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Abstract

Let P denote the weighted projective space with weights (1, 1, 1, 3) over the rationals,
with coordinates x, y, z and w; let X be the generic element of the family of surfaces in P

given by

X : w2 = x6 + y6 + z6 + t x2 y2z2.

The surface X is a K3 surface over the function field Q(t). In this paper, we explicitly

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0305004118000087
Downloaded from https://www.cambridge.org/core. MIT Libraries, on 22 Nov 2021 at 12:33:33, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0305004118000087
https://www.cambridge.org/core


524 F. BOUYER, E. COSTA, D. FESTI, C. NICHOLLS AND M. WEST

compute the geometric Picard lattice of X, together with its Galois module structure, as well
as derive more results on the arithmetic of X and other elements of the family X .

1. Introduction

K3 surfaces are sometimes called “surfaces of intermediate type”, as they are neither
birational to P2 nor of general type; that is, they lie between those surfaces whose arithmetic
and geometry is well understood and those surfaces whose arithmetic and geometry is still
largely obscure, occupying a position similar to elliptic curves among curves. Even though
interest in K3 surfaces has recently increased, very basic questions about their arithmetic are
still unanswered. For example, it is not known if there are K3 surfaces with finitely many
rational points, or if there are K3 surfaces with rational points that are not Zariski dense.

An important tool in understanding the arithmetic and the geometry of a K3 surface is its
Picard lattice. The Picard lattice encodes information about the existence of elliptic fibra-
tions, the potential density of rational points and, if the surface is defined over a global field,
also the existence of a Brauer–Manin obstruction to the Hasse principle on the surface.

Let P = PQ(1, 1, 1, 3) denote the weighted projective space over Q with weights
(1, 1, 1, 3) and coordinates x, y, z and w; let A1 denote the affine line over Q, with co-
ordinate t . Consider the following family of degree-two K3 surfaces

X : w2 = x6 + y6 + z6 + t x2 y2z2 ⊂ P × A1.

Let X be the generic element of the family, and let X denote its base change to Q(t). Then X

is a K3 surface over the field Q(t) (see Proposition 2·1). In this paper we explicitly compute
the geometric Picard lattice of X, together with its Galois module structure.

THEOREM 1·1. The geometric Picard lattice PicX is isometric to the unique (up to iso-
metries) lattice with rank 19, signature (1, 18), determinant 25 · 33, and discriminant group
isomorphic to Z/6Z × (Z/12Z)2.

We prove Theorem 1·1 as follows. In Section 2, we prove some geometric results about
X, and find an explicit set of divisors on X. In Section 3, we use these results to show that the
geometric Picard number of X is 19, and we use the aforementioned set of explicit divisors
on X to generate a rank 19 sublattice of the geometric Picard lattice of X. Finally, using a
technique originating from [ST10], we prove that the two lattices coincide.

We then use the explicit description of PicX to prove a number of results about the geo-
metry and the arithmetic of all the elements of the family X , as shown in Section 4. We also
use Theorem 1·1 to obtain information about the elements of a larger, in fact 4-dimensional,
family of K3 surfaces (cf. Remark 4·6).

2. Geometry

In this section we investigate the geometry of X. First we show that X is a K3 surface,
then we exhibit an explicit elliptic fibration on it. We then compute a subgroup of AutX.
Finally, we write down a set of explicit divisors on X; these divisors play a crucial role in
the proof of the main theorem.

Let us first fix notation. In this and also the following sections, if Y is a scheme over a
field k, we denote by Yk the base change of Y to an algebraic closure of k. For convenience
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On the arithmetic of a family of degree - two K3 surfaces 525

we write X instead of XQ(t). We denote by ζ12 a primitive 12th root of unity, and for n =
3, 4, 6 we define ζn as the nth primitive root of unity given by ζ

12/n
12 . Furthermore, if k is a

field, we denote by Pk the weighted projective space Pk(1, 1, 1, 3) over k, with coordinates
x, y, z, w of weight 1, 1, 1, 3, respectively. We also denote by A1

k the affine line over k, with
coordinate t .

We can now view the family X as a threefold over Q together with a fibration to the affine
line. Using the notation above, X is the threefold

X : w2 = x6 + y6 + z6 + t x2 y2z2 ⊆ PQ × A1
Q (2·1)

over Q. The fibration is the map p : X → A1 defined by ((x0 : y0 : z0 : w0), t0) �→ t0.
Let t0 be a point in A1

k where k is an algebraic extension of Q. The fiber p−1(t0) ⊂ Pk ×A1
k

naturally embeds into Pk , and we denote its image inside Pk by Xt0,k ; we also denote by Bt0,k

the plane sextic curve in P2
k defined by

Bt0 : x6 + y6 + z6 + t0x2 y2z2 = 0. (2·2)

PROPOSITION 2·1. Let t0 be a point of A1
Q

. If t3
0 � − 27, then Xt0,Q is a K3 surface. If

t3
0 = −27, then Xt0,Q is birational to a K3 surface. Furthermore, the surface X is a K3

surface over the function field Q(t).

Proof. By definition, Xt0,Q is the image inside PQ of the fiber of X above t0 ∈ A1
Q

, that is,
the surface defined by the equation

Xt0,Q : w2 = x6 + y6 + z6 + t0x2 y2z2 ⊆ PQ.

Then Xt0,Q is a double cover of P2
Q

ramified above the sextic curve Bt0,Q, defined in (2·2).

The curve Bt0,Q admits singular points if and only if t3
0 = −27.

Hence, if t3
0 �−27, the curve Bt0,Q is smooth and so Xt0,Q is a double cover of P2

Q
ramified

above a smooth sextic curve and is thus a K3 surface.
Assume now that t3

0 = −27 or, equivalently, t0 ∈ {−3, −3ζ3, −3ζ 2
3 }. One sees that X−3,Q

has twelve ordinary double points: (1 : ζ
j

6 : ζ k
6 : 0), where j + k ≡ 0 mod 3. For i = 1, 2,

the map (x : y : z : w) �→ (ζ i
3 x : y : z : w) gives an isomorphism X−3,Q → X−3ζ i

3 ,Q.

So also Xti ,Q has twelve ordinary double points, namely the points (1 : ζ
j

6 : ζ k
6 : 0), such

that j + k ≡ i mod 3. Recall that blow ups of points preserve the cohomological groups
(cf. [Har77, proposition V·3·4]) and that resolutions of ordinary double points preserve the
canonical divisor (cf. [BHPVdV04, theorem III·7·2]). Hence, by blowing up the singular
points of Xti ,Q we obtain a K3 surface.

Finally, the surface X is the fiber of X above the generic point of A1
Q and so, by the first

part of the proof, X is a K3 surface over the function field Q(t).

Remark 2·2. As noticed by Noam Elkies, X is isogenous to an elliptic K3 surface Y. Both
the isogeny and the elliptic fibration of Y can be explicitly written down, as follows.

The composition of the Cremona transformation (x : y : z : w) �→ (yz : xz : xy : w)

with the map (x : y : z : w) �→ (x2 : y2 : z2 : w) is a rational map from X to the surface
defined by

w2 = (yz)3 + (xz)3 + (xy)3 + t (xyz)2

inside PQ(t)(4, 4, 4, 3) � PQ(t). Notice that this is a 4 : 1 map not defined at (1 : 0 : 0 : 0),
(0 : 1 : 0 : 0), and (0 : 0 : 1 : 0).
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Set z = ry to project along (1 : 0 : 0 : 0); for each r , we get

w2 = y3((r 3 + 1)x3 + r 2t x2 y + (ry)3).

Now let us restrict to the affine patch given by y�0 or, equivalently, y = 1. Then we can
write the above equation as

w2 = ((r 3 + 1)x3 + r 2t x2 + r 3).

The 3 : 1 map A2(x, w) × A1(r) → A2(u, v) × A1(s) defined by

((x, w), r) �→ ((x r4(r 3 + 1), w r 6(r 3 + 1)), r 3)

sends the variety defined by the above equation to the variety

Y : v2 = u3 + ts2u2 + s5(1 + s)2, (2·3)

a one parameter family of elliptic surfaces over the s-line. The composition of these maps is
a 12 : 1 map from X to Y.

PROPOSITION 2·3. The surface X is isogenous to the Kummer surface associated to the
abelian surface E × E, where E is an elliptic curve with j-invariant −(4t)3. For example,
we can take E to be

E : y2 + xy = x3 + 36

1728 + (4t)3
x + 1

1728 + (4t)3
.

Proof. Under the change of coordinates v �→ v − s2t/3 we can rewrite Y in (2·3) as

u2 = v3 − 1

3
s4t2v + s5

(
s2 + 2

27
s(27 + t3) + 1

)
,

which matches the Inose fibration

Z A,B : y2 = x3 − 3As4x + s5(t2 − 2Bs + 1), (2·4)

with A = t2/9 and B = (−t3 − 27)/27. In [Ino78], Inose showed that Z A,B is isogenous to
the Kummer surface associated to the product of two elliptic curves E1 and E2, where

A3 = j (E1) j (E2)/126, B2 = (
1 − j (E1)/123

) (
1 − j (E2)/123

)
.

See also [SS10, section 13·5]. In our case, we have j (E1) = j (E2) = −(4t)3.

Remark 2·4. This result came only after explicitly computing the Picard lattice. Never-
theless, being independent of those computations, it can be used to more easily obtain some
of our results. In particular, it implies Corollary 2·5.

COROLLARY 2·5. The family X is not isotrivial.

Proof. Since two elliptic curves are isomorphic if and only if they have the same j-
invariant, Proposition 2·3 implies that two fibers Xt0 and Xt1 are isomorphic if and only
if t3

0 = t3
1 . Hence, there exist smooth fibers that are not isomorphic.

Automorphisms are important in order to understand the geometry of a surface. Following
[Fes16, section 3·2], we present a subgroup of AutX. We make use of this subgroup later,
to find more divisors on X and generate a large sublattice of the Picard lattice.
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Let σ ∈ S3 be a permutation of the set {x, y, z} and let ψσ be the corresponding auto-
morphism on PQ:

ψσ : (x : y : z : w) �−→ (σ (x) : σ(y) : σ(z) : w).

Further, for i, j, k ∈ Z/6Z, such that 2(i + j + k) ≡ 0 mod 6, consider the following
automorphism of PQ:

ψi, j,k : (x : y : z : w) �−→
(
ζ i

6 x : ζ
j

6 y : ζ k
6 z : w

)
.

Remark 2·6. Since w has weight 3, we have (ζ 2
6 x : ζ 2

6 y : ζ 2
6 z : w) = (x : y : z : w), and

thus ψi, j,k = ψi+�, j+�,k+� for � ≡ 0 mod 2.

Let H1 denote the group formed by the automorphisms ψσ , for σ ∈ S3; let H2 denote the
group formed by the automorphisms ψi, j,k , for i, j, k ∈ Z/6Z, such that 2(i + j + k) ≡
0 mod 6; finally, let H denote the subgroup of Aut PQ generated by H1 and H2, that is

H := 〈H1, H2〉 ⊆ Aut PQ. (2·5)

Let α and β be two elements of H1 and H2, respectively. One can easily see that the auto-
morphism given by α−1βα is an element of H2. We can then define an action of H1 on H2

by sending (α, β) ∈ H1 × H2 to α−1βα ∈ H2. Let H1 � H2 denote the semidirect product
of H1 and H2, with H1 acting on H2 as described above. It is easy to see that H = H1 � H2.

The following results describe H1, H2 and H as abstract groups. For a positive integer n,
let μn denote the multiplicative group of nth roots of unity. Let � ⊂ μ3

6 be the subgroup of
μ3

6 = μ6 × μ6 × μ6 defined by

� := {(ζ, ξ, θ) ∈ μ3
6 : ζ ξθ = ±1}.

Remark 2·7. The group � is isomorphic to Z/6Z × Z/6Z × 3Z/6Z. To see this, let
(ζ, ξ, θ) be an element of �. Since ζ, ξ, θ ∈ μ6, there are i, j, k ∈ {0, 1, ..., 5} such that
ζ = ζ i

6, ξ = ζ
j

6 , θ = ζ k
6 ; since ζ ξθ = ±1, we have that i + j + k ∈ {0, 3}. Then the map

� → Z/6Z × Z/6Z × 3Z/6Z given by

(ζ, ξ, θ) −→ (i, j, i + j + k)

is well defined and is in fact an isomorphism of groups.

Let � : μ3 ↪→ μ3
6 be the embedding defined by

� : ζ −→ (ζ, ζ, ζ ).

It is easy to see that the image of � is a subgroup of �. Let N denote the quotient group

N := �/ im(�). (2·6)

Remark 2·8. As an easy exercise in group theory, one can show that the group N is iso-
morphic to the group (Z/2Z)2 × Z/6Z.

LEMMA 2·9. The following statements hold:
(i) H1 is isomorphic to the symmetric group S3;

(ii) H2 is isomorphic to the group N defined in (2·6);
(iii) H is isomorphic to S3 � N, where the action of S3 on N is given by permuting the

coordinates of the elements of N .

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0305004118000087
Downloaded from https://www.cambridge.org/core. MIT Libraries, on 22 Nov 2021 at 12:33:33, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0305004118000087
https://www.cambridge.org/core


528 F. BOUYER, E. COSTA, D. FESTI, C. NICHOLLS AND M. WEST

Proof.

(i) Follows from the definition of H1.
(ii) Let (ζ, ξ, θ) be an element of � and let i, j, k be defined as in Remark 2·7. Then

i + j + k ∈ {0, 3} or, equivalently, 2(i + j + k) ≡ 0 mod 6. We can then consider the
map � → H2 given by

(ζ, ξ, θ) �−→ ψi, j,k .

The map is clearly surjective; by Remark 2·6, it follows that the kernel is the subgroup
{(0, 0, 0), (2, 2, 2), (4, 4, 4)}; so

H2 ��/{(0, 0, 0), (2, 2, 2), (4, 4, 4)} = N ,

concluding the proof.
(iii) The statement follows by combining points i) and ii) and the observation that H =

H1 � H2.

LEMMA 2·10. The group H injects into AutX.

Proof. First notice that all the elements of H extend to automorphisms of PQ(t). The maps
ψσ and ψi, j,k map X to itself, as the automorphisms fix the defining equation of X . For any
given non-trivial h ∈ H , its fixed points are contained in a hyperplane, hence it cannot act
trivially on X. Hence, the group homomorphism H → AutX given by first extending an
automorphism h ∈ H ⊂ Aut PQ to PQ(t) and then restricting it to X is injective.

In what follows we will make no distinction between the group H and its image inside
AutX.

Remark 2·11. Since the elements of H are defined over Q(ζ6) ⊂ Q, using the same
argument as in Lemma 2·10, one can show that for any t0 ∈ A1, the group H is a subgroup
of the automorphism group Aut Xt0,Q.

Finally, we produce a specific set of divisors on X. In Section 3, we show that this set of
divisors, together with a particular subgroup of isometries of PicX, generates the full Picard
lattice of X.

As in [EJ08, construction 4], to produce a set of divisors, we use the fact that X is a double
cover of P2

Q(t) branched above the curve

B : x6 + y6 + z6 + t x2 y2z2 = 0 ⊂ P2
Q(t).

We produce a set of divisors on X by searching for conics in P2
Q(t)

that intersect BQ(t) with

even multiplicity everywhere; the pullback of such conics to the surface X splits into two
components. For each of these conics, we take a component of the pullback. In this way, we
find the set 
 of divisors on X, given by


 = {B1, B2, B3, B4, B5} , (2·7)
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where

B1 :
{

x2 + y2 + ζ3z2 = 0

w − β1xyz = 0

B2 :
{

x2 + ζ3 y2 + ζ 2
3 z2 = 0

w − β0xyz = 0

B3 :
{

2xy − c1z2 = 0

x3 − y3 − w = 0

B4 :
{

c0δx2 − 2(9c2
0 + 3tc0 − 2t2)xy + 2δy2 − δz2 = 0

(x3 + a4x2 y + b4xy2 + c4 y3)(c2
0c1 + 2) − 2w = 0

B5 :
{

a5x2 + c5(y2 + z2) + yz = 0

r5x3 + v5xyz − w = 0.

Here, βi ∈ Q(t) satisfy β2
i = t + 3ζ i

3 , for i = 0, 1, 2; the elements c0, c1, c2 ∈ Q(t) are
the three roots of x3 + t x2 + 4; the element δ is 4ζ4β0β1β2; and the remaining constants are
expressed in terms of βi , c j and δ as follows:

a4 = 9c0 + 6t

4(t3 + 27)
δ,

b4 = −c2
0 − tc0,

c4 = 18 − 3t2c0 − 3tc2
0

8(t3 + 27)
,

a5 = ζ12(−ζ6 + 2)

9
(β0β1 + β0β2 + β1β2 + t),

c5 = ζ12(ζ6 − 2)

3
,

r5 = ζ12(ζ6 − 2)

9
(2β0β1β2 + (2t − 3)β0 + (2t − 3ζ3)β1 + (2t + 3ζ6)β2),

v5 = −β0 − β1 − β2.

Remark 2·12. In the rest of the paper, we abuse notation and use the symbols Bi , for
i = 1, ..., 5, to denote both the divisor Bi as well as its class inside PicX.

Remark 2·13. By definition, Bi is one of the two irreducible components on the pullback
of a certain smooth conic Ci ⊂ P2

Q(t)
on X. Thus Bi is isomorphic to the conic Ci , and so Bi

has genus 0.

Note that the divisors in 
 are not defined over Q(t). Denote by L the Galois closure of
the minimal field extension of Q(t) over which 
 is defined. We refer to Appendix B for the
definition of L and the computation of the Galois group Gal(L/Q(t)), which we use later on.

Let S be a K3 surface defined over a field k and let K be a field extension of k. Let D be a
class in Pic S. In what follows, we say that D can be defined over K if D contains a divisor
on S whose defining equations have coefficients in K .

Remark 2·14. By exploiting the symmetry of the equation defining B, it is easy to find
the divisors B1, B2, B3. However, finding the divisors B4 and B5 is more challenging. To
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find them, we specialise the surface X, find divisors on the specialisation, and then try to lift
them to X. More explicitly, we choose t0 ∈ Z, and specialise the surface X to the surface
Xt0 . We then reduce Xt0 modulo a prime of good reduction, p, to get the surface Xt0,p (see
Section 3 for more details). Then, with the help of a computer, we iterate over all conics over
Fp that are everywhere bi-tangent to the ramification locus of Xt0,p. We look for those conics
whose components of the pull-back on Xt0,p, together with the specialisations of B1, B2 and
B3, generate a lattice inside Pic

(
Xt0,p

)
Fp

with higher rank or smaller determinant than the
lattice generated by B1, B2 and B3 of X. For each such curve, we lift it to a number field. By
repeating this process for different values of t0, we are able to interpolate these divisors in
terms of t . For more details, see [Fes16, remarks 3·5·1 and 3·5·2].

Remark 2·15. There are many other ways to write down divisors on X. For example, we
could have looked for lines that are tri-tangent to B. Unfortunately, such lines do not exist
over Q(t). A Gröbner bases computation shows that such lines only exist on the fibers above
the zeros of the polynomial

t (t3 + 53)(8t3 + 333). (2·8)

Another possibility is to take advantage of the fact that X is a double cover of the degree-
one del Pezzo surface

Y : w = x6 + y6 + z3 + t x2 y2z ⊂ PQ(t)(1, 1, 2, 3).

It is well known that Pic YQ(t) is a rank 9 lattice, generated by the 240 exceptional curves on
YQ(t). These divisors do not play a relevant role in our approach, though this has been useful
in other situations (e.g., [KT04]).

3. The Picard lattice of X

Even though there are some theoretical algorithms to compute the geometric Picard lattice
of a K3 surface, none are computationally feasible. For example, an effective version of
the Kuga–Satake construction for degree-two K3 surfaces in [HKT13] yields a theoretical
algorithm, but there are no explicit examples of this. Another algorithm is given in [PTvL15,
section 8·6.]. The paper [Cha14] presents an algorithm to compute the rank of the geometric
Picard lattice, conditional on the Hodge conjecture for X × X ; the algorithm computes a
sublattice of finite index, which therefore has the same rank. These methods rely on finding
linearly independent divisors on X . However, there is no known practical algorithm to do
this on a K3 surface.

In this section, we use the results presented in Section 2 to explicitly compute the geo-
metric Picard lattice of X. Using the divisors in the set 
, defined in (2·7), we explicitly
compute a sublattice � of PicX. Finally, we show that � is in fact equal to PicX.

We first compute the geometric Picard number.

PROPOSITION 3·1. The surface X has geometric Picard number ρ
(
X

) = 19.

Proof. From Proposition 2·3, we have that X is isomorphic to the Kummer surface asso-
ciated to the square of an elliptic curve with j-invariant −(4t)3. If A is an abelian surface,
with Kummer surface Kum(A), then we have ρ(Kum(A)) = 16 + ρ(A) (see [Huy16, sec-
tion 17·1]). Also, we have ρ(A) = dim(End(A) ⊗ Q)†, where the superscript † denotes
those endomorphisms that are invariant under the Rosati involution. For a product of elliptic
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On the arithmetic of a family of degree - two K3 surfaces 531

curves, we have

(End(E1 × E2) ⊗ Q)† � (End(E1) ⊗ Q)† × (End(E2) ⊗ Q)† × Hom(E1, E2).

See [Mum70, section 21] for more details. Therefore,

ρ
(
X

) = 16 + ρ(E × E)

= 18 + rk End(E)

� 19.

In the other direction, from Corollary 2·5, we have that X is a 1-dimensional non-isotrivial
family of K3 surfaces. Thus, from [Dol96, corollary 3·2], it follows that ρ

(
X

)
is at most

20 − 1 = 19.

Recall that H is the subgroup of AutX defined in Section 2. The group AutX induces a
natural action on the group of divisors on X, so we define the set

H · 
 = {h B | h ∈ H, B ∈ 
 }, (3·1)

given by the union of the orbits of the elements of 
 under the action of H ⊂ AutX.
Recall that all the divisors in 
 are defined over a certain Galois extension L of Q(t). By
construction, ζ6 lies in L and so, since all the automorphisms in H are defined over Q(ζ6)(t),
it follows that all the elements in H · 
 are defined over L .

The divisors in H · 
 generate a sublattice of PicX, say

� := 〈H · 
〉 ⊆ PicX. (3·2)

This sublattice can be explicitly computed, as shown by the following results.

Remark 3·2. To show that ρ � 19 in Proposition 3·1, we could alternatively just compute
the rank of the sublattice � ⊂ PicX.

3·1. Computing the sublattice �.

We first introduce some notation and state some preliminary results. For this, we follow
[Fes16, subsection 3·3·3].

Let t0 ∈ Z be an integer and fix an integral model �t0 for the surface Xt0 (the fiber of X
above t0). Let p ∈ Z be a prime of good reduction for �t0 , and let Fp denote the field with p
elements.

Let Lt0 be the number field obtained by specializing the field L to t = t0; let Ot0 denote
the ring of integers of Lt0 , and let p be a prime of Ot0 lying above p. Let κ(p) be the residue
field Ot0/p. The field κ(p) is isomorphic to Fpm , for some m > 0.

Let Xt0,p denote the reduction of �t0 modulo p. Let Bt0,p ⊆ P2
Fp

denote the branch locus
of Xt0,p.

Let D be one of the divisors on X in H · 
, and let D denote its Zariski closure inside
X . Then D is a divisor on X . We define Dt0 to be the specialisation of D at t0; that is, the
divisor on Xt0 obtained by taking the fiber of D above t0.

Note that for some divisors in H ·
, there are values of t0 ∈ Q such that the divisor cannot
be specialised to t = t0; for example, B4 cannot be specialised to t = −3. Assume that D
can be specialised to t0 and that p ∈ Ot0 is a prime of good reduction for �t0 . Then let Dt0

be the Zariski closure of Dt0 inside �t0 . We define Dt0,p to be the reduction modulo p of Dt0 .
The curve Dt0,p is a divisor on Xt0,p = (Xt0,p)κ(p). Note that the procedure of going from a
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divisor on X to a divisor on Xt0,p consists of a single step, repeated twice: taking the closure
of a divisor on the generic fiber of a family and specializing it to a special fiber.

LEMMA 3·3. Using the same notation as above, and assuming that D and D′ are two
divisors on X that can be specialised to t0 ∈ Z, we have the following equality of intersection
numbers:

D · D′ = Dt0,p · D′
t0,p

Proof. Using [MP12, proposition 3·6] and [EJ11, theorem 1·4], one immediately gets
that the reduction of X to Xt0,p induces an embedding PicX ↪→ Pic(Xt0,p)κ(p) that is in-
jective, compatible with the intersection product, and has torsion-free cokernel. The result
follows.

See [Huy16, proposition 17·2·10, remark 17·2·11], and [vL07, proposition 6·2] for more
details.

COMPUTATION 3·4. The lattice � is isometric to the lattice

U ⊕ E8(−1) ⊕ A5(−1) ⊕ A2(−1) ⊕ A2(−4).

In particular, � has rank 19, determinant 25 · 33, signature (1, 18) and discriminant group
isomorphic to Z/6Z × (Z/12Z)2.

See Appendix A for the definition of the lattices U, E8(−1), A5(−1), A2(−1), A2(−4), the
direct sum of lattices, and the discriminant group of a lattice.

Proof. The main step is to compute the intersection matrix for the generators of �; that
is, to calculate the intersection numbers D · D′ for all pairs D, D′ in the set H · 
.

For self intersection numbers, we use the adjunction formula:

D · D = 2g(D) − 2 = −2, for D ∈ H · 
,

as D is isomorphic to a plane conic, and so it has genus zero.
For pairs of distinct D, D′ in H ·
, directly computing the intersection number D ·D′ over

an algebraic extension of a function field can be computationally very expensive. Instead,
using Lemma 3·3, we reduce all the computations to computations over finite fields. Fix
an integer t0 ∈ Z, and an integral model for Xt0 . Let p be a prime of good reduction for
the fixed integral model of Xt0 and, recalling the notation introduced before, let Lt0 be the
specialisation of L to t0, Ot0 be the ring of integers of Lt0 and p be a prime of Ot0 lying above
p. Using Lemma 3·3, if D, D′ are two divisors on X, then D · D′ = Dt0,p · D′

t0,p
. Since all

divisors D ∈ H · 
 are defined over L , all the divisors Dt0,p are defined over the finite field
Fpm �κ(p), for some m > 0.

If Dt0,p and D′
t0,p

have no common components, then the intersection Dt0,p�D′
t0,p

is a
zero-dimensional scheme over Fpm . Using MAGMA it is possible to compute its degree.
Since we are considering divisors on a smooth surface, the degree of the zero-dimensional
scheme given by the intersection of the two divisors equals the sum of the intersection mul-
tiplicities of the points of intersection of the two divisors (see [HS00, A·2·3]), and so the
degree of Dt0,p�D′

t0,p
is the intersection number Dt0,p · D′

t0,p
= D · D′. In this way, we get

the intersection matrix of the lattice � generated by D ∈ H · 
.
In our computations, we use t0 = 7 and p = 79 and work over F792 . We then compute

an integral basis for �, and compute the intersection matrix of the basis; this is the Gram
matrix of �. Finally, the rank, signature, and discriminant of � are the rank, signature, and
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On the arithmetic of a family of degree - two K3 surfaces 533

determinant of the Gram matrix, respectively. One also computes the discriminant group of
� from the Gram matrix, as described in Appendix A. These quantities agree with those
given in the statement of the result.

Using these data, the first statement of the result immediately follows from [Nik80a,
corollary 1·13·3] (see Appendix A), noticing that � and the lattice in the statement are both
even and indefinite, and have the same rank, discriminant, signature, discriminant form, and
the same number of generators for the discriminant group; that is, 3 < 17 = 19 − 2. For the
MAGMA code with the effective computations, see [BCFNW17].

Before stating a corollary of Computations 3·4, recall that a class D ∈ PicX is said to
be defined over an extension K/Q(t) if D contains a divisor whose defining equations have
coefficients in K . We also introduce the notation O(PicX) for the group of isometries of
PicX.

COROLLARY 3·5. The following statements hold:

(i) the lattice � is a finite index sublattice of PicX;
(ii) every class in PicX is defined over L;

(iii) the Galois group Gal(L/Q(t)) injects into O(PicX);
(iv) the group H injects into O(PicX).

Proof.

(i) This is immediate, since � is a sublattice of PicX by construction, and from Proposi-
tion 3·1 and Corollary 3·5 we have that PicX and � both have rank 19.

(ii) We have already seen that all the elements in H · 
 are defined over L . Since these
elements generate the lattice �, we have that all the elements of � are defined over L .
Now let D be a class in PicX. By point (i) we have that � has finite index, say d, inside
PicX. Then d D is an element of �, hence it can be defined over L . Since the action of
the Galois group on PicX is linear and PicX is torsion free, it follows that D can be
defined over L .

(iii) The Galois group Gt = Gal(Q(t)/Q(t)) naturally acts on PicX; that is, there is a map
Gt → O(PicX). We have seen that all the elements of PicX are defined over L , hence
this action factors through the Galois group Gal(L/Q(t)). More precisely, we have an
exact sequence

0 −→ Ht −→ Gt −→ O(PicX),

where Ht is the kernel of the map Gt → O(PicX). As the elements of PicX are
defined over L , we have that Ht contains Gal(Q(t)/L). Having an explicit descrip-
tion of Gal(L/Q(t)) and �, one can easily see that no element of Gal(L/Q(t)) acts as
the identity on � ⊂ PicX, hence no element of Gal(L/Q(t)) acts as the identity on
PicX (see Appendix B for the explicit description of Gal(L/Q(t)) and use the explicit
divisors given in Section 2 to see that for every element of Gal(L/Q(t)) there is at least
one element in that list that is not fixed). It follows that the kernel Ht is exactly the
Galois group Gal(Q(t)/L). Therefore,

Gal(L/Q(t))� Gt/ Gal(Q(t)/L) = Gt/Ht

injects into O(PicX), proving the statement.
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(iv) Recall that H is the subgroup of AutX defined in (2·5). From Proposition 3·1, we know
that PicX has Picard number 19; from Computation 3·4 we know that � has determinant
25 · 33; from point (1), we know that � is a finite index sublattice of PicX. It follows
that PicX has rank 19 and that its determinant is not a power of 2; in particular, the
determinant is divisible by 3. The statement now immediately follows from [Fes16,
proposition 1·2·47].

From Corollary 3·5, we have that both groups Gal(L/Q(t)) and H embed into O(PicX),
so we can define the group

G := 〈Gal(L/Q(t)), H〉 ⊆ O(PicX), (3·3)

the subgroup of O(PicX) generated by Gal(L/Q(t)) and H .

3·2. Proving � = PicX.

Recall that � is the sublattice of PicX generated by the orbits of the divisors 
 under the
group H (cf. (3·2)).

We now show that � is in fact the whole geometric Picard lattice of X, by showing that the
quotient PicX/� is trivial. From Corollary 3·5, we know that � is a finite index sublattice
of PicX, and consequently that PicX/� is a finite abelian group. This group is trivial if and
only if there is no element of order p, for any prime p. An element of order p corresponds
to a nontrivial element of the kernel of the natural map �/p� → PicX/p PicX. Denote
the kernel of this map by �p. To complete the proof, it suffices to show that �p is trivial for
every prime p.

Remark 3·6. We can eliminate all but two primes by considering the possible order of
PicX/�. Indeed, �p�0 if and only if there is an element of order p in PicX/�, which

implies that p divides #
(

PicX/�
)

= [PicX : �]. If L and L ′ are lattices of the same

rank such that L ′ ⊆ L , then disc L ′ = [L : L ′]2 disc L . From Computation 3·4, we have
disc � = 25 · 33; thus [PicX : �] | 22 · 3. Consequently, �p = 0 for p�{2, 3}.

We are left to show that �2 and �3 are both zero. For this, we use the technique in [ST10],
which is also used in [VAV11]: since we cannot compute �p directly, we find a subset of
�/p� that contains �p and that can be explicitly computed, then we show that none of
the elements of this subset can be an element of �p. If D is an element of �, we write
[D]� = D mod p� to denote the class of D inside �/p�. The intersection pairing on �

induces another symmetric pairing on �/p�,

�/p� × �/p� −→ Z/pZ

[D]� · [D′]� �−→ D · D′ mod p.

Let kp denote the left kernel of this composition, and let Mp denote the subset of kp given
by

Mp := {[D]� ∈ kp | [D]2
� ≡ 0 mod 2p2 }. (3·4)

LEMMA 3·7. The subset Mp contains �p and it is fixed by all the isometries of �p.

Proof. This proof is purely lattice-theoretic. For example, see [Fes16, lemma 1·1·23].
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LEMMA 3·8. The group G defined in (3·3) injects into O(�).

Proof. By definition, G is a group of isometries of PicX. Using the explicit description
of the elements of G and �, one can check that G preserves � and that no element of G acts
as the identity on �. The statement follows.

We say that a class E ∈ PicX is effective if it contains an effective divisor.

LEMMA 3·9. Let S be a K3 surface. If E ∈ Pic S is a divisor class on S such that E2 =
−2, then either E or −E is effective.

Proof. This is a well known general result, see for example [Fes16, lemma 1·2·35] or
[Huy16, section 1·2·3].

We are now ready to prove our main result.

LEMMA 3·10. The kernel �p is trivial for every prime p.

Proof. By Remark 3·6, the statement holds for all primes p�2, 3, so it suffices to prove
the statement for p = 2 and p = 3. For this, we follow the proof of [Fes16, theorem 3·1·4].

Let p be equal to 2 or 3. From Lemma 3·8, we know that G acts on �. Since the Fp-vector
space �p is the kernel of a G-equivariant homomorphism, it is G-invariant. So if an element
[x]� is in �p, its whole G-orbit, G · [x]�, is contained in �p. Since the discriminant of � is
25 33, the Fp-vector space �p can have dimension at most 2 and 1, for p = 2, 3 respectively.
Since �p is stable under the action of G, it follows that the G-orbit of every element in �p

spans an Fp-vector space of dimension at most 2 or 1, for p = 2, 3 respectively.
Analogous statements hold if we consider the action of just H (cf. (2·5)), instead of the

whole of G.
Let p = 2. Using MAGMA, we explicitly compute the subset Mp. There is only one non-

trivial H -orbit inside Mp spanning a vector subspace of dimension at most 2. Let W denote
this subspace. The subspace W has dimension 2, and it admits a basis {w1, w2} such that

w1 = [E1]�
w2 = [E2]�,

where the divisors are E1 := ψ0,3,0 B3 − B3 and E2 := τ 2
2 ψ(x,y)(ψ0,3,0 B4 − B4), and τ2

denotes the automorphism in Gal(L/Q(t)) defined in Appendix B (cf. Table 1). Using the
same technique as in Computations 3·4, one checks that E2

1 = E2
2 = −8. Assume w1 is an

element of �p, then E1 is an element of � that is 2-divisible in PicX, say E1 = 2C , for
some C ∈ PicX. Since E2

1 = −8, the class C is a −2-class, and then either C ′ or −C ′ is
effective (cf. Lemma 3·9). By construction, E1 = E1,1 − E1,2, where E1,1 = ψ0,3,0 B4 and
E1,2 = D4. Note that both E1,1 and E1,2 are elements of G · 
, and so are isomorphic to
plane conics; hence, E2

1,1 = E2
1,2 = −2. Let L be the hyperplane class in PicX, and notice

that it is ample (in fact, 3L is very ample). Since E1 = 2C , with C a −2-class, and L is
ample, we have that the intersection number H · E1 = 2H · C is either positive or negative
(according to whether C or −C is effective); on the other hand, E1 = E1,1 − E1,2, and so
L · E1 = H · E1,1 − L · E1,2 = 2 − 2 = 0, yielding a contradiction. Therefore E1 cannot be
2-divisible. The same argument holds for E2, as well as for any other element of W , since the
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orbit of every element of W spans the whole of W ; indeed, in Mp there are no 1-dimensional
subspaces generated by H -orbits. Therefore �2 is trivial.

Let p = 3. As before, we compute the subset Mp using MAGMA. Among the non-trivial
vectors in Mp, we look for those whose orbit under G spans a 1-dimensional F3-vector
space. It turns out that there are no such vectors. Thus �3 is also trivial, completing the
proof.

See [BCFNW17] for the MAGMA code used to perform the computations.

As noted before, Lemma 3·10 finally shows that

PicX = �.

This, together with Computations 3·4, completes the proof of Theorem 1·1.

4. Consequences

The explicit description of PicX enables us to understand some arithmetic properties of
the family X . For example, we can compute the Galois structure of PicX and deduce the
following result.

COMPUTATION 4·1. Considering the action of Gal(L/Q(t)) on PicX, the following
statements hold:

(i) H 0
(

Gal(L/Q(t)), PicX
)

is isomorphic to Z, and it is generated by the class of the
hyperplane section of X;

(ii) H 1
(

Gal(L/Q(t)), PicX
)

is isomorphic to (Z/2Z)3;
(iii) H 2(Gal(L/Q(t)), PicX

)
is isomorphic to (Z/2Z)10;

(iv) furthermore, for every non-trivial subgroup M ⊂ Gal(L/Q(t)), we have

H 1(M, PicX)� (Z/2Z)i

with i ∈ {0, 1, 2, 3, 4, 5, 6, 8, 10, 12};
(v) there are 49 normal subgroups N of Gal(L/Q(t)) for which H 1(N , Pic(X)) is trivial;

(vi) there are 47 normal subgroups N of Gal(L/Q(t)) for which H 1(N , Pic(X)) is non-
trivial.

Proof. By direct computations using MAGMA; see [BCFNW17] for the code.

Remark 4·2. Computation 4·1 can be useful for studying the existence of a Brauer-Manin
obstruction on X. In fact, the Hochschild–Serre spectral sequence implies the following
isomorphism:

Br1 X

Br0 X

∼−→ H 1
(
Gal

(
L/Q(t)

)
, PicX

)
,

where Br0 X and Br1 X are the constant and the algebraic Brauer group of X, respectively.

Theorem 1·1 not only gives us information about the arithmetic of X, but also of the other
fibers of X , as shown by the following results.

COROLLARY 4·3. Any smooth fiber Xt0 of the family X has geometric Picard number at
least 19. If the geometric Picard number of Xt0 is exactly 19, then Pic Xt0,Q is isometric to
�. The geometric Picard number of Xt0 is 20 if and only if −(4t0)

3 is the j-invariant of an
elliptic curve with complex multiplication.
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Proof. Theorem 1·1 tells us that PicX = �. From [MP12, proposition 3·6] we have that
there is an embedding of PicX inside Pic Xt0,Q that respects the intersection pairing and has
torsion free co-kernel. The existence of the embedding implies that Pic Xt0,Q has rank at least
19. Since the embedding has torsion free co-kernel, if Pic Xt0,Q has rank exactly 19, then the
image of PicX is the whole geometric Picard lattice of Xt0 . Finally, the last statement follows
immediately from Proposition 2·3 and [SS10, 12·(26)].

Remark 4·4. It follows that there are only finitely many rational values of t0 for which the
Picard number of Xt0 is 20, namely

160080, 1320, 240, 24, 8, 15/4, 0, −3, −5, −33/2, −255/4.

Note that 0,−5, and −33/2 are the rational roots of the polynomial (2·8) from Section 2
whose roots are the values of t0 for which Xt0 admits tri-tangent lines.

COROLLARY 4·5. Let t0 ∈ Q be an algebraic number such that the fiber Xt0 is smooth.
Then Xt0 is a K3 surface defined over the number field Q(t0) and it has potentially dense
rational points.

Proof. Since Xt0 is smooth, it is a K3 surface, by Proposition 2·1; since t0 is algebraic over
Q, the field Q(t0) is a number field, and so the surface Xt0 can be defined over the number
field Q(t0). From Corollary 4·3 we have that Xt0 has geometric Picard number at least 19.
Then the statement immediately follows from [BT00, theorem 1·1].

Remark 4·6. Let a, b, c, d ∈ Q be four algebraic numbers, and let Xa,b,c,d be the surface
defined by

Xa,b,c,d : w2 = ax6 + by6 + cz6 + dx2 y2z2 ⊂ PQ. (4·1)

Assume Xa,b,c,d is smooth.
It is easy to see that Xa,b,c,d is isomorphic, over Q, to Xe,Q, the fiber of the family X above

the point e = d · ε, where ε is a third-root of the product a · b · c.
This implies that the geometric Picard lattice of Xa,b,c,d is isometric to Pic Xe,Q, making

it possible to use Corollaries 4·3 and 4·5 for K3 surfaces with defining equation as in (4·1).

Appendix A. Exposition on lattices

We briefly review the lattice theory that we use in Section 3, and refer the reader to
[Nik80a] for more details.

In this article a lattice is a free abelian group, L , of finite rank equipped with a symmetric,
non-degenerate, bilinear form 〈 , 〉 : L × L → Z. We define the signature of L to be the
signature of the extension to R of its bilinear form. We say that L is positive definite if it
has signature (b+, 0), negative definite if it has signature (0, b−), and indefinite otherwise.
We say that L is even if 〈x, x〉 ∈ 2Z for all x ∈ L . Let {ei } be a basis for L; then the Gram
matrix of L with respect to {ei } is the matrix

(〈
ei , e j

〉)
i, j

. The discriminant of L , denoted
Disc(L), is the determinant of the Gram matrix with respect to some basis; it is independent
of the choice of basis.

We define An(m) and E8(m) to be the lattices obtained from the root lattices An and
E8 (cf. [CS99, sections 4·6·1 and 4·8·1]), respectively, by multiplying their quadratic form
by m.
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Let L1 and L2 denote two lattices, with bases {ei } and { fi }, respectively. Then L1 ⊕ L2

denotes the lattice with basis {ei }�{ fi } and bilinear form extending that on L1 and L2 such
that 〈ei , f j 〉 = 0 for all i, j . If L1 ⊆ L2 and rk(L1) = rk(L2), then we say that L1 is a full
rank sublattice of L2. In this situation, Disc(L1)/Disc(L2) = [L2 : L1]2.

For any lattice L we define the dual lattice

L∗ := Hom(L , Z)� {x ∈ L ⊗ Q : ∀y ∈ L 〈x, y〉 ∈ Z } .

The discriminant group of a lattice L is the finite abelian group AL := L∗/L , and we
denote by �(AL) the minimal number of generators of AL . The discriminant group comes
equipped with a bilinear form, bL : AL × AL → Q/Z, defined by bL(x + L , y + L) =
〈x, y〉 mod Z.

If L is an even lattice, we define the discriminant form,

qL : AL −→ Q/2Z

x + L �−→ 〈x, x〉 mod 2Z.

We use the following theorem in Computation 3·4 to identify the lattice �.

THEOREM A·1 (Nikulin [Nik80b, corollary 1·13·3]). If a lattice L is even and indefinite
with rank(L) > �(AL) + 2, then L is determined up to isometry by its rank, signature and
discriminant form.

Appendix B. The Galois group in the generic case

Let K be the function field Q(t). In Section 2 we fixed an algebraic closure K = Q(t) of
Q(t), and defined some elements in this algebraic closure. Recall that: ζ12 is defined to be a
primitive 12th root of unity; ζn is defined to be the primitive nth root of unity given by ζ

12/n
12 ,

for n = 3, 4, 6; the elements βi are such that β2
i = t + 3ζ i

3 , for i = 0, 1, 2; the elements
c0, c1, c2 are the roots of the polynomial

h(x) := x3 + t x2 + 4 ∈ Q(t)[x]; (B 1)

the element δ is the product 4ζ4β0β1β2. We also defined the field L to be the Galois closure
of the smallest extension of Q(t) containing all the elements defined above. In this section
we explicitly describe L , as well as the Galois group Gal(L/Q(t)), proving the following
theorem.

THEOREM B·1. The field L is the field K (ζ12, β0, β1, β2, c0). It is a Galois extension of
degree 25 · 3 and its Galois group is isomorphic to the group

S3 × Z/2Z × D4.

In the statement of the theorem, S3, Z/2Z, and D4 denote the permutation group
of a set with three elements, the cyclic group with two elements, and the dihed-
ral group with eight elements, respectively. In proving Theorem B·1 we will follow
[Fes16, section 3·4].

Remark B·2. Recall that c0, c1, c2 are the roots of the polynomial h defined in (B 1). No-
tice that h has discriminant � = −16(D3 + 27) = (4ζ4β0β1β2)

2 = δ2. In particular, � is
nonzero, so all the roots are distinct.
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E · F · J = L

E = K(δ, c0) J = K(β1, β2)

K(β1) K(β2)

K(δ) F = K(β0) K(ζ3)

K = Q(t)

Fig. 1. An alternative description of L .

It is possible to explicitly write the roots c1, c2 in terms of the elements ζ12, β0, β1, β2,

and c0. Namely, the other roots of h are

c1 = −t − c0 + ε

2
and c2 = −t − c0 − ε

2
,

where ε = δ
c0(3c0+2t) .

We now let E denote the field K (δ, c0) ⊂ L , and let F denote the field K (β0) ⊂ L , and
finally let J denote the field K (β1, β2) ⊂ L .

LEMMA B·3. The following statements hold:
(i) the extension E/K is a Galois extension of degree 6 with Galois group Gal(E/K )� S3;

(ii) the extension F/K is a Galois extension of degree 2 with Galois group Gal(F/K ) �
Z/2Z;

(iii) the extension J/K is a Galois extension of degree 8 with Galois group Gal(J/K )� D4;
(iv) the fields E, F, and J intersect pairwise trivially; that is, the intersection of any two of

them equals K ;
(v) the compositum field E · F · J equals L.

Proof.
(i) By construction, the field E is the splitting field of the cubic polynomial h = x3 + t x2 +

4, that is irreducible over K and whose discriminant is not a square in K . The statement
follows.

(ii) The field F is the splitting field of the degree two polynomial x2−(3+t). The statement
trivially follows.

(iii) The field J is the splitting field of the polynomial

l = x4 + (−2t + 3)x2 + t2 − 3t + 9,

and so J/K is a Galois extension. The roots of l are ±β1, ±β2, therefore the Galois
group Gal(J/K ) is generated by γ1, γ2, γ , where γ1 changes the sign of β1, γ2 changes
the sign of β2, and γ switches β1 and β2. Since J/K is Galois, we have the follow-
ing chain of equalities: # Gal(L/K ) = [L : K ] = 8. One can easily check that
γ γ1�γ1γ , and that these two are the only elements of order 4 of Gal(J/K ). Summar-
ising, Gal(J/K ) is a non-abelian group of order 8 with exactly two elements of order 4.
Thus Gal(J/K ) is isomorphic to D4.
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(iv) By explicit computations using MAGMA ([BCP97]), code available at [BCFNW17].
As an example, we show the argument to prove the statement for F and J . By point (ii),
the field F�J is an extension of degree at most 2 over K . If we assume that F�J�K ,
it follows that F�J = F and, therefore, that β0 ∈ J . By writing J as

Q ⊕ ζ3Q ⊕ β1Q ⊕ ζ3β1Q ⊕ β2Q ⊕ ζ3β2Q ⊕ β1β2Q ⊕ ζ3β1β2Q

one can show, after some computations, that the equation t2 + 3 has no solution in J ,
i.e., β0�J , getting a contradiction. We can hence conclude that F�J = K .

(v) Recall that L is, by definition, the Galois closure of the smallest field extension of K
containing ζ12, βi , ci , for i = 0, 1, 2. Hence notice that also δ is in L .
Let L ′ denote the compositum field E · F · J . By construction, L ′ contains the elements,
δ, c0, β0, β1, β2. Then, by Remark B·2, we have that also c1 and c2 are in L ′. From
βi ∈ L ′, it follows that 1

3 (β
2
1 − t) = ζ3 ∈ L . Hence, the ratio

α := 4ζ3β0β1β2

4ζ4β0β1β2
= ζ3

ζ4

is also inside L ′. Recall that ζ3 = ζ 4
12 and ζ4 = ζ 3

12, then

α = ζ3

ζ4
= ζ 4

12

ζ 3
12

= ζ12.

Hence ζ12 is an element of L ′. It follows that L ′ is the smallest field extension of K
containing ζ12, βi , ci , for i = 0, 1, 2.
In order to show that L = L ′ it suffices to show that the extension L ′/K is Galois. This
follows from the fact that L ′ is the compositum of three Galois extensions of K that
intersect pairwise trivially. Hence L ′ is Galois over K and therefore it equals its Galois
closure, i.e., L = L ′.

Proof of Theorem B·1 The fact that L equals the field K (ζ12, β0, β1, β2, c0) immediately
follows from Lemma B·3(v).

The field extension L/K is Galois by definition. Being Galois, its degree equals the car-
dinality of its Galois group.

From Lemma B·3(v), L equals the compositum of the fields E, F and J ; from
Lemma B·3(iv), these fields are pairwise distinct, and so

Gal(L/K )�Gal(E/K ) × Gal(F/K ) × Gal(J/K ).

The theorem now follows from Lemma B·3(i)-(iii).

Remark B·4. In order to perform explicit operations using the automorphisms of
Gal(L/K ), it is useful to give an isomorphism between Gal(L/K ) and S3 × Z/2Z × D4. In
order to do so, we will present five automorphisms τi ∈ Gal(K2/K ), with i = 1, 2, 3, 4, 5,
such that:

Gal(E/K ) = 〈τ1, τ2〉� S3;
Gal(F/K ) = 〈τ3〉�Z/2Z;

Gal(J/K ) = 〈τ4, τ5〉� D4.

The field L is generated by c0, ζ12, β0, β1, β2 over K , so to describe an element τ ∈
Gal(L/K ) it is enough to describe its action on those elements. The action of τi on those
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Table 1. The action of τ1, ..., τ5 on a set of elements of L.

c0 c1 c2 δ ζ12 ζ4 ζ3 β0 β1 β2

τ1 c0 c2 c1 −δ ζ 7
12 −ζ4 ζ3 β0 β1 β2

τ2 c1 c2 c0 δ ζ12 ζ4 ζ3 β0 β1 β2
τ3 c0 c1 c2 δ ζ 7

12 −ζ4 ζ3 −β0 β1 β2
τ4 c0 c1 c2 δ ζ 11

12 −ζ4 ζ 2
3 β0 −β2 β1

τ5 c0 c1 c2 δ ζ 7
12 −ζ4 ζ3 β0 β1 −β2

generators of L over K is listed in Table 1. For the convenience of the reader, the table also
lists the action of τi , for i = 1, ..., 5, on other interesting elements of L .
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