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Abstract

We report on our results concerning the distribution of the geometric Picard ranks of
K3 surfaces under reduction modulo various primes. In the situation that rk Pic SK is
even, we introduce a quadratic character, called the jump character, such that
rk Pic SFp

> rk Pic SK for all good primes at which the character evaluates to (−1).
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1 Introduction
Let S be a K3 surface over a number field K . It is a well-known fact that the geometric
Picard rank of S may not decrease under reduction modulo a good prime p of S. I.e., one
always has

rk Pic SFp
� rk Pic SK . (1)

It would certainly be interesting to understand the sequence (rk Pic SFp
)p, or at least the

set of jump primes

�jump(S) := { p prime of K | p good for S, rk Pic SFp
> rk Pic SK } ,

for a given surface. In an ideal case, one would be able to give a precise reason why the
geometric Picard rank jumps at a given good prime. There are two well-known such rea-
sons.

(i) According to the Tate conjecture [26], the left hand side is always even. Thus, in the
case that rk Pic SK is odd, inequality (1) is always strict and every good prime is a
jump prime.
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(ii) Generalising this, if S has real multiplication (RM) by an endomorphism field E and
the integer (22 − rk Pic SK )/[E :Q] is odd, then again every good prime is a jump
prime [11, Theorem 1(2)].

It is known due to F. Charles [11, Theorem 1] that these are the only cases in which every
good prime is a jump prime.
In this article, we describe a third reason for a prime to jump, the jump character. It was

observed experimentally by the first author together with Yu. Tschinkel [13] that, in the
even rank case, one seems to have lim inf

B→∞ γ (S, B) � 1
2 , for

γ (S, B) := #{p ∈ �jump(S) | |p| � B}
#{|p| � B} .

TheoremA shows that this observation is indeed true, except for some corner cases, which
are simple to describe. Moreover, �jump(S) contains an entirely regular subset of exact
density one half.
In some sense, this result is complementary to those of Charles [11]. In fact, [11, The-

orem 1] shows, except for the cases (i) and (ii), that there are always infinitely many
non-jump primes.

Theorem A (Theorem 2.15) Let K be a number field and S a K3 surface over K . More-
over, let p ⊂ OK be a prime of good reduction and residue characteristic �=2.

(a) Then there are two quantities, the discriminant �H2 (S) of S and the discriminant of
the Picard representation or algebraic part of the discriminant �Pic(S) of S (cf. 2.4(ii)
and 2.8(a.ii) for precise definitions), such that the following equations hold,

det(Frobp : H2
ét(SK ,Ql(1)) ý)=

(
�H2 (S)

p

)
and

det(Frobp : T ý)=
(

�H2 (S)�Pic(S)
p

)
.

Here, T := H⊥
alg ⊂ H2

ét(SK ,Ql(1)) denotes the transcendental part of the cohomology,
and ( .p ) is the quadratic residue symbol modulo p [32, Chapter V, §3].

(b) If rk Pic SK is even then

(
�H2 (S)�Pic(S)

p

)
= −1 =⇒ rk Pic SFp

� rk Pic SK + 2 . (2)

In other words, if K (
√

�H2 (S)�Pic(S))/K is indeed a quadratic extension then

{ p | p inert in K (
√

�H2 (S)�Pic(S))/K } ⊆ �jump(S) .

The quadratic character τS , given by

p 
→
(

�H2 (S)�Pic(S)
p

)

might be called the transcendental character of the K3 surface S. Nevertheless, having
implication (2) in mind, we prefer to call it the jump character of S, at least in the even
rank case. It may happen that the quadratic extension, and hence the jump character,
are trivial.We provide particular surfaces of this kind, defined overQ, in Examples 2.36.a)
and 2.38. These are the corner cases mentioned above.
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One might think about the jump character also as follows. The Ql-vector space T
is equipped with the non-degenerate cup product pairing and acted upon by Gal(K/K ).
Moreover, the action is orthogonalwith respect to the pairing, so that onehas a continuous
group homomorphism

τ : Gal(K/K ) −→ O(T ) .
There is, however, no reason for im τ to be contained in SO(T ), in general, so the group
homomorphism det τ : Gal(K/K ) → {1,−1} is usually non-trivial. Moreover, det τ turns
out to be independent of l, cf. Proposition 2.3.b). The article thus in essence describes the
effects of det τ being non-trivial.

The criterion for non-triviality

Due to its construction, the jump character is unramified at every prime of good reduction,
cf. Corollary 2.26.a). On the other hand, it may ramify at bad primes. We show this to be
always the case when the singular reduction is of the mildest possible type.

Theorem B (Corollary 2.26.b)). Let K be a number field and S a K3 surface over K .
Moreover, let p ⊂ OK be a prime of residue characteristic different from 2. Suppose that S
has a regular, projective model S over OK,p, the geometric fibre Sp of which has exactly one
singular point, and assume this to be an ordinary double point.
Then the jump character τS = (�H2 (S)�Pic(S)

·
)
ramifies at p.

In addition, we present algorithms to compute the two characters for a given surface S
overQ, a deterministic one for�H2 (S) and a statistical one for the jump character.We can
deterministically compute the jump character in two particular situations, which together
cover many, but not all examples. These situations occur when Corollary 2.26.b) applies
to at least a single bad prime, and when Pic SQ is known as a Galois module to such an
extent that

∧max(NS(SK ) ⊗Z Q) can be determined.When neither of these circumstances
occurs, the statistical algorithm may still be used.

An application: rational curves on even rank K3 surfaces

It has been a long standing conjecture that every K3 surface over an algebraically closed
field contains infinitely many rational curves. In full generality, it has been settled only
recently by Chen et al. [12]. As an application of our results, we show that the existence
of infinitely many rational curves may be obtained rather easily in the situation that the
jump character is non-trivial and the surface is otherwise generic.

Theorem C (Theorem 3.1). Let K be a number field and S a K3 surface over K . Assume
that rk Pic SK is even, that SK has neither real nor complex multiplication, and that
�H2 (S)�Pic(S) is a non-square in K .
Then SK contains infinitely many rational curves.

Notation: (i) Abstract Algebra, Algebraic Geometry, and Algebraic Number Theory. For K
a field, we write K for a fixed algebraic closure of K . When K is a number field then byOK
we denote the ring of algebraic integers in K . For p ⊂ OK a prime ideal, we let Kp be the
completion ofK with respect to p,OK,p the ring of integers inKp, andFp the residue field.
Moreover, we always let Frob ∈ Gal(Fq/Fq) be the geometric Frobenius automorphism

x 
→ x1/q , cf. [14, (1.15)]. Similarly, when K is a number field and p ⊂ OK a prime ideal,



27 Page 4 of 25 E. Costa et al. Res. Number Theory (2020) 6:27

Frobp ∈ Gal(K/K ) denotes an arbitrary lift of the geometric Frobenius. We write Frob
and Frobp, too, for the automorphisms of schemes and their cohomology groups, induced
by Frob, respectively Frobp, via functoriality. Let us note that Frob : PN

Fq → PN
Fq maps the

geometric point (x0 : · · · : xN ) to (xq0 : · · · : xqN ).
Perhaps deviating from a certain standard, we say that a proper variety S over K has

good reduction at pwhen there exists a propermodel of S overOK that has good reduction
at p in the usual sense.
(ii) Quadratic extensions. Let K be a field of characteristic �= 2 and L/K an at most
quadratic field extension. Then, according to Kummer theory, there exists a unique class
�L ∈ K ∗/(K ∗)2 such that L = K (

√
u) for any u ∈ �L. In this situation, we shall also write

K (
√

�L) for K (
√
u).

Assume that K is a number field and p ⊂ OK a prime ideal of residue characteristic
�= 2, at which L/K is unramified. Then the quadratic residue symbol ( up ) [32, Chapter V,
Proposition (3.5)] is independent of the choice of a p-adic unit u ∈ �L. We will therefore
write (�L

p ) instead of ( up ).
(iii)Characters.By a character,wealwaysmean a continuoushomomorphism froma topo-
logical group to a discrete abelian group. A quadratic character is a character to {1,−1}.
We often describe a quadratic character χ : Gal(K/K ) → {1,−1}, when K is a number

field, in the form

p 
→ (�
p ) ,

or simply (�
· ), for� ∈ K ∗/(K ∗)2. This is supposed tomean that χ (Frobp) = (�

p ) for every
prime ideal p ⊂ OK of residue characteristic �=2 of the kind that � is representable by a
p-adic unit. Note that, {1,−1} being abelian, χ (Frobp) is well defined for every quadratic
character. Moreover, the values at the Frobenii Frobp determine χ uniquely, due to the
Chebotarev density theorem.
When V is a one-dimensional vector space over a field F , equipped with the dis-

crete topology and acted upon continuously by a topological group G, we denote by
[V ] : G → F∗ the character given by [V ](g) = a, for a ∈ F∗ the scalar satisfying g ·v = av
for every v ∈ V . This notation is due to T. Saito [35].

Computations

All computations are done using magma [7], sage [42], and C++, including the libraries
FLINT [23] and NTL [40]. For point counting on the examples being quartic surfaces,
we used the software developed by the first author, which is publicly available at https://
github.com/edgarcosta/controlledreduction.

2 The jump character
2.1 The determinant of Frob and the relationship with the sign in the functional equation

Let S be a smooth, proper variety over a finite field Fq of characteristic p > 0.
Then Frob acts linearly on the l-adic cohomology modules Hi

ét(SFq ,Zl(j)). The char-
acteristic polynomial �

(i)
j of Frob is independent of the choice of l �= p and has in fact

rational coefficients [14, Théorème (1.6)]. In particular, the determinant of Frob is a ratio-
nal number and independent of l �= p.

https://github.com/edgarcosta/controlledreduction
https://github.com/edgarcosta/controlledreduction
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In this section, we discuss the behaviour of det Frob. The theorem below, which is
essentially a summary of results of P. Deligne and J. Suh, shows that each statement
on det Frob may be translated into a statement about the sign in the functional equation.

Theorem 2.1 (Deligne, Suh)

(a) The polynomial �
(i)
j ∈ Q[T ] fulfils the functional equation

TN�(qi−2j/T ) = ±q
N
2 (i−2j)�(T ) , (3)

for N := rkHi
ét(SFq ,Zl(j)).

(b) The sign in the functional equation (3) is that of

det(− Frob : Hi
ét(SFq ,Ql(j)) ý) = (−1)N det(Frob : Hi

ét(SFq ,Ql(j)) ý) .

This is a rational number, the sign of which is independent of the Tate twist, i.e. of the
choice of j.

(c.i) If i is even, then det(− Frob : Hi
ét(SFq ,Ql(i/2)) ý) is either (+1) or (−1). In other

words, the determinant gives the sign in (3) exactly.
(c.ii) If i is odd then N is even and in (3), the plus sign always holds.

Proof (a) and (b) Let uswrite� for�(i)
j . The polynomials on both sides of (3) thenhave the

same roots as, with z, the number z = qi−2j

z is a root of �, too [15, Corollaire (3.3.9)], and
has the same multiplicity. To show that they perfectly agree, let us adopt the convention
that � is monic. Then the leading coefficient of the polynomial on the left hand side is
equal to the constant term of �. By definition, this is the determinant of (− Frob) on
Hi
ét(SFq ,Ql(j)), which is known to be a rational number and of absolute value q

N
2 (i−2j) [15,

Corollaire (3.3.9)]. Thus, a) follows, together with the first assertion of (b). The final claim
is clear, since

det(− Frob : Hi
ét(SFq ,Ql(j)) ý) = q−Nj · det(− Frob : Hi

ét(SFq ,Ql) ý) .

(c.i) As det Frob = (−1)N�(0) for � monic, this can be read off the functional equation
TN�(1/T ) = ±�(T ).
(c.ii) If S is projective then, by Poincaré duality and the hard Lefschetz theorem [15,
Théorème (4.1.1)], there is a non-degenerate pairing

Hi
ét(SFq ,Ql(j)) × Hi

ét(SFq ,Ql(j)) → Ql(2j − i)

that is compatible with the action of Frob. It is, moreover, alternating since i is supposed
to be odd, cf. [41, Chapter 5, Section 6, §11]. The assertion follows directly from this [14,
(2.6)]. Cf. the remarks after [15, Corollaire (4.1.5)]. The proper non-projective case has
only recently been settled by J. Suh [43, Corollary 2.2.3 and Corollary 3.3.5]. ��

Remark 2.2 Thepolynomials�
(i)
j ∈ Q[T ] occurring as characteristic polynomials of Frob

have remarkable properties, which were established mainly by P. Deligne, B. Mazur, and
A. Ogus. Details are summarised in the article [20] of the second and third authors. In the
proof above, the only property thatwas used is that every complex root of �

(i)
j is of absolute

value qi/2−j . This was first proven by P. Deligne in [14, Théorème (1.6)] for the projective
case and later in [15, Corollaire (3.3.9)], in general. The assertion had been formulated by
A.Weil as a part of his famous conjectures.
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2.2 The discriminant of the Hi-representation

Let us start by recalling some facts on l-adic cohomology.

Proposition 2.3 Let K be a field and S a smooth and proper K-scheme.

(a) Then, for all prime numbers l �= char K and all integers i and j, associated with the
one-dimensional Ql -vector space

∧maxHi
ét(SK ,Ql(j)), there is the character

[detHi(SK ,Ql(j))] : Gal(K/K ) −→ Q∗
l

of the absolute Galois group of K .
(b) Suppose that i is even and that S is pure of dimension i. Then the character

[detHi(SK ,Ql(i/2))] has values in {1,−1} ⊂ Q∗
l and is independent of l.

Proof a) This follows from the functoriality of l-adic cohomology, together with the fact
that every σ ∈ Gal(K/K ) induces an automorphism of schemes of SK .
(b) By Poincaré duality [37, Exp. XVIII, Théorème 3.2.5], there is a canonical non-
degenerate pairing s : Hi

ét(SK ,Ql(i/2)) × Hi
ét(SK ,Ql(i/2)) → Ql that is compatible with

the action ofGal(K/K ).Here, i is assumed even, so the pairing s is symmetric. According to
a standard fact from linear algebra [49, Def. 2.9], s induces another symmetric pairing

∧max(s) :
∧maxHi

ét(SK ,Ql(i/2)) × ∧maxHi
ét(SK ,Ql(i/2)) −→ Ql

that is again non-degenerate. The action of Gal(K/K ) is orthogonal with respect to s,
which implies that the character [detHi(SK ,Ql(i/2))] must have values in {1,−1} ⊂ Q∗

l .
For the case that K is a number field, independence of l is easily reduced to the Weil

conjectures, proven by P. Deligne [15, Corollaire (3.3.9)], using the Chebotarev density
theorem together with the smooth specialisation theorem for cohomology groups [37,
Exp. XVI, Corollaire 2.3]. In general, the result has been established by T. Saito [35,
Corollary 3.3].
N.B. In the notation for the characters, we write det instead of

∧max. This convention
follows [35]. ��

Definition 2.4 (i) In the situation of part (b), we denote by LS the extension field of
K that corresponds to ker [detHi(SK ,Ql(i/2))] under the Galois correspondence.
By construction, LS/K is an at most quadratic extension.

(ii) If charK �= 2 then we denote the class in K ∗/(K ∗)2 that yields the field extension
LS/K by �Hi (S) and call it the discriminant of the Hi-representation of S.

Lemma 2.5 Let K be a number field and S a smooth and proper K-scheme. Moreover, let
p ⊂ OK be a prime at which S has good reduction.

(a) If l is a prime different from the residue characteristic of p then, for every j ∈ Z, the
Gal(K/K )-representation Hi

ét(SK ,Ql(j)) is unramified at p.
(b) Suppose that S is pure of dimension i, for an even integer i. Then the quadratic char-

acter
(�Hi (S)

·
) = [detHi(SK ,Ql(i/2))] is unramified at p. Equivalently, the splitting

field LS is unramified at p.

Proof a) For this, it suffices to consider the restriction of the representation to the decom-
position group Dp

∼= Gal(Kp/Kp). This coincides with the natural action of Gal(Kp/Kp)
on Hi

ét(SKp
,Ql(j)) ∼= Hi

ét(SK ,Ql(j)), according to invariance of étale cohomology under
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extensions of separably closed fields [37, Exp. XII, Corollaire 5.4]. Moreover, by the
smooth specialisation theorem for cohomology groups [37, Exp. XVI, Corollaire 2.2],
Hi
ét(SKp

,Ql(j)) ∼= Hi
ét(SFp

,Ql(j)), which shows that this cohomology vector space is acted
upon via the quotient Gal(Fp/Fp) ∼= Dp/Ip. I.e., the inertia group Ip fixes Hi

ét(SK ,Ql(j))
pointwise, as required.
(b) This is a direct consequence of (a). ��

Remark 2.6 (i) In particular, for every exponent k ∈ N, the splitting field of
Hi
ét(SK ,Z/lkZ(j)) is unramified at every prime ideal p of good reduction.

(ii) If the residue characteristic is �=2 then one has

det(Frobp : Hi
ét(SK ,Ql(i/2)) ý) =

(
�Hi (S)

p

)
. (4)

(iii) For any number field K ′ ⊇ K , one has �Hi (SK ′ ) = �Hi (S) · (K ′∗)2 ∈ K ′/(K ′∗)2.
(iv) The name “discriminant” has not been chosen at random. Indeed, Proposition 2.3

allows a generalisation to families π : F → X over a general base scheme.
The quadratic field extension then goes over into a twofold covering 
π : Y → X ,
ramified at most over the discriminant locus. If π is sufficiently reasonable then 
π

is given by w2 = �, for � a normalised version of the discriminant of the family.
Furthermore, for every non-singular member S = Fx, the value �(x) belongs to the
class �Hi (S).
We plan to report about the interpretation of the quantities �Hi (S) as actual dis-
criminants, as well as some applications thereof, in a forthcoming paper.

2.3 Surfaces—the discriminant of the Néron–Severi representation

Proposition 2.7 Let K be a field and S a smooth projective surface over K .

(a) Then, associatedwith the one-dimensionalQ-vector space
∧max(NS(SK )⊗ZQ), there

is the character

[det(NS(SK ) ⊗Z Q)] : Gal(K/K ) −→ Q∗

of the absolute Galois group of K .
(b) The character [det(NS(SK ) ⊗Z Q)] takes values only in {1,−1} ⊂ Q∗.

Proof (a) This follows from the functoriality of the Néron–Severi group, together with
the fact that every σ ∈ Gal(K/K ) induces an automorphism of schemes of SK .
(b) Every σ ∈ Gal(K/K ) induces an automorphism of the Néron–Severi group NS(SK ),
in particular one of NS(SK )tors, and consequently one of the torsion-free Z-module
NS(SK )/NS(SK )tors. As that is a full rank lattice in NS(SK ) ⊗Z Q, it induces a lattice
in the one-dimensional vector space

∧max(NS(SK ) ⊗Z Q), which must be respected by
the action of Gal(K/K ). The assertion immediately follows from this. ��

Definition 2.8 (a) (i) In the situation of part (b), we denote by LS,alg the extension
field of K that corresponds to ker [det(NS(SK ) ⊗Z Q)] under the Galois corre-
spondence.
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(ii) If charK �= 2 thenwedenote the class inK ∗/(K ∗)2 that yields thefield extension
LS,alg/K by �NS(S) and call it the discriminant of the Néron–Severi representa-
tion or the algebraic part of the discriminant of S.

(b) For surfaces such that H1(SK ,Ql) = 0, one has Pic(SK ) ⊗Z Q ∼= NS(SK ) ⊗Z Q.
In this case, one may write �Pic(S) instead of �NS(S) and speak of the discriminant
of the Picard representation. Similarly, let us then write [det(Pic(SK )⊗Z Q)] instead
of [det(NS(SK ) ⊗Z Q)].

Remark 2.9 The algebraic part of the discriminant of S should not be confused with the
discriminants of NS(S) andNS(SK ) as lattices. Instead, onemight think about it as follows.
Since NS(SK )⊗ZQ is a finite-dimensionalQ-vector space, there is a smallest finite field

extension of K , over which all elements of NS(SK ) ⊗Z Q are defined, the splitting field L
of NS(SK )⊗Z Q. Then Gal(K/K ) acts on NS(SK )⊗Z Q via its quotient Gal(L/K ) and the
action of this quotient is faithful.
Therefore, the action of Gal(K/K ) on

∧max(NS(SK ) ⊗Z Q) factors via Gal(L/K ), too.
On the other hand,

∧max(NS(SK ) ⊗Z Q) is one-dimensional, so the action of the finite
group Gal(L/K ) must factor via (Q∗)tors = {1,−1}. The stabiliser is of index at most 2
in Gal(K/K ) and hence the splitting field of

∧max(NS(SK ) ⊗Z Q) is an at most quadratic
extension K (

√
�NS(S)) = LS,alg ⊆ L.

Lemma 2.10 Let K be a number field and S a smooth projective surface over K . More-
over, let p ⊂ OK be a prime at which S has good reduction.

(a) Then the splitting field of NS(SK ) ⊗Z Q is unramified at p.
(b) The character

(
�NS(S)·

) = [det NS(SK ) ⊗Z Q] is unramified at p. Equivalently, the
splitting field LS,alg is unramified at p.

Proof (a) The first Chern class homomorphism factors via the Néron–Severi group, i.e.
via algebraic equivalence,

Pic(SK ) ⊗Z Ql
c1 H2

ét(SK ,Ql(1))

NS(SK ) ⊗Z Ql .

Indeed, c1 factors via numerical equivalence, since the intersection pairing on Pic(SK )⊗Z

Ql is compatible with the cup product pairing on H2
ét(SK ,Ql(1)). Moreover, Matsusaka’s

theorem [31, Theorem 4], cf. [1, paragraph 3.2.7], shows that algebraic equivalence coin-
cides with numerical equivalence, already on Pic(SK ) ⊗Z Q.
Now write L for the splitting field of NS(SK ) ⊗Z Q and assume that L would ramify

at p. By definition, Gal(L/K ) acts faithfully on NS(SK ) ⊗Z Q. Choose a prime q of L lying
above p and a non-trivial element σ ∈ Gal(Lq/K n

p ) ⊆ Gal(Lq/Kp), for K n
p the maximal

unramified subfield of Lq. Then σ acts non-trivially on the image of the first Chern class
homomorphism

c1 : NS(SK ) ⊗Z Ql ↪→ H2
ét(SK ,Ql(1)) .

This, however, is in contradictionwith the smooth specialisation theorem for cohomology
groups, as seen before.
(b) This follows immediately from (a). ��
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Remark 2.11 (i) If the residue characteristic is not 2 then one has

det(Frobp : (NS(SK ) ⊗Z Q) ý) =
(

�NS(S)
p

)
. (5)

(ii) If K ′ ⊇ K is a number field extending K , then one has

�NS(SK ′ ) = �NS(S) · (K ′∗)2 ∈ K ′/(K ′∗)2.

(iii) It is worthwhile to observe that, for K3 surfaces, the assertion of Lemma 2.10 is
still true when S has bad reduction at p of the mildest possible form. Cf. Corollary
2.23, below.

2.4 K3 surfaces

There is a strong relation, which is established for K3 surfaces, but relies on Tate’s and
Serre’s conjectures in general, between the Galois action on l-adic cohomology and the
variation of the geometric Picard ranks under reduction modulo various primes [13,18].
From our point of view, this is in fact the main application of the constructions presented
so far.

Facts 2.12 Let S be a K3 surface over a base field K .

(a) Then Pic SK is a free abelian group of rank at most 22. If K is of characteristic zero
then the rank is at most 20. If K is finite then the rank is even.

(b) If K is finite then rk Pic SK is equal to the number [counted with multiplicities] of all
eigenvalues of Frob on H2

ét(SK ,Ql(1)) that are roots of unity.

Proof (a) The first statement is found, e.g., in [24, Chapter 17, first formula of Section 2].
The second one is [24, Chapter 17, formula (1.1)] in the case thatK = C, while the general
case follows from this in view of [24, Chapter 17, Lemma 2.2]. The final claim is a direct
consequence of (b).
(b) See [24, Chapter 17, Corollary 2.9 and the arguments given before]. Note that this
result is an application of the Tate conjecture, which has been shown for K3 surfaces
over finite fields by to the combined work of several people, most notably F. Charles [10],
M. Lieblich, D. Maulik, and A. Snowden [28], K. Madapusi Pera [30], as well as W. Kim
and K. Madapusi Pera [26]. ��

For K an arbitrary field and l �= charK a prime number, there is a canonical orthogonal
decomposition

H2
ét(SK ,Ql(1)) = Halg ⊕ T . (6)

Here, Halg = c1(Pic(SK ) ⊗Z Ql) is clearly Gal(K/K )-invariant. Moreover, T := H⊥
alg is

Gal(K/K )-invariant, too, as the Galois action is orthogonal.
In the particular case thatK is a number field, let p ⊂ OK be any prime of good reduction

and of residue characteristic different from l. Then Frobp ∈ Gal(K/K ) is determined only
up to conjugation. But this suffices to have well-defined eigenvalues and a well-defined
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determinant of Frobp, associated with any vector space being acted upon by Gal(K/K ).
In particular,

det(Frobp : T ý) = det(Frobp : H2
ét(SK ,Ql(1)) ý)

det(Frobp : Pic SK ý)
. (7)

Ourmain theoretical observation on the distribution of the Picard ranks of the reductions
is then as follows.

Proposition 2.13 (Rank jumps) Let S be a K3 surface over a number field K and p ⊂ OK
a prime of good reduction. Assume that rk Pic SK is even. Then the following is true:
If det(Frobp : T ý) = −1, then rk Pic SFp

� rk Pic SK + 2.

Proof Choose a prime number l, different from the residue characteristic of p.
Then one has H2

ét(SK ,Ql(1)) ∼= H2
ét(SKp

,Ql(1)) [37, Exp. XII, Corollaire 5.4], as well as
H2
ét(SKp

,Ql(1)) ∼= H2
ét(SFp

,Ql(1)) [37, Exp. XVI, Corollaire 2.2]. Consequently, by trans-
port of structure, the orthogonal decomposition (6) carries over into

H2
ét(SFp

,Ql(1)) = Halg ⊕ T . (8)

Note that, as a consequence of its construction, T may well contain algebraic classes.
Moreover, under the first isomorphism, the action of Gal(Kp/Kp) is compatible

with that of the decomposition group Dp ⊂ Gal(K/K ), while the second isomorphism
shows that Gal(Kp/Kp) acts via its quotient Gal(K nr

p /Kp). In particular, the action
of Frob ∈ Gal(Fp/Fp) on H2

ét(SFp
,Ql(1)) agrees with that of any Frobp ∈ Gal(K/K )

on H2
ét(SK ,Ql(1)). For instance, Frob and Frobp have the same eigenvalues on Halg, as

well as on T .
By Lemma 2.10.a), the splitting field of Pic SK is a number field unramified at p. There-

fore, Gal(K nr
p /Kp) acts on Halg via a finite quotient group. In particular, there exists an

integer e > 0 such that Frobe acts trivially. Consequently, all eigenvalues of Frob on Halg
are roots of unity.
In view of Fact 2.12.b), we need to show that Frob acts onT with at least two eigenvalues

being roots of unity. For this, let us observe that each eigenvalue is of absolute value 1, so
that those different from 1 and (−1) come in pairs {z, z} of complex conjugates. As zz = 1
and det(Frobp : T ý) = −1, one of the eigenvalues must be equal to (−1). Finally, as
dimT = 22−rk Pic SK is even, a further eigenvalue1 is enforced.This completes theproof.

��

Remark 2.14 (i) The proof given above, shows that, in addition to the specialisations
of the invertible sheaves from Pic SK , the Picard group of Pic SFp

has (at least) two
further generators. One of themmay be chosen to be defined overFp, the other over
its quadratic extension.

(ii) Without the hypothesis on the determinant of the Frobenius, the argument simply
reproves the standard fact that rk Pic SFp

� rk Pic SK .

Theorem 2.15 Let K be a number field and S a K3 surface over K . Moreover, let p ⊂ OK
be a prime of residue characteristic �=2 and good reduction.
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(a) Then the following two equations hold,

det(Frobp : H2
ét(SK ,Ql(1)) ý)=

(
�H2 (S)

p

)
and

det(Frobp : T ý)=
(

�H2 (S)�Pic(S)
p

)
.

(b) If rk Pic SK is even, then(
�H2 (S)�Pic(S)

p

)
= −1 =⇒ rk Pic SFp

� rk Pic SK + 2 .

In other words, if �H2 (S)�Pic(S) is not a square in K then

{ p | p inert in K (
√

�H2 (S)�Pic(S)) } ⊆ �jump(S) .

Proof (a) The first formula is a particular case of formula (4). The second one is a conse-
quence of the first together with formulae (5) and (7).
(b) This follows from (a), together with Proposition 2.13. ��

Corollary 2.16 Let K be a number field and S a K3 surface over K . Assume that
�H2 (S)�Pic(S) is a non-square in K . Then

lim inf
B→∞ γ (S, B) � 1

2 .

Definition 2.17 For K a number field and S a K3 surface over K , we call the
quadratic character

τS := [detH2(SK ,Ql(2))]·[det Pic(SK ) ⊗Z Q] : Gal(K/K ) −→ {1,−1}
the jump character of S.

Remark 2.18 (i) The jump character τS is given by

p 
→
(

�H2 (S)�Pic(S)
p

)
,

for all good primes p.
(ii) Proposition 2.13 shows that, for S a K3 surface of even geometric Picard rank,

τS(p) = −1 implies rk Pic SFp
� rk Pic SK + 2.

In this section, the assumption on the surface to be of typeK3 was used only in referring
to the Tate conjecture. We actually showed the following.

Theorem 2.19 Let K be a number field and S a smooth and proper surface over K , for
which the Tate conjecture holds. Moreover, let p ⊂ OK be a prime of good reduction and
suppose that the Tate conjecture holds for SFp , too. Then, in the situation that rk NS SK ≡
dimH2

ét(SK ,Ql(1)) (mod 2), one has

[detH2(SK ,Ql(2))]·[det Pic(SK ) ⊗Z Q](p) = −1 ⇐⇒(
�H2 (S)�NS(S)

p

)
= −1 =⇒ rk NS SFp

� rk NS SK + 2 .

��
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2.5 The criterion for non-triviality

Lemma 2.20 Let p �= 2 be a prime number and M a free Zp-module of finite rank r,
equipped with a non-degenerate symmetric pairing. Let an orthogonal map V : M → M
be given with characteristic polynomial (T −1)r1 (T +1)r2 . ThenM is the orthogonal direct
sum of the two generalised eigenspaces,

M = ker(1 − V )r1 ⊕ ker(1 + V )r2 .

Proof It is well known that the generalised eigenspaces for two distinct eigenvalues only
have the zero element in common. Moreover, 1+V

2 + 1−V
2 = id yields

r∑
k=0

(r
k
)
( 1+V

2 )k ( 1−V
2 )r−k (x) = x ,

for every x ∈ M. According to Cayley–Hamilton, the summands for k � r2 are contained
in ker(1 − V )r1 , while those for k � r2, i.e. r − k � r1, are contained in ker(1 + V )r2 .
Thus, the sum is the whole of M. Finally, it is a classical result for orthogonal maps that
the generalised eigenspaces for two eigenvalues λ1, λ2 with λ1λ2 �= 1 are perpendicular.
An argument is given, e.g., in [48, Proposition 10.4.1]. ��

Theorem 2.21 (The vanishing cycle) Let K be a number field and S a K3 surface over K .
Moreover, let p ⊂ OK be a prime of residue characteristic �= 2 such that S has a regular,
projective model S over OK,p, the geometric fibre Sp of which has exactly one singular
point z. Assume z to be an ordinary double point.
Then, for every prime number l, different from the residue characteristic of p, the vanishing
cycle [38, Exp. XV, Théorème 3.4.(i)] associated with z, fulfils

δz,l ∈ H⊥
alg,l .

Proof First step. Generalities.
Let us denote the residue characteristic of p by p. On the scheme SK , there is amonodromy
automorphism [38, Exp. XV, Proposition 3.2.1.(ii)], which is induced by a particular non-
trivial element ν ∈ Ip ⊂ Gal(K/K ) of the inertia group. For every prime number l, includ-
ing l = p, the induced map on l-adic cohomology is called the monodromy operator
V : H2

ét(SK ,Zl(1)) ý. This is an orthogonal map with respect to the cup product pairing.
By a slight abuse of notation, we denote the map induced by ν on Pic SK by V , too.
If l �= p then the action of V is described by the Picard–Lefschetz formula [38,

Exp. XV, Théorème 3.4.(iii)]

V (c) = c + 〈c, δz,l〉δz,l . (9)

Note here that V , being induced by an element from the inertia group, acts trivially on
Zl(1) itself. The class δz,l ∈ H2

ét(SK ,Zl(1)) is the so-called vanishing cycle. It is known that
〈δz,l , δz,l〉 = −2 [38, Exp. XV, Théorème 3.4.(i)]. In particular, the Picard–Lefschetz for-
mula showsV (δz,l) = −δz,l . Moreover, the operatorV acts with characteristic polynomial
(T − 1)21(T + 1).
When the action on H2

ét(SK ,Zp(1)) is concerned, the characteristic polynomial is the
same [33, Theorem3.1], cf. [22, §§2.3 and 2.4]. It seems, however, not to be knownwhether
the action of V is semisimple. In particular, no Picard–Lefschetz formula is available.
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Second step. If, for some l0 �= p, δz,l0 /∈ H⊥
alg,l0 then V acts non-trivially on Pic SK .

The assumption means that 〈c, δz,l0〉 �= 0, for a certain class c ∈ Halg,l0 . Then formula (9)
immediately implies that

δz,l0 = 1
〈c, δz,l0〉

[V (c) − c] ∈ Halg,l0 .

I.e., the operatorV acts onHalg,l0
∼= Pic SK ⊗ZQl0 non-trivially with one eigenvector (−1),

while all others are equal to 1. As ±1 ∈ Q, the eigenspaces are defined in Pic SK ⊗Z Q

already, which implies the claim.
Third step. Let d ∈ Pic(SK ) ⊂ Pic SK ⊗Z Q be a generator of the (−1)-eigenspace, which
is minimal, i.e. not divisible by any integer �=±1. Then 〈d, d〉 = −2.
For every prime number l, the inclusion Pic SK /l

c1
↪→ H2

ét(SK ,Zl(1))/l coming from the
Kummer sequence shows that c1(d) ∈ H2

ét(SK ,Zl(1)) is not divisible by l. Hence, c1(d) is
actually a generator of the (−1)-eigenspace in H2

ét(SK ,Zl(1)).
Claim: 〈d, d〉 is an l-adic unit, for every prime l �= 2.
Indeed, for l �= 2, p, the Zl-module H2

ét(SK ,Zl(1)) is the orthogonal direct sum of the 1-
and (−1)-eigenspaces, since 1

2 ∈ Zl and every cohomology class c may be written in the
form 1

2 (c +V (c))+ 1
2 (c −V (c)). For l = p, the (−1)-eigenspace is a direct summand, too,

due to Lemma 2.20. As the pairing on the total space is perfect, the same is true for the
direct summands, which implies the claim.
Thus, 〈d, d〉 = ±2k for some non-negative integer k . On the other hand,
c1(d) ∈ H2

ét(SK ,Z2(1)) is a generator of the (−1)-eigenspace and δz,2 is another. Hence,
c1(d) = u · δz,2, for a certain unit u ∈ Z∗

2. Consequently,

〈d, d〉 = 〈c1(d), c1(d)〉 = u2〈δz,2, δz,2〉 = −2u2 ,

which immediately shows that k = 1. Moreover, the minus sign is correct, since (−1) is
not a square inQ2.
Fourth step. Conclusion.
In the particular case of a K3 surface, it is well known that, for a class d ∈ Pic(SK )
with 〈d, d〉 = −2, either d or (−d) is represented by an effective divisor [2, Chap. VIII,
Proposition 3.7]. But then V cannot interchange the two, a contradiction. ��

Remark 2.22 (i) The regularity of the model S implies that the singular point on Sp
does not lift to a Onr

Kp
-rational point on S.

(ii) When there are two singular points insteadof one, then the argument above thenonly
shows that a non-trivial linear combination of δz1 and δz2 lies in H⊥

alg. The splitting
field of Pic(SK ) ⊗Z Qmay well ramify then. Cf. Corollary 2.23.a), below.

(iii) There does not seem to be an obvious generalisation to other types of surfaces. For
example, for rational surfaces one has H⊥

alg = 0, but δz,l is clearly nonzero. Also, the
argument heavily relies on the fact that, for d ∈ Pic(SK ) with 〈d, d〉 = −2, either d
or (−d) is effective, which seems to be rather specific for K3 surfaces.

Corollary 2.23 Let K be a number field and S a K3 surface over K . Moreover, let p ⊂ OK
be a prime of residue characteristic �= 2 such that S has a regular, projective model S
over OK,p, the geometric fibre Sp of which has exactly one singular point z. Assume z to be
an ordinary double point.

(a) Then the splitting field of Pic(SK ) ⊗Z Q is unramified at p.
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(b) The character
(

�NS(S)·
) = [det NS(SK ) ⊗Z Q] is unramified at p. Equivalently, the

splitting field LS,alg is unramified at p.

Proof (a) Choose a prime number l, different from the residue characteristic of p.
Then there is the short exact sequence [38, Exp. XV, Théorème 3.4.(ii)]

0 −→ H2
ét(Sp,Ql(1)) −→ H2

ét(SK ,Ql(1)) −→ Ql −→ 0 ,

c 
→ 〈c, δz,l〉 ,

provided by the theory of vanishing cycles. Together with the result of Theorem 2.21, it
shows that every invertible sheaf on SK extends to Sp. In other words, the splitting field
of Pic(SK ) ⊗Z Q is contained in K nr

p .
(b) This is a direct consequence of (a). ��

Proposition 2.24 (Reduction to one ordinary double point) Let K be a number field and S
a proper K-scheme that is pure of even dimension i. Moreover, let p ⊂ OK be a prime of
residue characteristic �= 2 such that S has a regular, projective model S over OK,p, the
geometric fibre Sp of which has exactly one singular point z. Assume z to be an ordinary
double point.

(a) Then, for any prime l different from the residue characteristic of p, the Gal(K/K )-
representation Hi

ét(SK ,Ql(i/2)) is tamely ramified at p. The p-adic valuation of its
conductor is equal to 1.

(b) The quadratic character
(�Hi (S)

·
) = [detHi(SK ,Ql(i/2))] is ramified at p. Equiva-

lently, the splitting field LS is ramified at p.

Proof (a) In this generality, the short exact sequence provided by the theory of vanishing
cycles reads [38, Exp. XV, Théorème 3.4.(ii)]

0 −→ Hi
ét(Sp,Ql(i/2)) −→ Hi

ét(SK ,Ql(i/2)) −→ Ql −→ 0 ,

c 
→ 〈c, δz,l〉 ,

with (δz,l , δz,l) = (−1)i/2 ·2. The p-adic valuation of the conductor is determined by the
restriction of the representation to the decomposition groupDp

∼= Gal(Kp/Kp). The exact
sequence shows that the subspace δ⊥

z,l ⊂ Hi
ét(SK ,Ql(i/2)) is acted upon via the quotient

Gal(Fp/Fp) ∼= Dp/Ip. I.e., the inertia group Ip fixes δ⊥
z,l pointwise. As one has V (δz,l) =

−δz,l for V ∈ Ip, due to the Picard–Lefschetz formula, this yields

Hi
ét(SK ,Ql(i/2))Ip = δ⊥

z,l .

Moreover, the action of Ip respects orthogonality and cup product pairing, so δz,l can
be mapped only to ±δz,l . Thus, there is a subgroup I ′ ⊂ Ip of index two acting trivially.
Since the residue characteristic of p is �=2, this yields tameness.
In this case, the p-adic valuation of the conductor is given by [36, formulae (11) and (8)]

dimQl H
i
ét(SK ,Ql(i/2)) − dimQl H

i
ét(SK ,Ql(i/2))Ip

= dimQl H
i
ét(SK ,Ql(i/2)) − dimQl δ

⊥
z,l = 1 .
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(b) This is very easily shown directly. The monodromy operator V ∈ Ip fixes
all cohomology classes perpendicular to δz,l and sends δz,l to (−δz,l). Therefore,
det(V : H2

ét(SK ,Ql(1)) ý) = −1. In particular, ker [detH2(SK ,Ql(1))] does not include
all of Ip, and hence the field corresponding under the Galois correspondence to
ker [detH2(SK ,Ql(1))] is not contained in K nr

p . ��

Remark 2.25 Suppose that, for someprime p, S has amodel of bad reduction of the kind as
described above. Then S does not have amodel of good reduction at p. Indeed, the conclu-
sions of Lemma2.5.b) andProposition 2.24.b) are independent of themodel. The existence
of a model of good reduction implies that

(�Hi (S)
·

)
is unramified, while the existence of a

model of the type above enforces ramification.

Corollary 2.26 (The jump character) Let K be a number field and S a K3 surface over K .
Moreover, let p ⊂ OK be a prime of residue characteristic different from 2.

(a) If S has good reduction at p, then τS = (�H2 (S)�Pic(S)
·

)
is unramified at p.

(b) Suppose that S has a regular, projective model S over OK,p, the geometric fibre Sp of
which has exactly one singular point, and assume this to be an ordinary double point.
Then the jump character τS = (�H2 (S)�Pic(S)

·
)
ramifies at p.

Proof (a) is clear from Lemmata 2.5.b) and 2.10.b), while the assertion of part (b) follows
from Corollary 2.23.b) together with Proposition 2.24.b). ��

2.6 Examples and experimental results

Algorithm 2.27 (Computing �H2 (S)) Given a proper surface S over Q, the set
{q1, . . . , qm} of all bad primes of S, and an oracle for det(Frobp : H2

ét(SQ,Ql(1)) ý) for
any p �= qj , this algorithm computes �H2 (S).

(i) Add q0 := −1 to the list of bad primes.
(ii) Build a matrixA, the entries of which are the Legendre symbols ( qjpi ), for good primes

pi chosen at random.Keep adding rows until thematrix has rankm+1 over {1,−1} ∼=
Z/2Z.

(iii) Put bi = det(Frobpi : H2
ét(SQ,Ql(1)) ý) and solve the linear system Ax = b of equa-

tions. If the solution vector is (x0, . . . , xm) ∈ (Z/2Z)m then �H2 (S) is the class of
(−1)e0qe11 · · · qemm in Q∗/(Q∗)2, for ei ∈ {0, 1} ⊂ Z representing the residue class
xi ∈ Z/2Z.

Remark 2.28 (i) The oracle for det(Frobp : H2
ét(SQ,Ql(1)) ý) is, of course, provided by

counting the points on S that are defined over Fp and some of its extensions.
(ii) Dirichlet’s Theorem on primes in arithmetic progressions ensures that there exist

primes so that the matrix A has rankm + 1.
(iii) (An improvement.) In the case that 2 is a good prime, step i) of Algorithm2.27may be

omitted. The sign of �H2 (S) is then determined by the condition that the character
be unramified at 2.

(iv) (A further improvement.) Assume that the surface S isK3. Then, for some ormany of
its bad primes p �= 2, it may happen that Proposition 2.24.b) applies. At such a prime,
the jump character necessarily ramifies, which means that �H2 (S) must be of odd
p-adic valuation. Thus, the solution vector is bound to have a component 1 ∈ Z/2Z
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at the corresponding coordinates.
If S has a model in some PN

Z that is given by explicit equations, one may compute the
set of all bad primes using Gröbner bases and integer factorisation, and finally anal-
yse the singular points. Having found several primes to which Proposition 2.24.b)
applies, this information may be used in order to get by with a linear system of equa-
tions of smaller size. In other words, less point counting is necessary.
It is our experience that this improvement of Algorithm 2.27 often leads to an enor-
mous gain for a “random” surface, while for the constructed examples, which we
present below, it would not help much.

(v) There is an obvious modification of Algorithm 2.27 to directly determine the jump
character.

Algorithm 2.29 (Statistical algorithmcomputing the jump character)Given aK3 surface
S overQ of even geometric Picard rank, the set {q1, . . . , qm} of all bad primes of S, and a
list of good non-jump primes, this algorithm determines a finite subgroup, containing the
jump character, of the group of all characters of Gal(Q/Q) with values in {1,−1}.
(i) Add q0 := −1 to the list of bad primes.
(ii) Build amatrixA, the entries ofwhich are the Legendre symbols ( qjpi ), for the non-jump

primes pi.
(iii) Determine the kernel of A. From each kernel vector, calculate a candidate for the

jump character in the same way as in Algorithm 2.27.iii).

Remark 2.30 (i) If the kernel is the zero space, then this proves the jump character
to be trivial. If the kernel is one-dimensional, then there are two possible answers.
A non-trivial character, which is directly computed from a kernel vector, and the
trivial one.

(ii) If the kernel is still one-dimensional when the system of equations is rather overde-
termined, then this gives strong evidence for the jump character to be non-trivial.
In practice, we work with at least 4(m + 1) non-jump primes.

(iii) The trivial character is unramified at every prime. Thus, as soon as it applies, Corol-
lary 2.26.b) excludes the trivial character, and therefore makes the outcome of Algo-
rithm 2.29 usually unique. Corollary 2.26.b) is useful as well to accelerate the calcu-
lations.

Example 2.31 Let S be the diagonal quartic in P3
Q, given by X4

0 + X4
1 + X4

2 + X4
3 = 0.

Then the geometric Picard rank of S is 20 and the jump character is given by (−1
· ).

Proof The modelS of S that is given in P3
Z by the same equation has bad reduction only

at 2. Hence, �H2 (S) = ±1 or ±2. Counting points on the reductions SF3 and SF5 , one
finds that det(Frobp : H2

ét(SQ,Ql(1)) ý) = 1 for both p = 3 and 5. Thus, Algorithm 2.27
shows that �H2 (S) = 1.
On the other hand, it is classically known that the 48 lines on SQ generate the geometric

Picard group, which is of rank 20. In particular, Pic SQ is defined overQ(ζ8) = Q(i,
√
2).

Moreover, [9, Appendix A, Examples A62, B33, C27, and D27] show that the Galois
representation Pic(SQ) ⊗Z C splits into characters as

χ5
triv ⊕ χ3

Q(i) ⊕ χ6
Q(

√
2) ⊕ χ6

Q(
√−2) .
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Here, for K a quadratic number field, χK : Gal(Q/Q) → {1,−1} denotes the character
that becomes trivial after restriction to Gal(Q/K ) and defines the non-trivial quadratic
character on Gal(K/Q). Consequently,

∧max Pic(S) ⊗Z C = χ⊗5
triv ⊗ χ⊗3

Q(i) ⊗ χ⊗6
Q(

√
2)

⊗ χ⊗6
Q(

√−2) = χQ(i) ,

�Pic(S) = −1 and �H2 (S)�Pic(S) = −1. ��

Remark 2.32 It is known at least since 1963 [46] that, in this example, there are no rank
jumps, except for those explained by the jump character. I.e., one has rk Pic SFp = 20 for
all primes p ≡ 1 (mod 4). In fact, the eigenvalues of Frobp on H2

ét(SQ,Ql(1)) may be
determined using Jacobi sums [25, Chapter 8, Theorem 5] and it turns out that two of
them are π2

p and its conjugate, for p = ππ a factorisation in Q(i). Cf. [34, particularly
formulae (12) and (13)] for more details.

Example 2.33 Let S be the double cover of P2
Q, given by w2 = X6

0 + X6
1 + X6

2 . Then the
geometric Picard rank of S is 20 and the jump character is given by (−3

· ).

Proof Thedouble coverS ofP2
Z that is given by the same equationhas bad reduction only

at the primes 2 and 3. Hence, �H2 (S) = ±1, ±2, ±3 or ±6. Furthermore, counting points
on the reductions SF5 , SF7 , and SF13 , one finds that det(Frobp : H2

ét(SQ,Ql(1)) ý) = 1, for
both p = 5 and p = 13, and (−1) for p = 7. Thus, Algorithm 2.27 shows �H2 (S) = −1.
The ramification sextic allows 18 tritangent lines of the type Xi + ζm

12Xj = 0, form odd.
Furthermore, the 18 conics of type XiXj + ζm6

3√2
X2
k = 0 are six times tangent to the ram-

ification sextic. The irreducible components of the preimages of these curves together
generate the geometric Picard group up to finite index. Working with the tritangents
alone, one would end up with a sublattice that is not of full rank.
We implemented in magma a function to compute intersection numbers on S and,

starting with 14 tritangent lines and six conics being six times tangent, found a non-
degenerate 20 × 20 intersection matrix. Using this, it turns out that the splitting field
of Pic SQ is in fact Q(ζ3, 3√2, i), having Galois group S3 × Z/2Z. Moreover, the Galois
representation Pic(SQ) ⊗Z C splits into irreducible components as

χ4
triv ⊕ χ4

Q(i) ⊕ χ3
Q(

√
3) ⊕ χ3

Q(
√−3) ⊕ V 3 ,

where the characters are defined as above andV denotes the irreducible two-dimensional
representation of the factor group Gal(Q(ζ3, 3√2)/Q) ∼= S3. Consequently,

∧max Pic(SQ) ⊗Z C = χ⊗4
triv ⊗ χ⊗4

Q(i) ⊗ χ⊗3
Q(

√
3)

⊗ χ⊗3
Q(

√−3) ⊗ χ⊗3
Q(

√−3) = χQ(
√
3) ,

which implies that �Pic(S) = 3 and �H2 (S)�Pic(S) = −3. ��

Remark 2.34 Again, there are no rank jumps, except for those explained by the jump
character. I.e., one has rk Pic SFp = 20 for all primes p ≡ 1 (mod 3). The eigenvalues of
Frobp may again be determined using Jacobi sums. Here, it turns out that two of them
are J (ω,ω,ω)/p [25, Proposition 8.5.1] and its conjugate, for ω a primitive sextic character
onF∗

p . A short calculation, using [25,Chapter 8,Theorem3] and [4,Theorems3.1 and3.4)]
shows that these quantities evaluate to (−1

p )π2

p and its conjugate, for π a primary element
[25, Proposition 9.3.5] in Z(ζ3) of norm p.
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Remark 2.35 (i) The surfaces described in Examples 2.31 and 2.33 are K3 surfaces
defined over Q of geometric Picard rank 20, and, as such, very particular objects.
Due to the work of R. Livné [29], it is known that they are modular. Moreover, there
is a formula describing the determinant of Frobenius on the transcendental part of
cohomology in terms of the discriminant of the Picard lattice alone [29, Example 1.6].
Our calculations presented above are supposed to illustrate our method to compute
the jump character in a situation where the Picard group is completely known.

(ii) The surface from Example 2.33 is, up to isogeny, the Kummer surface associated
with a product of an elliptic curve with itself. (Over C, this is classically known, cf.
[39, Proof of Theorem 4]. OverQ, an argument is given, e.g., in [8, Proposition 2.3].)
Its jump character may also be determined that way.

Example 2.36 Let K be a number field and S the Kummer surface of an abelian surface
over K that geometrically splits into a product E1 ×E2 of elliptic curves. Assume that
rk Pic SK = 18. Then there are two cases.

(a) If the elliptic curves E1 and E2 are defined over K then the jump character of S
is trivial.

(b) If the elliptic curves E1 and E2 are defined over a quadratic extension K (
√
d) and

conjugate to each other, then the jump character of S is (d. )

Proof (a) The transcendental part T ⊂ H2
ét(SK ,Ql(1)) is isomorphic to

T ∼= H1
ét(E1,Ql) ⊗ H1

ét(E2,Ql(1)) ,

hence
∧maxT ∼= ∧2H1

ét(E1,Ql)⊗2 ⊗ ∧2H1
ét(E2,Ql(1))⊗2

∼= H2
ét(E1,Ql)⊗2 ⊗ H2

ét(E2,Ql(2))⊗2

∼= H2
ét(E1,Ql(1))⊗2 ⊗ H2

ét(E2,Ql(1))⊗2 ,

and both factors are acted upon trivially by Gal(K/K ).
(b) Let σ ∈ Gal(K/K ) be any automorphism that changes the sign of

√
d. Then σ

interchanges the components of H1
ét(E1 ×E2,Ql) = H1

ét(E1,Ql) ⊕ H1
ét(E2,Ql). I.e., σ

acts with eigenvalues (−1) and 1, both of multiplicity 2. Hence, on H2
ét(E1×E2,Ql) ∼=∧2H1

ét(E1×E2,Ql), one has the eigenvalues (−1), of multiplicity 4, and 1, of multiplicity 2.
However, under σ , the two algebraic classes in H2

ét(E1,Ql) ⊕ H0
ét(E2,Ql) and

H0
ét(E1,Ql) ⊕ H2

ét(E2,Ql) are interchanged, so that the eigenvalues (−1) and 1 occur
on the algebraic part. Therefore, the eigenvalues on T are (−1), with multiplicity 3, and 1,
with multiplicity 1. Hence, every σ ∈ Gal(K/K ) as chosen above acts as (−1) on

∧maxT ,
which is enough to imply the claim. ��

Example 2.37 In [13, Examples 3.3, 3.4, and 3.5], Yu. Tschinkel and the first author
reported numerical evidence for lim infB→∞ γ (S, B) � 1/2, in the case of three K3 sur-
faces overQ of geometric Picard rank two.
This indeed follows from Corollary 2.16, once one proves that �H2 (S)�Pic(S) is

not a square in Q. For each of the examples, one has Pic SQ = Pic S and therefore
�Pic(S) = 1 ∈ Q∗/(Q∗)2. Moreover, Algorithm 2.27 determines �H2 (S) to, in this order,
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− 5 · 151 · 22490817357414371041·
387308497430149337233666358807996260780875056740850984213276970343278935342068889706146733313789 ,

53 · 2624174618795407 · 512854561846964817139494202072778341·
1215218370089028769076718102126921744353362873·
6847124397158950456921300435158115445627072734996149041990563857503 ,

and

− 47 · 3109 · 4969 · 14857095849982608071 · 445410277660928347762586764331874432202584688016149·
658652708525052699993424198738842485998115218667979560362214198830101650254490711 .

Each of the factors listed is reported as being prime by magma, version 2.21.8.

Example 2.38 Let S be the K3 surface overQ, given by the equation

X4
3 + f2(X0, X1, X2)X2

3 + f4(X0, X1, X2) = 0 , (10)

for

f2(X0, X1, X2) := X2
0 − X0X1 − X0X2 − X1X2 and

f4(X0, X1, X2) := −X3
0X2 + X0X2

1X2 − X4
1 − X4

2 .

Then the geometric Picard rank of S is 8 and the jump character of S is trivial.

Proof First of all, a space quartic S of the form (10) is of geometric Picard rank at least 8.
Indeed, the surface S comes equipped with a finite morphism p : S → S′, which is generi-
cally 2 :1, to an underlying degree two del Pezzo surface S′. The induced homomorphism
p∗ : Pic S′

K → Pic SK doubles all intersection numbers. As, on a degree two del Pezzo sur-
face, there are no non-trivial invertible sheaves that are numerically equivalent to zero,
we see that p∗ is necessarily injective. The claim follows.
Thus, for the first assertion, it suffices to find a prime p of good reduction such that

rk Pic SFp = 8. For example, p = 19, 43, 61, 101, 109, 139, 149, 151, 157, and 163 do the
job, as is easily shown in the usual way, based on counting points. Cf. [13] for more details
and further references.
On the other hand, a calculation using Gröbner bases shows that the model S of S

given by the same equation in P3
Z has bad reduction only at the primes 2, 3, 47, and 431.

Using Algorithm 2.29, one then proves the triviality of the jump character. In fact, only
the first five non-jump primes 19, 43, 61, 101 and 109 are needed in order to do this. ��

Remark 2.39 This example, and several others of the same kind, were found by a sys-
tematic inspection of all space quartics of the form (10), with coefficients from {−1, 0, 1}.
This led to a sample of 183 098 318 non-singular surfaces in total, among which only a few
hundred have trivial jump character, together with geometric Picard rank 8.

Example 2.40 Let S be the K3 surface overQ, given by the equation

X4
3 + f4(X0, X1, X2) = 0 , (11)

for

f4(X0, X1, X2) := X4
0 − X3

0X1 − 2X3
0X2 − X2

0X1X2 + X0X2
1X2 − X4

1 − X4
2 .
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Then the geometric Picard rank of S is 8 and the jump character of S is (−1
. ).

Proof Again, for the first claim, it suffices to find a prime p of good reduction such that
rk Pic SFp = 8. For example, p = 5, 13, 41, 53, 61, 73, 89, 97, 101, 109, 113, 137, 149, 157,
173, 181, 193, and 197 do the job.
Moreover, a calculation using Gröbner bases shows that the modelS of S given in P3

Z

by equation (11) has bad reduction only at the primes 2, 7, 6449, and 39 870 353. For the
obvious integral model of the underlying degree two del Pezzo surface S′, the same is true.
Algorithm 2.27 then proves that �H2 (S) = 2 · 7 · 6449 · 39 870 353 and that �H2 (S′) =
−2 · 7 · 6449 · 39 870 353. The seven good primes up to 23 are in fact sufficient.
As, on a del Pezzo surface, every cohomology class is algebraic, we conclude that

�NS(S′) = �H2 (S′). Furthermore, the linear map

p∗⊗ZQ : NS(S′)⊗ZQ = Pic S′⊗ZQ → Pic S⊗ZQ

is an isomorphism, since it is injective and either Q-vector space is of dimension 8.
Therefore, �Pic(S) = �NS(S′), which implies the claim. ��

Remark 2.41 Note that, for the surface above, Algorithm 2.29 would only prove that the
jump character is (−1

. ) or trivial. Moreover, the non-triviality criterion, given in Corol-
lary 2.26.b), could not resolve the ambiguity either.

2.7 Interaction of jumps

As is well known, the geometric Picard rank always jumps under reduction when rk Pic SK
is odd. The same is true, when there is real multiplication by some field E and one has an
odd quotient (22 − rk Pic SK )/[E :Q] [11, Theorem 1(2)]. One might speculate in these
cases, whether the jump character causes the jumps to be even larger. This does, however,
not happen, as is shown by the examples below.

Lemma 2.42 (K3 surfaces having a non-singular degree two model) Let K be a number
field and S a K3 surface over K , given by w2 = f6(X0, X1, X2), for f6 a homogeneous form of
degree 6. Write

Sλ : λw2 = f6(X0, X1, X2)

for the quadratic twist by λ ∈ K ∗. Then

�H2 (Sλ) = λ�H2 (S) and �Pic(Sλ) = λrk Pic SK−1�Pic(S) .

Proof Let p be a good prime of S such that λ is a p-adic unit. Then, for the reductions
mod p, one has that (Sλ)p is a non-trivial twist of Sp in the case that λ is a non-square
modulo p, and Sp ∼= (Sλ)p, otherwise. The assertion therefore follows from [16, Fact 25].

Remark 2.43 (The odd rank case) Assume that rk Pic SK = 1. Then, for any prime p of
good reduction, there exists some p-adic unit λ ∈ K ∗ such that �H2 (Sλ)�Pic(Sλ) is a non-
square modulo p. If the effect of the odd rank added up with that of the transcendental
character, then this would imply

rk Pic SFp
= rk Pic(Sλ)Fp

� 4 .
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There are, however, explicit degree 2 K3 surfaces known of geometric Picard rank 1 that
reduce to geometric Picard rank 2 at certain primes [47, Theorem 3.1], cf. [17, Exam-
ple 5.1.1].

Example 2.44 (The case of real multiplication) Let S be the minimal desingularisation of
the double cover of P2

Q, given by w2 = X0X1X2 ·f3(X0, X1, X2), for

f3(X0, X1, X2) := X3
0 + 3X2

0X1 − 2X2
0X2 + 5X0X2

1 − X0X2
2 + 3X3

1

− 2X2
1X2 − 3X1X2

2 + 2X3
2 .

There is strong evidence that S has real multiplication byQ(
√
3). Indeed, S is the surface

V (3)
1,1 from [21, Conjectures 5.2]. Its model S being the double cover of P2

Z given by
the same equation has bad reduction only at 2, 3, and 5. Modulo all other primes p <

1000, the reduction SFp is of geometric Picard rank 18, except for p = 263, where the
geometric Picard rank is 22. On the other hand, a sublattice of Pic SQ of rank 16 may
be explicitly given. Altogether, taking real multiplication for granted, one concludes that
rk Pic SQ = 16.
Concerning Pic SQ, there are 13 obvious generators, given by the pull-back of a general

line on P2
Q and the exceptional curves obtained by blowing up the twelve singular points

of the ramification locus. Ten of these singular points are defined over Q, the other
two over Q(

√−2). Hence, this part of Pic(SQ) ⊗Z C splits into irreducible components
as χ12

triv ⊕ χQ(
√−2). Further generators are formed by a line and two conics in P2

Q, the
preimages of which split in S. From these altogether, one calculates that

Pic(SQ) ⊗Z C = χ12
triv ⊕ χQ(

√−2) ⊕ χQ(
√
2) ⊕ χQ(

√
6) ⊕ χQ(

√−6)

and, consequently,�Pic(S) = 1. The splitting field of Pic(SQ) isQ(i,
√
2,

√
3). On the other

hand, Algorithm 2.27 yields �H2 (S) = 3, so the jump character is given by ( 3· ).
If the effect of realmultiplication addedupwith that of the transcendental character then

this would imply rk Pic SFp > 18 for every prime p such that ( 3p ) = −1, a contradiction.

3 Infinitely many rational curves
It has since long been conjectured that every K3 surface S over an algebraically closed
fieldK contains infinitelymany rational curves. Theproblemhas been settled only recently
by X. Chen, F. Gounelas, and C. Liedtke [12]. Many particular cases had been known
before, most notably, that of odd Picard rank ([27], based on the ideas of [5], cf. [3]).
Other sufficient conditions included those that S has infinitely many automorphisms,
that S is elliptic [6], or that K is of characteristic zero and S cannot be defined overQ [5,
Theorem 3].
As an application ofTheorem2.15,we show that the existence of infinitelymany rational

curves may be obtained rather easily in the situation that S is defined over Q, the jump
character is non-trivial and the surface is otherwise generic. Our result is as follows.

Theorem 3.1 Let K be a number field and S a K3 surface over K . Assume that rk Pic SK
is even, that SK has neither real nor complex multiplication, and that �H2 (S)�Pic(S) is a
non-square in K .
Then SK contains infinitely many rational curves.
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Remark 3.2 The transcendental part of T ⊂ H2(SC,Q), considered as a pure weight-2
Hodge structure, has an endomorphism algebra EndHs(T ) that may only be a totally real
field or a CM field [50, Theorem 1.6.(a) and Theorem 1.5.1]. Our assumption concerning
real and complex multiplication just means that EndHs(T ) = Q, which is fulfilled as long
as X is sufficiently general.

Lemma 3.3 Let K beanumberfieldand S aK3 surface over K .Assume that SK hasneither
real nor complex multiplication. Then, for every quadratic field extension L/K, there are
infinitely many inert primes p ⊂ OK such that the reduction SFp

is non-supersingular.

Proof The case that rk Pic SK = 20 is degenerate of the kind that T contains no (1, 1)-
classes. It is known in this situation that SK automatically has complex multiplication [39,
Theorem 4]. We may therefore assume that r := dimT � 3.
We choose a prime l and put Tl ⊂ H2

ét(SQ,Ql) to be the transcendental part of
l-adic cohomology. Then GO(Tl, 〈. , .〉)Ql

is an algebraic group over Ql . One has
GO(Tl, 〈. , .〉)Ql

∼= GOr,Ql
, so that there are two connected components when r is even,

while the group is connected for odd r.
As EndHs(T ) = Q, we know that the image of the canonical continuous represen-

tation 
l : Gal(K/K ) → GO(Tl, 〈. , .〉) is Zariski dense either in GO(Tl, 〈. , .〉) or in the
neutral component GO0(Tl, 〈. , .〉). Indeed, this follows from the Mumford–Tate conjec-
ture, proven by S.G. Tankeev [44,45], together with Yu.G. Zarhin’s explicit description
of the Mumford–Tate group in the case of a K3 surface [50, Theorem 2.2.1].
Now, let us assume, to the contrary, that for all but finitely many inert primes p, the

reduction SFp
were supersingular. We put

M :={p ⊂ OK prime ideal |
Fp is a prime field, #Fp �= l, p inert in L, p good for S, SFp

supersingular} .

Then M ⊆ I , for I the set of all inert primes, and the difference I \ M is of analytic
density zero. Indeed, the prime ideals p such thatFp is a prime field form a set of density 1.
For every prime ideal p ⊂ OK , we choose a geometric Frobenius automor-

phism Frobp ∈ Gal(K/K ). According to the Chebotarev density theorem, the elements
σ−1 Frobp σ ∈ Gal(K/K ), for p ∈ M and σ ∈ Gal(K/K ), are topologically dense in
the non-trivial coset of Gal(K/K ) modulo Gal(K/L). Thus, there are two elements
σ1, σ2 ∈ Gal(K/K ) such that

{ σjσ
−1 Frobp σ | j = 1, 2, p ∈ M, σ ∈ Gal(K/K ) }

is dense in Gal(K/K ).
On the other hand, for p ∈ M one has, due to supersingularity, p |Tr Frobp,Tl , when

writing p := #Fp. Moreover, det Frobp,Tl = ±pr . As |Tr Frobp,Tl | � rp, this shows that

(Tr Frobp,Tl )
r = ±kr det Frobp,Tl ,

for −22 < −r � k � r < 22. Accordingly, let Ck ⊂ GO(Tl, 〈. , .〉) be the closed
subscheme, defined by the equation (TrA)r = ±kr detA, and put C := ⋃r

k=−r Ck .
Then C ⊂ GO(Tl, 〈. , .〉) is a closed subscheme and invariant under conjugation.
As GO(Tl, 〈. , .〉)Ql

∼= GOr,Ql
, for r � 3, it is easily seen that C cannot include

a complete component of GO(Tl, 〈. , .〉)Ql
. I.e., one has dimC < dimGO(Tl, 〈. , .〉).
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Thus, the union σ1C ∪ σ2C cannot be the whole group. Consequently, the image of
Gal(K/K ) → GO(Tl, 〈. , .〉) is Zariski dense neither in GO(Tl, 〈. , .〉), nor in GO0(Tl, 〈. , .〉),
a contradiction. ��

Proposition 3.4 (Li–Liedtke) Let K be a number field and S ⊂ PN
K a K3 surface. Assume

that Pic S = Pic SK and that there is an infinite set J of primes such that rk Pic SFp
>

rk Pic S for p ∈ J .
Then there exist a sequence without repetitions (pj)j∈N of primes from J and a sequence
(Dpj )j∈N of rational curves Dpj ⊂ SFpj

such that the following two conditions are satisfied.
The class (Dpj ) ∈ Pic(SFpj

) does not lie in the image of Pic SK under specialisation, for
any j, and lim

j→∞degDpj = ∞.

Proof This is [27, Proposition 4.2]. ��

Proposition 3.5 (Li–Liedtke) Let K be a number field and S ⊂ PN
K a K3 surface. Assume

that there exist a sequence without repetitions (pj)j∈N of primes and a sequence (Dpj )j∈N
of rational curves Dpj ⊂ SFpj

satisfying the following conditions.

(i) Each SFpj
is non-supersingular,

(ii) (Dpj ) does not lie in the image of the Picard group Pic SK of the generic fibre under spe-
cialisation, for any j, and

(iii) lim
j→∞degDpj = ∞.

Then, for every j � 0, there exists a rational curve Dj ⊂ SK such that its special-
isation to SFpj

is reducible, containing Dpj as one of its components. In particular,
degDj > degDpj .

Proof This is shown in the proof of [27, Theorem 4.3]. ��

Proof of Theorem 3.1. As �H2 (S)�Pic(S) is a non-square in K , the field
L := K (

√
�H2 (S)�Pic(S)) is indeed a quadratic extension. By Lemma 3.3, we have an infi-

nite set J of inert primes such that SFp
is non-supersingular for every p ∈ N . Moreover,

rk Pic SFp
> rk Pic SK according to Theorem 2.15.b).

Let now K ′ ⊇ K be the splitting field of Pic SK . For each p ∈ J , there is at least one
prime p′ ⊂ OK ′ lying above p. This yields an infinite set J ′ of primes in OK ′ , to which
Proposition 3.4 applies. It provides a sequence (pj)j∈N of primes in J ′ without repetitions
and rational curvesDpj ⊂ SFpj

, not lying in the image of Pic SK under specialisation, such
that limj→∞ degDpj = ∞. Knowing this, Proposition 3.5 yields a sequence (Dj)j∈N of
rational curves on SK of degrees tending towards infinity. This completes the proof. ��
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