , known proxy-centers Ci , weighting terms w̃i ∈ R≥0,
unknown normal deviations ñi , and known proxy-normals Ni for all proxies i ∈ I . Ultimately, we want to solve

M. Skrodzki et al. / Computer Aided Geometric Design 80 (2020) 101875 11
Fig. 5. (a) Illustration of point optimization with deviation allowance (represented by ñ) of n1, . . . , n4 to find the optimal mesh vertex x j satisfying the
constraints 〈Ci − x j , ̃ni〉 = 0 and

∥∥ñi∥∥2
2 = 1 for i = 1, . . . , 4. The Ci are the normal-corresponding proxy-centers and ni the original proxy normals. (b)

Star-convex proxy (front part of the fandisk, Fig. 9). Top shows an ordering of the vertices around a star-convex center point, bottom shows the corre-
sponding ordering around the barycenter (either marked in orange). (c) Bottom: Segmentation of the Torus with 24 final proxies. Middle: Non-convex
proxy representing the upper part of the torus after projection of the points onto their proxy plane. Top: Resulting mesh face after connecting the vertices.

minimize: F ({x1, . . . , x j})
subject to: ñT

i (x j − Ci) = 0 ∀ j ∈ J ∀i ∈ I j∥∥ñi∥∥2
2 = 1 ∀i ∈ I.

(9)

This generalizes the problem of Zimmer et al. (2012) as stated in Equation (7) in several ways. First, we allow for more than
three, namely for an arbitrary number of planes to intersect. This arises already at a simple geometry like the octahedron,
which has valence 4 vertices, see Fig. 5a for an illustration. Second, we do allow the normals ñi to deviate from the proxy
normals Ni , but a large deviation is punished, where the severity can be steered by the weights w̃i .

In contrast to the first naive solution, this approach guarantees all vertices of the mesh to lie within the proxies that
they are derived from. That is, if the optimization problem (9) yields a feasible point, after correcting the proxy normals
from ni to ñi all vertices associated to a planar proxy lie completely within the corrected proxy plane.

5.2. Faces for a simplified mesh

After creating the mesh vertices, we need to connect them in order to generate faces for the mesh. The general idea
is to represent every proxy region with a single star-convex face. All vertices associated to a proxy are sorted around the
barycenter of the proxy w.r.t. an arbitrary reference direction. This yields correct results, when the barycenter of the proxy
is also a star-convex center point, see Fig. 5b. If we sort the vertices with a non-star-convex center, they are connected in
wrong order and the resulting faces will degenerate. This approach obviously fails, if a proxy represents a non-convex part
of the geometry, see Fig. 5c.

6. Experimental results

The following experimental section is divided into two parts. First, we evaluate parameter choices regarding the segmen-
tation and provide a quantitative comparison of the segmentation results. In the second part, we discuss three aspects of
the simplification algorithm on clean and noisy models.

In all our experiments, we processed models with quite uniform samplings. Hence, for simplicity, we utilized equal
weights ω j = 1 in Equation (4). We proceed similarly with the weight assignment in the optimization problem formulated
in Equation (8) and set w̃ = 1. We use neighborhoods to both propagate a proxy during the flood step and establish neigh-
borhood relations between the different proxies. For the first purpose, we use a combinatorial k-nearest neighbors approach.
When determining the proxy neighborhoods, we turn to a combination of the combinatorial and geometric approach based
on the same k (see end of Section 4.3). In all our experiments, we use k = 8. Deviations from the default parameters are
indicated.

6.1. Segmentation

For a large scale experiment, we chose 600 models from the repository used in the work Hu et al. (2018). For all these
models, we used the mesh information to generate an oriented vertex normal field. Furthermore, we translated the models
and scaled them uniformly to fit into the unit cube. Finally, we performed our experiments on the point cloud given by the
mesh vertices, disregarding the connectivity information and the triangular faces.

We compared four different approaches. The first one was the segmentation algorithm of Rabbani et al. (2006) as im-
plemented in the Point Cloud Library of Rusu and Cousins (2011). As parameters, we turned to the ones described in the
original paper, see Rabbani et al. (2006). We will refer to this experiment by PCL. Second, with these results at hand, we
took the final numbers of proxies given by PCL for each geometry. This number served as number of proxies to be sought

12 M. Skrodzki et al. / Computer Aided Geometric Design 80 (2020) 101875
Table 1
Statistical evaluation of error MSE and proxy number m taken over all 499
geometries. We give the minimum, maximum, mean, and standard deviation.

PCL ¬s/m local η s/m global η s/m

min MSE 2.75E-09 7.31E-07 6.95E-11 2.11E-06
max MSE 1.12E-01 2.98E-02 4.15E-02 1.04E-02
avg MSE 1.59E-02 2.88E-04 6.40E-04 4.50E-04
sd MSE 2.12E-02 1.90E-03 2.47E-03 8.15E-04

min m 1.00 1.00 2.00 1.00
max m 1,103.00 1,103.00 393.00 135.00
avg m 174.17 174.17 55.05 33.20
sd m 163.10 163.10 58.41 20.69

by the variational shape approximation algorithm of Lee and Bo (2016). Here, no splits or merges are applied, thus we
refer to this experiment by ¬s/m. Third, we took the total L2,1-error (Equation (5)) of each geometry, as produced by the
PCL experiment, and divided it by its final number of proxies. This division provides an initial guess for a local, geometry-
dependent value η. In this third experiment, we allowed splits as well as merges. Also, we started with an initial seed
number of m = ℵ, i.e. each point was a seed at the start. Because of the η-threshold and merge-processes, the number of
proxies reduced drastically over the run of the experiment. We will refer to this as local η s/m. Fourth and finally, without
any priors, we set η = 25 and allowed splits and merges. Furthermore, we once more started with every point as a seed.
The choice of η is motivated from previous experiments. We will refer to this fourth experiment as global η s/m. The ter-
minology local or global indicates whether η is chosen with respect to the geometry or globally for all geometries. Observe
that the experiments ¬s/m and local η s/m are dependent on the results of PCL, while only global η s/m is independent.

We are interested in gaining insight into the relationship between the obtained proxy-number m and the quality of the
induced flat proxy-regions. Besides the L2,1-measure of Equation (5), we focus on the mean squared error (MSE) caused by
point-to-proxy-plane distances to evaluate the region quality. The MSE is given as

MSE({(Pi,Ni) | i = 1, . . . ,m}) = 1

ℵ
∑
p j∈Pi

∥∥p j − π(p j)
∥∥2
2 , (10)

where π(p j) denotes the orthogonal projection of p j onto its related proxy plane, given by normal Ni and base point Ci .
From the 600 chosen models, we obtained 499 that offered segmentation results in all four experiments. For 27 mod-

els, PCL was unable to provide a valid segmentation, because it assigned a zero proxy-normal to at least one region (for
instance a region holding only two antipodal normals). These models were excluded from the subsequent experiments. The
variational shape segmentation of Lee and Bo (2016) did not report a complete segmentation on additional 72 models.
Here, some points are not assigned to any proxies, because they cannot be reached from the proxy centers during a flood
when traversing the nearest neighbor graph. Increasing the parameter k alleviates this problem. Similar failures occurred
on one additional model in experiments local η s/m and global η s/m respectively. Even though these experiments started
with seed numbers equal to the geometries’ points, they reduced the number of regions via merge operations. Due to proxy
updates and new seed selection, it is possible that seeds travel away from sparsely sampled areas, where they do not reach
all formerly assigned points in the neighborhood graph during the next flood. This reduced the number of models by a total
of 101 failures to 499 feasible models. All reported experimental values are taken over this set of 499 models.

For the following analysis, we turn to Table 1. There, we give statistics on both the MSE and proxy number m as
obtained from experiments on our model set. Regarding the average MSE over all experiments, we see that all three
experiments—¬s/m, local η s/m, and global η s/m—outperform PCL by two orders of magnitude. A direct comparison be-
tween the MSE obtained for the models reveals that local η s/m and global η s/m outperform ¬s/m in roughly 8.5% of all
experiments. Note that the minimal MSE error obtained over all geometries is up to five orders of magnitude smaller for
local η s/m when compared with the other experimental setups.

Aside from the MSE results, Table 1 also reports statistics on the number of proxies obtained by the different experiments
over all geometries. Recall that we are not only interested in small error values, but also in representations of the geometry
that reduce its complexity, i.e. that have a low number of proxies. Towards this end, it is remarkable that local η s/m and
global η s/m attain MSE values comparable to those of ¬s/m while only using 31.6% and 19.1% of the proxies on average,
respectively. The close error results are especially of interest for global η s/m, as this runs without any dependency or
information provided by PCL, as a global parameter is applied to all geometries equally. Hence, the assignment of points to
proxies is on the one hand optimized in terms of the MSE errors measure, while providing significantly fewer proxies on
the other hand. Note that the lowest (and therefore optimal) MSE of 0 is given for a segmentation in which every point is
represented by its own proxy.

We proceed to further investigate the proxies obtained by the different experiments. In Fig. 6, we show a histogram over
the attained proxy-sizes taken over all geometries in the experiment. Note that the y-axis has a logarithmic scale. We show
all proxy sizes up to 131, where this bound is given by the sum of the mean (11.74) and corresponding standard deviation
(120.27) regarding proxy sizes obtained from PCL. We can see that both PCL and ¬s/m create a significantly larger number

M. Skrodzki et al. / Computer Aided Geometric Design 80 (2020) 101875 13
Fig. 6. Histogram over all proxy-sizes up to 131 among all 499 geometries for all four experiments. The upper bound of 131 is given by the sum of the
mean (11.74) and corresponding standard deviation (120.27) regarding cluster sizes obtained from PCL. Note the logarithmic scale on the y-axis.

of small proxies when compared with the segmentation results of local η s/m and global η s/m. In fact, the average proxy
sizes are 11.74 (PCL, ¬s/m), 37.15 (local η s/m), and 64.00 (global η s/m). As segmentation—in our setup—should create
few regions that still reflect the geometry attributes, extremely small regions as exposed by PCL and ¬s/m are undesirable.
The availability of splits and merges in local η s/m and global η s/m results in a bell-curve-like behavior in Fig. 6, as both
curves first increase and show a small descent with minor oscillations after their peaks. Hence, in the critical area of small
sized proxies, the availability of splits and merges not only reduces their required number, but also balances their sizes,
causing for more uniformly sized proxies.

To summarize the quantitative analysis of the segmentation part, we conclude:

• The proposed method outperforms the segmentation approach of Rabbani et al. (2006) as well as variational shape
approximation without splits and merges, as used by Lee and Bo (2016) in regard of MSE.

• Without any knowledge of seed numbers or error values, a globally set η, availability of splits as well as merges, and
treatment of all points as initial seeds provides segmentation results that have MSE comparable to Rabbani et al. (2006);
Lee and Bo (2016) but a significantly reduced number of proxies.

• The availability of splits and merges not only optimizes for small proxy numbers, but also causes more uniform region
sizes.

6.2. Simplification

In the following, we present different experiments regarding the simplification as obtained from the proxy segmentation.
Each experiment addresses different aspects of the simplification pipeline. First, we consider how the parameter η influences
the obtained simplification (Section 6.2.1). Next, we turn to the Fandisk model, to discuss difficulties arising due to face
generation (Section 6.2.2). The last experiment deals with a noisy geometry and robustness of our algorithm (Section 6.2.3).

Throughout our experiments, in order to solve the minimization problem (9), we turn to the build-in solver of Matlab.
Note that the minimization problem has a non-linear target function with non-linear constraints and can thus not be solved
by any LP or even ILP solver. Hence, we follow the example from the Matlab manual (Mathworks and Matlab), which is
supported by all versions of at least R2019b. The solver asks for starting points from which to run the optimization. We
initialize the normals ñi by the proxy normals Ni . As first guesses for any intersection point x j , we chose the barycenter of
the centers Ci of those proxies that contribute to this intersection.

6.2.1. Threshold η-dependency on the sphere model
Our first simplification model is a sphere sampled with ℵ = 5,122 points. We chose this model as it also appears

in Cohen-Steiner et al. (2004); Lee and Bo (2016). By running our algorithm with 12 initial centers without split and merge
we obtain a segmentation into 12 planar faces, shown together with the simplification done by optimization in Fig. 7
coupled with results of Cohen-Steiner et al. (2004); Lee and Bo (2016).

In Fig. 8, we show segmentation and simplification results w.r.t. different values of η taken from {500,200,100,50,25}.
The utilized geometry is the sphere used above. The simplification points are calculated via both approaches introduced
in Section 5, i.e. via intersection of the proxy planes and via the optimization problem given in Equation (9). All results
are obtained from the same set of six randomly selected seed points. For the optimization case η = 500 we increased the
weight w̃i = 3, as otherwise the simplification points would have produced a smaller version of the cube. Hence, in this case

14 M. Skrodzki et al. / Computer Aided Geometric Design 80 (2020) 101875
Fig. 7. A visual comparison of the output of (a) Cohen-Steiner et al. (2004) showing a segmentation of the half-sphere into six proxies, (b) Lee and Bo
(2016) with a segmentation of the sphere into 12 proxies, and (c) the results of our algorithm applied to the sphere deducing 12 proxies.

Fig. 8. The segmentation and simplification for different η values. The first row shows the segmented point sets, the second and third rows the meshes
deduced via optimization and plane intersection, respectively.

we forced the optimization putting more emphasis on less proxy normal deviation. Fig. 8 also shows the amount of final
proxies in correspondence to the chosen value of η. It is not surprising that with a decreasing number of η, the number of
proxies increases as this decreases the error measure (5) in order to meet the prescribed threshold. Note further that the
resulting meshes contain vertices where more than three proxies meet, see the fourth and fifth column in Fig. 8. While it is
not problematic in this case, it does cause problems for a different model, see Section 6.2.3.

6.2.2. Face reconstruction on the Fandisk model
We proceed to discuss a more involved geometry, namely the Fandisk model (CAD) with ℵ = 38,840 vertices, shown in

Fig. 9. Here, we started the segmentation with 36 manually selected seeds, η = 75, and without using splits or merges. We
consequently obtained m = 36 proxy regions, shown in Fig. 9a.

Reconstructing this model is challenging to our algorithm in two aspects. First, our simplification procedure requires
star-convex faces, see Section 5.2. However, the orange front plate of the fandisk model is not star-convex with respect
to its barycenter (Fig. 5b, bottom) and thus a first automatic reconstruction is slightly faulty (Fig. 9b). These errors are
easily identified and fixed by assigning a correct order to the contributing face vertices. See Section 7 for a discussion
how to circumvent the requirement of star-convex proxies. The second challenging aspect is caused by the sensitivity of
neighborhood notions for different densities in the point set. For example, the light-purple region fits between the blue and
purple and hence, they see each other (Fig. 9c, right marked spot). However, their planes are almost parallel, and so their
intersection appears as an outlier. This could be avoided, if we forbid intersection points built by almost parallel planes or if
we forbid those intersections that lie too far away from either one of the proxies. The behavior of a misplaced intersection
point is also the case for the one produced by the light green, light purple and purple proxies (Fig. 9b left marked spot),
whereas in consequence a gap results between the light purple and blue area, which should not be there, according to the
segmentation. As before, we manually removed faulty intersection points and reset face incidences to obtain a clean mesh
for visual representation (Fig. 9d).

Note that these challenges are unique to the setting of point sets. In the context of meshed geometries, the intersection
vertices can simply be ordered along the boundary of their respective proxy region, yielding a feasible face. Also, neigh-
borhood relations in the mesh setting can be computed via shared edges and do not require an additional neighborhood
parameter k. Hence, the works of Cohen-Steiner et al. (2004); Yan et al. (2006) did not have to tackle these issues, while
the work of Lee and Bo (2016) does not contain any description of how they solved these problems.

M. Skrodzki et al. / Computer Aided Geometric Design 80 (2020) 101875 15
Fig. 9. Segmentation and simplification (plane intersection) of the Fandisk model.

Fig. 10. Noisy Dodecahedron, its segmentation and simplifications (planar intersection and optimization).

6.2.3. Robustness against noise on the dodecahedron model
As our final experiment, we consider the simplification of a dodecahedron equipped with Gaussian noise in normal

direction with an amplitude of 25% of the average neighbor distance (taken as averaged sum over all points and their 12
nearest neighbors). This geometry is not easily translated into a clean mesh and therefore, the methods of Cohen-Steiner et
al. (2004); Yan et al. (2006) cannot be applied here straightforward. The model consists of ℵ = 962 and we started with 12
randomly chosen seeds and a threshold of η = 50. Here, in contrast to the other experiments, we use a neighborhood size
of k = 12, because of the involved noise components. The otherwise used value of k = 8 caused points to not be associated
to any proxies. Furthermore, we allowed for splits and merges. The algorithm converged after 8 iterations with m = 11 final
proxies, see Fig. 10. Observe that the faces reflecting the top proxy in the third image are not planar, which is a possible
occurrence outlined in the intersection of planes when finding the simplified mesh vertices. In contrast, the optimization
provides planar patches (rightmost image).

The segmentation reflects the different parts of the geometry correctly. This probably results from the normal differences
caused by the noise still being smaller than the normal differences between the different faces of the dodecahedron. Hence,
if the noise level and its influence in normal deviation still lies beyond the normal deviation of neighboring geometry
regions, its segmentation will reflect the geometric structure well. However, this still depends on initial seed placements
and therefore also on performing splits and merges.

With a segmentation reflecting the correct structure of the geometry, the simplification should not cause any additional
issues, as it is the result of proxy plane intersections. Only the neighborhood relation between proxies might be more
involved, as point locations now deviate more because of additional noise components.

7. Conclusion and further research

We have shown in this paper that variational shape approximation is an effective approach to obtain a simplified mesh
not only from meshed input, but also from geometries sampled by point sets. The presented example for non-convergence of
the VSA method as used in Cohen-Steiner et al. (2004); Yan et al. (2006); Lee and Bo (2016) was successfully circumvented
by the introduction of a new switch operation for which we proved convergence. Furthermore, by two more operations
in the pipeline, namely split and merge, we eliminated the dependency of both the number and placement of initial seed
points. Finally, we gave a detailed description on how to obtain a simplified mesh from the segmented point set by building
on the method of tangent plane intersection. Several directions are left for further research.

First, on a theoretical level, we have shown that the introduction of the switch operation results in guaranteed conver-
gence. However, it remains unclear whether other alterations of the pipeline exist that came with the same result and do
not affect the runtime of the algorithm as heavily as the switch operation does.

Second, concerning the parameters, we currently do not provide any theoretical reasons for the choice of weights ω j in
Equation (4) or weights w̃ j in Equation (8). A better understanding of these weights, aside from the experimental values
used in the paper, is desirable. Similarly, the sum of normal differences η is not directly related to the curvature of a proxy,
as it depends on the number of points contributing to the sum. Here, a threshold should be found that is independent of
the number of points.

Third, our simplification process can currently not handle planar patches which are not star convex. An idea is to include
border-detection algorithms for point sets to find both outer and possible inner borders—resulting from holes—of the points

16 M. Skrodzki et al. / Computer Aided Geometric Design 80 (2020) 101875
associated to the proxy. Given these, the mesh vertices can be easily sorted and a planar face can be obtained while not
covering the holes.

Fourth and finally, we have presented an experiment on a noisy point set. We assume that the treatment of meshes
equipped with noise should be equally possible and yield even better results because of the explicit connectivity. To inves-
tigate this behavior is also left as future work.

Declaration of competing interest

The authors declare the following financial interests/personal relationships which may be considered as potential com-
peting interests:

Prof. Dr. Konrad Polthier is editor of VSI:CGD.

Acknowledgements

This research was supported by the DFG Collaborative Research Center SFB/TRR 109, “Discretization in Geometry and
Dynamics”, the BMS, ECMATH, and the German National Academic Foundation.

The authors would like to thank the anonymous reviewers for their comments which lead to a significant improvement
of the paper.

Appendix A. Interpretation of parameter η

In Section 4.3, we introduced the user-chosen parameter η. It relates to the energy L2,1 as presented in Equation (4).
From the definition of L2,1, it is clear that two factors contribute to the value L2,1(Pi,Ni) a given proxy Pi can achieve.
These are:

• The number of points p j assigned to the proxy and
• the Euclidean distance of the proxy normal Ni to the respective point normals n j .

That is, a proxy can achieve a low energy by either exhibiting low deviation in its normals or by containing a low number
of points. In particular the latter aspect highly depends on the number of points and the point densities in the considered
model. Therefore, no general values of η can be presented in this paper, but the user has to choose an appropriate value for
the given setup. In the following, we present a simple heuristic how to make an (initial) choice for η.

Any point on a smooth surface can be approximated via a quadric, i.e. a (hyperbolic) paraboloid Dai and Newman (1998).
As we handle mostly (locally) convex objects, we consider an elliptic paraboloid as a simple model for a curved surface,
parameterized as

P = (u, v,
u2

a2
+ v2

b2
),

then it has mean curvature

H(u, v) = a2 + b2 + 4u2

a2
+ 4v2

b2

a2b2
√(

1+ 4u2

a4
+ 4v2

b4

)3
. (A.1)

A normal to P at (u, v) is given as

Pu ×Pv =
⎛
⎝ 1

0
2u/a2

⎞
⎠ ×

⎛
⎝ 0

1
2v/b2

⎞
⎠ =

⎛
⎝ −2u/a2

−2v/b2

1

⎞
⎠ .

Hence, after normalization, the point parameterized at (u, v) contributes the following value to L2,1, when assuming that
the points are distributed uniformly on the paraboloid and therefore the proxy normal is just Ni = (0,0,1)T :∥∥∥∥∥∥

1√
4u2/a4 + 4v2/b4 + 1

⎛
⎝ −2u/a2

−2v/b2

1

⎞
⎠ −

⎛
⎝ 0

0
1

⎞
⎠

∥∥∥∥∥∥
2

=2− 2√
4u2/a4 + 4v2/b4 + 1

.

M. Skrodzki et al. / Computer Aided Geometric Design 80 (2020) 101875 17
Placing a number ℵi of points regularly on the domain [−1,1] × [−1,1], i.e. choosing u = j/νi , v = �/νi for j, � = 1, . . . , νi

and νi := �
√ℵi−1

2 �, we can compute the total value of L2,1 for these points, depending on the curvature prescribed by (a,b)
as

L2,1(Pi,Ni) = 2(2νi + 1)2 −
νi∑

j=−νi

νi∑
�=−νi

1√(
j

νia2

)2 +
(

�

νib2

)2 + 1
4

. (A.2)

Now Equation (A.2) provides a heuristic to compute an (initial) value of η: A user of the algorithm first chooses a
desired curvature, to be covered by the proxies. From this choice and a distribution on the two main curvature directions,
via Equation (A.1), the parameters (a,b) can be computed. As the user also knows the models to which the algorithm will
be applied and therefore the resolution, i.e. the number of points to be included, a second choice is the number of points ℵi
that is roughly to be covered by a single proxy. From these two choices, using Equation (A.2), a first estimate for η can be
computed. If the output of the algorithm is not satisfactory, the user is of course free to tune the parameter towards the
desired result.

References

Attene, M., Patanè, G., 2010. Hierarchical structure recovery of point-sampled surfaces. In: Computer Graphics Forum. Wiley Online Library, pp. 1905–1920.
Berger, M., Tagliasacchi, A., Seversky, L.M., Alliez, P., Guennebaud, G., Levine, J.A., Sharf, A., Silva, C.T., 2017. A survey of surface reconstruction from point

clouds. Comput. Graph. Forum 36 (1), 301–329.
Cohen-Steiner, D., Alliez, P., Desbrun, M., 2004. Variational shape approximation. In: ACM Transactions on Graphics. TOG. ACM, pp. 905–914.
Cutler, B., Whiting, E., 2007. Constrained planar remeshing for architecture. In: Proceedings of Graphics Interface 2007, pp. 11–18.
Dai, M., Newman, T.S., 1998. Hyperbolic and parabolic quadric surface fitting algorithms–Comparison between the least squares approach and the parameter

optimization approach. Technical Report. University of Alabama.
Garland, M., Heckbert, P.S., 1997. Surface simplification using quadric error metrics. In: Proceedings of the 24th Annual Conference on Computer Graphics

and Interactive Techniques, pp. 209–216.
Grilli, E., Menna, F., Remondino, F., 2017. A review of point clouds segmentation and classification algorithms. Int. Arch. Photogramm. Remote Sens. Spat.

Inf. Sci. XLII-2 (W3), 339–344.
Harris, P., Brunsdon, C., Charlton, M., 2011. Geographically weighted principal components analysis. Int. J. Geogr. Inf. Sci. 25, 1717–1736.
Hu, Y., Zhou, Q., Gao, X., Jacobson, A., Zorin, D., Panozzo, D., 2018. Tetrahedral meshing in the wild. ACM Trans. Graph. 37, 60.
Hua, Z., Huang, Z., Li, J., 2015. Mesh simplification using vertex clustering based on principal curvature. Int. J. Multimed. Ubiquitous Eng. 10, 99–110.
Lee, K.W., Bo, P., 2016. Feature curve extraction from point clouds via developable strip intersection. J. Comput. Des. Eng. 3, 102–111.
Levoy, M., Whitted, T., 1985. The use of points as a display primitive. Technical Report. University of North Carolina, Department of Computer Science,

Chapel Hill, NC, USA.
Lloyd, S.P., 1982. Least squares quantization in pcm. IEEE Trans. Inf. Theory 28, 129–137.
Mathworks, Matlab, Solve a constrained nonlinear problem, problem-based. https://www.mathworks .com /help /optim /ug /solve -nonlinear-optimization -

problem -based .html.
Nguyen, A., Le, B., 2013. 3d point cloud segmentation: a survey. In: 2013 6th IEEE Conference on Robotics, Automation and Mechatronics. RAM, pp. 225–230.
Pauly, M., Gross, M., Kobbelt, L., 2002. Efficient simplification of point-sampled surfaces. In: Proceedings of the Conference on Visualization ’02. IEEE

Computer Society, pp. 163–170.
Rabbani, T., Van Den Heuvel, F., Vosselmann, G., 2006. Segmentation of point clouds using smoothness constraint. Int. Arch. Photogramm. Remote Sens.

Spat. Inf. Sci. 36, 248–253.
Rusu, R., Cousins, S., 2011. 3d is here: point cloud library (pcl). In: IEEE International Conference on Robotics and Automation. ICRA, pp. 6324–6328.
Schnabel, R., Wahl, R., Klein, R., 2007. Efficient RANSAC for point-cloud shape detection. In: Computer Graphics Forum. Wiley Online Library, pp. 214–226.
Skrodzki, M., 2019. Neighborhood Data Structures, Manifold Properties, and Processing of Point Set Surfaces. Ph.D. thesis. Freie Universität Berlin, Berlin,

Germany. https://refubium .fu -berlin .de /handle /fub188 /25320.
Skrodzki, M., Jansen, J., Polthier, K., 2018. Directional density measure to intrinsically estimate and counteract non-uniformity in point clouds. Comput.

Aided Geom. Des. 64, 73–89.
Skrodzki, M., Zimmermann, E., Polthier, K., 2019. Variational shape approximation of point set surfaces. In: IGS 2019 International Geometry Summit –

Poster Proceedings, pp. 54–57.
Sosorbaram, B., Fujimoto, T., Chiba, N., 2010. Simplification of point set surfaces using bilateral filter and multi-sized splats. J. Soc. Art Sci. 9 (3), 140–153.
Wu, J., Kobbelt, L., 2005. Structure recovery via hybrid variational surface approximation. In: Computer Graphics Forum. Wiley Online Library, pp. 277–284.
Xie, Y., Tian, J., Zhu, X.X., 2019. A review of point cloud semantic segmentation. arXiv:1908 .08854.
Yan, D.M., Liu, Y., Wang, W., 2006. Quadric surface extraction by variational shape approximation. In: Kim, M.S., Shimada, K. (Eds.), Geometric Modeling and

Processing - GMP 2006. Springer, Berlin Heidelberg, Berlin, Heidelberg, pp. 73–86.
Yao, L., Huang, S., Xu, H., Li, P., 2015. Quadratic error metric mesh simplification algorithm based on discrete curvature. Math. Probl. Eng. 2015.
Zimmer, H., Campen, M., Herkrath, R., Kobbelt, L., 2012. Variational tangent plane intersection for planar polygonal meshing. In: Hesselgren, L., Sharma, S.,

Wallner, J., Baldassini, N., Bompas, P., Raynaud, J. (Eds.), Advances in Architectural Geometry 2012. Springer, pp. 319–332.

http://refhub.elsevier.com/S0167-8396(20)30062-5/bibC0A180672E9D7B77078AE75B557508B2s1
http://refhub.elsevier.com/S0167-8396(20)30062-5/bib6465603CB0C3A38CAB25E1610C8EAE50s1
http://refhub.elsevier.com/S0167-8396(20)30062-5/bib6465603CB0C3A38CAB25E1610C8EAE50s1
http://refhub.elsevier.com/S0167-8396(20)30062-5/bib666844B20EC0706C60536CD74C0BE8E9s1
http://refhub.elsevier.com/S0167-8396(20)30062-5/bib1788D3AB12435D1E3AAB945FB17A3B01s1
http://refhub.elsevier.com/S0167-8396(20)30062-5/bib4F213D97B980A1A34475EFC716F7A5DCs1
http://refhub.elsevier.com/S0167-8396(20)30062-5/bib4F213D97B980A1A34475EFC716F7A5DCs1
http://refhub.elsevier.com/S0167-8396(20)30062-5/bib3ACAB9CAE2667584E67AE0C85C3B5688s1
http://refhub.elsevier.com/S0167-8396(20)30062-5/bib3ACAB9CAE2667584E67AE0C85C3B5688s1
http://refhub.elsevier.com/S0167-8396(20)30062-5/bibBA94BDFC1A6FCBA628480D9054FE6ACCs1
http://refhub.elsevier.com/S0167-8396(20)30062-5/bibBA94BDFC1A6FCBA628480D9054FE6ACCs1
http://refhub.elsevier.com/S0167-8396(20)30062-5/bibFF1EC4DA88CABDF2AA7E45F430AAA653s1
http://refhub.elsevier.com/S0167-8396(20)30062-5/bibB6F014A47B4D2885178239CD93E18443s1
http://refhub.elsevier.com/S0167-8396(20)30062-5/bibC27C18FB22708701488489D1F610B18Bs1
http://refhub.elsevier.com/S0167-8396(20)30062-5/bib7C1F0721770959EDCB5872BB7022F9CFs1
http://refhub.elsevier.com/S0167-8396(20)30062-5/bib6CE9AA2A998B4F3BD80631864A80A36Cs1
http://refhub.elsevier.com/S0167-8396(20)30062-5/bib6CE9AA2A998B4F3BD80631864A80A36Cs1
http://refhub.elsevier.com/S0167-8396(20)30062-5/bib9872A43C5556DC0A4F145096D1C1133As1
https://www.mathworks.com/help/optim/ug/solve-nonlinear-optimization-problem-based.html
https://www.mathworks.com/help/optim/ug/solve-nonlinear-optimization-problem-based.html
http://refhub.elsevier.com/S0167-8396(20)30062-5/bibAB44331FFC510636E59EDDD76AE16F0Cs1
http://refhub.elsevier.com/S0167-8396(20)30062-5/bibB8062BC5109F011338AA88DED7A18187s1
http://refhub.elsevier.com/S0167-8396(20)30062-5/bibB8062BC5109F011338AA88DED7A18187s1
http://refhub.elsevier.com/S0167-8396(20)30062-5/bib6A95473E0B2875DDE197CAD541748C2Fs1
http://refhub.elsevier.com/S0167-8396(20)30062-5/bib6A95473E0B2875DDE197CAD541748C2Fs1
http://refhub.elsevier.com/S0167-8396(20)30062-5/bibEE2DD698084579F52A7A49DFBCEE8761s1
http://refhub.elsevier.com/S0167-8396(20)30062-5/bibAD8481B349ABA20B6B11B69B3FD43CD3s1
https://refubium.fu-berlin.de/handle/fub188/25320
http://refhub.elsevier.com/S0167-8396(20)30062-5/bibFC282C9BBCB3180A38CE0892FA0E5D84s1
http://refhub.elsevier.com/S0167-8396(20)30062-5/bibFC282C9BBCB3180A38CE0892FA0E5D84s1
http://refhub.elsevier.com/S0167-8396(20)30062-5/bibBB8E80C60ED140613E12800B41D450A5s1
http://refhub.elsevier.com/S0167-8396(20)30062-5/bibBB8E80C60ED140613E12800B41D450A5s1
http://refhub.elsevier.com/S0167-8396(20)30062-5/bib4F0D3018E98838F4E189C71AB8C1D9ACs1
http://refhub.elsevier.com/S0167-8396(20)30062-5/bibAB22D365BB4584D6560BA2F9B3E026F5s1
http://refhub.elsevier.com/S0167-8396(20)30062-5/bib9867B42256AE41D06348D7426A4B033Cs1
http://refhub.elsevier.com/S0167-8396(20)30062-5/bibBB2B50C99987139033782A3A5F1B6604s1
http://refhub.elsevier.com/S0167-8396(20)30062-5/bibBB2B50C99987139033782A3A5F1B6604s1
http://refhub.elsevier.com/S0167-8396(20)30062-5/bib6B1B700E76EC822E690EED006A115EFBs1
http://refhub.elsevier.com/S0167-8396(20)30062-5/bibD486F4DCDD53CAC5582F26AB513A0567s1
http://refhub.elsevier.com/S0167-8396(20)30062-5/bibD486F4DCDD53CAC5582F26AB513A0567s1

	Variational shape approximation of point set surfaces
	1 Introduction
	2 Related work
	2.1 Segmentation
	2.2 Meshing and simplification

	3 The method
	3.1 The VSA procedure for surfaces and surface meshes
	3.2 The VSA procedure on point sets

	4 Improved VSA pipeline
	4.1 Example for failure of convergence of the VSA procedure
	4.2 VSA with guaranteed convergence
	4.3 User controlled level of detail

	5 Simplification
	5.1 Vertices for a simplified mesh
	5.2 Faces for a simplified mesh

	6 Experimental results
	6.1 Segmentation
	6.2 Simplification
	6.2.1 Threshold η-dependency on the sphere model
	6.2.2 Face reconstruction on the Fandisk model
	6.2.3 Robustness against noise on the dodecahedron model

	7 Conclusion and further research
	Acknowledgements
	Appendix A Interpretation of parameter η
	References

