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1 Introduction
Let S be a K3 surface over a number field K. It is a well-known fact that the geometric

Picard rank of S may not decrease under reduction modulo a good prime p of S. Le., one
always has

rk Pic Sﬁp > rk Pic S¢. (1)

It would certainly be interesting to understand the sequence (rk Pic Sﬁp )p» or at least the

set of jump primes
Mjump(S) := {p prime of K | p good for S, rk Pic SE > rk Pic S¢ },

for a given surface. In an ideal case, one would be able to give a precise reason why the
geometric Picard rank jumps at a given good prime. There are two well-known such rea-

sons.

(i) According to the Tate conjecture [26], the left hand side is always even. Thus, in the
case that rk Pic Sz is odd, inequality (1) is always strict and every good prime is a

jump prime.
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(ii) Generalising this, if S has real multiplication (RM) by an endomorphism field E and
the integer (22 — rk Pic S)/[E : Q] is odd, then again every good prime is a jump
prime [11, Theorem 1(2)].

It is known due to F. Charles [11, Theorem 1] that these are the only cases in which every
good prime is a jump prime.

In this article, we describe a third reason for a prime to jump, the jump character. It was
observed experimentally by the first author together with Yu. Tschinkel [13] that, in the
even rank case, one seems to have l%nl) ioréf y(S,B) > %, for

#{p € Mjump(S) | Ip| < B}
#{Ipl < B}

Theorem A shows that this observation is indeed true, except for some corner cases, which

14 (S, B) =

are simple to describe. Moreover, ITjump(S) contains an entirely regular subset of exact
density one half.

In some sense, this result is complementary to those of Charles [11]. In fact, [11, The-
orem 1] shows, except for the cases (i) and (ii), that there are always infinitely many

non-jump primes.
Theorem A (Theorem 2.15) Let K be a number field and S a K3 surface over K. More-
over, let p C Ox be a prime of good reduction and residue characteristic # 2.

(a) Then there are two quantities, the discriminant A ;2(S) of S and the discriminant of
the Picard representation or algebraic part of the discriminant Apic(S) of S (cf. 2.4(ii)
and 2.8(a.ii) for precise definitions), such that the following equations hold,

det(Froby : H2 (S Q1)) )= (AH; (5)> and

AHZ(S)APic(S)>

det(Froby: T )= ( "

Here, T .= H. :l-g C H, gt (S Qi(1)) denotes the transcendental part of the cohomology,
and (;) is the quadratic residue symbol modulo p [32, Chapter V, §3].

(b) If rk Pic S is even then

(AHz(S)APic(S)

" ) =-1 = rkPiCSEg > rk Pic Sz + 2. (2)

In other words, if K(\/Ap2(S)Apic(S))/K is indeed a quadratic extension then
{p | pinertin K(v/ Ap2(S)Apic(S))/K } S Mjump(S).

The quadratic character ts, given by

(AHZ(S)APic(S)>

H —_—_—

p

might be called the transcendental character of the K3 surface S. Nevertheless, having
implication (2) in mind, we prefer to call it the jump character of S, at least in the even
rank case. It may happen that the quadratic extension, and hence the jump character,
are trivial. We provide particular surfaces of this kind, defined over @QQ, in Examples 2.36.a)
and 2.38. These are the corner cases mentioned above.
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One might think about the jump character also as follows. The Q;-vector space T’
is equipped with the non-degenerate cup product pairing and acted upon by Gal(K /K).
Moreover, the action is orthogonal with respect to the pairing, so that one has a continuous
group homomorphism

7: Gal(K/K) — O(T).
There is, however, no reason for im t to be contained in SO(T'), in general, so the group
homomorphism det 7: Gal(K/K) — {1, —1}is usually non-trivial. Moreover, det T turns
out to be independent of [, cf. Proposition 2.3.b). The article thus in essence describes the
effects of det v being non-trivial.

The criterion for non-triviality

Due to its construction, the jump character is unramified at every prime of good reduction,
cf. Corollary 2.26.a). On the other hand, it may ramify at bad primes. We show this to be
always the case when the singular reduction is of the mildest possible type.

Theorem B (Corollary 2.26.b)). Let K be a number field and S a K3 surface over K.
Moreover, let p C Ox be a prime of residue characteristic different from 2. Suppose that S
has a regular, projective model S over Uk, the geometric fibre S of which has exactly one
singular point, and assume this to be an ordinary double point.

A (S)APic(S))

Then the jump character ts = ( ramifies at p.

In addition, we present algorithms to compute the two characters for a given surface S
over @), a deterministic one for A2 (S) and a statistical one for the jump character. We can
deterministically compute the jump character in two particular situations, which together
cover many, but not all examples. These situations occur when Corollary 2.26.b) applies
to at least a single bad prime, and when Pic Sgy is known as a Galois module to such an
extent that \™**(NS(Sg) ®z Q) can be determined. When neither of these circumstances
occurs, the statistical algorithm may still be used.

An application: rational curves on even rank K3 surfaces

It has been a long standing conjecture that every K3 surface over an algebraically closed
field contains infinitely many rational curves. In full generality, it has been settled only
recently by Chen et al. [12]. As an application of our results, we show that the existence
of infinitely many rational curves may be obtained rather easily in the situation that the
jump character is non-trivial and the surface is otherwise generic.

Theorem C (Theorem 3.1). Let K be a number field and S a K3 surface over K. Assume
that rk Pic Si is even, that Si has neither real nor complex multiplication, and that
A2 (S)Apic(S) is a non-square in K.

Then Sz contains infinitely many rational curves.

Notation: (i) Abstract Algebra, Algebraic Geometry, and Algebraic Number Theory. For K
a field, we write K for a fixed algebraic closure of K. When K is a number field then by &g
we denote the ring of algebraic integers in K. For p C Ok a prime ideal, we let K}, be the
completion of K with respect to p, O, the ring of integers in Ky, and IF,, the residue field.

Moreover, we always let Frob € Gal(Fq /TF4) be the geometric Frobenius automorphism
x +> x1/4, cf. [14, (1.15)]. Similarly, when K is a number field and p C O a prime ideal,
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Frob, € Gal(K'/K) denotes an arbitrary lift of the geometric Frobenius. We write Frob
and Froby, too, for the automorphisms of schemes and their cohomology groups, induced
by Frob, respectively Froby, via functoriality. Let us note that Frob: P%[q — P%[q maps the
geometric point (xg : - -+ : xN) to (xg HE :x]‘{[).

Perhaps deviating from a certain standard, we say that a proper variety S over K has

good reduction at p when there exists a proper model of S over O that has good reduction
at p in the usual sense.
(ii) Quadratic extensions. Let K be a field of characteristic # 2 and L/K an at most
quadratic field extension. Then, according to Kummer theory, there exists a unique class
Ay € K*/(K*)? such that L = K(/u) for any u € Ay. In this situation, we shall also write
K(J/Ay) for K(/u).

Assume that K is a number field and p C Ok a prime ideal of residue characteristic
#2, at which L/K is unramified. Then the quadratic residue symbol (%) [32, Chapter V,
Proposition (3.5)] is independent of the choice of a p-adic unit # € Ay. We will therefore
write (%) instead of (%).

(iii) Characters. By a character, we always mean a continuous homomorphism from a topo-
logical group to a discrete abelian group. A quadratic character is a character to {1, —1}.

We often describe a quadratic character x : Gal(K/K) — {1, —1}, when K is a number

field, in the form

P (5

or simply (é), for A € K*/(K*)?. This is supposed to mean that x (Froby) = (%) for every
prime ideal p C Ok of residue characteristic # 2 of the kind that A is representable by a
p-adic unit. Note that, {1, —1} being abelian, x (Froby) is well defined for every quadratic
character. Moreover, the values at the Frobenii Frob, determine x uniquely, due to the
Chebotarev density theorem.

When V is a one-dimensional vector space over a field F, equipped with the dis-
crete topology and acted upon continuously by a topological group G, we denote by
[V]: G — F* the character given by [V](g) = a4, for a € F* the scalar satisfying g-v = av
for every v € V. This notation is due to T. Saito [35].

Computations

All computations are done using magma [7], sage [42], and C++, including the libraries
FLINT [23] and NTL [40]. For point counting on the examples being quartic surfaces,
we used the software developed by the first author, which is publicly available at https://
github.com/edgarcosta/controlledreduction.

2 The jump character

2.1 The determinant of Frob and the relationship with the sign in the functional equation
Let S be a smooth, proper variety over a finite field I, of characteristic p > 0.
Then Frob acts linearly on the /-adic cohomology modules Hét(SE, Z;(j)). The char-

acteristic polynomial o of Frob is independent of the choice of [ # p and has in fact
rational coefficients [14, Théoréme (1.6)]. In particular, the determinant of Frob is a ratio-

nal number and independent of [ # p.
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In this section, we discuss the behaviour of det Frob. The theorem below, which is
essentially a summary of results of P. Deligne and J. Suh, shows that each statement
on det Frob may be translated into a statement about the sign in the functional equation.

Theorem 2.1 (Deligne, Suh)

(a) The polynomial <I>/(.i) € QIT] fulfils the functional equation
TNO(GY/T) = £¢2 D a(T), 3)

for N == rk H}, ( S]F , Z;())).
(b) The sign in the ﬁmctzonal equation (3) is that of

det(— Frob: H}y(Sg;, Qu() ©) = (—1)" det(Frob: Hl,(Sg, Qi) ©).

This is a rational number, the sign of which is independent of the Tate twist, i.e. of the
choice of j.

(c.i) If i is even, then det(— Frob: H’t(SIF , Qu(i/2)) ©) is either (+1) or (—1). In other
words, the determinant gives the sign in (3) exactly.

(c.ii) If iisodd then N is even and in (3), the plus sign always holds.

Proof (a)and (b) Let us write ® for CD(’) The polynomials on both sides of (3) then have the
same roots as, with z, the number z = ﬁ is a root of @, too [15, Corollaire (3.3.9)], and
has the same multiplicity. To show that they perfectly agree, let us adopt the convention
that ® is monic. Then the leading coefficient of the polynomial on the left hand side is
equal to the constant term of ®. By definition, this is the determinant of (— Frob) on
Hét(SE’ @Q;(j)), which is known to be a rational number and of absolute value q%(i_zj ) [15,
Corollaire (3.3.9)]. Thus, a) follows, together with the first assertion of (b). The final claim

is clear, since
det(— Frob: H SF,QZ(] g N det(— Frob: Hét(SE’ Q) ©).

(c.i) As det Frob = (—1)N ®(0) for ® monic, this can be read off the functional equation
TN®(1/T) = +0(T).

(c.ii) If S is projective then, by Poincaré duality and the hard Lefschetz theorem [15,
Théoréme (4.1.1)], there is a non-degenerate pairing

Hét(sﬁq’ Ql(})) X Hét(sﬁq’ Ql(])) g Ql(zj - i)

that is compatible with the action of Frob. It is, moreover, alternating since i is supposed
to be odd, cf. [41, Chapter 5, Section 6, §11]. The assertion follows directly from this [14,
(2.6)]. Cf. the remarks after [15, Corollaire (4.1.5)]. The proper non-projective case has
only recently been settled by J. Suh [43, Corollary 2.2.3 and Corollary 3.3.5]. O

Remark 2.2 The polynomials @;i) € Q[T] occurring as characteristic polynomials of Frob
have remarkable properties, which were established mainly by P. Deligne, B. Mazur, and
A. Ogus. Details are summarised in the article [20] of the second and third authors. In the
proofabove, the only property that was used is that every complex root of d>1(.i) is of absolute
value g”/?7/. This was first proven by P. Deligne in [14, Théoréme (1.6)] for the projective
case and later in [15, Corollaire (3.3.9)], in general. The assertion had been formulated by

A.Weil as a part of his famous conjectures.
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2.2 The discriminant of the H'-representation

Let us start by recalling some facts on /-adic cohomology.

Proposition 2.3 Let K be a field and S a smooth and proper K-scheme.

(a) Then, for all prime numbers | # char K and all integers i and j, associated with the
one-dimensional Qj-vector space \"*H ét(SE, Qq()), there is the character

[det H'(Sz Q())]: Gal(K/K) — QF

of the absolute Galois group of K.
(b) Suppose that i is even and that S is pure of dimension i. Then the character
[det H"(SF, Q,(i/2))] has values in {1, =1} C Qj and is independent of 1.

Proof a) This follows from the functoriality of /-adic cohomology, together with the fact
that every o € Gal(K /K) induces an automorphism of schemes of Sz

(b) By Poincaré duality [37, Exp. XVIII, Théoréme 3.2.5], there is a canonical non-
degenerate pairing s: H ét(Sf, Qu(i/2)) x H. ét(SF’ Q(i/2)) — @y that is compatible with
the action of Gal(K /K). Here, i is assumed even, so the pairing s is symmetric. According to
a standard fact from linear algebra [49, Def. 2.9], s induces another symmetric pairing

A" (s): AP H (S Quli/2) x NP HE (Sz Qu(i/2)) — Q;

that is again non-degenerate. The action of Gal(K/K) is orthogonal with respect to s,
which implies that the character [det H i(SF, Q(i/2))] must have values in {1, =1} C Q7.

For the case that K is a number field, independence of / is easily reduced to the Weil
conjectures, proven by P. Deligne [15, Corollaire (3.3.9)], using the Chebotarev density
theorem together with the smooth specialisation theorem for cohomology groups [37,
Exp. XVI, Corollaire 2.3]. In general, the result has been established by T. Saito [35,

Corollary 3.3].
N.B. In the notation for the characters, we write det instead of /A™®*. This convention
follows [35]. O

Definition 2.4 (i) In the situation of part (b), we denote by Lg the extension field of
K that corresponds to ker [det H i(SF, Q;(i/2))] under the Galois correspondence.
By construction, Ls/K is an at most quadratic extension.
(ii) If char K # 2 then we denote the class in K*/(K*)? that yields the field extension
Lg/K by Ayi(S) and call it the discriminant of the H i_representation of S.

Lemma 2.5 Let K be a number field and S a smooth and proper K-scheme. Moreover, let
p C Ok be a prime at which S has good reduction.

(@) If lis a prime different from the residue characteristic of p then, for every j € Z, the
Gal(K /K)-representation Hét(Sf, Q) is unramified at p.

(b) Suppose that S is pure of dimension i, for an even integer i. Then the quadratic char-
acter (AL(S)) = [det Hi(Sf, Q;(i/2))] is unramified at p. Equivalently, the splitting
field Lg is unramified at p.

Proof a) For this, it suffices to consider the restriction of the representation to the decom-
position group Dy, = Gal([?p /Ky). This coincides with the natural action of Gal([?p /Kp)
on Hét(SEp’ Q) =EH ét(Sf, Qs()), according to invariance of étale cohomology under
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extensions of separably closed fields [37, Exp. XII, Corollaire 5.4]. Moreover, by the
smooth specialisation theorem for cohomology groups [37, Exp. XVI, Corollaire 2.2],
Hét(SFp , Qi) = Hét (Sﬁp:gl(j))» which shows that this cohomology vector space isacted
upon via the quotient Gal(IFy, /IF,) = Dy /I,,. Le., the inertia group I, fixes H, (Sz, ©Q;())
pointwise, as required.

(b) This is a direct consequence of (a). O

Remark 2.6 (i) In particular, for every exponent k € N, the splitting field of
H! (Sz> Z/IFZ(j)) is unramified at every prime ideal p of good reduction.
(if) If the residue characteristic is #2 then one has

det(Froby : Hét(Sf, Qi/2)) ©) = (AIZ(S)) . (4)

(iii) For any number field K’ 2 K, one has Ai(Sx’) = Ayi(S) - (K'*)? € K’ /(K'*)2.

(iv) The name “discriminant” has not been chosen at random. Indeed, Proposition 2.3
allows a generalisation to families 7w: F — X over a general base scheme.
The quadratic field extension then goes over into a twofold covering ¢, : ¥ — X,
ramified at most over the discriminant locus. If 7 is sufficiently reasonable then o,
is given by w? = A, for A a normalised version of the discriminant of the family.
Furthermore, for every non-singular member S = F,;, the value A(x) belongs to the
class A (S).
We plan to report about the interpretation of the quantities A (S) as actual dis-
criminants, as well as some applications thereof, in a forthcoming paper.

2.3 Surfaces—the discriminant of the Néron-Severi representation
Proposition 2.7 Let K be a field and S a smooth projective surface over K.

(@) Then, associated with the one-dimensional Q-vector space \"**(NS(Sz)®z Q), there
is the character

[det(NS(Sp) ®z Q)]: Gal(K/K) — QF

of the absolute Galois group of K.
(b) The character [det(NS(Sg) ®z Q)] takes values only in {1, —1} C Q*.

Proof (a) This follows from the functoriality of the Néron—Severi group, together with
the fact that every o € Gal(K/K) induces an automorphism of schemes of Sz

(b) Every o € Gal(K/K) induces an automorphism of the Néron—Severi group NS(Sz),
in particular one of NS(Sz)iors, and consequently one of the torsion-free Z-module
NS(Sz)/ NS(Sg)tors- As that is a full rank lattice in NS(Sg) ®z Q, it induces a lattice
in the one-dimensional vector space A" (NS(Sz) ®z @), which must be respected by
the action of Gal(K /K). The assertion immediately follows from this. O

Definition 2.8 (a) (i) In the situation of part (b), we denote by Lg g the extension
field of K that corresponds to ker [det(NS(Sz) ®z Q)] under the Galois corre-
spondence.
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(i) Ifchar K # 2 thenwe denote the classin K*/(K*)? that yields the field extension
Ls,alg/K by Ans(S) and call it the discriminant of the Néron—Severi representa-
tion or the algebraic part of the discriminant of S.

(b) For surfaces such that Hl(Sf, Q) = 0, one has Pic(Sg) ®z Q = NS(Sg) ®z Q.
In this case, one may write Apic(S) instead of Ans(S) and speak of the discriminant
of the Picard representation. Similarly, let us then write [det(Pic(Sg) ®z Q)] instead
of [det(NS(Sg) ®z Q)].

Remark 2.9 The algebraic part of the discriminant of S should not be confused with the
discriminants of NS(S) and NS(Sg) as lattices. Instead, one might think about it as follows.

Since NS(Sz) ®z Q is a finite-dimensional (3-vector space, there is a smallest finite field
extension of K, over which all elements of NS(Sz) ®z Q are defined, the splitting field L
of NS(Sz) ®z Q. Then Gal(K/K) acts on NS(Sz) ®z Q via its quotient Gal(L/K) and the
action of this quotient is faithful.

Therefore, the action of Gal(K/K) on /NP (NS(Sg) ®z Q) factors via Gal(L/K), too.
On the other hand, \™*(NS(Sg) ®z Q) is one-dimensional, so the action of the finite
group Gal(L/K) must factor via (Q*)tors = {1, —1}. The stabiliser is of index at most 2
in Gal(K /K) and hence the splitting field of A\™(NS(S%) ®z Q) is an at most quadratic
extension K(y/Ans(S)) = Lsalg S L.

Lemma 2.10 Let K be a number field and S a smooth projective surface over K. More-
over, let p C Oy be a prime at which S has good reduction.

(@) Then the splitting field of NS(Sg) ®z Q is unramified at p.
(b) The character (AL(S)) = [det NS(Sg) ®z Q) is unramified at y. Equivalently, the
splitting field Lg g is unramified at p.

Proof (a) The first Chern class homomorphism factors via the Néron—Severi group, i.e.
via algebraic equivalence,

C1

Pic(Sp) ®z Q; HZ (S Qu(1))

y

NS(Sz) ®z Q.

Indeed, c; factors via numerical equivalence, since the intersection pairing on Pic(Sz) ®z
@y is compatible with the cup product pairing on H ézt(Sf, Q;(1)). Moreover, Matsusaka’s
theorem [31, Theorem 4], cf. [1, paragraph 3.2.7], shows that algebraic equivalence coin-
cides with numerical equivalence, already on Pic(Sz) ®z Q.

Now write L for the splitting field of NS(Sg) ®z @ and assume that L would ramify
at p. By definition, Gal(L/K) acts faithfully on NS(S¢) ®z Q. Choose a prime g of L lying
above p and a non-trivial element o € Gal(L, /K;‘) C Gal(Lq/Ky), for K; the maximal
unramified subfield of Ly. Then o acts non-trivially on the image of the first Chern class

homomorphism

Cc1: NS(SE) Rz Ql — Hgt(sf’ Ql(l))

This, however, is in contradiction with the smooth specialisation theorem for cohomology
groups, as seen before.
(b) This follows immediately from (a). O
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Remark 2.11 (i) If the residue characteristic is not 2 then one has

det(Froby : (NS(Sz) ®z Q) ©) = <ANs(s)> _

p

(5)

(ii) If K’ 2 K is a number field extending K, then one has
ANs(Sk') = Axs(S) - (K'™)* € K'/(K™)2.

(iii) It is worthwhile to observe that, for K3 surfaces, the assertion of Lemma 2.10 is
still true when S has bad reduction at p of the mildest possible form. Cf. Corollary
2.23, below.

2.4 K3 surfaces

There is a strong relation, which is established for K3 surfaces, but relies on Tate’s and
Serre’s conjectures in general, between the Galois action on /-adic cohomology and the
variation of the geometric Picard ranks under reduction modulo various primes [13,18].
From our point of view, this is in fact the main application of the constructions presented
so far.

Facts 2.12 Let S be a K3 surface over a base field K.

(@) Then Pic Si is a free abelian group of rank at most 22. If K is of characteristic zero
then the rank is at most 20. If K is finite then the rank is even.

(b) If K is finite then rk Pic Sz is equal to the number [counted with multiplicities] of all
eigenvalues of Frob on Hézt(Sf, Q;(1)) that are roots of unity.

Proof (a) The first statement is found, e.g., in [24, Chapter 17, first formula of Section 2].
The second one is [24, Chapter 17, formula (1.1)] in the case that K = C, while the general
case follows from this in view of [24, Chapter 17, Lemma 2.2]. The final claim is a direct
consequence of (b).

(b) See [24, Chapter 17, Corollary 2.9 and the arguments given before]. Note that this
result is an application of the Tate conjecture, which has been shown for K3 surfaces
over finite fields by to the combined work of several people, most notably F. Charles [10],
M. Lieblich, D. Maulik, and A. Snowden [28], K. Madapusi Pera [30], as well as W. Kim
and K. Madapusi Pera [26]. O

For K an arbitrary field and / # char K a prime number, there is a canonical orthogonal
decomposition

H (S Qu(1)) = Hug & T ©)

Here, Hag = c¢1(Pic(Sg) ®z Q) is clearly Gal(K /K)-invariant. Moreover, T := H jg is
Gal(K /K)-invariant, too, as the Galois action is orthogonal.

In the particular case that K is a number field, let p C Ok be any prime of good reduction
and of residue characteristic different from /. Then Frob, € Gal(K'/K) is determined only

up to conjugation. But this suffices to have well-defined eigenvalues and a well-defined
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determinant of Froby, associated with any vector space being acted upon by Gal(K/K).
In particular,

det(Froby : HZ (S Qi(1)) ©) '

det(Froby,: T =
et(Froby ©) det(Froby : Pic Sg ©)

(7)

Our main theoretical observation on the distribution of the Picard ranks of the reductions
is then as follows.

Proposition 2.13 (Rank jumps) Let S be a K 3 surface over a number field K and p C Ok
a prime of good reduction. Assume that rk Pic Sg is even. Then the following is true:
If det(Froby: T ©O) = —1, then rk Pic Sﬁp > rk Pic S + 2.

Proof Choose a prime number /, different from the residue characteristic of p.
Then one has Hézt(SE, Q1) = Hézt(SEp, Q;(1)) [37, Exp. XII, Corollaire 5.4], as well as
Hézt(Sfp, Q1) = Hézt(SE’ @Q,(1)) [37, Exp. X VI, Corollaire 2.2]. Consequently, by trans-
port of structure, the orthogonal decomposition (6) carries over into

Hi (S5, Qu(1) = Hyg © T . -

Note that, as a consequence of its construction, 7 may well contain algebraic classes.

Moreover, under the first isomorphism, the action of Gal([?;J /Kp) is compatible
with that of the decomposition group Dy C Gal(K /K), while the second isomorphism
shows that Gal(I_QJ /Kp) acts via its quotient Gal(K"/Ky). In particular, the action
of Frob € Gal(Fp/IFp) on Hézt(Sﬁp, Q,(1)) agrees with that of any Froby € Gal(K/K)
on Hézt(Sf, @Q(1)). For instance, Frob and Froby, have the same eigenvalues on Hyyg, as
wellason T.

By Lemma 2.10.a), the splitting field of Pic St is a number field unramified at p. There-
fore, Gal(K}" /K}) acts on Hyjg via a finite quotient group. In particular, there exists an
integer e > 0 such that Frob® acts trivially. Consequently, all eigenvalues of Frob on Hyg
are roots of unity.

In view of Fact 2.12.b), we need to show that Frob acts on T with at least two eigenvalues
being roots of unity. For this, let us observe that each eigenvalue is of absolute value 1, so
that those different from 1 and (—1) come in pairs {z, z} of complex conjugates. As zz = 1
and det(Froby: T ©O) = —1, one of the eigenvalues must be equal to (—1). Finally, as
dim T' = 22—rk Pic Siis even, a further eigenvalue 1 is enforced. This completes the proof.

O

Remark 2.14 (i) The proof given above, shows that, in addition to the specialisations
of the invertible sheaves from Pic Sz, the Picard group of Pic SFP has (at least) two
further generators. One of them may be chosen to be defined over I, the other over
its quadratic extension.

(ii) Without the hypothesis on the determinant of the Frobenius, the argument simply
reproves the standard fact that rk Pic SE > rk Pic Sz.

Theorem 2.15 Let K be a number field and S a K3 surface over K. Moreover, let p C Ok
be a prime of residue characteristic #2 and good reduction.
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(a) Then the following two equations hold,

det(Froby : H2(Sg Q1)) ©) = (AH; (5)> and

AHZ(S)APic(S)>

det(Froby: T )= ( .

(b) If rk Pic S is even, then

( Ap2(S) Apic(S)
p
In other words, if Ap2(S)Apic(S) is not a square in K then

{p | pinertin K(/Ap2(S)Apic(S)) } S Mjump(S).

):—1 = rkPiCSﬁp>rkPich+2,

Proof (a) The first formula is a particular case of formula (4). The second one is a conse-
quence of the first together with formulae (5) and (7).
(b) This follows from (a), together with Proposition 2.13. O

Corollary 2.16 Let K be a number field and S a K3 surface over K. Assume that
A2 (S)Apic(S) is a non-square in K. Then

liminf y(S,B) > 1.
ggloréy(S )= 3

Definition 2.17 For K a number field and S a K3 surface over K, we call the
quadratic character

Ts = [det H (S Q(2))]- [det Pic(Sp) ®z Q: Gal(K/K) — {1, —1}
the jump character of S.

Remark 2.18 (i) The jump character s is given by

(AHz(S)APic(S)>

el e L

p
for all good primes p.

(i) Proposition 2.13 shows that, for S a K3 surface of even geometric Picard rank,
75(p) = —1 implies rk Pic Sﬁp > rk Pic Sz + 2.

In this section, the assumption on the surface to be of type K3 was used only in referring
to the Tate conjecture. We actually showed the following.

Theorem 2.19 Let K be a number field and S a smooth and proper surface over K, for
which the Tate conjecture holds. Moreover, let p C Ok be a prime of good reduction and
suppose that the Tate conjecture holds for Sy, too. Then, in the situation that rk NS Sz =
dim Hézt(Sf, Q1)) (mod 2), one has

[det H?(Sz> Qu(2))]-[det Pic(Sg) ®z Ql(p) = —1 <=
(AHz(S)ANs(S)

) = —1 =rkNS S5 > rkNSS¢+2.
p P
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2.5 The criterion for non-triviality

Lemma 2.20 Let p # 2 be a prime number and M a free Zy,-module of finite rank r,
equipped with a non-degenerate symmetric pairing. Let an orthogonal map V: M — M
be given with characteristic polynomial (T — 1) (T + 1)"2. Then M is the orthogonal direct
sum of the two generalised eigenspaces,

M =ker(1 - V) @ ker(1+ V)2,

Proof 1t is well known that the generalised eigenspaces for two distinct eigenvalues only
have the zero element in common. Moreover, % + % = id yields
r

D (HELF Sy @) =,

k=0
for every x € M. According to Cayley—Hamilton, the summands for k > r; are contained
in ker(1 — V), while those for k < 7y, i.e. r — k > rq1, are contained in ker(1 + V)2,
Thus, the sum is the whole of M. Finally, it is a classical result for orthogonal maps that
the generalised eigenspaces for two eigenvalues A1, Ay with X142 7# 1 are perpendicular.
An argument is given, e.g., in [48, Proposition 10.4.1]. O

Theorem 2.21 (The vanishing cycle) Let K be a number field and S a K3 surface over K.
Moreover, let p C Ok be a prime of residue characteristic # 2 such that S has a regular,
projective model S over Uk, the geometric fibre Sy of which has exactly one singular
point 3. Assume 3 to be an ordinary double point.

Then, for every prime number I, different from the residue characteristic of p, the vanishing
cycle [38, Exp. XV, Théoréme 3.4.(i)] associated with 3, fulfils

1
83,0 € Hypg -

Proof First step. Generalities.
Let us denote the residue characteristic of p by p. On the scheme S, there is a monodromy
automorphism [38, Exp. XV, Proposition 3.2.1.(ii)], which is induced by a particular non-
trivial element v € I, C Gal(K/K) of the inertia group. For every prime number /, includ-
ing [ = p, the induced map on /-adic cohomology is called the monodromy operator
V:H é?t(SF, Z(1)) ©O. This is an orthogonal map with respect to the cup product pairing.
By a slight abuse of notation, we denote the map induced by v on Pic Sz by V/, too.

If | # p then the action of V is described by the Picard—Lefschetz formula [38,
Exp. XV, Théoréme 3.4.(iii)]

Vi) =c+ (685185 ©)

Note here that V, being induced by an element from the inertia group, acts trivially on
Z,(1) itself. The class 8, ; € H, é?t (S Z4(1)) is the so-called vanishing cycle. It is known that
(83,5 85,1) = —2 [38, Exp. XV, Théoréme 3.4.(i)]. In particular, the Picard—Lefschetz for-
mula shows V (8, ;) = —§; ;. Moreover, the operator V acts with characteristic polynomial
(T — 1T +1).

When the action on Hézt(SF, Z,(1)) is concerned, the characteristic polynomial is the
same [33, Theorem 3.1], cf. [22, §§2.3 and 2.4]. It seems, however, not to be known whether
the action of V' is semisimple. In particular, no Picard—Lefschetz formula is available.
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Second step. If, for some ly # p, 8, ¢ H :l_g, o then V acts non-trivially on Pic Sz.
The assumption means that (¢, §; ;) # 0, for a certain class ¢ € Hyygj,- Then formula (9)
immediately implies that

1

m[V(C) —c] € Hagy, -

83710 =

Le., the operator V acts on Hyjg j, = Pic Sg®z Qy, non-trivially with one eigenvector (—1),
while all others are equal to 1. As =1 € (), the eigenspaces are defined in Pic S ®z Q
already, which implies the claim.

Third step. Let d € Pic(Sg) C Pic S ®7 Q be a generator of the (—1)-eigenspace, which
is minimal, i.e. not divisible by any integer #+1. Then (d, d) = —2.

For every prime number /, the inclusion Pic S¢// & Hgt(Sf, Z;(1))/! coming from the
Kummer sequence shows that ¢;(d) € H ézt(SE’ Z,(1)) is not divisible by /. Hence, c1(d) is
actually a generator of the (—1)-eigenspace in H gt (S Z4(1)).

Claim: (d, d) is an [-adic unit, for every prime [ # 2.

Indeed, for [ # 2, p, the Z;-module Hézt(Sf, Z;(1)) is the orthogonal direct sum of the 1-
and (—1)-eigenspaces, since % € Z; and every cohomology class ¢ may be written in the
form %(c + V(c)) + %(c — V(c)). For [ = p, the (—1)-eigenspace is a direct summand, too,
due to Lemma 2.20. As the pairing on the total space is perfect, the same is true for the
direct summands, which implies the claim.

Thus, (d,d) = =+2* for some non-negative integer k. On the other hand,
ci(d) e H gt(Sf, Z3(1)) is a generator of the (—1)-eigenspace and §;,5 is another. Hence,
c1(d) = u - 852, for a certain unit u € Z3. Consequently,

(d d) = (c1(d), c1(d)) = u* (852, 85,0) = —2u?,

which immediately shows that kK = 1. Moreover, the minus sign is correct, since (—1) is
not a square in Q.

Fourth step. Conclusion.

In the particular case of a K3 surface, it is well known that, for a class d € Pic(Sg)
with (d, d) = —2, either d or (—d) is represented by an effective divisor [2, Chap. VIII,
Proposition 3.7]. But then V' cannot interchange the two, a contradiction. ]

Remark 2.22 (i) The regularity of the model S implies that the singular point on S5
does not lift to a 6’1%1 -rational point on S.

(i) When there are two singular points instead of one, then the argument above then only
shows that a non-trivial linear combination of §;, and §;, lies in H, ;jg' The splitting
field of Pic(Sz) ®z Q may well ramify then. Cf. Corollary 2.23.a), below.

(ili) There does not seem to be an obvious generalisation to other types of surfaces. For
example, for rational surfaces one has H ,jg = 0, but §;; is clearly nonzero. Also, the
argument heavily relies on the fact that, for d € Pic(Sg) with (d, d) = —2, either d
or (—d) is effective, which seems to be rather specific for K3 surfaces.

Corollary 2.23 Let K be a number field and S a K3 surface over K. Moreover, let p C Ok
be a prime of residue characteristic # 2 such that S has a regular, projective model S
over Uk, the geometric fibre Sg of which has exactly one singular point 3. Assume  to be
an ordinary double point.

(@) Then the splitting field of Pic(Sg) ®z Q is unramified at y.
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(b) The character (AL(S)) = [det NS(Sg) ®z Q] is unramified at p. Equivalently, the
splitting field Lgayg is unramified at p.

Proof (a) Choose a prime number /, different from the residue characteristic of p.
Then there is the short exact sequence [38, Exp. XV, Théoréme 3.4.(ii)]

0 — HE(Sp Qi(1)) — HE(Sp Qi(1)) — @ — 0,

¢ = (68;1),

provided by the theory of vanishing cycles. Together with the result of Theorem 2.21, it
shows that every invertible sheaf on Sz extends to Sg. In other words, the splitting field
of Pic(Sz) ®z @ is contained in K;‘r.

(b) This is a direct consequence of (a). O

Proposition 2.24 (Reduction to one ordinary double point) Let K be a number field and S
a proper K-scheme that is pure of even dimension i. Moreover, let p C Oy be a prime of
residue characteristic # 2 such that S has a regular, projective model S over Oy, the
geometric fibre Sg of which has exactly one singular point 3. Assume j to be an ordinary
double point.

(a) Then, for any prime | different from the residue characteristic of p, the Gal(K /K)-
representation Hét(SE, Qy(i/2)) is tamely ramified at p. The p-adic valuation of its
conductor is equal to 1.

(b) The quadratic character ( = [det H"(Sf, Qy(i/2))] is ramified at p. Equiva-
lently, the splitting field Ls is ramified at p.

AHt(S))

Proof (a) In this generality, the short exact sequence provided by the theory of vanishing
cycles reads [38, Exp. XV, Théoréme 3.4.(ii)]

0 — Hg(Sg Qu(i/2)) — Hi(Sp Qu(i/2)) — Q — 0,

c = (6d;1),

with (85, 8;1) = (=1)¥/2.2. The p-adic valuation of the conductor is determined by the
restriction of the representation to the decomposition group Dy = Gal(K/Ky). The exact
sequence shows that the subspace 8;—[ C H, ét(Sf, @Q;(i/2)) is acted upon via the quotient
Gal(IF, /IFy) = Dy /1. Le,, the inertia group I, fixes 8;:1 pointwise. As one has V(8;;) =
—8;, for V € I, due to the Picard—-Lefschetz formula, this yields

Hi (S Qui/2)'® = 8.

Moreover, the action of I, respects orthogonality and cup product pairing, so §;; can
be mapped only to £8; ;. Thus, there is a subgroup I’ C I, of index two acting trivially.
Since the residue characteristic of p is # 2, this yields tameness.

In this case, the p-adic valuation of the conductor is given by [36, formulae (11) and (8)]

dimay, Hiy(Sg Qu(i/2)) — dimay, Hly(Sg Qu(i/2)"
= dimg, Hét(sp Qu(i/2)) — dimg, 5;,_1 =1
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(b) This is very easily shown directly. The monodromy operator V € I, fixes
all cohomology classes perpendicular to §;; and sends 8;; to (—3;,). Therefore,
det(V: Hézt(Sf, Q;(1)) ©) = —1. In particular, ker [det HZ(SF, @Q;(1))] does not include
all of Iy, and hence the field corresponding under the Galois correspondence to
ker [det H2(SE, Q;(1))] is not contained in K b O

Remark 2.25 Suppose that, for some prime p, S has a model of bad reduction of the kind as
described above. Then S does not have a model of good reduction at p. Indeed, the conclu-

sions of Lemma 2.5.b) and Proposition 2.24.b) are independent of the model. The existence
Api(S

of a model of good reduction implies that ( )) is unramified, while the existence of a

model of the type above enforces ramification.

Corollary 2.26 (The jump character) Let K be a number field and S a K3 surface over K.
Moreover, let p C Ok be a prime of residue characteristic different from 2.

(@) If S has good reduction at p, then ts = (M)

(b) Suppose that S has a regular, projective model S over Uy, the geometric fibre Sg of

is unramified at p.

which has exactly one singular point, and assume this to be an ordinary double point.

AHz(S)APic(S))

Then the jump character ts = ( ramifies at p.

Proof (a) is clear from Lemmata 2.5.b) and 2.10.b), while the assertion of part (b) follows
from Corollary 2.23.b) together with Proposition 2.24.b). ]

2.6 Examples and experimental results

Algorithm 2.27 (Computing Ay2(S)) Given a proper surface S over @, the set
{91, . .., gm} of all bad primes of S, and an oracle for det(Frob: Hézt(S@ Q1)) ©) for
any p # gj, this algorithm computes A2 (S).

(i) Add gp := —1 to the list of bad primes.

(ii) Build a matrix A, the entries of which are the Legendre symbols ( %), for good primes
pi chosen at random. Keep adding rows until the matrix has rank m+1 over {1, —1} =
Z7/27.

(iii) Put b; = det(Froby,: H ézt(S@ Q;(1)) ©) and solve the linear system Ax = b of equa-
tions. If the solution vector is (xo, . .., %) € (Z/2Z)" then Ap2(S) is the class of
(=1)%gt - g in Q*/(Q*)?, for e; € {0,1} C Z representing the residue class
x; € 7.)27.

Remark 2.28 (i) The oracle for det(Froby: Hgt (S Ru(1)) O) is, of course, provided by
counting the points on S that are defined over IF,, and some of its extensions.
(i) Dirichlet’s Theorem on primes in arithmetic progressions ensures that there exist
primes so that the matrix A has rank m + 1.

(iii) (Animprovement.) In the case that 2 isa good prime, step i) of Algorithm 2.27 may be
omitted. The sign of Ay2(S) is then determined by the condition that the character
be unramified at 2.

(iv) (A further improvement.) Assume that the surface S is K3. Then, for some or many of
its bad primes p # 2, it may happen that Proposition 2.24.b) applies. At such a prime,
the jump character necessarily ramifies, which means that Az (S) must be of odd
p-adic valuation. Thus, the solution vector is bound to have a component 1 € Z /27
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at the corresponding coordinates.
If S has a model in some P} that is given by explicit equations, one may compute the
set of all bad primes using Grobner bases and integer factorisation, and finally anal-
yse the singular points. Having found several primes to which Proposition 2.24.b)
applies, this information may be used in order to get by with a linear system of equa-
tions of smaller size. In other words, less point counting is necessary.
It is our experience that this improvement of Algorithm 2.27 often leads to an enor-
mous gain for a “random” surface, while for the constructed examples, which we
present below, it would not help much.

(v) There is an obvious modification of Algorithm 2.27 to directly determine the jump
character.

Algorithm 2.29 (Statistical algorithm computing the jump character) Given a K3 surface
S over @Q of even geometric Picard rank, the set {g1, .. ., g;,} of all bad primes of S, and a
list of good non-jump primes, this algorithm determines a finite subgroup, containing the
jump character, of the group of all characters of Gal(Q/®@) with values in {1, —1}.

(i) Add gp := —1 to the list of bad primes.
(ii) Build a matrix A, the entries of which are the Legendre symbols ( ;%), for the non-jump
primes p;.
(iii) Determine the kernel of A. From each kernel vector, calculate a candidate for the
jump character in the same way as in Algorithm 2.27.iii).

Remark 2.30 (i) If the kernel is the zero space, then this proves the jump character
to be trivial. If the kernel is one-dimensional, then there are two possible answers.
A non-trivial character, which is directly computed from a kernel vector, and the
trivial one.
(ii) If the kernel is still one-dimensional when the system of equations is rather overde-
termined, then this gives strong evidence for the jump character to be non-trivial.
In practice, we work with at least 4(m + 1) non-jump primes.
(iii) The trivial character is unramified at every prime. Thus, as soon as it applies, Corol-
lary 2.26.b) excludes the trivial character, and therefore makes the outcome of Algo-
rithm 2.29 usually unique. Corollary 2.26.b) is useful as well to accelerate the calcu-

lations.

Example 2.31 Let S be the diagonal quartic in P3,, given by X;+X+Xy+X5=0.
Then the geometric Picard rank of S is 20 and the jump character is given by (=1).

Proof The model .7 of S that is given in P3, by the same equation has bad reduction only
at 2. Hence, Ap2(S) = %1 or +2. Counting points on the reductions Sg, and Sg;, one
finds that det(Frob,: Hézt(S@ Q;(1)) ©) = 1 for both p = 3 and 5. Thus, Algorithm 2.27
shows that Ap2(S) = 1.

On the other hand, it is classically known that the 48 lines on Sg; generate the geometric
Picard group, which is of rank 20. In particular, Pic Sgis defined over Q(z3) = QG v/2).
Moreover, [9, Appendix A, Examples A62, B33, C27, and D27] show that the Galois
representation Pic(Sg) ®z C splits into characters as

5 3 6 6
Xuiv @ Xgy0) © Xgy(2) @ Xyy=2)°
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Here, for K a quadratic number field, xx: Gal(Q/@Q) — {1, —1} denotes the character
that becomes trivial after restriction to Gal(Q/K) and defines the non-trivial quadratic
character on Gal(K'/Q). Consequently,

max pj;
A" Pic(S) @z C = x5 ® x50y ® XQM) ® XQ(F Q)

Apic(S) = —1and Ay (S) Apic(S) = —1. .

Remark 2.32 1t is known at least since 1963 [46] that, in this example, there are no rank
jumps, except for those explained by the jump character. Le., one has rk Pic SE = 20 for
all primes p = 1 (mod 4). In fact, the eigenvalues of Frob, on Hézt(S@ @Q;(1)) may be
determined using Jacobi sums [25, Chapter 8, Theorem 5] and it turns out that two of
them are ”72 and its conjugate, for p = 77 a factorisation in Q(i). Cf. [34, particularly
formulae (12) and (13)] for more details.

Example 2.33 Let S be the double cover of P2, given by w? = Xg —+ Xl6 + X26. Then the
geometric Picard rank of S is 20 and the jump character is given by (=2).

Proof Thedouble cover . of P that is given by the same equation has bad reduction only
at the primes 2 and 3. Hence, Ay2(S) = %1, £2, £3 or 6. Furthermore, counting points
on the reductions Sg;, Sk, and Sg,,, one finds that det(Frob,,: Hézt (S@, Q1)) ©) =1, for
both p = 5 and p = 13, and (—1) for p = 7. Thus, Algorithm 2.27 shows Ay2(S) = —1.
The ramification sextic allows 18 trltangent lines of the type X; + ¢{5X; = 0, for m odd.
f

ification sextic. The irreducible components of the preimages of these curves together

Furthermore, the 18 conics of type X;X; + =X} 2 — 0 are six times tangent to the ram-
generate the geometric Picard group up to finite index. Working with the tritangents
alone, one would end up with a sublattice that is not of full rank.

We implemented in magma a function to compute intersection numbers on S and,
starting with 14 tritangent lines and six conics being six times tangent, found a non-
degenerate 20 x 20 intersection matrix. Using this, it turns out that the splitting field
of Pic Sy is in fact Q(¢3, V2, i), having Galois group S3 x Z/27. Moreover, the Galois
representation Pic(Sg) ®z C splits into irreducible components as

4 4 3 3 3
Xeriv @ Xy © Xy 3) @ Xoyy=3) @V

where the characters are defined as above and V denotes the irreducible two-dimensional
representation of the factor group Gal(Q(¢s, J2)/Q) = 8. Consequently,

max p; - _ ., ®4 ®4 ®3 ®3 ®3 _
N PiclSg) ©2.C = Xy ® X @ Xgv) © K= ® Xow= = Xaws)
which implies that Ap;ic(S) = 3 and Ap2(S)Apic(S) = —3. O

Remark 2.34 Again, there are no rank jumps, except for those explained by the jump
character. Le., one has rk Pic SE = 20 for all primes p = 1 (mod 3). The eigenvalues of
Frob, may again be determined using Jacobi sums. Here, it turns out that two of them
are J(w, w, w)/p [25, Proposition 8.5.1] and its conjugate, for w a primitive sextic character
on IF* A short calculation, using [25, Chapter 8 Theorem 3] and [4, Theorems 3.1 and 3.4)]
shows that these quantities evaluate to ( ) > and its conjugate, for 7 a primary element
[25, Proposition 9.3.5] in Z(¢3) of normp
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Remark 2.35 (i) The surfaces described in Examples 2.31 and 2.33 are K3 surfaces
defined over Q) of geometric Picard rank 20, and, as such, very particular objects.
Due to the work of R. Livné [29], it is known that they are modular. Moreover, there
is a formula describing the determinant of Frobenius on the transcendental part of
cohomology in terms of the discriminant of the Picard lattice alone [29, Example 1.6].
Our calculations presented above are supposed to illustrate our method to compute
the jump character in a situation where the Picard group is completely known.

(ii) The surface from Example 2.33 is, up to isogeny, the Kummer surface associated
with a product of an elliptic curve with itself. (Over C, this is classically known, cf.
[39, Proof of Theorem 4]. Over @}, an argument is given, e.g., in [8, Proposition 2.3].)
Its jump character may also be determined that way.

Example 2.36 Let K be a number field and S the Kummer surface of an abelian surface
over K that geometrically splits into a product E; x Ey of elliptic curves. Assume that
rk Pic Sz = 18. Then there are two cases.

(a) If the elliptic curves E; and E; are defined over K then the jump character of S
is trivial.

(b) If the elliptic curves E; and E; are defined over a quadratic extension K (\/E) and
conjugate to each other, then the jump character of S is ('f—l)

Proof (a) The transcendental part T C H ézt(Sf, @Q,(1)) is isomorphic to
T= Hélt(Ell Ql) ® Hélt(EZJ Ql(l)))
hence

AT = A2HL(E;, Q)®* @ NP HL (Ey ©Q(1))2
= H2(E1, Q)% ® HE(Es, ©(2))%2
= H2(E1, Qi(1)®* ® H(Ey Qi(1)%?,

and both factors are acted upon trivially by Gal(K /K).
(b) Let 0 € Gal(K/K) be any automorphism that changes the sign of Jd. Then o
interchanges the components of Hélt(El X Eg, Q) = Hélt(El, Q) Hélt(Eg, Q). Le, o
acts with eigenvalues (—1) and 1, both of multiplicity 2. Hence, on Hézt(El x Ey, Q) =
/N H élt (E1xEg, ), one has the eigenvalues (—1), of multiplicity 4, and 1, of multiplicity 2.
However, under o, the two algebraic classes in Hézt(El, Q) & H gt(Ez, Q) and
Hgt(El, Q) ® Hézt(Ez, Q) are interchanged, so that the eigenvalues (—1) and 1 occur
on the algebraic part. Therefore, the eigenvalues on T are (—1), with multiplicity 3, and 1,
with multiplicity 1. Hence, every o € Gal(K/K) as chosen above acts as (—1) on A™ T,
which is enough to imply the claim. ]

Example 2.37 In [13, Examples 3.3, 3.4, and 3.5], Yu. Tschinkel and the first author
reported numerical evidence for liminfgz_, » y (S, B) > 1/2, in the case of three K3 sur-
faces over (Q of geometric Picard rank two.

This indeed follows from Corollary 2.16, once one proves that App2(S)Apic(S) is
not a square in Q. For each of the examples, one has Pic Sgy = PicS and therefore
Apic(S) = 1 € Q*/(Q*)%. Moreover, Algorithm 2.27 determines A 2(S) to, in this order,
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—5-151-22490817357414371041-
387308497430149337233666358807996260780875056740850984213276970343278935342068889706146733313789,
53 - 2624174618795407 - 512854561846964817139494202072778341-
1215218370089028769076718102126921744353362873-
6847124397158950456921300435158115445627072734996149041990563857503,

and

— 47 - 3109 - 4969 - 14857095849982608071 - 445410277660928347762586764331874432202584688016149-
658652708525052699993424198738842485998115218667979560362214198830101650254490711 .

Each of the factors listed is reported as being prime by magma, version 2.21.8.

Example 2.38 Let S be the K3 surface over Q), given by the equation
X3 + (X0, X1, X2)X3 + fa(Xo, X1, X2) = 0, (10)

for

fr(Xo, X1, Xa) := X2 — XoX1 — XoX2 — X1X»  and
filXo, X1, Xa) := —X3Xa + Xo XXy — X{ — X5 .

Then the geometric Picard rank of S is 8 and the jump character of S is trivial.

Proof First of all, a space quartic S of the form (10) is of geometric Picard rank at least 8.
Indeed, the surface S comes equipped with a finite morphism p: § — §’, which is generi-
cally 2:1, to an underlying degree two del Pezzo surface S’. The induced homomorphism
p*: Pic S;T — Pic Sz doubles all intersection numbers. As, on a degree two del Pezzo sur-
face, there are no non-trivial invertible sheaves that are numerically equivalent to zero,
we see that p* is necessarily injective. The claim follows.

Thus, for the first assertion, it suffices to find a prime p of good reduction such that
rk Pic SE = 8. For example, p = 19, 43, 61, 101, 109, 139, 149, 151, 157, and 163 do the
job, as is easily shown in the usual way, based on counting points. Cf. [13] for more details
and further references.

On the other hand, a calculation using Grobner bases shows that the model .% of S
given by the same equation in P, has bad reduction only at the primes 2, 3, 47, and 431.
Using Algorithm 2.29, one then proves the triviality of the jump character. In fact, only
the first five non-jump primes 19, 43, 61, 101 and 109 are needed in order to do this. O

Remark 2.39 This example, and several others of the same kind, were found by a sys-
tematic inspection of all space quartics of the form (10), with coefficients from {—1, 0, 1}.
This led to a sample of 183 098 318 non-singular surfaces in total, among which only a few
hundred have trivial jump character, together with geometric Picard rank 8.

Example 2.40 Let S be the K3 surface over Q), given by the equation
X5 + faXo, X1, X2) =0, (11)

for

filXo, X1, Xa) := X§ — XoX1 — 2X3Xy — X3X1Xa + Xo XXy — X§ — X3
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Then the geometric Picard rank of S is 8 and the jump character of S is (—'_1).

Proof Again, for the first claim, it suffices to find a prime p of good reduction such that
rk Pic SE = 8. For example, p = 5, 13, 41, 53, 61, 73, 89, 97, 101, 109, 113, 137, 149, 157,
173,181, 193, and 197 do the job.

Moreover, a calculation using Grobner bases shows that the model . of S given in P3,
by equation (11) has bad reduction only at the primes 2, 7, 6449, and 39 870 353. For the
obvious integral model of the underlying degree two del Pezzo surface ', the same is true.
Algorithm 2.27 then proves that A;2(S) = 2 -7 - 6449 - 39870353 and that A;2(S) =
—2-7-6449 - 39870 353. The seven good primes up to 23 are in fact sufficient.

As, on a del Pezzo surface, every cohomology class is algebraic, we conclude that
ANs(S') = Ap2(S'). Furthermore, the linear map

p*ez0Q: NS(S)®7zQ = PicS'®z0Q — PicS®zQ

is an isomorphism, since it is injective and either Q-vector space is of dimension 8.
Therefore, Apic(S) = Ans(S’), which implies the claim. O

Remark 2.41 Note that, for the surface above, Algorithm 2.29 would only prove that the
jump character is (;1) or trivial. Moreover, the non-triviality criterion, given in Corol-
lary 2.26.b), could not resolve the ambiguity either.

2.7 Interaction of jumps

As is well known, the geometric Picard rank always jumps under reduction when rk Pic Sz
is odd. The same is true, when there is real multiplication by some field E and one has an
odd quotient (22 — rk Pic Sg)/[E : Q] [11, Theorem 1(2)]. One might speculate in these
cases, whether the jump character causes the jumps to be even larger. This does, however,
not happen, as is shown by the examples below.

Lemma 2.42 (K3 surfaces having a non-singular degree two model) Let K be a number
field and S a K3 surface over K, given by w? = fs(Xo, X1, X2), for fs a homogeneous form of
degree 6. Write

S}» : AWZ :_f6(X01 Xl; XZ)
for the quadratic twist by ). € K*. Then
Ap2(S3) = AAp2(S) and  Apic(Sy) = APSKTApic(S).
Proof Let p be a good prime of S such that A is a p-adic unit. Then, for the reductions

mod p, one has that (S3), is a non-trivial twist of Sy in the case that X is a non-square
modulo p, and S, = (S;,)p, otherwise. The assertion therefore follows from [16, Fact 25].

Remark 2.43 (The odd rank case) Assume that rk Pic Sz = 1. Then, for any prime p of
good reduction, there exists some p-adic unit . € K* such that Ap2(S;)Apic(S,) is a non-
square modulo p. If the effect of the odd rank added up with that of the transcendental
character, then this would imply

rk Pic SFP =rk Pic(S;L)E > 4.
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There are, however, explicit degree 2 K3 surfaces known of geometric Picard rank 1 that
reduce to geometric Picard rank 2 at certain primes [47, Theorem 3.1], cf. [17, Exam-
ple 5.1.1].

Example 2.44 (The case of real multiplication) Let S be the minimal desingularisation of
the double cover of P%Q, given by w? = XoX1 X, -f3(Xo, X1, X3), for

f(Xo, X1, Xa) := X3 + 3X2X1 — 2X2X, + 5X0X? — XoX2 43X}
—2X2X, — 3X1X2 4 2X3.

There is strong evidence that S has real multiplication by Q(+/3). Indeed, S is the surface
Vl(i) from [21, Conjectures 5.2]. Its model .7 being the double cover of PZ given by
the same equation has bad reduction only at 2, 3, and 5. Modulo all other primes p <
1000, the reduction .7, is of geometric Picard rank 18, except for p = 263, where the
geometric Picard rank is 22. On the other hand, a sublattice of Pic Sy of rank 16 may
be explicitly given. Altogether, taking real multiplication for granted, one concludes that
rk Pic Sy = 16.

Concerning Pic Sg, there are 13 obvious generators, given by the pull-back of a general
line on P%Q and the exceptional curves obtained by blowing up the twelve singular points
of the ramification locus. Ten of these singular points are defined over @), the other
two over Q(+/—2). Hence, this part of Pic(S@) ®z C splits into irreducible components
as thr%v ® Xq(y=3)- Further generators are formed by a line and two conics in P%Q, the
preimages of which split in S. From these altogether, one calculates that

Pic(Sg) @z € = Xuwv @ Xow=2) ® Xaws) ® Xawe ® XowW=e

and, consequently, Ap;ic(S) = 1. The splitting field of Pic(S@) is Q(, v/2, v/3). On the other
hand, Algorithm 2.27 yields Ap2(S) = 3, so the jump character is given by (2).

If the effect of real multiplication added up with that of the transcendental character then
this would imply rk Pic SE > 18 for every prime p such that ( 1%) = —1, a contradiction.

3 Infinitely many rational curves
It has since long been conjectured that every K3 surface S over an algebraically closed
field K contains infinitely many rational curves. The problem has been settled only recently
by X. Chen, F. Gounelas, and C. Liedtke [12]. Many particular cases had been known
before, most notably, that of odd Picard rank ([27], based on the ideas of [5], cf. [3]).
Other sufficient conditions included those that S has infinitely many automorphisms,
that S is elliptic [6], or that K is of characteristic zero and S cannot be defined over Q [5,
Theorem 3].

Asanapplication of Theorem 2.15, we show that the existence of infinitely many rational
curves may be obtained rather easily in the situation that S is defined over @Q, the jump
character is non-trivial and the surface is otherwise generic. Our result is as follows.

Theorem 3.1 Let K be a number field and S a K3 surface over K. Assume that rk Pic S¢
is even, that Si- has neither real nor complex multiplication, and that Ay (S)Apic(S) is a
non-square in K.

Then Si contains infinitely many rational curves.
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Remark 3.2 The transcendental part of T C H?*(Sg, Q), considered as a pure weight-2
Hodge structure, has an endomorphism algebra Endps(7') that may only be a totally real
field or a CM field [50, Theorem 1.6.(a) and Theorem 1.5.1]. Our assumption concerning
real and complex multiplication just means that Endys(7") = @Q, which is fulfilled as long
as X is sufficiently general.

Lemma 3.3 Let K bea number field and S a K3 surface over K. Assume that Sg has neither
real nor complex multiplication. Then, for every quadratic field extension L/K, there are
infinitely many inert primes p C Oy such that the reduction SE is non-supersingular.

Proof The case that rk Pic S = 20 is degenerate of the kind that T contains no (1, 1)-
classes. It is known in this situation that S automatically has complex multiplication [39,
Theorem 4]. We may therefore assume that r := dim T' > 3.

We choose a prime [ and put 7; C Hézt(S@ Q) to be the transcendental part of
[-adic cohomology. Then GO(Tj, (., .))@ is an algebraic group over ;. One has
GO(Ty, (., ‘»@1 = GO, g, s0 that there are two connected components when r is even,
while the group is connected for odd r.

As Endys(7T) = @, we know that the image of the canonical continuous represen-
tation ¢;: Gal(K/K) — GO(T}, (.,.)) is Zariski dense either in GO(T}, {.,.)) or in the
neutral component GO%(T}, (., .)). Indeed, this follows from the Mumford—Tate conjec-
ture, proven by S. G. Tankeev [44,45], together with Yu. G. Zarhin’s explicit description
of the Mumford—Tate group in the case of a K3 surface [50, Theorem 2.2.1].

Now, let us assume, to the contrary, that for all but finitely many inert primes p, the
reduction Sﬁp were supersingular. We put

M :={p C Ok prime ideal |
IF, is a prime field, #IF, % [, p inertin L, p good for S, Sﬁp supersingular} .

Then M C I, for I the set of all inert primes, and the difference I \ M is of analytic
density zero. Indeed, the prime ideals p such that I}, is a prime field form a set of density 1.

For every prime ideal p C Ok, we choose a geometric Frobenius automor-
phism Frob, € Gal(K/K). According to the Chebotarev density theorem, the elements
o~ Froby o € Gal(K/K), for p € M and o € Gal(K/K), are topologically dense in
the non-trivial coset of Gal(K/K) modulo Gal(K/L). Thus, there are two elements
o1, 09 € Gal(K/K) such that

{a]’crfl Frobyo |j=12 peM, o € Gal(f/]()}

is dense in Gal(K /K).
On the other hand, for p € M one has, due to supersingularity, p | Tr Froby, 1,, when
writing p := #IF,. Moreover, det Froby, 7, = £p”". As | Tr Froby, 1, | < rp, this shows that

(Tr Froby, 7,)" = £k" det Froby, 7,,

for =22 < —r < k < r < 22. Accordingly, let Cx C GO(T}, (.,.)) be the closed
subscheme, defined by the equation (TrA)" = k" detA, and put C := Uzz_r Ck.
Then C C GO(T}, {.,.)) is a closed subscheme and invariant under conjugation.

As GO(Ty, (.,.))@ = GO,,@, for r > 3, it is easily seen that C cannot include
a complete component of GO(T}, (.,,))@. Le., one has dimC < dim GO(Ty}, (.,.)).
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Thus, the union 01C U 02C cannot be the whole group. Consequently, the image of
Gal(K/K) — GO(Ty, (., .)) is Zariski dense neither in GO(T}, (.,.)), nor in GO%(T}, (., .)),
a contradiction. O

Proposition 3.4 (Li-Liedtke) Let K be a number field and S C P?([ a K3 surface. Assume
that PicS = PicSg and that there is an infinite set ] of primes such that rk Pic SEJ >
rk Pic S for p € J.

Then there exist a sequence without repetitions (pj)jen of primes from ] and a sequence
(Dy,)jen of rational curves Dy, C Sﬁp_ such that the following two conditions are satisfied.
The class (Dpj) € PiC(Sij) does not lie in the image of Pic Sg under specialisation, for
any j, and lim deg Dy, = oc.

j—00

Proof This is [27, Proposition 4.2]. ]

Proposition 3.5 (Li-Liedtke) Let K be a number field and S C P?([ a K3 surface. Assume
that there exist a sequence without repetitions (pj)jen of primes and a sequence (Dy,)jeN
of rational curves Dy, C Sﬁp‘ satisfying the following conditions.

7

(i) Each SE. is non-supersingular,
(ii) (Dy;) does not lie in the image of the Picard group Pic S of the generic fibre under spe-
cialisation, for any j, and
(iii) lim deg Dy ;= 00.
Jj— 00

Then, for every j > O, there exists a rational curve D; C Sg such that its special-

isation to Sﬁp_ is reducible, containing Dy, as one of its components. In particular,
]

deg Dj > deg Dy,.

Proof This is shown in the proof of [27, Theorem 4.3]. O

Proof of Theorem 3.1. As  Ap2(S)Apic(S) is a non-square in K, the field
L := K(/ Ap2(S)Apic(S)) is indeed a quadratic extension. By Lemma 3.3, we have an infi-
nite set J of inert primes such that Sﬁp is non-supersingular for every p € N. Moreover,
rk Pic SE > rk Pic S according to Theorem 2.15.b).

Let now K’ 2 K be the splitting field of Pic Sz For each p € J, there is at least one
prime p’ C Oy lying above p. This yields an infinite set J' of primes in €, to which
Proposition 3.4 applies. It provides a sequence (p;)jen of primes in /" without repetitions
and rational curves Dy, C Sﬁp, , not lying in the image of Pic S under specialisation, such
that limj_, o deg Dy, = co. Knowing this, Proposition 3.5 yields a sequence (Dj)jen of
rational curves on Sz of degrees tending towards infinity. This completes the proof. O
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