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RIGOROUS COMPUTATION OF THE

ENDOMORPHISM RING OF A JACOBIAN

EDGAR COSTA, NICOLAS MASCOT, JEROEN SIJSLING, AND JOHN VOIGHT

Abstract. We describe several improvements and generalizations to algo-
rithms for the rigorous computation of the endomorphism ring of the Jacobian
of a curve defined over a number field.

1. Introduction

1.1. Motivation. The computation of the geometric endomorphism ring of the
Jacobian of a curve defined over a number field is a fundamental question in arith-
metic geometry. For curves of genus 2 over Q, this was posed as a problem in 1996
by Poonen [Poo96, §13]. The structure of the endomorphism ring and its field of
definition have important implications for the arithmetic of the curve, for example
when identifying the automorphic realization of its L-function [BSS+16].

Let F be a number field with algebraic closure F al. Let X be a nice curve over F ,
let J be its Jacobian, and let Jal be its base change to F al. In this article, to compute
the geometric endomorphism ring of J means to compute an abstractly presented
Z-algebra B (associative with 1 and free of finite rank as a Z-module) equipped with
a continuous action of Gal(F al |F ) (factoring through a finite quotient) together
with a computable ring isomorphism

(1.1.1) ι : B
∼−→ End(Jal)

that commutes with the action of Gal(F al |F ). (In this overview, we are agnostic
about how to encode elements of End(Jal) in bits; see below for a representation
in terms of correspondences.) Lombardo [Lom16, §5] has shown that the geometric
endomorphism ring can be computed in principle using a day-and-night algorithm—
but this algorithm would be hopelessly slow in practice.

For a curve X of genus 2, there are practical methods to compute the geometric
endomorphism ring developed by van Wamelen [vW99a, vW99b, vW00] for curves
with complex multiplication (CM) and more recently by Kumar–Mukamel [KM16]
for curves with real multiplication (RM). A common ingredient to these approaches,
also described by Smith [Smi05] and in its Magma [BCP97] implementation by van
Wamelen [vW06], is a computation of the numerical endomorphism ring, in the
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following way. First, we embed F into C and by numerical integration we compute
a period matrix for X. Second, we find putative endomorphisms of J by computing
integer matrices (with small coefficients) that preserve the lattice generated by these
periods, up to the computed precision. Finally, from the tangent representation of
such a putative endomorphism, we compute a correspondence on X whose graph
is a divisor Y ⊂ X ×X; the divisor Y may then be rigorously shown to give rise to
an endomorphism α ∈ End(JK) over an extension K ⊇ F by exact computation.
From this computation, we can also recover the multiplication law in End(Jal) and
its Galois action [BSS+16, §6].

In the work on curves of genus 2 of van Wamelen [vW99b] and Kumar–Mukamel
[KM16], in the last step the divisor Y representing the correspondence and endo-
morphism is found by interpolation, as follows. Let P0 ∈ X(F al) be a Weierstrass
point on X. Given a point P ∈ X(F al), by inverting the Abel–Jacobi map we
compute the (generically unique) pair of points Q1, Q2 ∈ X(F al) such that

(1.1.2) α([P − P0]) = [Q1 +Q2 − 2P0] ∈ Jal = Pic0(X)(F al).

In this approach, the points Q1, Q2 are computed numerically, and the divisor Y
is found by linear algebra by fitting {(P,Q1), (P,Q2)} ⊂ Y for a sufficiently large
sample set of points P on X.

1.2. Contributions. In this paper, we revisit this strategy and seek to augment its
practical performance in several respects. Our methods apply to curves of arbitrary
genus as well as isogenies between Jacobians, but we pay particular attention to
the case of the endomorphism ring of a curve of genus 2 and restrict to this case in
the introduction. We present three main ideas which can be read independently.

First, in section 3, we develop more robust numerical infrastructure by applying
methods of Khuri-Makdisi [KM04] for computing in the group law of the Jacobian.
Instead of directly inverting the Abel–Jacobi map at point, we divide this point by
a large power of 2 to bring it close to the origin where Newton iteration converges
well; then we multiply back using methods of linear series. In this way, we obtain
increased stability for computing the equality (1.1.2) numerically.

Second, in section 5, we show how to dispense entirely with numerical inversion
of the Abel–Jacobi map (the final interpolation step) by working infinitesimally
instead. Let P0 ∈ X(K) be a base point on X over a finite extension K ⊇ F . We
then calculate the equality (1.1.2) with P = P̃0 ∈ X(K[[t]]) the formal expansion
of P0 with respect to a uniformizer t at P0. On an affine patch, we may think
of P̃0 as the local expansion of the coordinate functions at P0 in the parameter
t. The points Q1, Q2 accordingly belong to a ring of Puiseux series, and we can
compute Q1, Q2 using a successive lifting procedure with exact linear algebra to
sufficient precision to fit the divisor Y . For completeness (and as a good warmup),
we also consider in section 4 a hybrid method, where we compute (1.1.2) for a single
suitable point P '= P0 and then successively lift over a ring of power series instead.
In both cases, we obtain further speedups by working over finite fields and using
a fractional version of the Chinese remainder theorem. These methods work quite
well in practice.

Third, in section 7, we consider upper bounds on the dimension of the endo-
morphism algebra as a Q-vector space, used to match the lower bounds above and
thereby sandwiching the endomorphism ring. Lombardo [Lom16, §6] has given
such upper bounds in genus 2 by examining Frobenius polynomials; we consider a
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ENDOMORPHISM ALGEBRA COMPUTATIONS 1305

slightly different approach in this case by first bounding from above the dimension
of the subalgebra of End(Jal)Q fixed under the Rosati involution (using the known
Tate conjecture for the reduction of the abelian surface modulo primes). This
specialized algorithm in genus 2 again is quite practical. We then generalize this
approach to higher genus: applying work of Zywina [Zyw14], we again find rigorous
upper bounds and we show that these are sharp if the Mumford–Tate conjecture
holds for the Jacobian and if a certain hypothesis on the independence of Frobenius
polynomials holds.

We conclude in section 8 with some examples. Confirming computations of
Lombardo [Lom16, §8.2], we also verify the correctness of the endomorphism data in
the L-functions and Modular Forms DataBase (LMFDB) [LMF16] which contains
66 158 curves of genus 2 with small minimal absolute discriminant.

Our implementation of these results is available online [CMS17], and all examples
in this paper can be inspected in detail by going to its subdirectory endomorphisms
/examples/paper. This code has already been used by Cunningham–Dembélé to
establish the paramodularity of an abelian threefold in the context of functoriality
[CD17].

2. Setup

To begin, we set up some notation and background, and we discuss representa-
tions of endomorphisms in bits.

2.1. Notation. Throughout this article, we use the following notation. Let F ⊂
C be a number field with algebraic closure F al. Let X be a nice (i.e., smooth,
projective, and geometrically integral) curve over F of genus g. Let J = Jac(X)
be the Jacobian of X. We abbreviate Jal = JF al for the base change of J to F al.
When discussing algorithms, we assume that X is presented in bits by equations in
affine or projective space; by contrast, we will not need to describe J as a variety
defined by equations, as we will only need to describe the points of J .

2.2. Numerical endomorphisms. The first step in computing the endomorphism
ring is to compute a numerical approximation to it. This technique is explained in
detail by van Wamelen [vW06] in its Magma [BCP97] implementation for hyper-
elliptic curves. See also the sketch by Booker–Sijsling–Sutherland–Voight–Yasaki
[BSS+16, §6.1] where with a little more care the Galois structure on the resulting
approximate endomorphism ring is recovered as well.

The main ingredients of the computation of the numerical endomorphism ring are
the computation of a period matrix of X—i.e., the periods of an F -basis ω1, . . . ,ωg

of the space of global differential 1-forms on X over a chosen symplectic homology
basis—followed by lattice methods. (For more detail on period computations, see
the next section.) The output of this numerical algorithm is a putative Z-basis
R1, . . . , Rd ∈ M2g(Z) for the ring End(Jal). These matrices represent the action
of the corresponding endomorphisms on a chosen basis of the homology group
H1(X,Z), and accordingly, the corresponding ring structure is induced by matrix
multiplication. If Π ∈ Mg,2g(C) is the period matrix of J , then the equality

(2.2.1) MΠ = ΠR

holds, where M ∈ Mg(C) is the representation on the tangent space H0(X,ωX)∗,
given by left multiplication. Equation (2.2.1) allows us to convert (numerically)
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between the matrices Rj ∈ M2g(Z) and matrices Mj ∈ Mg(C) describing the action
on the tangent space, which allows us to descend to Mg(F al) and hence to Mg(K)
for extensions of K by using Galois theory.

We take this output as being given for the purposes of this article; our goal is to
certify its correctness.

Remark 2.2.2. In other places in the literature, equation (2.2.1) is transposed. We
chose this convention because it makes the map End(J) → End(H0(X,ωX)∗) a
ring homomorphism.

Example 2.2.3. We will follow one example throughout this paper, followed by
several other examples in the last section.

Consider the genus 2 curve X : y2 = x5 − x4 + 4x3 − 8x2 + 5x− 1 with LMFDB
label 262144.d.524288.1. As described above, we find the period matrix

(2.2.4) Π ≈
(
1.851− 0.1795i 3.111 + 2.027i −1.517 + 0.08976i 1.851
0.8358− 2.866i 0.3626 + 0.1269i −1.727 + 1.433i 0.8358

)

(computed to 600 digits of precision in about 10 CPU seconds on a standard desktop
machine). We then verify that X has numerical quaternionic multiplication. More
precisely, we have numerical evidence that endomorphism ring is a maximal order
in the quaternion algebra over Q with discriminant 6. For example, we can identify

a putative endomorphism α
?
∈ End(JC) with representations

(2.2.5) M =

(
0

√
2√

2 0

)
and R =





0 −3 0 −1
−2 0 1 0
0 −4 0 −2
4 0 −3 0



 ,

which satisfies α2 = 2.

The numerical stability of the numerical method outlined above has not been
analyzed. The Magma implementation will occasionally throw an error because
of intervening numerical instability (see Example 3.4.9 below); this can often be
resolved by slightly transforming the defining equation of X.

Remark 2.2.6. There are several available implementations to compute the period
matrix and the Abel–Jacobi map in addition to Magma. A recent robust method
to calculate period matrices of cyclic covers of the projective line was developed by
Molin–Neurohr [MN17]. We also recommend the introduction of this reference for
a survey of other available implementations.

Work continues: Neurohr is working on the generalization of these algorithms to
(possibly singular) plane models of general algebraic curves, and for these curves a
SageMath implementation by Nils Bruin and Alexandre Zotine is also in progress.

Remark 2.2.7. For hyperelliptic curves and plane quartics we may also speed up the
calculation of periods through arithmetic–geometric mean (AGM) methods. So far
this has been implemented in the hyperelliptic case [Sij16]. While this delivers an
enormous speedup, the AGM method introduces a change of basis of differentials,
which makes us lose information regarding the Galois action.

3. Complex endomorphisms

In this section, we describe a numerically stable method for inversion of the
Abel–Jacobi map.
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3.1. Abel–Jacobi setup. Let P0 ∈ X(C) be a base point and let

(3.1.1)
AJP0 : X → J

P *→ [P − P0]

be the Abel–Jacobi map associated to P0. Complex analytically, using our chosen
basis ω1, . . . ,ωg of H0(X,ωX) we identify J(C) + Cg/Λ where Λ + Z2g is the
period lattice of J . Under this isomorphism the Abel–Jacobi map is

(3.1.2) AJP0(P ) =

(∫ P

P0

ωi

)

i=1,...,g

∈ Cg/Λ.

The numerical evaluation of these integrals is standard: we compute a low degree
map ϕ : X → P1, make careful choices of the branch cuts of ϕ, and then integrate
along a polygonal path that avoids the ramification points of ϕ.

Example 3.1.3. SupposeX is a hyperelliptic curve of genus g given by an equation
of the form y2 = f(x) where f(x) is squarefree of degree 2g+1 or 2g+2. Then an
F -basis of differentials is given by

(3.1.4) ω1 =
dx

y
, ω2 = x

dx

y
, . . . , ωg = xg−1 dx

y
.

In the x-plane, we draw a polygonal path γx from x(P0) to x(P ) staying away from
the roots of f(x) different from P0, P . We then lift γx to a continuous path γ on
X.

Suppose for simplicity that P0 is not a Weierstrass point, so f(x(P0)) '= 0. (The
case where P0 is a Weierstrass point can be handled similarly by a choice of square
root and more careful analysis.) Then y(P0) =

√
f(x(P0)) selects a branch of the

square root. To keep track of the square root along γ, we use four determinations
of the square root over C, with respective branch cuts along the half-axes Re z > 0,
Re z < 0, Im z > 0, and Im z < 0. On each segment of γx, we change the branch
of the square root whenever Re f or Im f changes sign, so as to keep the branch
cut away from the values of f(x). For instance, in the case illustrated by Figure
3.1.5, letting t be the parameter of integration and assuming we started with the
determination whose branch cut is along Im z > 0, we would first switch to the
determination whose branch cut is along Re z < 0 when Im f(γx(t)) changes from
negative to positive, and then to the determination whose branch cut is along
Im z < 0 when Re f(γx(t)) changes from positive to negative, so that the branch
cut is always at least 90◦ away from f(γx(t)). Of course, the sign of the square
root may need to be corrected every time we switch from one determination to
another, so as to get a continuous determination of

√
f(γ(t)). Also note that by

construction, the integration path avoids the roots of f , so the signs of Re f(γ(t))
and Im f(γ(t)) never change simultaneously.

In this way, the integrals
∫ P
P0

ωj can be computed, and thereby the Abel–Jacobi
map.

Now let O0 = O0,1 + · · · + O0,g be an effective (“origin”) divisor of degree g.
Riemann–Roch ensures that for a generic choice of pairwise distinct points O0,k ∈
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•f = 0

Im f < 0

Im f > 0

Re f > 0

Re f < 0
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Figure 3.1.5. Changing the branches of
√
f(x) along γ

X(C), the derivative of the Abel–Jacobi map

(3.1.6)

AJ: Symg(X)(C) → Cg/Λ

{Q1, · · · , Qg} *→
g∑

k=1

(∫ Qk

O0,k

ωj

)

j=1,··· ,g

is nonsingular at O0, so we assume that this is indeed the case from now on. As
explained by Mumford, for a general point [D] ∈ J(C) = Pic0(X)(C), by Riemann–
Roch we can write

(3.1.7) [D] = [Q1 + · · ·+Qg −O0]

with Q1, . . . , Qg ∈ X(C) unique up to permutation; this defines a rational map:

(3.1.8)
Mum: J !!" Symg(X)

[D] *→ {Q1, . . . , Qg}.

The composition AJ ◦Mum is the identity map on J , so then Mum is a right inverse
to AJ. Analytically, for b ∈ Cg/Λ, we have Mum(b) = {Q1, . . . , Qg} where

(3.1.9)

(
g∑

k=1

∫ Qk

O0,k

ωj

)

j=1,...,g

≡ b (mod Λ).

Now let α ∈ End(JC) be a nonzero numerical endomorphism represented by the
matrix M ∈ Mg(C) as in (2.2.1). Consider the following composed rational map:

(3.1.10) αX : X
AJ−−→ J

α−→ J
Mum!!!!" Symg(X).

Then we have αX(P ) = {Q1, . . . , Qg} if and only if

(3.1.11) α([P − P0]) = [Q1 + · · ·+Qg −O0].

As mentioned in the introduction, the map αX can be used to rigorously certify
that α is an endomorphism of J by interpolation. We just saw how to compute
the Abel–Jacobi map via integration, and the application of α amounts to matrix
multiplication by M . So the tricky aspect is in computing the map Mum, inverting
the Abel–Jacobi map. We will show in the next subsections how to accomplish this
task in a more robust way than by naive inversion.
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3.2. Algorithms of Khuri-Makdisi. Our method involves performing arithmetic
in J , and for this purpose we use algorithms developed by Khuri-Makdisi [KM04].
Let D0 ∈ Div(X)(C) be a divisor of degree d0 > 2g on X. By Riemann–Roch,
every class in Pic0(X)(C) is of the form [D−D0] where D ∈ Div(X)(C) is effective
of degree d0. We represent the class [D −D0] by the subspace

(3.2.1) WD := H0(X, 3D0 −D) ⊆ V := H0(X, 3D0).

The divisor D is usually not unique, hence neither is this representation of a class
in Pic0(X)(C) as a subspace of V . However, Khuri-Makdisi has exhibited a method
[KM04, Proposition/Algorithm 4.3] that, given as input two subspaces WD1 and
WD2 representing two classes in Pic0(X)(C), computes as output a subspace WD3

corresponding to a divisor D3 such that D1 +D2 +D3 ∼ 3D0 by performing linear
algebra in the spaces V and V2 := H0(X, 6D0). In this way, we can compute
explicitly with the group law in J .

Example 3.2.2. Suppose X is as in Example 3.1.3. We find a basis for V and
V2 as follows. A natural choice for D0 is (g + 1)∞X , where ∞X = π−1(∞) is the
preimage of ∞ ∈ P1 under the hyperelliptic map x : X → P1. If f has even degree,
then ∞X is the sum of two distinct points; if f has odd degree, then ∞X is twice
a point. In either case, the divisor (g − 1)∞X is a canonical divisor on X, and
deg∞X = 2; by Riemann–Roch for m ≥ g + 1 the space H0(X,m∞X) has basis
given by 1, x, . . . , xm, y, xy, . . . , xm−g−1y.

In what follows, we represent functions in V2 ! V by their evaluation at any
N > 6d0 points of X(C) disjoint from the support of D0.

3.3. Inverting the Abel–Jacobi map. Let b ∈ Cg/Λ correspond to a divisor
class [C] ∈ Pic0(X)(C); for example, b = M AJ(P ) for P ∈ X(C) and M repre-
senting a putative endomorphism. We now explain how to compute Mum(b) =
{Q1, . . . , Qg} as in (3.1.9), under a genericity hypothesis.

If we start with arbitrary values for Q1, . . . , Qg, we can adjust these points by
Newton iteration until equality is satisfied to the desired precision. However, there
are no guarantees on the convergence of the Newton iteration!

Step 1 (Divide the point and Newton iterate). Following Mascot [Mas13, §3.5],
we first replace b with a point b′ very close to 0 modulo Λ and such that 2mb′ ≡
b (mod Λ) for some m ∈ Z≥0. For example, b′ may be obtained by lifting b to Cg

and dividing the resulting vector by 2m.
As b′ is very close to 0 modulo Λ, the equation (3.1.9) should have a solution

{Q′
k}j with Q′

k close to O0,k for k = 1, . . . , g since the derivative of the Abel–Jacobi
map AJ at O0 is nonsingular by assumption. We start with Q′

k = O0,k as initial
guesses, and then use Newton iteration until (3.1.9) holds to the desired precision.
If Newton iteration does not seem to converge, we increase the value of m and start
over. The probability of success of the method described above increases with m.
In practice, we found that starting with m = 10 was a good compromise between
speed and success rate.

In this way, we find points Q′
1, . . . , Q

′
g such that the linear equivalence

(3.3.1) C ∼ 2m
(

g∑

k=1

Q′
k −O0

)

holds in Div(X)0(C).
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1310 E. COSTA, N. MASCOT, J. SIJSLING, AND J. VOIGHT

Step 2 (Recover the divisor by applying an adaptation of the Khuri-Makdisi algo-
rithm). From this, we want to compute Q1, . . . , Qg such that

(3.3.2) C ∼
g∑

k=1

Qk −O0.

For this purpose, we work with divisors and the algorithms of the previous section.
But these algorithms only deal with divisor classes of the form [D − D0] with
degD = d0 whereas we would like to work with [

∑g
k=1Q

′
k −O0]. So we adapt the

algorithms in the following way.
We choose d0− g auxiliary points P1, . . . , Pd0−g ∈ X(C) distinct from the points

Q′
k, the points O0,k, and the support of D0. Consider the divisors

(3.3.3)

D+ :=
g∑

k=1

Q′
k +

d0−g∑

k=1

Pk,

D− := O0 +
d0−g∑

k=1

Pk,

both effective of degree d0. We then compute the subspaces WD+ and WD− of V ,
and apply the subtraction algorithm of Khuri-Makdisi: we obtain a subspace WD′

corresponding to an effective divisor D′ such that

(3.3.4) D′ −D0 ∼
(

g∑

k=1

Q′
k +

d0−g∑

k=1

Pk

)
−
(
O0 +

d0−g∑

k=1

Pk

)
=

g∑

k=1

Q′
k −O0.

We then repeatedly use the doubling algorithm to compute WD, where D is a
divisor such that D−D0 ∼ 2m(D′ −D0). We have thus computed a subspace WD

such that

(3.3.5) D −D0 ∼ C ∼
g∑

k=1

Qk −O0.

To conclude, we recover the points Q1, . . . , Qg from WD in a few more steps. We
proceed as in Mascot [Mas13, §3.6].

Step 3 (Compute E ∼
∑

k Qk). We apply the addition algorithm to WD and WD−

and negate the result. (In fact, Khuri-Makdisi’s algorithm computes these two
steps in one.) This results in a subspace W∆ where ∆ is an effective divisor with
deg∆ = d0 and

(3.3.6) ∆−D0 ∼ (D0 −D) + (D0 −D−).

By (3.3.5), we have

(3.3.7)
g∑

k=1

Qk ∼ E, where E := 2D0 −∆−
d0−g∑

k=1

Pk

and deg(E) = g.

Step 4 (Compute Z = H0(X,E)). Next, we compute

(3.3.8) H0(X, 3D0 −∆) ∩H0(X, 2D0)
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ENDOMORPHISM ALGEBRA COMPUTATIONS 1311

and the subspace Z of this intersection of functions that vanish at all Pk. Generi-
cally, we have

(3.3.9) Z = H0(X,E)

and since deg(E) = g, by Riemann–Roch we have dimZ ≥ 1. The genericity
assumption may fail, but we can detect its failure by comparing the (numerical)
dimension of the resulting spaces with the value predicted by Riemann–Roch, and
rectify its failure by restarting with different auxiliary points Pk.

Step 5 (Recover the points Qi). Now let z ∈ Z be nonzero; then

(3.3.10) div z = Q− E

where Q is an effective divisor with degQ = g and

(3.3.11) Q ∼
g∑

k=1

Qk

by (3.3.7); as we are always working up to linear equivalence, we may take Q =∑g
k=1Qk as desired. To compute div z and circumnavigate the unknown divisor

∆, we compute the subspace

(3.3.12) Z ′ :=
{
v ∈ V : vW∆ ⊆ zV

}
,

where zV = H0(X, 3D0 − div z) and W∆ = H0(X, 3D0 − ∆). Since 3D0 − ∆ is
basepoint-free (its degree exceeds 2g), we conclude that
(3.3.13)

Z ′ = H0
(
X, 3D0 − div z − (3D0 −∆)

)
= H0

(
X, 2D0 −

d0−g∑

k=1

Pk −
g∑

k=1

Qk

)
.

We then recover the divisor
∑

k Pk +
∑

k Qk as the intersection of the locus of
zeros of the functions in Z ′, and then the points Qk themselves whenever they are
distinct from the chosen auxiliary points Pk. Once more, this procedure works for
generic input, and we can check if we are in the generic case and rectify failure if
this turns out not to be the case.

Example 3.3.14. In the case of a hyperelliptic curve, as in Example 3.2.2 with
D0 = (g + 1)∞X , the method described above leads us to

(3.3.15) T = H0
(
X, (2g + 2)∞X −

∑d0−g
k=1 Pk −

∑g
k=1Qk

)
,

which consists of functions which are linear combinations of xn and xny for n ∈ Z!0.
These linear combinations thus describe polynomial equations that the coordinates
of the points Pk and Qk must satisfy, which allows us to recover the Qk.

Remark 3.3.16. Khuri-Makdisi’s method relies only on linear algebra operations
in vector spaces of dimension O(g log g). As we are working numerically, we must
rely upon numerical linear algebra, and in our implementation we performed most
of these operations by QR decompositions, a good trade-off between speed and
stability. In practice, our loss of precision was at most 10 precision bits per Jacobian
operation.
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3.4. Examples. We now present two examples of the above approach.

Example 3.4.1. We return to Example 2.2.3. Let P0 = (1, 0) and P = (2, 5).
Integrating, we find AJP0(P ) ≡ b (mod Λ) where

(3.4.2) b ≈ (0.2525, 1.475) ,

We now apply the methods of section 3.3. We arbitrarily set

(3.4.3)
O0,1 = (0.9163 + 0.8483i, 1.104− 1.884i) ,

O0,2 = (0.3311 + 0.9656i, 2.159− 0.3835i) .

The first step inverts the Abel–Jacobi map to obtain

(3.4.4) 2−10Mb = AJ({Q′
1, Q

′
2}),

where

(3.4.5)
Q′

1 ≈ (0.9224 + 0.8521i, 1.103− 1.909i) ,

Q′
2 ≈ (0.3257 + 0.9592i, 2.146− 0.3645i) .

The remaining steps (adapting the algorithms of Khuri-Makdisi) compute Q1 and
Q2 such that

(3.4.6) 210[Q′
1 +Q′

2 −O0,1 −O0,2] = [Q1 +Q2 − 2P0],

where

(3.4.7) Qk ≈ (0.7500± 0.4330i, −0.4419± 0.7655i) .

Using the LLL algorithm [LLL82], we guess that the x-coordinates of Q1 and Q2

satisfy 4x2 − 6x+ 3 = 0, and under this assumption we have

(3.4.8) Qk =

(
3± i

√
3

4
,
−5

√
2± 5i

√
6

16

)
.

All the computations above were performed with at least 600 decimal digits. On a
standard desktop machine, figuring out the right number of points for the Gauss–
Legendre quadrature and calculating b took less than 3 CPU seconds, and the
computation of the points Q1 and Q2 took around 2 CPU minutes.

Example 3.4.9. The Magma functions

ToAnalyticJacobian

and

FromAnalyticJacobian

provide us similar functionality. However, we have found these algorithms to be
sometimes numerically unstable (in v2.22-6).

For example, consider the curve with LMFDB label 169.a.169.1, a model for
the modular curve X1(13) with equation

(3.4.10) X : y2 = x6 + 4x5 + 6x4 + 2x3 + x2 + 2x+ 1.

We find a numerical endomorphism α with α2 = 1 defined over Q(λ) where λ =
2 cos(2π/13), with matrix
(3.4.11)

M =
1

13

(
−7λ5 − 8λ4 + 32λ3 + 27λ2 − 27λ− 10 −5λ5 − 2λ4 + 21λ3 + 10λ2 − 10λ− 9
2λ5 + 6λ4 − 11λ3 − 17λ2 + 17λ+ 1 7λ5 + 8λ4 − 32λ3 − 27λ2 + 27λ+ 10

)
.
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For a random point P , Magma is unable to compute

FromAnalyticJacobian (α · ToAnalyticJacobian(P,X), X)

in precision 600. A workaround in this case is to replace α by α + 1 instead; it is
unclear why such a modification restores numerical stability (sometimes a change
of variables in the equation also suffices).

In comparison, if we set P0 = (0, 1), P1 = (−1, 1), and O0 = {∞+,∞−}, then
thanks to the above approach we can compute that

(3.4.12) M AJP0(P1) = AJ({Q1, Q2}),

or in other words

(3.4.13) α([P1 − P0]) = [Q1 +Q2 −∞+ −∞−],

where

(3.4.14)
Q1 ≈ (−1.3772, 1.8730),

Q2 ≈ (2.6511, 34.8995).

With 600 decimal digits of accuracy, the computation takes about 1 CPU minute.
The LLL algorithm then suggests that

(3.4.15)
Q1 = (θ2 + 2θ − 2, 11λ5 + 18λ4 − 43λ3 − 66λ2 + 26λ+ 33),

Q2 = (−θ2 − θ + 3, −6λ5 + 6λ4 + 31λ3 − 19λ2 − 21λ+ 5),

where θ = λ5 − 5λ3 + 6λ, which holds to at least 500 decimal places.

Remark 3.4.16. In the example above, it is surprising that Q1 and Q2 are both
defined (instead of being conjugate) over Q(λ) and that their x-coordinates are
defined over the subfield Q(θ). This happens because α turns out to be induced by
a modular (sometimes called a Fricke) involution of X1(13) (to be precise, the one
attached to the root of unity e8πi/13), and because X1(13)(Q) only contains cusps,
so that P0, P1, ∞+, ∞− and thus Q1 and Q2 are cusps.

4. Newton lift

In the previous section, we showed how one can numerically compute the com-
posite map

αX : X
AJP0−−−→ J

α−→ J
Mum!!!!" Symg(X)

given α ∈ End(JC). As explained in the introduction, by interpolation we can then
fit a divisor Y ⊂ X ×X representing the graph of the numerical endomorphism α.
When this divisor is defined over a number field and the induced homomorphism
on differentials as in Smith [Smi05, §3.5] is our given tangent matrix, then we
have successfully verified the existence of the corresponding endomorphism. In this
section—one that can be read as a warmup for the next section or as a hybrid
method—we only use numerical approximation for a single point, after which we
use a Newton lift to express the endomorphism in a formal neighborhood.
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4.1. Setup. We retain the notation of the previous section. We further suppose
that the base point P0 ∈ X(K) and origin divisor O0 =

∑g
i=1 O0,i ∈ Div0(X)(K)

are defined over a finite extension K ⊇ F . Enlarging K further if necessary, we
choose P ∈ X(K) distinct from P0 and suppose (as computed in the previous
section, or another way) that we are given points Q1, . . . , Qg ∈ X(K) such that
numerically we have

(4.1.1) αX(P ) = {Q1, . . . , Qg}.
Moreover, possibly enlarging K again, we may assume the matrix M representing
the action of α on differentials has entries in K.

For concreteness, we will exhibit the method for the case of a hyperelliptic curve;
we restore generality in the next section. Suppose X : y2 = f(x) is hyperelliptic
as in Example 3.1.3. Let t := x − x(P ); we think of t as a formal parameter. We
further assume that t is a uniformizer at P : equivalently, f(x(P )) '= 0, i.e., P is
not a Weierstrass point. Since X is smooth at P , there exists a lift of P to a point
P̃ ∈ X(K[[t]]) with

x(P̃ ) = x(P ) + t = x,

y(P̃ ) = y(P ) + O(t).
(4.1.2)

We can think of P̃ as expressing the expansion of the coordinates x, y with respect
to the parameter t. Indeed, we have

(4.1.3) y(P̃ ) =
√

f(x(P ) + t) ∈ K[[t]]

expanded in the usual way, since f(x(P )) '= 0 and the square root is specified by
y(P̃ ) = y(P ) +O(t). Alternatively, we can think of P̃ as a formal neighborhood of
P .

The Abel–Jacobi map, the putative endomorphism α, and the Mumford map ex-
tend to the ring K[[t]]. By a lifting procedure, we will compute points Q̃1, . . . , Q̃g ∈
X(K[[t]]) to arbitrary t-adic precision such that

(4.1.4) αX

(
P̃
)
=

{
Q̃1, . . . , Q̃g

}

with

(4.1.5) x
(
Q̃j

)
= x(Qj) +O(t).

We then attempt to fit a divisor Y ⊂ X×X defined over K to the point
{
(P̃ , Q̃j)}j ,

and proceed as before. The only difference is that the divisor now interpolates
this single infinitesimal point instead of many points of the form

(
R,αX(R)

)
with

R ∈ X(C).

4.2. Lifting procedure. For a generic choice of P , we may assume that y(Qj) '= 0
for all j and that the values x(Qj) are all distinct. In practice, we may also keep
P and simply replace α ← α+m with small m ∈ Z to achieve this.

Let xj(t) := x(Q̃j). The fact that the matrix M = (mij)i,j describes the action
of α on the F -basis of differentials xj dx/y implies (by an argument described in
detail in the next section) that

(4.2.1)
g∑

j=1

xk
j dxj√
f(xj)

=




g−1∑

j=0

mijx
j



 dx√
f(x)
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for all k = 0, . . . , g−1. In this equation, the branches of the square roots are chosen
so that

√
f(x) = y(P ) +O(t) and that

√
f(xj) = y(Qj) + O(t) for all j. Dividing

by dx = dt, (4.2.1) can be rewritten in matrix form:

(4.2.2) WDx′ =
1√
f(x)

Mw,

where

(4.2.3)

W :=





1 · · · 1
x1 · · · xg
...

. . .
...

xg−1
1 · · · xg−1

g




,

D := diag
(√

f(x1)
−1

, . . . ,
√
f(xg)

−1)
,

x′ :=
(
dx1/ dt, . . . , dxg/ dt

)T
, and

w :=
(
1, x, . . . , xg−1

)T
,

where T denotes the transpose. Since the values x(Qj) ∈ K are all distinct, the
Vandermonde matrix W is invertible over K[[t]]. Therefore, equation (4.2.2) allows
us to solve for x′:

(4.2.4) x′ =
1√
f(x)

D−1W−1Mw.

In practice, we use (4.2.4) to solve for the series xj(t) ∈ K[[t]] iteratively to any
desired t-adic accuracy: if they are known up to precision O(tn) for some n ∈ Z≥1,
we may apply the identity (4.2.4) and integrate to get the series up to O(tn+1).

Example 4.2.5. We return to Example 3.4.1, and take P = (2, 5) a non-Weierstrass
point. We obtain

(4.2.6) xj(t) =
1

4

(
3±i

√
3
)
+

1

12
i
(√

3±3i
)
t+

1

144

(
9∓11i

√
3
)
t2+

±5i

36
√
3
t3+O

(
t4
)
,

where t = x− 2 is a uniformizer at P . Taking advantage of the evident symmetry
of x1, x2, we find

(4.2.7) x1(t) + x2(t) =
4t+ 6

(t+ 2)2
, x1(t)x2(t) =

2t+ 3

(t+ 2)2
.

Thus

(4.2.8) xj(t) =
2t+ 3± i(t+ 1)

√
2t+ 3

(t+ 2)2
.

In section 6 we will tackle the problem of how to certify that α is indeed an
endomorphism, and that the rational functions (4.2.7) are correct: see Example
6.1.6.

Here is another way: for genus 2 curves we have an upper bound for the degrees
of x1(t) + x2(t) and x1(t)x2(t) as rational functions, given by

(4.2.9) d := tr(αα†) = tr(RJRTJ−1)/2 = 〈α(Θ),Θ〉,
where † denotes the Rosati involution and J is the standard symplectic matrix; see
van Wamelen [vW99b, §3] for more details and Remark 6.1.5 for a possible general-
ization to higher genus. Therefore, to deduce the pair (x1(t) + x2(t), x1(t)x2(t)) it
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is sufficient to compute xj(t) up to precision O(t2d+1). Furthermore, we may speed
up the process significantly by doing this modulo many small primes and applying
a version of the Chinese remainder theorem with denominators (involving LLL).

In this example, we have d = 4 and we deduced the pair (x1(t)+x2(t), x1(t)x2(t))
modulo 131 62-bit primes that split completely in Q(

√
2,
√
−3) by computing

xj(t) up to precision O(t9). All together deducing (x1(t) + x2(t), x1(t)x2(t)) given
(Q1, Q2) took less than 5 CPU seconds on a standard desktop machine.

(A third possible way to certify α using (4.2.7) is by following van Wamelen’s
approach [vW99b, §9].)

5. Puiseux lift

In the previous section, we lifted a single computation of αX(P ) =
∑g

j=1Qj−O0

to a formal neighborhood. In this section, we show how one can dispense with even
this one numerical computation to obtain an exact certification algorithm for the
matrix of a putative endomorphism.

5.1. Setup. We continue our notation but restore generality, once more allowing
X to be a general curve. We may for example represent X by a plane model that
is smooth at P0 (but possibly with singularities elsewhere). Let P0 ∈ X(K) and
let M ∈ Mg(K) be the tangent representation of a putative endomorphism α on an
F -basis of H0(X,ωX)∗.

We now make the additional assumption that P0 is not a Weierstrass point.
Then by Riemann–Roch, the map

Symg(X) → J

{Q1, . . . , Qg} *→
g∑

j=1

(Qj − P0)
(5.1.1)

is locally an isomorphism around {P0, . . . , P0}, in the sense that it is a birational
map that restricts to an isomorphism in a neighborhood of said point.

Let x ∈ F (X) be a local parameter for X at P0. Then x : X → P1 is also a
rational function, and we use the same symbol for this map. Since X is smooth at
P0, we obtain a canonical point P̃0 ∈ X(F [[x]]) such that:

(i) P̃0 reduces to P0 under the reduction map X(F [[x]]) → X(F ), and
(ii) x(P̃0) = x ∈ F [[x]].

On an affine open set U 7 P0 of X with U embedded into affine space over F , we
may think of P̃0 as providing the local expansions of the coordinates at P0 in the
local ring at P0.

Since (5.1.1) is locally an isomorphism at P0, we can locally describe αX(P̃0)
uniquely as

(5.1.2) αX(P̃0) = {Q̃1, . . . , Q̃g} ∈ Symg(X)(F [[x]]).

The reduction to F of {Q̃i}i is the g-fold multiple {P0, . . . , P0} ∈ Symg(X)(F ). The
map Xg → Symg(X) is ramified above {P0, . . . , P0}, so in general we cannot expect
to have Q̃i ∈ X(F [[x]]). Instead, consider the generic fiber of the point {Q̃i}i, an
element of Symg(X)(F ((x))); this generic fiber lifts to a point of Xg defined over
some finite extension of F ((x)). Since charF = 0, the algebraic closure of F ((x)) is
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the field F al((x1/∞)) of Puiseux series over F al. Since X is smooth at P0, the lift
of {Q̃i}i is even a point on Xg over the ring of integral Puiseux series F al[[x1/∞]].

In other words, if we allow ramification (fractional exponents) in our formal
expansion, we can deform the equality αX(P0) = {P0, . . . , P0} to a formal neigh-
borhood of P0.

5.2. Lifting procedure. The lifting procedure to obtain this deformation algo-
rithmically is similar to the one outlined in the previous section; here we provide
complete details. For i = 1, . . . , g, let

(5.2.1) ωi = fi dx

be an F -basis of H0(X,ωX) with fi ∈ F (X). The functions fi are by definition
regular at P0, so they admit a power series expansion fi(x) ∈ F [[x]] in the uni-
formizing parameter x. Because P0 is not a Weierstrass point, we may without loss
of generality choose ωi in row echelonized form, i.e., so that

(5.2.2) ωi = (xi−1 +O(xi)) dx

for i = 1, . . . , g. (If it is more convenient, we may even work with a full echelonized
basis.)

For j = 1, . . . , g, let

(5.2.3) xj = x(Q̃j) ∈ F al[[x1/∞]]

be the x-coordinates of the points Q̃j on the graph of α above P̃ .

Proposition 5.2.4. Let {ω1, . . . ,ωg} be a basis of H0(X,ωX), with ωi = fi dx
around P0. Let M = (mi,j)i,j be the tangent representation of α with respect to the
dual of this basis. Then we have

(5.2.5)
g∑

j=1

fi(xj) dxj =
g∑

j=1

mi,jfj(x) dx for all i = 1, . . . , g.

Proof. This is essentially proven by Smith [Smi05, §3.5]. Let Y be the divisor
corresponding to α, and let π1 and π2 be the two projection maps from Y to X.
Then α∗ = (π2)∗π∗

1 (see [Smi05]), which in an infinitesimal neighborhood of P0

becomes (5.2.5).
An alternative argument is as follows. By construction, we have

(5.2.6)
g∑

j=1

(Q̃j − P0) = α(P̃0 − P0).

On the tangent space, addition on the Jacobian induces the usual addition. Con-
sidering both sides of (5.2.6) over F al[[x1/∞]] and substituting the resulting power
series in the differential form ωi, we obtain

(5.2.7)
g∑

j=1

x∗
j (ωi) = x∗(α∗(ωi))) for all i = 1, . . . , g,

which also yields (5.2.5). #

We iteratively solve (5.2.5) as follows. We begin by computing initial expansions

(5.2.8) xj = cj,νx
ν +O(xν+1/e),
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where

(5.2.9) ν := min
i,j

({j/i : mi,j '= 0}) ∈ Q>0,

and where e is the denominator of ν. Note that ν is well-defined since the matrix M
has full rank; typically, but not always, we have ν = 1/g. Combining the notation
above with (5.2.2) we obtain

(5.2.10)
xfi(xj) dxj = ((cj,νx

ν)i−1 +O(xiν))
(
νcj,νx

ν +O(xν+1/e)
)
dx

= (νcij,νx
iν +O(xiν+1/e)) dx.

Inspecting the leading terms of (5.2.5) for each i we obtain

(5.2.11)
g∑

j=1

(νcij,νx
iν +O(xiν+1/e)) dx =

g∑

j=1

mi,j(x
j + O(xj+1)) dx,

therefore for all i we have

(5.2.12) ν
g∑

j=1

cij,ν = mi,iν ,

where mi,iν = 0 if iν '∈ Z. The equations (5.2.12) are symmetric under the action of
the permutation group Sg, and up to this action there is a unique nonzero solution
by Newton’s formulas, as mi,iν '= 0 for some i.

The equations (5.2.12) are of different degree with respect to the leading terms
cj,ν . Therefore, replacing α by α+m with m ∈ Z will eventually result in a solution
with distinct cj,ν . For purposes of rigorous verification it is the same to verify α as
it is α+m, so we may suppose that the values cj,ν are distinct.

Having determined the expansions

(5.2.13) xj = cj,νx
ν + cj,ν+1/ex

ν+1/e + · · ·+ cj,ν+n/ex
ν+n/e +O(xν+(n+1)/e)

for j = 1, . . . , g up to some precision n ≥ 1, we integrate (5.2.5) to iteratively
solve for the next term in precision n + 1. As at the end of the previous section,
we then introduce new variables cj,ν+(n+1)/e for the next term and consider the
first coefficients on the left hand side of the equations (5.2.5) in which these new
variables occur. Because of our echelonization and the presence of the derivative
dxj , the exponents of x for which these coefficients occur are

(5.2.14) ν − 1 + (n+ 1)/e, 2ν − 1 + (n+ 1)/e, . . . , gν − 1 + (n+ 1)/e.

We obtain an inhomogeneous linear system in the new variables whose homogeneous
part is described by a Vandermonde matrix in c1,ν , . . . , cg,ν . This system has a
unique solution since we have ensured that the latter coefficients are distinct. The
Puiseux series xj = x(Q̃j) for each j then determines the point Q̃j because we
assumed x to be a uniformizing element.

Remark 5.2.15. In practice, we iterate the approximations xj by successive Hensel
lifting. Indeed, let Fi be the formal integral of the function fi, and let F be
the multivariate function (F1, . . . , Fg). Then the equation (5.2.5) is equivalent to
solving for x1, . . . , xg in

(5.2.16) F (x1, . . . , xg) =




g∑

j=1

m1,jFi(x), . . . ,
g∑

j=1

mg,jFg(x)



 .
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Our initialization is a sufficiently close approximation for the Hensel lifting process
to take off.

Example 5.2.17. We compute Example 4.2.5 again, but starting afresh with just

the matrix M =
(

0
√
2√

2 0

)
and the point P0 = (0,

√
−1). In order to be able to

display our results, we work modulo a prime above 4001 in K = Q(
√
−1,

√
2). We

first expand

(5.2.18) P̃0 = (x, 3102 + 247x+ 1714x2 + 2082x3 + 1505x4 +O(x5)).

By (5.2.9), we have ν = 1/2. The equations (5.2.12) read:

(5.2.19)
c1,1/2 + c2,1/2 = 2m1,1/2 = 0,

c21,1/2 + c22,1/2 = 2m2,1 = 2
√
2,

so c2,1/2 = −c1,1/2 and c21,1/2 =
√
2, giving

(5.2.20) c1,1/2 ≡ 2559 (mod 4001), c2,1/2 ≡ −2559 ≡ 1442 (mod 4001).

Now iteratively solving the differential system (5.2.5), we find

(5.2.21)

Q̃1 = (2559x1/2 + 1445x+ 2635x3/2 +O(x2),

3102 + 3916x1/2 + 3938x+ 1271x3/2 +O(x2)),

Q̃2 = (1442x1/2 + 1445x+ 1366x3/2 +O(x2),

3102 + 85x1/2 + 3938x+ 2730x3/2 +O(x2)).

We use these functions directly to interpolate a divisor in the next section (and
we also consider the Cantor representation, involving in particular their symmetric
functions).

6. Proving correctness

The procedures described in the previous sections work unimpeded for any ma-
trix M , including those that do not correspond to actual endomorphisms. In order
for M to represent an honest endomorphism α ∈ End(JK), we now need to fit a
divisor Y ⊂ X ×X representing the graph of α.

6.1. Fitting and verifying. We now proceed to fit a divisor to either the points
computed numerically or the Taylor or Puiseux series in a formal neighborhood
computed exactly. The case of numerical interpolation was considered by Kumar–
Mukamel [KM16], and the case of Taylor series is similar, so up until Proposi-
tion 6.1.1 below we focus on our infinitesimal versions.

Let π1,π2 : X×X → X be the two projection maps. If the matrixM corresponds
to an endomorphism, then the divisor Y traced out by the points (P̃0, Q̃j) has degree
g with respect to π1 and degree d with respect to π2 for some d ∈ Z≥1. Accordingly,
we seek equations defining this divisor.

Choose an affine open U ⊂ X, with a fixed embedding into some ambient affine
space. We then try to describe D ⊂ U ×U by choosing degree bounds n1, n2 ∈ Z≥1

(with usually n2 = g) and considering the K-vector space K[U × U ]≤(n1,n2) of
regular functions on U × U that are of degree at most n1 when considered as
functions on U × {P0} and degree at most n2 on {P0}×U . Let N := dimK K[U ×
U ]≤(n1,n2) be the dimension of this space of functions. We then develop the points
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(P̃0, Q̃j) to precision N +m for some suitable global margin m ≥ 2, and compute
the subspace Z ⊆ K[U ×U ]≤(n1,n2) of functions that annihilates all these points to
the given precision. If M is the representation of an actual endomorphism, then we
will in this way eventually find equations satisfied by (P̃0, Q̃j) by increasing n1, n2.

We show how to verify that a putative set of such equations is in fact correct.
Assume that Z contains a nonzero function (on U×U), and let E be the subscheme
of X ×X defined by the vanishing of Z.

Proposition 6.1.1. Suppose that the second projection π2 maps E surjectively
onto X and that the intersection of E with {P0}×X consists of a single point with
multiplicity g. Then M defines an endomorphism of JK .

Proof. We have ensured that a nonzero function on U × U vanishes at E, so E
cannot be all of X × X. Yet the subscheme E cannot be of (Krull) dimension 0
either because E surjects to X. Therefore E is of dimension 1.

Let Y ⊂ E be the union of the irreducible components of dimension 1 of E that
contain the points (P̃0, Q̃j). Because the degree of the projections to the second
factor do not depend on the chosen base point, our hypothesis on the intersection
of E with {P0} ×X ensures that E " Y consists of a union of points and vertical
divisors: these define the trivial endomorphism.

The subscheme Y ⊂ X×X defines a (Weil or Cartier) divisor whose projection to
the second component is of degree g, and such a divisor defines an endomorphism
[Smi05, §3.5]. The fact that Y contains the points (P̃0, Q̃j), which we chose to
satisfy (5.2.5) over K with a suitable nontrivial margin, then ensures without any
further verification the endomorphism enduced by Y has tangent representation
M . #

The hypotheses of Proposition 6.1.1 can be verified algorithmically, for example
by using Gröbner bases. Indeed, the property that π2 maps E surjectively to X
can be verified by calculating a suitable elimination ideal, and the degree of the
intersection with {P0}×X is the dimension over K of the space of global sections
of a zero-dimensional scheme. If desired, the construction of the divisor Y from
E is also effectively computable, calculating irreducible components via primary
decomposition.

In a day-and-night algorithm, we would alternate the step of seeking to fit a
divisor (running through an enumeration of the possible values (n1, n2) above) with
refining the numerical endomorphism ring by computing with increased precision
of the period matrix. If M does not correspond to an endomorphism, then we
will discover this in the numerical computation (provably so, if one works with
interval arithmetic to keep track of errors in the numerical integration). On the
other hand, if M does correspond to an endomorphism, then eventually a divisor
will be found, since increasing n1 and n2 eventually yields generators of the defining
ideal of the divisor in U × U defined by M , which we can prove to be correct by
using Proposition 6.1.1. Therefore we have a deterministic algorithm that takes a
putative endomorphism represented by a matrix M ∈ Mg(F al) and returns true or
false according to whether or not M represents an endomorphism of the Jacobian.

Remark 6.1.2. More sophisticated versions of the approach above are possible, for
example by using products of Riemann–Roch spaces instead of using the square of
the given ambient space. Additionally, the algorithm can be significantly sped up
by determining the divisor Y modulo many small primes and applying a version of
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the Chinese remainder theorem with denominators (involving LLL) to recover the
defining ideal of Y from its reductions.

Remark 6.1.3. Conversely, if we have a divisor Y ⊂ X×X (not necessarily obtained
from the Taylor or Puiseux method), we can compute the tangent representation
of the corresponding endomorphism as follows. Choose a point P0 on X such that
the intersection of {P0}×X with Y is proper, with

(6.1.4) Y ∩ ({P0}×X) = {Q1, . . . , Qe}

the points Qe taken with multiplicity. Then we can again develop the points Qj

infinitesimally, and as long as (5.2.5) is verified for the initial terms, the divisor Y
induces an endomorphism with M as tangent representation.

Remark 6.1.5. While the above method will terminate as long as M corresponds
to an actual endomorphism, Khuri-Makdisi has indicated an upper bound D of the
degree of π2 to us, namely (g − 1)! tr(αα†), where † denotes the Rosati involution.
Such an upper bound would allow us to rule out a putative tangent matrix M
as one not corresponding to an endomorphism without resorting to a numerical
computation.

Indeed, having calculated the upper bound D, we can take (n1, n2) = (D, g)
above, and a suitably large N can be determined by applying a version of the
Riemann-Roch theorem for surfaces. After determining the resulting equations,
Proposition 6.1.1 can be used to tell us conclusively whether we actually obtain
a suitable divisor or not. However, since our day-and-night algorithm is provably
correct and functions very well in practice, we have not elaborated these details or
implemented this approach.

Example 6.1.6. We revisit our running example one last time. Recall that

(6.1.7) X : y2 = x5 − x4 + 4x3 − 8x2 + 5x− 1

and

(6.1.8) M =

(
0

√
2√

2 0

)
.

While X may not have an obvious Weierstrass point, we can apply a trick that
is useful for general hyperelliptic curves. Instead of X, we consider the quadratic
twist of X by −1, namely

(6.1.9) X ′ : y2 = −(x5 − x4 + 4x3 − 8x2 + 5x− 1),

which has the rational non-Weierstrass point P0 = (0, 1). While the curves X and
X ′ are not isomorphic, their endomorphism rings are, because the isomorphism
(x, y) → (x,

√
−1y) induces a scalar multiplication on global differentials, which

disappears when changing basis by it.
We find a divisor with d = 4 with respect to π2 (matching Khuri-Makdisi’s

estimate (g − 1)! tr(αα†) = 4 from Remark 6.1.5). Using a margin m = 16, the
number of terms needed in the Puiseux expansion to find enough equations of Y
equals 48. On a standard desktop machine, this calculation took less than 3 CPU
seconds.

The equations defining the divisor Y representing M are quite long and unpleas-
ant, so we cannot reproduce them here. As mentioned in the introduction, they
are available in the repository that contains our implementation. However, we can
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indicate the induced divisor mapped to P1 × P1 under the hyperelliptic involution:
it is given by

4x4
2x

8
1 + 4x4

2x
7
1 + (−96

√
2 + 29)x4

2x
6
1 + 2(48

√
2− 9)x4

2x
5
1 + (−312

√
2 + 1193)x4

2x
4
1

+ 4(216
√
2− 891)x4

2x
3
1 + 4(−210

√
2+959)x4

2x
2
1+4(84

√
2−440)x4

2x1 + 4(−12
√
2 + 73)x4

2

+ 4(2
√
2 + 2)x3

2x
8
1 + 4(−39

√
2− 65)x3

2x
7
1+4(107

√
2+597)x3

2x
6
1+4(−120

√
2− 1864)x3

2x
5
1

+ 4(152
√
2 + 2649)x3

2x
4
1 + 4(−243

√
2− 1945)x3

2x
3
1

+ 4(223
√
2 + 776)x3

2x
2
1 + 4(−84

√
2− 166)x3

2x1

+ 4(10
√
2 + 24)x3

2 + 4(−2
√
2 + 2)x2

2x
8
1 + 2(164

√
2 + 51)x2

2x
7
1 + 2(−664

√
2− 1543)x2

2x
6
1

+ 4(340
√
2 + 3770)x2

2x
5
1 + 2(−348

√
2− 13363)x2

2x
4
1 + 2(484

√
2 + 10499)x2

2x
3
1

+ 4(−196
√
2− 1841)x2

2x
2
1 + 4(20

√
2 + 301)x2

2x1 + 4(12
√
2− 46)x2

2 + 4(−5
√
2− 9)x2x

8
1

+ 4(−24
√
2 + 12)x2x

7
1 + 4(358

√
2 + 226)x2x

6
1

+ 4(−303
√
2− 2210)x2x

5
1 + 4(63

√
2 + 4242)x2x

4
1

+ 4(−508
√
2− 2960)x2x

3
1 + 4(538

√
2 + 623)x2x

2
1 + 4(−139

√
2 + 40)x2x1 + (8

√
2 + 33)x8

1

+ 4(−2
√
2 + 4)x7

1 + 4(−106
√
2 + 19)x6

1+2(164
√
2+807)x5

1−3348x4
1 + 4(166

√
2 + 515)x3

1

+ (−720
√
2− 223)x2

1 + 4(46
√
2− 24)x1 = 0.

(6.1.10)

6.2. Cantor representation. In certain situations it might be more convenient
directly to compute the rational map

(6.2.1) αX : X !!" Symg(X).

This can be done as follows. Choose an affine model of f(x, y) = 0 for X. Then a
generic divisor of degree g on X can be described by equations of the form

xg + a1x
g−1 + · · ·+ ag−1x+ ag = 0,

y = b1x
g−1 + · · ·+ bg−1x+ bg,

(6.2.2)

which we call a Cantor representation. Using f one can determine g equations in
the ai and bi that conversely determine when a generic point of the form (6.2.2)
defines a divisor of degree g on X.

After fixing our origin in some point P0 as before, (6.2.2) also gives a description
of generic divisors of degree 0 on X. By taking a sufficiently precise development
(P̃0, Q̃j), we can obtain ai and bi as functions in K(X), increasing this precision as
we try functions of larger degree. In the end, we can verify these rational functions
by checking that the equations (6.2.2) are satisfied and additionally checking that
the corresponding tangent representation is correct. As above, we see that for this
final step it suffices to check that the initial terms of the Puiseux approximation
cancel (6.2.2).

6.3. Splitting the Jacobian. The algorithms above can be generalized to the
verification of the existence of homomorphisms Jac(X) → Jac(Y ), which can be
represented by either a rational map X !!" SymgY (Y ) or a divisor on X × Y . In
particular, this allows us to verify factors of the Jacobian variety that correspond
to curves, as explained by Lombardo [Lom16, §6.2] in genus 2. For curves of
genus 3, we can similarly identify curves of genus 2 that arise in their Jacobian,
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by reconstructing these genus 2 curves from their period matrices after choosing a
suitable polarization.

6.4. Saturation. The methods above allow us to certify that the tangent represen-
tation M ∈ Mg(K) of a putative endomorphism is correct. If we are also given that
the period matrix Π is correct up to some (typically small) precision—for hyperellip-
tic curves, one may use Molin’s double exponentiation algorithm [Mol10, Théorème
4.3]—we may also deduce that the geometric representation R ∈ M2g(Z) in (2.2.1)
is also correct. Assuming that we have verified the geometric representation of all
the generators of the endomorphism algebra, we can then also recover the endo-
morphism ring by considering possible superorders and ruling them out.

Example 6.4.1. For example, take X : y2 = −3x6 + 8x5 − 30x4 + 50x3 − 71x2 +
50x− 27 to be a simplified Weierstrass model for the genus 2 curve with LMFDB
label 961.a.961.2. We can then verify that the endomorphism algebra is Q(

√
5),

and
√
5 is represented by

(6.4.2) M =

(
−1 2
2 1

)
and R =





−1 0 0 −1
1 1 1 0
0 4 −1 1
−4 0 0 1



 .

From the above computation, we also deduce that the endomorphism ring is Z[
√
5]

and not the superorder Z[(1 +
√
5)/2], as 1 +R /∈ 2M4(Z).

7. Upper bounds

In this section, we show how determining Frobenius action on X for a large
set of primes often quickly leads to sharp upper bounds on the dimension of the
endomorphism algebra of the Jacobian J of X.

7.1. Upper bounds in genus 2 via Néron–Severi rank. We begin with upper
bounds for curves of genus 2. Lombardo [Lom16, §6] has already given a practical
method for these curves; we consider a slightly different approach.

Suppose X has genus 2. Then its Jacobian J is naturally a principally polar-
ized abelian surface; let † denote its Rosati involution. In this case, we can take
advantage of the relation between the Néron–Severi group NS(J) and End(J)Q: by
Mumford [Mum70, Section 21], we have an isomorphism of Q-vector spaces

(7.1.1) NS(J)Q + {φ ∈ End(J)Q : φ† = φ}.
Let ρ(J) := rkNS(J). By Albert’s classification of endomorphism algebras,

(7.1.2) ρ(Jal) =






4 if End(Jal)R + M2(C);
3 if End(Jal)R + M2(R);
2 if End(Jal)R + R× R,C× C or C× R;
1 if End(Jal)R + R.

So if we had a way to compute ρ(Jal), we could limit the number of possibilities
for End(Jal)R, and hit it exactly in many cases including the typical case when
End(Jal) = Z. To compute ρ(Jal), we look modulo primes.

Let p be a nonzero prime of (the ring of integers of) F with residue field Fp. Let
Fal
p be an algebraic closure of Fp. Suppose that X has good reduction XFp at p. We
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write Jp = JFp for the reduction of J modulo p and Jal
p = JFal

p
its base change to

Fal
p . (There is no ambiguity in this notation, as (Jal)p does not make sense.) Then

there is a natural injective specialization homomorphism of Z-lattices
(7.1.3) sp : NS(Jal) ↪→ NS(Jal

p ),

so ρ(Jal) ≤ ρ(Jal
p ).

Let q = #Fp, let Frobp be the q-power Frobenius automorphism, and let - # q be
prime. Let

(7.1.4)

cp(T ) := det
(
1− Frobp T |H1

ét(J
al,Q$)

)

=det
(
1− Frobp T |H1

ét(X
al,Q$)

)

=1 + a1T + a2T
2 + a1qT

3 + q2T 4 ∈ 1 + TZ[T ].
Then
(7.1.5)
c∧2
p (T ) := det

(
1− Frobp T |H2

ét(J
al,Q$)

)

=det
(
1− Frobp T |

∧2H1
ét(J

al,Q$)
)

=(1− qT )2(1 + (2q − a2)T+(2q + a21 − 2a2)qT
2+(2q − a2)q

2T 3 + q4T 4).

The Tate conjecture holds for abelian varieties over finite fields [Tat66], and it
relates NS(JFp), as a lattice with its intersection form, with c∧2

p (T ) in the following
way.

Proposition 7.1.6. The following statements hold:

(a) ρ(Jal
p ) is equal to the number of reciprocal roots of c∧2

p (T ) of the form q
times a root of unity.

(b) We have

(7.1.7) disc(NS(Jp)) = lim
s→1

(−1)ρ(Jp)−1c∧2
p (q−s)

q(1− q1−s)ρ(Jp)
mod Q×2.

Proof. For part (a), we know that ρ(Xp) is equal to the multiplicity of q as a recip-
rocal root of c∧2

p (T ) by the Tate conjecture, and (a) follows by taking a power of the
Frobenius. For part (b), the Tate conjecture implies the Artin–Tate conjecture by
work of Milne [Mil75a, Theorem 6.1, Mil75b], which implies (b) after simplification
using that #Br(X) is a perfect square [LLR05]. #

We will use one other ingredient: we can rule out the possibility that Jal has
CM by looking at cp(T ) as follows.

Lemma 7.1.8. Suppose that End(Jal)Q = L is a quartic CM field. Let p be a
prime of F of good reduction for X, let p be the prime of Q below p, and suppose
that p splits completely in L. Then cp(T ) is irreducible and

(7.1.9) L + Q[T ]/(cp(T )).

Proof. Suppose that the CM for J is defined over F ′ ⊇ F , so End(JF ′)Q = L. Let
p′ be a prime above p in F ′. Then by Oort [Oor88, (6.5.e)], if p splits in L, then
JFp is ordinary, so End(JFp′ )Q = L. Let π ∈ End(J) be the geometric Frobenius for
p and similarly π′ ∈ End(JF ′) for p′. Then by Tate [Tat66, Theorem 2], Q[π′] = L
and in particular the characteristic polynomial of π′ is irreducible. But π′ is a power
of π, so we have the inclusions L ⊇ Q[π] ⊇ Q[π′] = L, and the lemma follows. #
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We compute upper bounds on ρ(Jal) in the following way. By Proposition 7.1.6(a),
we can compute ρ(Jal

p ) for many good primes p by counting points on Xp. We have
two cases:

• If ρ(Jal) is even, then by Charles [Cha14, Theorem 1] (part (2) cannot
occur) there are infinitely many primes such that ρ(Jal) = ρ(Jal

p ).

• If ρ(Jal) is odd, then also by Charles [Cha14, Proposition 18] (in our setting
we must have E = Q), there are infinitely many pairs of primes (p1, p2) such
that

ρ(Jal) + 1 = ρ(JFal
p1
) = ρ(JFal

p2
),(7.1.10)

disc(NS(JFal
p1
)) '≡ disc(NS(JFal

p2
)) mod Q×2.(7.1.11)

By (7.1.3), we then seek out the minimum values of ρ(JFal
p
) over the first few primes

p of good reduction; and for those where equality holds, we check (7.1.11) using
(7.1.7), improving our upper bound by 1 when the congruence fails. This upper
bound for ρ(Jal) gives an upper bound for End(Jal)Q by (7.1.2), and a guess for
End(Jal)R except when ρ(Jal) = 2. For example, this approach allows us to quickly
rule out the possibility that Jal has quaternionic multiplication (QM) by showing
that ρ(Jal) ≤ 2.

To conclude, suppose that we are in the remaining case where, after many primes
p, we compute ρ(Jal) ≤ 2 and we believe that equality holds. Then the subalgebra
L0 ⊆ End(Jal)Q fixed under the Rosati involution has dimension ≤ 2 over R. We
proceed as follows:

(1) By the algorithms in the previous section, we can find and certify a nontriv-
ial endomorphism. So with a day-and-night algorithm, eventually either we
will find ρ(Jal) = 1 or we will have certified that the Rosati-fixed endomor-
phism algebra L0 is of dimension 2.

(2) Next, we check if L0 is a field by factoring the minimal polynomial of
the endomorphism generating L0 over Q. If L0 + Q × Q splits, then by
section 6.3 we can split the Jacobian up to isogeny as the product of elliptic
curves, and from there deduce the geometric endomorphism algebra and
endomorphism ring.

(3) To conclude, suppose that L0 is a (necessarily real) quadratic field. Then
by (7.1.2) we need to distinguish between RM and CM. We apply Lemma
7.1.8 to search for a candidate CM field or to rule out the CM possibility, by
finding two nonisomorphic candidate CM fields. This approach is analogous
to Lombardo’s approach [Lom16, §6.3], and we refer to his work for a careful
exposition.

In practice, this method is very efficient to find sharp upper bounds, using only
a few small primes.

Example 7.1.12. While computing the upper bound for all 66 158 genus 2 curves in
the LMFDB database, we only had to study their reductions for p ≤ 53 and for more
than 96% of the curves p ≤ 19 was sufficient. The unique curve requiring p = 53 was
the curve 870400.a.870400.1: the prime p = 53 is the first prime of good reduction
for which the 2 elliptic curve factors are not geometrically isogenous modulo p.
Altogether, computing these upper bounds took less than 7 CPU minutes.
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7.2. Endomorphism algebras over finite fields. Starting in this section, we
now consider upper bounds in higher genus. In this section, we compute the di-
mension of the geometric endomorphism algebra of an abelian variety over a finite
field from the characteristic polynomial of Frobenius. We will apply this to reduc-
tions of an abelian variety in the next sections.

First a bit of notation. Let R be a (commutative) domain and let M be a free
R-module of finite rank n. Let π ∈ EndR(M) be an R-linear operator, and let

(7.2.1) c(T ) = det(1− πT |M) ∈ 1 + TR[T ]

be its characteristic polynomial acting on M . For r ≥ 1, we define

(7.2.2)
c(r)(T ) := det(1− πrT |M),

c⊗r(T ) := det(1− π⊗rT |M⊗r).

We have deg c(r)(T ) = deg c(T ) = n and deg c⊗r(T ) = nr. If c(T ) =
∏n

i=1(1− ziT )
with zi ∈ R, then c(r)(T ) =

∏n
i=1(1− zri T ) and

(7.2.3) c⊗r(T ) =
∏

1≤i1,...,ir≤n

(1− zi1 · · · zirT ).

We may compute c⊗2 as a polynomial resultant

(7.2.4) c⊗2(T ) := Resz(c(z), z
nc(T/z)) ∈ Z[T ].

Let A be an abelian variety over the finite field Fq with dimA = g, let Aal = AFal
q

be its base change to an algebraic closure Fal
q , and let Frobq be the q-power Frobenius

automorphism. We write

(7.2.5) c(T ) := det(1− Frobq T |H1
ét(A

al,Q$)) ∈ 1 + TZ[T ]

for a prime - # q (with c(T ) independent of -). Then deg c = 2g. By the Riemann
hypothesis (a theorem in this setting), the reciprocal roots of the polynomial c⊗2(T )
have complex absolute value q. Factor

(7.2.6) c⊗2(T ) = h(T )
∏

i

Φki(qT ),

over Z[T ] where Φki(T ) is a cyclotomic polynomial (the minimal polynomial of a
primitive kith root of unity) for each i and h(T ) is a polynomial with no reciprocal
roots of the form q times a root of unity. (In the factorization (7.2.6), we allow
repetition ki = kj for i '= j.)

We now recall a consequence of the (proven) Tate conjecture suitable for our
algorithmic purposes.

Lemma 7.2.7. The following statements hold:

(a) For all r ≥ 1, factoring as in (7.2.6) we have

(7.2.8) dimQ End
(
AFqr

)
Q =

∑

ki|r

degΦki .

(b) Let k := lcm{ki}i. Then Fqk is the minimal field over which End(Aal) is
defined.
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Proof. Let r ≥ 1. The Tate conjecture (proven by Tate [Tat66, Theorem 4]) applied
to A×A over Fqr implies

(7.2.9) End
(
AFqr

)
⊗Q$ +

(
H1

ét

(
Aal,Q$

)⊗2
(1)

)Gal(Fal
q | Fqr ).

Factoring c(T ) =
∏

i(1− ziT ) ∈ C[T ], so that c⊗2(T ) =
∏

i,j(1− zizjT ), we have

(7.2.10)

dimQ End
(
AFqr

)
Q = #

{
(i, j) : (zizj)

r = qr
}

= #
{
(i, j) : zizj = ζq with ζr = 1

}

=
∑

ki|r

degΦki .

(Working over Fq, in Tate’s notation we have dimQ End(AFq )Q = r(f, f), where f
is the characteristic polynomial of Frobenius and r(f, f) is the multiplicity of the
root q in f⊗2.) This proves (a).

The sum in (7.2.10) attains its maximum value for the first time when r =
k = lcmi{ki}i, and by maximality we have End

(
Aal

)
= End

(
AFqk

)
, which proves

(b). #
We will make use of the following more specialized statement.

Corollary 7.2.11. Suppose that c(T ) is separable and that the subgroup of Q×

generated by the (reciprocal) roots is torsion free. Then all endomorphisms of Aal

are defined over Fq (i.e., k = 1) and

dimQ End(A)Q = 2dimA.

Proof. Factor c(T ) =
∏2 dimA

i=1 (1−ziT ) overQ. Since c(T ) is separable, its reciprocal

roots zi ∈ Q×
are distinct. Suppose that zizj = ζq where ζ is a root of unity. By the

(proven) Riemann hypothesis for abelian varieties, associated to zi is a reciprocal
root zi′ such that zizi′ = q. By separability, the index i′ is uniquely determined by
i.

We now have zj/zi′ = ζ. Therefore ζ = 1 since the subgroup generated by the
roots is torsion free. By distinctness of the roots we obtain i′ = j. So among the
reciprocal roots zizj of c⊗2(T ) there are exactly 2 dimA pairs (i, j) with zizj = q.
We have shown that in the factorization (7.2.6) there are 2 dimA factors Φ1(qT ) =
1− qT , all with ki = 1, and no other cyclotomic factors. The result then holds by
Lemma 7.2.7(a). #

Lemma 7.2.7 immediately implies that

(7.2.12) dimQ End
(
Aal)Q =

∑

i

degΦki

so we have direct access to the dimension of the geometric endomorphism algebra
from the characteristic polynomial of Frobenius.

Remark 7.2.13. Although we will not use this in what follows, we can upgrade
Lemma 7.2.7 from dimensions to a full description of the endomorphism algebra
itself up to isomorphism by the use of Honda–Tate theory, as follows. Factor

(7.2.14) c(T ) = c1(T )
m1 · · · ct(T )mt ,

where ci are distinct, irreducible polynomials in Z[T ]. Applying Honda–Tate theory,
see for example Waterhouse [Wat69, Chapter 2] and Waterhouse–Milne [WM71,

Licensed to Mass Inst of Tech. Prepared on Mon Nov 22 07:34:29 EST 2021 for download from IP 18.4.43.30.
License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



1328 E. COSTA, N. MASCOT, J. SIJSLING, AND J. VOIGHT

Theorem 8], each irreducible polynomial ci(T ) determines (by the p-adic valuation
of its coefficients) a division algebra Bi over Q such that Bi is central over the field
Li := Q[T ]/(ci(T )) and e2i := dimLi Bi has ei | mi; these combine to give

(7.2.15) End(A)Q + Bn1
1 × · · ·×Bnt

t

where ni = mi/ei. This decomposition of the endomorphism algebra corresponds
to the decomposition of A up to isogeny over Fq as

(7.2.16) A ∼ An1
1 × · · ·×Ant

t ,

where the abelian varieties Ai over Fq are simple and pairwise nonisogenous over
Fq, and End(Ai)Q + Bi.

We can apply this to compute the structure of the geometric endomorphism
algebra by computing k as in Lemma 7.2.7 and applying the above to c(k)(T ).

To conclude, we extract another description of the dimension of the endomor-
phism algebra, again due to Tate.

Lemma 7.2.17. Factor c(T ) =
∏s

i (1 − ziT )m(zi) ∈ C[T ] with zi ∈ C distinct.
Then

(7.2.18) dimQ End(A)Q =
s∑

i=1

m(zi)
2.

Proof. See Tate [Tat66, Theorem 1(a), Proof of Theorem 2(b)]; in his notation
f = c and the right hand side is r(f, f). #
7.3. Upper bounds in higher genus: Decomposition into powers. In the
next two sections, we discuss how to produce tight upper bounds on the dimension
of the geometric endomorphism algebra for a general abelian variety, under certain
hypotheses. Our approach will be analogous to section 7.1, however, instead of
studying the reduction homomorphism induced on the Néron–Severi lattice, we will
study the reduction homomorphism induced on the endomorphism rings themselves.

These bounds come in two phases. In the first phase, described in this section,
we describe a decomposition of an abelian variety over a number field into powers
of geometrically simple abelian varieties. In the next phase, described in the next
section, we refine this decomposition to bound the dimension of the geometric
endomorphism algebra by examination of the center.

We work in slightly more generality in these two sections than in the rest of
the paper. Let A be an abelian variety of a number field F (not necessarily the
Jacobian of a curve). Let FA be the minimal field over which End(A) is defined.
Let p be a nonzero prime of (the ring of integers) of F , let Fp be its residue field
with q = #Fp, and let Frobp be the q-power Frobenius automorphism. For r ≥ 1,
we denote Fpr ⊇ Fp the finite extension of degree r in an algebraic closure Fal

p .
Suppose that A has good reduction Ap at p. Write

(7.3.1) cp(T ) := det(1− Frobp T |H1
ét(A

al
p ,Q$)) ∈ 1 + TZ[T ]

for the characteristic polynomial of Frobp acting on the first --adic étale cohomology
group (independent of - # q).

The reduction (specialization) of an endomorphism modulo p induces an injective
ring homomorphism

(7.3.2) sp : End(Aal) ↪→ End(Aal
p ).
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Therefore dimQ End(Aal)Q ≤ dimQ End(Aal
p )Q. However, unless A is a CM abelian

variety, this inequality will always be strict, so we undertake a more careful analysis.
Up to isogeny over FA, we factor

(7.3.3) AFA ∼ An1
1 × · · ·×Ant

t ,

where Ai are geometrically simple and pairwise nonisogenous abelian varieties over
FA. Let Bi := End(Aal

i )Q be the geometric endomorphism algebra of Ai, let Li :=
Z(Bi) be the center of Bi, and write e2i := dimLi(Bi) with ei ∈ Z≥1. We have

(7.3.4) End(Aal)Q + Mn1(B1)× · · ·×Mnt(Bt).

For the prime p, we define kp to be the smallest integer such that End(Aal
p ) is

defined over Fpkp . The polynomial c
(kp)
p,i (T ) (see (7.2.2)) is the Frobenius polynomial

for Ai over Fpkp .

Proposition 7.3.5. The following statements hold:

(a) For every i = 1, . . . , t, there exists gp,i(T ) ∈ 1 + TZ[T ] such that

(7.3.6) c
(kp)
p,i (T ) = gp,i(T )

ei .

(b) We have

(7.3.7) 2
t∑

i=1

ein
2
i dimAi =

t∑

i=1

e2in
2
i deg gp,i ≤ dimQ End(Aal

p )Q

and equality is obtained in (7.3.7) if and only if the polynomials gp,i(T ) in
(a) are separable and pairwise coprime.

Proof. We begin by proving (a), and for this purpose we may assume A = Ai.
Following Zywina [Zyw14, §2.3], let F conn

A be the smallest extension of F such that
the --adic monodromy group associated to A is connected over F conn

A . Then F conn
A

is Galois over F and F conn
A ⊇ FA, so all endomorphisms of A are defined over F conn

A .
If F = F conn

A , then (a) is proven by Zywina [Zyw14, Lemma 6.3(i)]: part (i) (but
not the rest of his Lemma 6.3) only needs the hypothesis that p is a prime of good
reduction. The general case follows by applying the previous sentence to a prime
in F conn

A lying above p.
Now we prove (b). We first treat the case where A = Ai is geometrically simple,

and we drop the subscript i. Factor

(7.3.8) gp(T ) =
∏

j

(1− γjT )
m(γj) ∈ C[T ],

where the reciprocal roots γj are pairwise distinct and occur with multiplicity
m(γj). Then

(7.3.9) deg gp =
∑

j

m(γj) ≤
∑

j

m(γj)
2

and the equality is attained if and only if m(γj) = 1 for all j, in other words, if

gp,j(T ) is separable. By Lemma 7.2.17, since c
(kp)
p (T ) = gp(T )e, we have

(7.3.10) dimQ End(Aal
p )Q =

∑

j

(em(γj))
2.
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Since 2 dimA = deg c
(kp)
p = e deg gp we conclude

(7.3.11) 2e dimA = e2 deg gp ≤ e2
∑

j

m(γj)
2 = dimQ End(Aal

p )Q

as claimed.
Now we treat the general case. For i = 1, . . . , t, in the notation of part (a), factor

(7.3.12) gp,i(T ) =
s∏

j

(1− γijT )
m(γij) ∈ C[T ].

Adding up the inequality (7.3.11), multiplied by n2
i throughout, we obtain

(7.3.13)
∑

i

e2in
2
i deg gp,i ≤

∑

i

e2in
2
i

∑

j

m(γij)
2 ≤ dimQ End(Aal

p )Q.

As in the previous paragraph, the left-hand inequality is an equality if and only if
for every i the polynomial gp,i(T ) is separable. By Lemma 7.2.17, the right-hand
inequality is an equality if and only if

(7.3.14) z$ = γij and m(z$) = einim(γij),

where

(7.3.15) c(k)p (T ) =
∏

$

(1− z$T )
m(z!)

with z$ distinct. In other words, if and only if γij are all distinct, or equivalently,
if the polynomials gp,i are pairwise coprime. #

We now try to deduce the decomposition (7.3.3) from factorizations as in Propo-
sition 7.3.5. From the left-hand side of (7.3.7), we define the quantity

(7.3.16) η(Aal) :=
t∑

i=1

ein
2
i dimAi

which we would like to know. (The invariant η(Aal) plays a similar role to that
of ρ(Jal) in the previous section.) Looking at the right-hand side of (7.3.7), for a
prime p of good reduction, we factor

(7.3.17) c
(kp)
p (T ) =

tp∏

i=1

hp,i(T )
mp,i ∈ Z[T ]

into pairwise coprime irreducibles, where kp can be computed with Lemma 7.2.7 and
tp is the number of pairwise distinct (simple) factors in the isogeny decomposition
of AFkp

p
. Now we define the computable quantity

(7.3.18) η(Aal
p ) :=

tp∑

i=1

m2
p,i deg hp,i ∈ 2Z≥1.

It follows from Lemma 7.2.17 that η(Aal
p ) = dimQ End(Aal

p )Q.

Corollary 7.3.19.

(a) For all good primes p, we have

(7.3.20) η(Aal) ≤ 1
2η(A

al
p ).

(b) If equality holds in (7.3.20), then t ≤ tp.
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(c) If equality holds in (7.3.20) and t = tp, then as multisets

(7.3.21) {(mp,i,
1
2mp,i deg hp,i)}

tp
i=1 = {(eini, ni dimAi)}ti=1.

Proof. The inequality η(Aal) ≤ 1
2η(A

al
p ) is simply rewriting (7.3.7).

If equality holds in (7.3.20), then by Proposition 7.3.5(b), the t polynomials
gp,i(T ) are separable and pairwise coprime, and there are tp distinct factors in
total. Hence, t ≤ tp.

Moreover, if equality holds in (7.3.20) and t = tp, then we have two factorizations

of c
(kp)
p (T ) into powers of pairwise irreducibles, one in terms of gp,i(T ) and the other

in terms of hp,i(T ). Therefore, as a multiset we have

(7.3.22) {(mp,i, hp,i(T ))}tpi=1 = {eini, gp,i(T ))}ti=1.

Taking the degree of the second entry and multiplying it by the first entry, we get

(7.3.23) {(mp,i,mp,i deg hp,i)}
tp
i=1 = {(eini, eini deg gp,i)}ti=1,

and the desired equality follows by noting that 2 dimAi = ei deg gp,i. #
We now show that (conjecturally) there are an abundance of primes where we

have an equality in (7.3.20), i.e., primes for which the endomorphism algebra grows
in a controlled (minimal) way under reduction modulo p.

Let S be the set of primes p of F with the following properties:

(i) The prime p is a prime of good reduction for A.
(ii) Nm(p) is prime, i.e., the residue field #Fp has prime cardinality.
(iii) End(Aal

p ) is defined over Fp (i.e., kp = 1).
(iv) For all i = 1, . . . , t, we have an isogeny (Ai)p ∼ Aei

p,i over Fp where Ap,i is
simple; moreover, the abelian varieties Ap,i are pairwise nonisogenous.

(v) For all i = 1, . . . , t, the algebra End(Aal
p,i)Q is a field, generated by the

Frobenius endomorphism.

Lemma 7.3.24. For p ∈ S, we have t = tp and 2η(Aal) = η(Aal
p ).

Proof. We have t = tp by the decomposition in (iv). By (7.3.6), gp,i(T ) is the
characteristic polynomial of Frobenius for Ap,i, and for every i, the polynomials
gp,i(T ) are irreducible overQ, otherwise the Honda–Tate theory would give a further
splitting of Ap (see Remark 7.2.13) and pairwise coprime by (iv), so the equality
holds by Proposition 7.3.5. #

The required analytic result about primes p ∈ S is essentially proved by Zywina
[Zyw14], as follows. For the statement of the Mumford–Tate conjecture, see Zywina
[Zyw14, §2.5] and the references given; although the conjecture is still open, many
general classes of abelian varieties are known to satisfy the conjecture.

Proposition 7.3.25. Suppose that the Mumford–Tate conjecture for A holds. Then
the set S has positive density.

Proof. We follow the proof of a result by Zywina [Zyw14, Theorem 1.4]. He shows
that the set of primes with properties (i)–(iv) has positive density, and we obtain
our full result by a refining of his proof to obtain property (v) as a consequence, as
follows.

As in the proof of Proposition 7.3.5, we first suppose that F = F conn
A . Zywina

[Zyw14, Section 2.4] considers the set of primes satisfying (i)–(ii) and such that the
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Frobenius eigenvalues of each Ap,i generate a torsion free subgroup of maximal rank
in (Qal)×. Zywina shows that this set has density 1 and proves [Zyw14, Lemma
6.3] that the Frobenius eigenvalues of Ap,i are distinct. Next, among primes in
this set, away from a set of primes of density zero [Zyw14, Proposition 6.6], the
characteristic polynomial of Frobenius on Ap,i is irreducible [Zyw14, Lemma 6.7],
so that (iv) holds. The hypotheses of Corollary 7.2.11 hold for the abelian va-
riety Ap,i over Fp, so all endomorphisms are defined over Fp, so (iii) holds, and
moreover dimQ End(Ap,i)Q = 2dimAp,i. Finally, since Ap,i is simple, the charac-
teristic polynomial gp,i(T ) of Frobenius is irreducible with deg gp,i(T ) = 2 dimAp,i,
and so End(Aal

p,i)Q = End(Ap,i)Q contains as a subalgebra the field Q[T ]/(gp,i(T ))
generated by Frobenius. By dimension counts, equality holds and (v) follows.

The general case follows by applying this argument to the set of primes p of F
such that a prime above p in the Galois extension F conn

A over F is in the above set:
by the Chebotarev density theorem, this set has density [F conn

A : F ]−1. #

Proposition 7.3.26. If the Mumford–Tate conjecture holds for A, then the follow-
ing quantities are effectively computable:

(i) the integer η(Aal);
(ii) the number t of geometrically simple factors of A; and
(iii) the set of tuples {(eini, ni dimAi)}ti=1.

Proof. We pursue a day-and-night approach. By day, we search for endomorphisms
of Aal, find a (partial) decomposition

(7.3.27) AL ∼ (A′
1)

n′
1 × · · ·× (At′)

n′
t′ ,

and compute the quantity

(7.3.28) η′ =
t′∑

i=1

e′i(n
′
i)

2 dimA′
i ≤ η(Aal).

By night, by counting points on Ap we compute tp and η(Aal
p ) for many good

primes p using (7.3.18). We continue in this way until we find a prime p such that
t′ = tp and 2η′ = η(Aal

p ): Proposition 7.3.25 and Lemma 7.3.24 assure us that
this will happen frequently, proving that the quantities (i) and (ii) are effectively
computable. For (iii), we then appeal to Corollary 7.3.19. #

Remark 7.3.29. The statement of Proposition 7.3.26 can be proven in other ways
without the Mumford–Tate conjecture, but the algorithm exhibited in the proof is
quite practical! For example, we can expect to verify that the abelian variety A
over F is geometrically a power of a simple abelian variety (so t = tp = 1) after
examining [F conn

A : F ] Frobenius polynomials.

7.4. Upper bounds in higher genus: Bounding the center. Now we refine
the decomposition obtained in the previous section to bound the dimension of the
geometric endomorphism algebra, by bounding the center. For a theoretical result,
we refer again to Lombardo [Lom16, §5]. Our methods in this section are heuristic
in nature, as we lack an analytic result (Hypothesis 7.4.6) that assures us that our
method terminates. That being said, our method is efficient, and if our method
terminates, then the output will be correct.

We start with some preliminary lemmas.
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Lemma 7.4.1. Let B be a central simple algebra over F and let N be a finite
extension of F . Then there exists a maximal subfield L ⊆ B such that L and N are
linearly disjoint over F .

Proof. We may assume N is Galois over F and exhibit L such that L ∩ N = F .
As a consequence of the Albert–Brauer–Hasse–Noether theorem (see, e.g., Reiner
[Rei03, Theorem 32.15]), we have an embedding L ↪→ B if and only if L satisfies
finitely many local conditions (determined by the ramified primes in B). Choose a
prime p of F that splits completely inN disjoint from these finitely many conditions,
and add the new local condition that Lp is a field. By Chebotarev there are infinitely
many fields L satisfying these conditions, and in L ∩ N we have p both splitting
completely and with a unique prime above it, so F = L ∩N . #
Lemma 7.4.2. For i = 1, 2, let Ki be a number field and let Bi be a central simple
algebra over Ki. Let ϕ : B1 ↪→ B2 be an injective Q-algebra homomorphism. If
dimK1 B1 = dimK2 B2 = m2, then ϕ(K1) ⊆ K2.

Proof. Let L be a maximal subfield of B1, so dimK1 L = m. Thus ϕ(L) is a subfield
of B2, and S := K2ϕ(L) ⊂ B2, the subring of B2 generated by K2 and ϕ(L), is a
commutative K2-subalgebra of B2. Hence, dimK2 S ≤ m.

Let E = ϕ(K1) ∩ K2 ⊂ B2 and N2 be the normal closure of ϕ(K1)K2. We
may choose L such that ϕ(L) and N2 are linearly disjoint by Lemma 7.4.1. Thus
ϕ(L)⊗E K2

∼−→ S and

(7.4.3)
m ≥ dimK2 S =

dimE S

dimE K2
=

dimE ϕ(L) dimE K2

dimE K2

= dimE ϕ(L) = dimϕ(K1) ϕ(L) dimE ϕ(K1) ≥ m.

Therefore, dimE ϕ(K1) = 1 and ϕ(K1) ⊆ K2. #
We now recall the notation described in the previous section (starting with

(7.3.3)), in particular Li = Z(Bi).

Corollary 7.4.4. If the polynomial gi,p(T ) in Proposition 7.3.5(a) is irreducible
for some i, then Li is isomorphic to a subfield of Q[T ]/(gp,i(T )).

Proof. Apply Lemma 7.4.2 to the specialization homomorphism

(7.4.5) si,p : End(Aal
i )Q ↪→ End((Ai)

al
p )Q.

On the left we have center Li and on the right we have center Q[T ]/(gp,i(T )) by
Tate [Tat66, Theorem 2(a)]. #

Now we address the hypothesis that will allow us to deduce the candidate fields
for the centers.

Hypothesis 7.4.6. For every i = 1, . . . , t, there exists a nonempty, finite collection
of primes pij ∈ S such that K is a subfield of Q[T ]/(gpij (T )) for all j if and only
if K is a subfield of Li.

The hypothesis is known to hold for abelian surfaces by an explicit argument of
Lombardo [Lom16, Theorem 6.10]. In our experiments with higher genus curves,
every Jacobian variety we saw satisfied Hypothesis 7.4.6.

Proposition 7.4.7. If the Mumford–Tate conjecture and Hypothesis 7.4.6 hold for
A, then the centers Li are effectively computable.
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Proof. We continue with a day-and-night approach as described in the proof of
Proposition 7.3.26. The decomposition of A by day into t factors allows us to
decompose A[-r] + (Z/-Z)2 dimA into t factors, and for r large enough we can keep
track of the index i between different primes p: see Lombardo [Lom16, Lemma 5.2].
By night, we will have encountered an abundance of primes p such that t = tp and
2η(Aal) = η(Aal

p ), and cp(T ) factors as

(7.4.8) gp,i(T )
e1n1 · · · gp,t(T )etnt

with the polynomials gp,i irreducible and pairwise coprime.
For these primes p, by Corollary 7.4.4 we have Li ↪→ Q[T ]/(gp,i(T )), immediately

giving only finitely many possibilities for each Li. Finally, by Hypothesis 7.4.6 the
only field that embeds in all Q[T ]/(gp,i(T )) is Li, and so by computing intersections
of subfields we will eventually find Li. #
Remark 7.4.9. Parallel to Remark 7.3.29, in practice the algorithm of Proposi-
tion 7.4.7 performs very well. In most cases, the abelian variety is geometrically
a power and Li = Q, and in practice this can be quickly deduced by simply com-
puting that the greatest common divisor of the discriminants discQ[T ]/(gp,i(T )) is
equal to 1.

Remark 7.4.10. Many cohomological algorithms for counting points on a curve
can be adapted to keep track of the index i between different primes p rather
than resorting to the --adic representation. For example, in those point counting
algorithms that employ Monsky–Washnitzer cohomology, we may choose a basis
of differentials that works for all good primes p and use the decomposition of A
into factors to decompose these differentials and thereby compute the action of
Frobenius on each component. A similar argument applies to methods that compute
the Hasse–Witt matrices.

8. Examples

We now give some further explicit illustrations of the methods developed above.

8.1. Examples in genus 2.

Example 8.1.1. We begin with the curve of genus 2 with LMFDB label
12500.a.12500.1, the smallest curve with potential RM in the LMFDB. For con-
venience, we complete the square from the minimal Weierstrass model and work
with the equation

(8.1.2) X : y2 = 5x6 + 10x3 − 4x+ 1 = f(x)

so that X ×X has affine patch described by y2i = f(xi) with i = 1, 2.
Let α be a root of the polynomial x2−x−1. Then we certify that the endomor-

phism ring of X is the maximal order in the quadratic field Q(α) of discriminant
5. With basis of differentials dx/y, x dx/y, a generator has tangent representation(−α 0

0 α−1

)
. For the base point P0 = (0, 1) a corresponding divisor in X × X is

defined by the ideal

(8.1.3)

〈(2α− 1)x2
1x

2
2 − (α+ 2)x2

1x2 + x2
1 − (α+ 2)x1x

2
2 + αx1x2 + x2

2,

(3α+ 1)x2
1x2y2 − (2α+ 4)x2

1y2 − (3α+ 1)x1y1x
2
2 + (4α+ 3)x1y1x2

− (α− 1)x1y1 − (4α+ 3)x1x2y2 + (α− 1)x1y2 + (2α+ 4)y1x
2
2

+ (1− α)y1x2 − y1 + (α+ 1)x2y2 + y2〉.
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The second projection from the corresponding divisor to X has degree 2. Alterna-
tively, the image of a point P = (v, w) of X under the morphism X → Sym2(X) is
described by the equation x2 + a1x+ a2 = 0, y = b1x+ b2, where

(8.1.4)

a1 =
−5αv2 + (α+ 2)v

5v2 − 5αv + (2α− 1)
,

a2 =
(2α− 1)v2

5v2 − 5αv + (2α− 1)
,

b1 =
−(7α+ 4)v2w + (6α+ 2)vw − 2w

5v5 + 5(1− 2α)v4 + (3− α)v3 + (7α− 1)v2 − (2α+ 3)v + 1
,

b2 =
(3α+ 1)v2w − (2α+ 1)vw + w

5v5 + 5(1− 2α)v4 + (3− α)v3 + (7α− 1)v2 − (2α+ 3)v + 1
.

The first of these calculations need 40 terms in the Puiseux expansion, whereas
the latter needs 172. The combination of these calculations takes around 2.5 CPU
seconds.

Example 8.1.5. As a second example, we consider the curve 20736.l.373248.1
with simplified Weierstrass model

(8.1.6) X : y2 = 24x5 + 36x4 − 4x3 − 12x2 + 1.

We find that this curve has QM over Q by a non-Eichler order of reduced dis-
criminant 36 in the indefinite quaternion algebra over Q with discriminant 6.
The full ring of endomorphisms is only defined over Q(θ) where θ is a root of
x8 + 4x6 + 10x4 + 24x2 + 36. Over the smaller field Q(

√
−3) we get the endomor-

phism ring Z[3
√
−1]. A generator α with α2 = −9 has tangent representation

(8.1.7) M =

(
−
√
−3 2

√
−3√

−3
√
−3

)
.

Our algorithms can perform the corresponding verification over the field Q(
√
−3)

itself, by using the base point P0 = (0, 1). The second projection from the cor-
responding divisor to X has degree 18, and using the Cantor representation one
needs functions of degree up to 105. The corresponding number of terms needed in
the Puiseux expansion is 128 in the former case and 346 in the latter. This time
the calculations take around 8.5 CPU seconds to finish.

Example 8.1.8. A third example in genus 2 is 294.a.8232.1 with model

(8.1.9) X : y2 = x6 − 8x4 + 2x3 + 16x2 − 36x− 55.

The endomorphism ring of this curve is of index 2 in the ring Z×Z. The methods
of section 6.3 show that it admits two maps of degree 2 to the elliptic curves
(8.1.10)
E1 : y

2 = x3 + 3440/3x− 677248/27 and E2 : y
2 = x3 + x3 + 752/3x− 9088/27.

The maps send a point (x, y) of X to

(8.1.11)

(
24x4 + 72x3 + 4x2 − 24xy − 200x− 72y − 200

3(x+ 2)2
,

32x6 + 144x5 + 16x4 − 32x3y − 768x3 − 144x2y − 656x2 − 144xy + 1488x+ 1792

(x+ 2)3

)
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on E1 and

(8.1.12)

(
24x4 + 24x3 − 92x2 − 24xy − 56x− 24y + 88

3(x+ 2)2
,

−32x6−48x5+176x4+32x3y+224x3+48x2y−304x2−48xy−240x−64y+192

(x+ 2)3

)

on E2. Finding these projections only requires 39 terms of the Puiseux series, and
takes around 1 second.

8.2. Examples in higher genus.

Example 8.2.1. The final hyperelliptic curve that we consider is the curve

(8.2.2) X : y2 = x8 − 12x7 + 50x6 − 108x5 + 131x4 − 76x3 − 10x2 + 44x− 19

of genus 3. This is a model for the modular curve X0(35) over Q, and in fact this
equation was obtained as a modular equation satisfied by modular forms of level
35. We could make some guesses about the endomorphism ring of its Jacobian by
computing the space of cusp forms of weight 2 and level 35, but let us apply our
algorithms as if we were ignorant of its modular provenance.

We find that the Jacobian of X splits into an elliptic curve and the Jacobian
of a genus 2 curve. Its endomorphism algebra Q × Q(

√
17) is generated by an

endomorphism whose tangent representation with respect to the standard basis of
differentials

{
xi dx/y

}
i=1,2,3

is given by

(8.2.3)




1 0 −1
1 −2 0
−2 −2 1



 ,

which has characteristic polynomial (t+1)(t2−t−4). The curve X admits a degree
2 morphism to the elliptic curve Y : x3 + 6656/3x− 185344/27 which is given by

(8.2.4) (x, y) *−→
(
64x2 − 400x+ 272

3(x2 − x− 1)
,

224y

(x2 − x− 1)2

)
.

Determining this projection again takes about a second. A curve that corresponds
to the complementary factor dimension 2 can be found by using the results by
Ritzenthaler–Romagny in [RR16].

Example 8.2.5. Our algorithms can equally well deal with more general curves.
For example, it is known from work of Liang [Lia14] that the plane quartic

(8.2.6) X : x4
0 + 8x3

0x2 + 2x2
0x1x2 + 25x2

0x
2
2 − x0x

3
1 + 2x0x

2
1x2 + 8x0x1x

2
2

+ 36x0x
3
2 + x4

1 − 2x3
1x2 + 5x2

1x
2
2 + 9x1x

3
2 + 20x4

2 = 0

has real multiplication by the algebra Q(α), with α = 2 cos(2π/7). We have in-
dependently verified this result. The equations for the divisor are too large to
reproduce here, but they can be generated with the package [CMS17]. The tan-
gent representation of the endomorphism with respect to an echelonized basis of
differential forms at the base point P0 = (−2 : 0 : 1) is of the rather pleasing form

(8.2.7)




α 0 0
0 α2 − 2 0
0 0 −α2 + α+ 1



 .
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This verification takes about 7 CPU seconds and requires Puiseux series with 66
coefficients of precision.

Example 8.2.8. As a final aside, we consider Picard curves of the form

(8.2.9) X : y3 = a0x
4 + a2x

2 + a4.

Petkova–Shiga [PS11] have shown that the connected component of the Sato–Tate
group of a general such curve is equal to U(1) × SU(2)2. The endomorphism ring
of such a general curve X is of index 4 in a maximal order of Q(ζ3)× B, where B
is the indefinite quaternion algebra of discriminant 6.

The Jacobian of X therefore splits into an elliptic curve with CM and the Jaco-
bian of a curve Y of genus 2 that has QM. Once again the curve Y can be identified
explicitly using recent work of Ritzenthaler–Romagny [RR16]. It turns out that the
field of definition of the endomorphism ring of X is the splitting field of the poly-
nomial t6 − (24(a4/a0)(a22 − 4a0a4)). Using our algorithms, an explicit expression
of the correspondence between X and Y can also be obtained.
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