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Abstract

Let IP denote the weighted projective space with weights (1, 1, 1, 3) over the rationals,
with coordinates x, y, z and w; let X be the generic element of the family of surfaces in P
given by

X:w? = x84+ 30+ 28+ 1x?y?

The surface X is a K3 surface over the function field Q(¢). In this paper, we explicitly
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compute the geometric Picard lattice of X, together with its Galois module structure, as well
as derive more results on the arithmetic of X and other elements of the family X.

1. Introduction

K3 surfaces are sometimes called “surfaces of intermediate type”, as they are neither
birational to P* nor of general type; that is, they lie between those surfaces whose arithmetic
and geometry is well understood and those surfaces whose arithmetic and geometry is still
largely obscure, occupying a position similar to elliptic curves among curves. Even though
interest in K3 surfaces has recently increased, very basic questions about their arithmetic are
still unanswered. For example, it is not known if there are K3 surfaces with finitely many
rational points, or if there are K3 surfaces with rational points that are not Zariski dense.

An important tool in understanding the arithmetic and the geometry of a K3 surface is its
Picard lattice. The Picard lattice encodes information about the existence of elliptic fibra-
tions, the potential density of rational points and, if the surface is defined over a global field,
also the existence of a Brauer—-Manin obstruction to the Hasse principle on the surface.

Let P = Pg(1,1,1,3) denote the weighted projective space over Q with weights
(1,1, 1,3) and coordinates x, y, z and w; let A! denote the affine line over Q, with co-
ordinate . Consider the following family of degree-two K3 surfaces

X:w* =x 4+ + 8 +1x?y* 2 cPx Al

Let X be the generic element of the family, and let X denote its base change to Q(¢). Then X
is a K3 surface over the field Q(¢) (see Proposition 2-1). In this paper we explicitly compute
the geometric Picard lattice of X, together with its Galois module structure.

THEOREM 1-1. The geometric Picard lattice Pic X is isometric to the unique (up to iso-
metries) lattice with rank 19, signature (1, 18), determinant 23 - 33, and discriminant group
isomorphic to 7.)67. x (Z./127)*.

We prove Theorem 1-1 as follows. In Section 2, we prove some geometric results about
X, and find an explicit set of divisors on X. In Section 3, we use these results to show that the
geometric Picard number of X is 19, and we use the aforementioned set of explicit divisors
on X to generate a rank 19 sublattice of the geometric Picard lattice of X. Finally, using a
technique originating from [ST10], we prove that the two lattices coincide.

We then use the explicit description of Pic X to prove a number of results about the geo-
metry and the arithmetic of all the elements of the family X, as shown in Section 4. We also
use Theorem 1-1 to obtain information about the elements of a larger, in fact 4-dimensional,
family of K3 surfaces (cf. Remark 4-6).

2. Geometry

In this section we investigate the geometry of X. First we show that X is a K3 surface,
then we exhibit an explicit elliptic fibration on it. We then compute a subgroup of Aut X.
Finally, we write down a set of explicit divisors on X; these divisors play a crucial role in
the proof of the main theorem.

Let us first fix notation. In this and also the following sections, if Y is a scheme over a
field k, we denote by Yz the base change of Y to an algebraic closure of k. For convenience
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we write X instead of Xg@y- We denote by ¢y a primitive 12th root of unity, and for n =
3,4, 6 we define ¢, as the nth primitive root of unity given by [1122 /" Furthermore, if k is a
field, we denote by P, the weighted projective space P, (1, 1, 1, 3) over k, with coordinates
x,y,z, wof weight 1, 1, 1, 3, respectively. We also denote by A,l the affine line over k, with
coordinate ¢.

We can now view the family X as a threefold over Q together with a fibration to the affine
line. Using the notation above, X is the threefold

X:w?=x+y0 4+ 20 +1x?y?? C Pg x A(l@ 21D

over Q. The fibration is the map p: X — A! defined by ((xo : Yo : 20 : o), ty) > to.

Let 7o be a point in A} where k is an algebraic extension of Q. The fiber p~'(fp) C Py x A}
naturally embeds into PP;, and we denote its image inside P, by X,, x; we also denote by B, «
the plane sextic curve in P? defined by

B,,: x84+ 90+ 28+ 1?22 = 0. 2-2)

PROPOSITION 2-1. Let ty be a point of A}@. If t3 # — 27, then X,,.g is a K3 surface. If

tg = —27, then X,U’@ is birational to a K3 surface. Furthermore, the surface X is a K3
surface over the function field Q(t).

Proof. By definition, X, g is the image inside Pg of the fiber of X above 7y € A}@, that is,
the surface defined by the equation

X, g: 0 =x"+y°+2° +1x°y*2* C Pg.
Then X, 5 is a double cover of I[% ramified above the sextic curve B, g, defined in (2-2).

The curve B, 5 admits singular points if and only if tg = -27.

Hence, if 1] # —27, the curve B, g is smooth and so X, g is a double cover of IP% ramified
above a smooth sextic curve and is thus a K3 surface.

Assume now that tg = —27 or, equivalently, 7y € {—3, —3¢3, —3(32}. One sees that X_; 5
has twelve ordinary double points: (1 : Céj : (é‘ : 0), where j +k =0mod 3. Fori = 1, 2,
themap (x : ¥y : z : w) — (Caix :y 1z : w) gives an isomorphism X ;75 — X_%,-,@.
So also X, g has twelve ordinary double points, namely the points (1 : Cg : (6" : 0), such
that j + k = i mod 3. Recall that blow ups of points preserve the cohomological groups
(cf. [Har77, proposition V-3-4]) and that resolutions of ordinary double points preserve the
canonical divisor (cf. [BHPVdV04, theorem III-7-2]). Hence, by blowing up the singular
points of X, 5 we obtain a K3 surface.

Finally, the surface X is the fiber of X above the generic point of Ab and so, by the first
part of the proof, X is a K3 surface over the function field Q(¢).

Remark 2-2. As noticed by Noam Elkies, X is isogenous to an elliptic K3 surface Y. Both
the isogeny and the elliptic fibration of Y can be explicitly written down, as follows.

The composition of the Cremona transformation (x : y : z : w) — (yz : Xz : xy : w)
with the map (x : y : z : w) — (x® : y? : z? : w) is a rational map from X to the surface
defined by

w® = (y2)’ + (x2)’ + (xy)’ + 1 (xy2)®

inside Pg((4, 4,4, 3) = Pg(,. Notice that this is a 4 : 1 map not defined at (1: 0: 0: 0),
(0:1:0:0),and (0: 0: 1: 0).
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Set z = ry to project along (1: 0: 0: 0); for each r, we get
w? = (P + DX + r’tx®y + (ry)d).

Now let us restrict to the affine patch given by y #0 or, equivalently, y = 1. Then we can
write the above equation as

w? = ((r* + Dx® + r2tx? +17).
The 3 : 1 map A%(x, w) x A'(r) — A2(u,v) x Al(s) defined by
((x, w),r) = ((xr* (P 4+ 1), wr'( + 1)), )
sends the variety defined by the above equation to the variety
Y:o?=ud +1s7u’ +5°(1 +5)2, (2:3)

a one parameter family of elliptic surfaces over the s-line. The composition of these maps is
a12: 1 map from X to Y.

PROPOSITION 2-3. The surface X is isogenous to the Kummer surface associated to the
abelian surface E x E, where E is an elliptic curve with j-invariant —(4t)3. For example,
we can take E to be

36 1

E :y? =x° .
Y = e @ T 1728 1 4y

Proof. Under the change of coordinates v +— v — s°t/3 we can rewrite Y in (2-3) as
1 2
2 3 4. sf.2 3
=0 — =s"t —sQ27 + ¢ 1
w=v—zs v+s (s +27S( +17)+ )
which matches the Inose fibration

Zsp: y2 =x3—3As*x +s°(1> = 2Bs + 1), 2-4)

with A = ¢2/9 and B = (—t* — 27)/27. In [Ino78], Inose showed that Z, 3 is isogenous to
the Kummer surface associated to the product of two elliptic curves E| and E,, where

A= J(ENj(E)/12°,  B? = (1= j(EN/12°) (1 = j(E)/12%).
See also [SS10, section 13-5]. In our case, we have j(E,) = j(E,) = —(4t)>.

Remark 2-4. This result came only after explicitly computing the Picard lattice. Never-
theless, being independent of those computations, it can be used to more easily obtain some
of our results. In particular, it implies Corollary 2-5.

COROLLARY 2-5. The family X is not isotrivial.

Proof. Since two elliptic curves are isomorphic if and only if they have the same ;-
invariant, Proposition 2.3 implies that two fibers X, and X, are isomorphic if and only
if 1; = t;. Hence, there exist smooth fibers that are not isomorphic.

Automorphisms are important in order to understand the geometry of a surface. Following
[Fes16, section 3-2], we present a subgroup of Aut X. We make use of this subgroup later,
to find more divisors on X and generate a large sublattice of the Picard lattice.
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Let 0 € S5 be a permutation of the set {x, y, z} and let y, be the corresponding auto-
morphism on Pg:

W (x:yiziw)— (c(x): 0 (y): 0(2): w).

Further, for i, j,k € Z/6Z, such that 2(i + j + k) = 0 mod 6, consider the following
automorphism of Pg:

wijk:(xiyrziw) — ([éx: (gy: {é‘z: w)

Remark 2-6. Since w has weight 3, we have ((Zx: (2y: (2z: w) = (x: y: z: w), and
thus w; jx = Wite, j+ei+¢ for £ = 0 mod 2.

Let H, denote the group formed by the automorphisms v, , for ¢ € S3; let H, denote the
group formed by the automorphisms y; ;«, for i, j, k € Z/6Z, such that 2(i + j + k) =
0 mod 6; finally, let H denote the subgroup of AutPgy generated by H; and H,, that is

H = (Hl, H2> - Aut]P’@ (25)

Let @ and S be two elements of H; and H,, respectively. One can easily see that the auto-
morphism given by !B« is an element of H,. We can then define an action of H; on H,
by sending (a, B) € H; x Hy to a~'fa € H,.Let Hy x H, denote the semidirect product
of H, and H,, with H; acting on H, as described above. It is easy to see that H = H, X H,.

The following results describe H;, H, and H as abstract groups. For a positive integer #,
let i, denote the multiplicative group of nth roots of unity. Let £ C x; be the subgroup of
Mg = Mo X e X pie defined by

=&, 0) € ug ¢ CEO=+1).

Remark 2-7. The group X is isomorphic to Z/6Z x 7./6Z x 37/6Z. To see this, let
(¢, &,0) be an element of X. Since (, ¢, 0 € ug, there are i, j, k € {0, 1, ..., 5} such that
=70l E=¢,0 =k since ¢E0 = £1, we have thati + j + k € {0, 3}. Then the map
Y — Z/6Z x 7]6Z x 37/6Z given by

is well defined and is in fact an isomorphism of groups.

Let A: p3 <> u be the embedding defined by

A: {— (é‘ﬂC’g)
It is easy to see that the image of A is a subgroup of X. Let N denote the quotient group

N = X/im(A). (2-6)

Remark 2-8. As an easy exercise in group theory, one can show that the group N is iso-
morphic to the group (Z/27)? x 7./6Z.

LEMMA 2.9. The following statements hold:
(1) H, is isomorphic to the symmetric group Ss;
(i1) H, is isomorphic to the group N defined in (2-6);
(iii) H is isomorphic to S; X N, where the action of Sz on N is given by permuting the
coordinates of the elements of N.
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Proof.

(i) Follows from the definition of H,.

(i) Let (¢, &, 0) be an element of X and let i, j, k be defined as in Remark 2-7. Then
i+ j+k e{0,3} or, equivalently, 2(i + j + k) = 0 mod 6. We can then consider the
map ¥ — H, given by

(C) 57 9) > I)Ui,j,k'

The map is clearly surjective; by Remark 2-6, it follows that the kernel is the subgroup
{(0,0,0),(2,2,2), (4,4, 4)}; s0

H, = ¥/{(0,0,0),(2,2,2), (4,4,4)} =N,

concluding the proof.
(iii) The statement follows by combining points i) and ii) and the observation that H =
H, x H,.

LEMMA 2:10. The group H injects into Aut X.

Proof. First notice that all the elements of H extend to automorphisms of Pgy. The maps
W, and y; ; , map X to itself, as the automorphisms fix the defining equation of X. For any
given non-trivial 7 € H, its fixed points are contained in a hyperplane, hence it cannot act
trivially on X. Hence, the group homomorphism H — AutX given by first extending an
automorphism 2 € H C AutPg to Pgy and then restricting it to X is injective.

In what follows we will make no distinction between the group H and its image inside
Aut X.

Remark 2-11. Since the elements of H are defined over Q(¢) C Q, using the same
argument as in Lemma 2-10, one can show that for any #, € A!, the group H is a subgroup
of the automorphism group Aut X, 5.

Finally, we produce a specific set of divisors on X. In Section 3, we show that this set of
divisors, together with a particular subgroup of isometries of Pic X, generates the full Picard
lattice of X.

As in [EJ08, construction 4], to produce a set of divisors, we use the fact that X is a double
cover of IP%Q(,) branched above the curve

B: x4y +2° +1x°y’2? =0 C Py,

We produce a set of divisors on X by searching for conics in P@ that intersect By with
even multiplicity everywhere; the pullback of such conics to the surface X splits into two
components. For each of these conics, we take a component of the pullback. In this way, we

find the set Q of divisors on X, given by
Q= {Bl’ BZ: B3s B45 BS} s (27)
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where

B.- X2+ 24+ 52 =0
b w — fixyz =0

2oy +ga? =0
Bz:
w — Poxyz =0
2xy —c1z2 =0
B32 [ 3y 3]
x> =y —w =0
5. co0x? —2(9¢2 + 3tco — 2t%)xy + 20y* — 6z =0
v (x® + asx?y + baxy* + c4y*)(cjer +2) —2w =0

B asx?* +cs(y*+z2) +yz =0
> rsx> 4+ 0sxyz — w =0.

Here, f; € Q(t) satisfy ,b’i2 =1+ 34“;, fori = 0, 1,2; the elements ¢y, ¢, c; € Q(¢) are

the three roots of x> 4 tx2 + 4; the element J is 42401 f2; and the remaining constants are
expressed in terms of f;, ¢; and J as follows:

. 9¢( + 61
LB +2n”
b4 = —Cg — tcy,
18 — 3t%cy — 3tc}
Cqy = >
8(13 +27)
~g6 42
as = Cl2(+6)(ﬂoﬂl + BoBa+ Bifa + 1),
(G —2)
Cs = —(—,
3
-2
r= 2D gy b o+ @ =3B+ i3,

vs = —fo— pi1 — .

Remark 2-12. In the rest of the paper, we abuse notation and use the symbols B;, for
i =1,...,5, to denote both the divisor B; as well as its class inside Pic X.

Remark 2-13. By definition, B; is one of the two irreducible components on the pullback
of a certain smooth conic C; C IP’@ on X. Thus B; is isomorphic to the conic C;, and so B;
has genus 0.

Note that the divisors in Q are not defined over Q(7). Denote by L the Galois closure of
the minimal field extension of Q(¢) over which Q is defined. We refer to Appendix B for the
definition of L and the computation of the Galois group Gal(L/Q(r)), which we use later on.

Let S be a K3 surface defined over a field £ and let K be a field extension of k. Let D be a
class in Pic S. In what follows, we say that D can be defined over K if D contains a divisor
on S whose defining equations have coefficients in K .

Remark 2-14. By exploiting the symmetry of the equation defining B, it is easy to find
the divisors By, B,, B;. However, finding the divisors B4 and Bs is more challenging. To
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find them, we specialise the surface X, find divisors on the specialisation, and then try to lift
them to X. More explicitly, we choose #, € Z, and specialise the surface X to the surface
X,,. We then reduce X,, modulo a prime of good reduction, p, to get the surface X, , (see
Section 3 for more details). Then, with the help of a computer, we iterate over all conics over
IF,, that are everywhere bi-tangent to the ramification locus of X, ,. We look for those conics
whose components of the pull-back on X, ,, together with the specialisations of B;, B, and
B3, generate a lattice inside Pic (X o, P)T, with higher rank or smaller determinant than the
lattice generated by By, B, and B; of X. For each such curve, we lift it to a number field. By
repeating this process for different values of 7y, we are able to interpolate these divisors in
terms of 7. For more details, see [Fes16, remarks 3-5-1 and 3-5-2].

Remark 2-15. There are many other ways to write down divisors on X. For example, we
could have looked for lines that are tri-tangent to B. Unfortunately, such lines do not exist
over Q(#). A Grobner bases computation shows that such lines only exist on the fibers above
the zeros of the polynomial

1( + 5% (8 + 33%). (2-8)

Another possibility is to take advantage of the fact that X is a double cover of the degree-
one del Pezzo surface

Y ow=x®+y"+2° +1x’y*z C Py (1, 1,2,3).

It is well known that Pic Y is a rank 9 lattice, generated by the 240 exceptional curves on
Yg@- These divisors do not play a relevant role in our approach, though this has been useful
in other situations (e.g., [KT04]).

3. The Picard lattice of X

Even though there are some theoretical algorithms to compute the geometric Picard lattice
of a K3 surface, none are computationally feasible. For example, an effective version of
the Kuga—Satake construction for degree-two K3 surfaces in [HKT13] yields a theoretical
algorithm, but there are no explicit examples of this. Another algorithm is given in [PTvL1S5,
section 8-6.]. The paper [Chal4] presents an algorithm to compute the rank of the geometric
Picard lattice, conditional on the Hodge conjecture for X x X; the algorithm computes a
sublattice of finite index, which therefore has the same rank. These methods rely on finding
linearly independent divisors on X. However, there is no known practical algorithm to do
this on a K3 surface.

In this section, we use the results presented in Section 2 to explicitly compute the geo-
metric Picard lattice of X. Using the divisors in the set Q, defined in (2-7), we explicitly
compute a sublattice A of Pic X. Finally, we show that A is in fact equal to Pic X.

We first compute the geometric Picard number.

PROPOSITION 3-1. The surface X has geometric Picard number p @) = 19.

Proof. From Proposition 2-3, we have that X is isomorphic to the Kummer surface asso-
ciated to the square of an elliptic curve with j-invariant —(4¢)3. If A is an abelian surface,
with Kummer surface Kum(A), then we have p(Kum(A)) = 16 + p(A) (see [Huy16, sec-
tion 17-1]). Also, we have p(A) = dim(End(A) ® Q), where the superscript ¥ denotes
those endomorphisms that are invariant under the Rosati involution. For a product of elliptic
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curves, we have
(End(E, x E2) ® Q)" = (End(E)) ® Q)" x (End(E2) ® Q)" x Hom(E}, Ey).
See [Mum?70, section 21] for more details. Therefore,

p(X) =16+ p(E x E)
= 18 + rk End(E)
> 19.

In the other direction, from Corollary 2-5, we have that X is a 1-dimensional non-isotrivial
family of K3 surfaces. Thus, from [Dol96, corollary 3-2], it follows that p@) is at most
20—1=19.

Recall that H is the subgroup of Aut X defined in Section 2. The group Aut X induces a
natural action on the group of divisors on X, so we define the set

H-Q={(hB|heH, BeQ), (31

given by the union of the orbits of the elements of € under the action of H C Aut X.
Recall that all the divisors in Q are defined over a certain Galois extension L of Q(¢). By
construction, (g lies in L and so, since all the automorphisms in H are defined over Q(¢)(¢),
it follows that all the elements in H - Q are defined over L.

The divisors in H - Q generate a sublattice of Pic X, say

A= (H Q) CPicX. (3-2)
This sublattice can be explicitly computed, as shown by the following results.

Remark 3-2. To show that p > 19 in Proposition 3-1, we could alternatively just compute
the rank of the sublattice A C Pic X.

3-1. Computing the sublattice A.

We first introduce some notation and state some preliminary results. For this, we follow
[Fes16, subsection 3-3-3].

Let #y € Z be an integer and fix an integral model =, for the surface X,, (the fiber of X
above 1). Let p € Z be a prime of good reduction for Z,, and let I, denote the field with p
elements.

Let L,, be the number field obtained by specializing the field L to t = ty; let O,, denote
the ring of integers of L, and let p be a prime of O,, lying above p. Let x(p) be the residue
field O,,/p. The field x (p) is isomorphic to I », for some m > 0.

Let X, , denote the reduction of Z,, modulo p. Let B, , < IF’]ZFF denote the branch locus
of Xy, p.

Let D be one of the divisors on X in H - Q, and let D denote its Zariski closure inside
X. Then D is a divisor on X. We define D,, to be the specialisation of D at 1,; that is, the
divisor on X,, obtained by taking the fiber of D above f.

Note that for some divisors in H - Q, there are values of 7, € Q such that the divisor cannot
be specialised to t = ty; for example, B4 cannot be specialised to t = —3. Assume that D
can be specialised to fy and that p € O,, is a prime of good reduction for =,. Then let D_,(J
be the Zariski closure of D, inside Z, . We define D;, , to be the reduction modulo p of D,,.
The curve D, , is a divisor on X,, , = (X,,,»)«(- Note that the procedure of going from a
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divisor on X to a divisor on X, , consists of a single step, repeated twice: taking the closure
of a divisor on the generic fiber of a family and specializing it to a special fiber.

LEMMA 3-3. Using the same notation as above, and assuming that D and D' are two
divisors on X that can be specialised to ty € 7, we have the following equality of intersection
numbers:

D-D' =D, D;O,p

Proof. Using [MP12, proposition 3-6] and [EJ11, theorem 1-4], one immediately gets
that the reduction of X to X, , induces an embedding PicX — Pic(Xy, p)iqy that is in-
jective, compatible with the intersection product, and has torsion-free cokernel. The result
follows.

See [Huy16, proposition 17-2-10, remark 17-2-11], and [vL07, proposition 6-2] for more

details.
COMPUTATION 3-4. The lattice A is isometric to the lattice
U® Es(—1) @ As(—=1) @ Ax(—1) & Ax(—4).

In particular, A has rank 19, determinant 2° - 3%, signature (1, 18) and discriminant group
isomorphic to 7./67 x (Z/127)*.

See Appendix A for the definition of the lattices U, Eg(—1), As(—1), Ay(—1), Ax(—4), the
direct sum of lattices, and the discriminant group of a lattice.

Proof. The main step is to compute the intersection matrix for the generators of A; that
is, to calculate the intersection numbers D - D’ for all pairs D, D’ in the set H - Q.
For self intersection numbers, we use the adjunction formula:

D-D=2g(D)—2=-2, forDeH-Q,

as D is isomorphic to a plane conic, and so it has genus zero.

For pairs of distinct D, D’ in H -Q, directly computing the intersection number D- D’ over
an algebraic extension of a function field can be computationally very expensive. Instead,
using Lemma 3-3, we reduce all the computations to computations over finite fields. Fix
an integer fy € Z, and an integral model for X,. Let p be a prime of good reduction for
the fixed integral model of X,, and, recalling the notation introduced before, let L,, be the
specialisation of L to #y, O,, be the ring of integers of L,, and p be a prime of O,, lying above
p. Using Lemma 3.3, if D, D' are two divisors on X, then D - D" = D, - D;o,p. Since all
divisors D € H - Q are defined over L, all the divisors D, , are defined over the finite field
Fp» = k(p), for some m > 0.

If D, and D; , have no common components, then the intersection Dy, , N D, , is a
zero-dimensional scheme over F,.. Using MAGMA it is possible to compute its degree.
Since we are considering divisors on a smooth surface, the degree of the zero-dimensional
scheme given by the intersection of the two divisors equals the sum of the intersection mul-
tiplicities of the points of intersection of the two divisors (see [HS00, A-2-3]), and so the
degree of D, , N D; , is the intersection number Dy, , - D; , = D - D’. In this way, we get
the intersection matrix of the lattice A generated by D € H - Q.

In our computations, we use t, = 7 and p = 79 and work over ;2. We then compute
an integral basis for A, and compute the intersection matrix of the basis; this is the Gram
matrix of A. Finally, the rank, signature, and discriminant of A are the rank, signature, and
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determinant of the Gram matrix, respectively. One also computes the discriminant group of
A from the Gram matrix, as described in Appendix A. These quantities agree with those
given in the statement of the result.

Using these data, the first statement of the result immediately follows from [Nik80a,
corollary 1-13-3] (see Appendix A), noticing that A and the lattice in the statement are both
even and indefinite, and have the same rank, discriminant, signature, discriminant form, and
the same number of generators for the discriminant group; that is, 3 < 17 = 19 — 2. For the
MAGMA code with the effective computations, see [BCFNW17].

Before stating a corollary of Computations 3-4, recall that a class D € Pic X is said to
be defined over an extension K /Q(¢) if D contains a divisor whose defining equations have
coefficients in K. We also introduce the notation O(Pic X) for the group of isometries of
Pic X.

COROLLARY 3-5. The following statements hold:

(i) the lattice A is a finite index sublattice of Pic x;

(1) every class in Pic X is defined over L;
(iii) the Galois group Gal(L/Q(r)) injects into O(Pic X);
(iv) the group H injects into O(Pic X).

Proof.

(i) This is immediate, since A is a sublattice of Pic X by construction, and from Proposi-
tion 3-1 and Corollary 3-5 we have that Pic X and A both have rank 19.

(i) We have already seen that all the elements in H - Q are defined over L. Since these
elements generate the lattice A, we have that all the elements of A are defined over L.
Now let D be a class in Pic X. By point (i) we have that A has finite index, say d, inside
Pic X. Then d D is an element of A, hence it can be defined over L. Since the action of
the Galois group on Pic X is linear and Pic X is torsion free, it follows that D can be
defined over L.

(iii) The Galois group G, = Gal(Q(r)/Q(z)) naturally acts on Pic ; that is, there is a map
G; — O(Pic Y). We have seen that all the elements of Pic X are defined over L, hence
this action factors through the Galois group Gal(L/Q(¢)). More precisely, we have an
exact sequence

0 — H, — G, — O(Pic X),

where H, is the kernel of the map G, — O(Pic T). As the elements of Pic X are
defined over L, we have that H, contains Gal(Q(r)/L). Having an explicit descrip-
tion of Gal(L/Q(¢)) and A, one can easily see that no element of Gal(L/Q(r)) acts as
the identity on A C Pic X, hence no element of Gal(L/Q(t)) acts as the identity on
Pic X (see Appendix B for the explicit description of Gal(L/Q(¢)) and use the explicit
divisors given in Section 2 to see that for every element of Gal(L/Q(¢)) there is at least
one element in that list that is not fixed). It follows that the kernel H, is exactly the
Galois group Gal(Q(r)/L). Therefore,

Gal(L/Q(1)) = G,/ Gal(Q(1)/L) = G,/H,

injects into O(Pic X), proving the statement.
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(iv) Recall that H is the subgroup of Aut X defined in (2-5). From Proposition 3-1, we know
that Pic X has Picard number 19; from Computation 3-4 we know that A has determinant
25 . 33; from point (1), we know that A is a finite index sublattice of Pic X. 1t follows
that Pic X has rank 19 and that its determinant is not a power of 2; in particular, the
determinant is divisible by 3. The statement now immediately follows from [Fes16,
proposition 1-2-47].

From Corollary 3-5, we have that both groups Gal(L/Q(¢)) and H embed into O(Pic X),
so we can define the group

G := (Gal(L/Q(r)), H) € O(Pic X), (3-3)
the subgroup of O(Pic X) generated by Gal(L/Q(r)) and H.

3-2. Proving A = Pic X.

Recall that A is the sublattice of Pic X generated by the orbits of the divisors Q under the
group H (cf. (3-2)).

We now show that A is in fact the whole geometric Picard lattice of X, by showing that the
quotient Pic X/A is trivial. From Corollary 3.5, we know that A is a finite index sublattice
of Pic X, and consequently that Pic X/A is a finite abelian group. This group is trivial if and
only if there is no element of order p, for any prime p. An element of order p corresponds
to a nontrivial element of the kernel of the natural map A/pA — Pic X/ p Pic X. Denote
the kernel of this map by A ,. To complete the proof, it suffices to show that A, is trivial for
every prime p.

Remark 3-6. We can eliminate all but two primes by considering the possible order of
Pic X/A. Indeed, A, #0 if and only if there is an element of order p in Pic X/A, which

implies that p divides # (Picf/A) = [PicX: A]. If L and L’ are lattices of the same

rank such that L’ C L, tIEn disc L’ = [L: L')*disc L. From Computation 3-4, we have
disc A = 2% - 3%; thus [Pic X: A] |22 - 3. Consequently, A, = 0 for p¢{2, 3}.

We are left to show that A, and Aj are both zero. For this, we use the technique in [ST10],
which is also used in [VAV11]: since we cannot compute A, directly, we find a subset of
A/pA that contains A, and that can be explicitly computed, then we show that none of
the elements of this subset can be an element of A,. If D is an element of A, we write
[D]a = D mod pA to denote the class of D inside A/pA. The intersection pairing on A
induces another symmetric pairing on A/pA,

A/pA x AN/pA —> Z/pZ
[D]s - [D'lp —> D - D' mod p.
Let k, denote the left kernel of this composition, and let M, denote the subset of k, given
by
M, :={[D]a € k, | [D]; = 0 mod 2p* }. (3-4)

LEMMA 3.7. The subset M,, contains A, and it is fixed by all the isometries of A .

Proof. This proof is purely lattice-theoretic. For example, see [Fes16, lemma 1-1-23].
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LEMMA 3-8. The group G defined in (3-3) injects into O(A).

Proof. By definition, G is a group of isometries of Pic X. Using the explicit description
of the elements of G and A, one can check that G preserves A and that no element of G acts
as the identity on A. The statement follows.

We say that a class E € Pic X is effective if it contains an effective divisor.

LEMMA 3-9. Let S be a K3 surface. If E € Pic S is a divisor class on S such that E* =
—2, then either E or —E is effective.

Proof. This is a well known general result, see for example [Fes16, lemma 1-2-35] or
[Huy16, section 1-2-3].

We are now ready to prove our main result.
LEMMA 3-10. The kernel A, is trivial for every prime p.

Proof. By Remark 3-6, the statement holds for all primes p #2, 3, so it suffices to prove
the statement for p = 2 and p = 3. For this, we follow the proof of [Fes16, theorem 3-1-4].

Let p be equal to 2 or 3. From Lemma 3-8, we know that G acts on A. Since the IF ,-vector
space A, is the kernel of a G-equivariant homomorphism, it is G-invariant. So if an element
[x]a isin A, its whole G-orbit, G - [x]4, is contained in A ,. Since the discriminant of A is
2° 3%, the F,-vector space A, can have dimension at most 2 and 1, for p = 2, 3 respectively.
Since A, is stable under the action of G, it follows that the G-orbit of every element in A,
spans an [F ,-vector space of dimension at most 2 or 1, for p = 2, 3 respectively.

Analogous statements hold if we consider the action of just H (cf. (2-5)), instead of the
whole of G.

Let p = 2. Using MAGMA, we explicitly compute the subset M,. There is only one non-
trivial H -orbit inside M, spanning a vector subspace of dimension at most 2. Let W denote
this subspace. The subspace W has dimension 2, and it admits a basis {w;, w,} such that

w; = [E{]a

wy = [Ex]a,
where the divisors are E; := yy30B3 — B3 and E; := r22 Wix,y)(Wo3,0Bs — By), and 1,
denotes the automorphism in Gal(L/Q(¢)) defined in Appendix B (cf. Table 1). Using the
same technique as in Computations 3-4, one checks that E? = E3 = —8. Assume w is an
element of Ap,_then E, is an element of A that is 2-divisible in Pic X, say E; = 2C, for
some C € Pic X. Since E12 = —8, the class C is a —2-class, and then either C’ or —C’ is

effective (cf. Lemma 3.9). By construction, E; = E|; — E;,, where E; | = 3,084 and
E,, = D,. Note that both E;; and E,, are elements of G - Q, and so are isomorphic to
plane conics; hence, E7 | = Ej, = —2. Let L be the hyperplane class in Pic X, and notice
that it is ample (in fact, 3L is very ample). Since E; = 2C, with C a —2-class, and L is
ample, we have that the intersection number H - E; = 2H - C is either positive or negative
(according to whether C or —C is effective); on the other hand, E; = E;; — E, 5, and so
L-Ey=H-E,,—L-E ;=2-2=0,yielding a contradiction. Therefore E, cannot be
2-divisible. The same argument holds for E,, as well as for any other element of W, since the
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orbit of every element of W spans the whole of W; indeed, in M, there are no 1-dimensional
subspaces generated by H -orbits. Therefore A, is trivial.

Let p = 3. As before, we compute the subset M, using MAGMA. Among the non-trivial
vectors in M, we look for those whose orbit under G spans a 1-dimensional [F3-vector
space. It turns out that there are no such vectors. Thus Aj is also trivial, completing the
proof.

See [BCFNW17] for the MAGMA code used to perform the computations.

As noted before, Lemma 3-10 finally shows that
PicX = A.

This, together with Computations 3-4, completes the proof of Theorem 1-1.

4. Consequences
The explicit description of Pic X enables us to understand some arithmetic properties of
the family X. For example, we can compute the Galois structure of Pic X and deduce the
following result.

COMPUTATION 4-1. Considering the action of Gal(L/Q(t)) on PicX, the following
statements hold:
(i) H 0(Gal(L /Q(1)), Picf) is isomorphic to 7, and it is generated by the class of the
hyperplane section of X,
(i) H'(Gal(L/Q(t)), Pic X) is isomorphic to (Z/2Z)?;
(iii) H*(Gal(L/Q(t)), Pic X) is isomorphic to (Z,/27)'";
(iv) furthermore, for every non-trivial subgroup M C Gal(L/Q(t)), we have

H'(M,PicX) = (Z/27)'

withi €{0,1,2,3,4,5,6,8,10, 12}; _
(v) there are 49 normal subgroups N of Gal(L/Q(t)) for which H'(N, Pic(DC))_is trivial,
(vi) there are 47 normal subgroups N of Gal(L/Q(t)) for which H' (N, Pic(X)) is non-
trivial.

Proof. By direct computations using MAGMA; see [BCFNW17] for the code.

Remark 4-2. Computation 4-1 can be useful for studying the existence of a Brauer-Manin
obstruction on X. In fact, the Hochschild—Serre spectral sequence implies the following
isomorphism:

Br; X
Bry X

where Bry X and Br; X are the constant and the algebraic Brauer group of X, respectively.

—> H'(Gal(L/Q(1)), PicX),

Theorem 1-1 not only gives us information about the arithmetic of X, but also of the other
fibers of X, as shown by the following results.

COROLLARY 4-3. Any smooth fiber X,, of the family X has geometric Picard number at
least 19. If the geometric Picard number of X,, is exactly 19, then Pic X, g is isometric to
A. The geometric Picard number of X,, is 20 if and only if —(4ty)* is the j-invariant of an
elliptic curve with complex multiplication.
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Proof. Theorem 1-1 tells us that Pic X = A. From [MP12, proposition 3-6] we have that
there is an embedding of Pic X inside Pic X 1.0 that respects the intersection pairing and has
torsion free co-kernel. The existence of the embedding implies that Pic X, g has rank at least
19. Since the embedding has torsion free co-kernel, if Pic X, 7 has rank exactly 19, then the
image of Pic X is the whole geometric Picard lattice of X, . Finally, the last statement follows
immediately from Proposition 2-3 and [SS10, 12-(26)].

Remark 4-4. 1t follows that there are only finitely many rational values of #y for which the
Picard number of X, is 20, namely

160080, 1320, 240, 24, 8, 15/4, 0, =3, =5, —33/2, —255/4.

Note that 0, —5, and —33/2 are the rational roots of the polynomial (2-8) from Section 2
whose roots are the values of f, for which X,, admits tri-tangent lines.

COROLLARY 4-5. Let ty € Q be an algebraic number such that the fiber X 1 IS smooth.
Then X,, is a K3 surface defined over the number field Q(ty) and it has potentially dense
rational points.

Proof. Since X, is smooth, it is a K3 surface, by Proposition 2-1; since 1, is algebraic over
Q, the field Q(#) is a number field, and so the surface X, can be defined over the number
field Q(#). From Corollary 4-3 we have that X, has geometric Picard number at least 19.
Then the statement immediately follows from [BT00, theorem 1-1].

Remark 4-6. Leta,b,c,d € @ be four algebraic numbers, and let X, 5 . 4 be the surface
defined by

Xabed: w? = ax® 4+ by® + ¢z + dx*y*7* C Pg- 1)

Assume X, p . 4 1S smooth.

It is easy to see that X, , . 4 is isomorphic, over Q, to X .0 the fiber of the family X above
the point e = d - ¢, where ¢ is a third-root of the producta - b - c.

This implies that the geometric Picard lattice of X, 4 is isometric to Pic X, g, making
it possible to use Corollaries 4-3 and 4-5 for K3 surfaces with defining equation as in (4-1).

Appendix A. Exposition on lattices

We briefly review the lattice theory that we use in Section 3, and refer the reader to
[Nik80a] for more details.

In this article a lattice is a free abelian group, L, of finite rank equipped with a symmetric,
non-degenerate, bilinear form (, ) : L x L — 7Z. We define the signature of L to be the
signature of the extension to R of its bilinear form. We say that L is positive definite if it
has signature (b, 0), negative definite if it has signature (0, b_), and indefinite otherwise.
We say that L is even if (x, x) € 27Z for all x € L. Let {¢;} be a basis for L; then the Gram
matrix of L with respect to {e;} is the matrix ((ei, e j))i’j. The discriminant of L, denoted
Disc(L), is the determinant of the Gram matrix with respect to some basis; it is independent
of the choice of basis.

We define A, (m) and Eg(m) to be the lattices obtained from the root lattices A, and
Eg (cf. [CS99, sections 4-6-1 and 4-8-1]), respectively, by multiplying their quadratic form
by m.
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Let L, and L, denote two lattices, with bases {e;} and { f;}, respectively. Then L, & L,
denotes the lattice with basis {e;} U { f;} and bilinear form extending that on L; and L, such
that (e;, f;) = Oforalli, j.If L, € L, and rk(L;) = rk(L,), then we say that L, is a full
rank sublattice of L,. In this situation, Disc(L;)/Disc(L,) = [L, : L]*.

For any lattice L we define the dual lattice

L*:=Hom(L,Z)~{x e LQQ: VyeL {(x,y)eZ}.

The discriminant group of a lattice L is the finite abelian group A; := L*/L, and we
denote by €(A.) the minimal number of generators of A;. The discriminant group comes
equipped with a bilinear form, b, : Ay x Ay — Q/Z, defined by by (x + L,y + L) =
(x, y) mod Z.

If L is an even lattice, we define the discriminant form,

qr: AL — Q/27Z
x4+ L +—— (x, x) mod 27Z.

We use the following theorem in Computation 3-4 to identify the lattice A.

THEOREM A-1 (Nikulin [Nik80b, corollary 1-13-3]). If a lattice L is even and indefinite
with rank(L) > €(AL) + 2, then L is determined up to isometry by its rank, signature and
discriminant form.

Appendix B. The Galois group in the generic case

Let K be the function field Q(¢). In Section 2 we fixed an algebraic closure K = Q() of
Q(?), and defined some elements in this algebraic closure. Recall that: ¢, is defined to be a
primitive 12th root of unity; ¢, is defined to be the primitive nth root of unity given by (1122 /n
for n = 3, 4, 6; the elements f; are such that ﬁf =1+ 3§§, fori = 0, 1, 2; the elements

co, C1, 3 are the roots of the polynomial
h(x) = x> +tx*>+4 € Q()[x]; (B1)

the element ¢ is the product 4¢4 51 .. We also defined the field L to be the Galois closure
of the smallest extension of QQ(¢) containing all the elements defined above. In this section
we explicitly describe L, as well as the Galois group Gal(L/Q(t)), proving the following
theorem.

THEOREM B-1. The field L is the field K ({12, Po, b1, P2, co)- It is a Galois extension of
degree 2° - 3 and its Galois group is isomorphic to the group

S3 X Z/2Z X Dy.

In the statement of the theorem, S3;, Z/27, and D, denote the permutation group
of a set with three elements, the cyclic group with two elements, and the dihed-
ral group with eight elements, respectively. In proving Theorem B-1 we will follow
[Fes16, section 3-4].

Remark B-2. Recall that ¢, ¢y, ¢, are the roots of the polynomial 4 defined in (B 1). No-
tice that 4 has discriminant A = —16(D?* + 27) = (4401 52)* = 6°. In particular, A is
nonzero, so all the roots are distinct.
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E-F-J=1L

/ \
E = K(5,c0) J = K(B1,B2)
N
K(B1) K(B2)
-
K(9) F = K(bo) K(G)
K =Q(t)

Fig. 1. An alternative description of L.

It is possible to explicitly write the roots ¢y, ¢, in terms of the elements (12, fo, 1, b2,
and cy. Namely, the other roots of & are
—t—cy+€ —t—cyp—€
cg=—————and¢c; = ——,
2 2
__ ¢
where € = pNEENETE

We now let E denote the field K (J, ¢p) C L, and let F denote the field K (fy) C L, and
finally let J denote the field K (S, f») C L.

LEMMA B-3. The following statements hold:
(i) the extension E /K is a Galois extension of degree 6 with Galois group Gal(E /K) = S;;
(ii) the extension F /K is a Galois extension of degree 2 with Galois group Gal(F/K) =
7.)27;
(iii) the extension J /K is a Galois extension of degree 8 with Galois group Gal(J /K) = Dy;
(iv) the fields E, F, and J intersect pairwise trivially, that is, the intersection of any two of
them equals K ;
(v) the compositum field E - F - J equals L.

Proof.

(i) By construction, the field E is the splitting field of the cubic polynomial & = x3 +1x?+
4, that is irreducible over K and whose discriminant is not a square in K. The statement
follows.

(i) The field F is the splitting field of the degree two polynomial x> — (3+1). The statement
trivially follows.
(iii) The field J is the splitting field of the polynomial

[=x*+ (=2t +3)x>+1* =3t +9,

and so J/K is a Galois extension. The roots of [ are £p,, =/,, therefore the Galois
group Gal(J/K) is generated by yy, y», y , where y, changes the sign of f, y, changes
the sign of f,, and y switches f; and f,. Since J/K is Galois, we have the follow-
ing chain of equalities: #Gal(L/K) = [L : K] = 8. One can easily check that
yy1# 71y, and that these two are the only elements of order 4 of Gal(J/K). Summar-
ising, Gal(J/K) is a non-abelian group of order 8 with exactly two elements of order 4.
Thus Gal(J/K) is isomorphic to Dj.

Downloaded from https://www.cambridge.org/core. MIT Libraries, on 22 Nov 2021 at 12:33:33, subject to the Cambridge Core terms of use, available at
https://www.cambridge.org/core/terms. https://doi.org/10.1017/50305004118000087


https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0305004118000087
https://www.cambridge.org/core

540 F. BOUYER, E. CosTA, D. FESTI, C. NICHOLLS AND M. WEST

(iv) By explicit computations using MAGMA ([BCP97]), code available at [BCFNW17].
As an example, we show the argument to prove the statement for F and J. By point (ii),
the field F n J is an extension of degree at most 2 over K. If we assume that F N J #K,
it follows that F n J = F and, therefore, that §y € J. By writing J as

Qe Qe QD GAHQD /2Q & ::/Q & £152Q & G:515.Q

one can show, after some computations, that the equation #*> + 3 has no solution in J,
i.e., fo¢J, getting a contradiction. We can hence conclude that F nJ = K.

(v) Recall that L is, by definition, the Galois closure of the smallest field extension of K
containing (12, fi, ¢;, fori = 0, 1, 2. Hence notice that also d is in L.
Let L' denote the compositum field E - F - J. By construction, L’ contains the elements,
0, o, Po, P1, Po. Then, by Remark B-2, we have that also ¢; and ¢, are in L’. From
pi € L', it follows that %(512 —t) = &3 € L. Hence, the ratio

o= Gk S _ G
L AGpopiB G

is also inside L'. Recall that (3 = ¢}, and ¢4 = ¢}, then

4

U< S,
G

Hence (; is an element of L’. It follows that L’ is the smallest field extension of K

containing (1,2, B, ¢;, fori =0, 1, 2.

In order to show that L = L' it suffices to show that the extension L’/ K is Galois. This

follows from the fact that L’ is the compositum of three Galois extensions of K that

intersect pairwise trivially. Hence L’ is Galois over K and therefore it equals its Galois

closure, i.e., L = L'.

Proof of Theorem B-1 The fact that L equals the field K ({12, fo, b1, B2, co) immediately
follows from Lemma B-3(v).

The field extension L/K is Galois by definition. Being Galois, its degree equals the car-
dinality of its Galois group.

From Lemma B-3(v), L equals the compositum of the fields E, F and J; from
Lemma B-3(iv), these fields are pairwise distinct, and so

Gal(L/K) =~ Gal(E/K) x Gal(F/K) x Gal(J/K).
The theorem now follows from Lemma B-3(1)-(iii).

Remark B-4. In order to perform explicit operations using the automorphisms of
Gal(L/K), it is useful to give an isomorphism between Gal(L/K) and S5 x Z/27Z x D4. In
order to do so, we will present five automorphisms 7; € Gal(K,/K), withi = 1,2,3,4,5,
such that:

Gal(E/K) = (11, 12) = S3;
Gal(F/K) = (z3) = Z,/2Z;
Gal(J/K) = (14, 15) = Dy.

The field L is generated by co, (12, o, b1, B2 over K, so to describe an element 7 €
Gal(L/K) it is enough to describe its action on those elements. The action of z; on those
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Table 1. The action of 1y, ..., T5 on a set of elements of L.

€0 1 &) é {12 (4 3 Bo B Ji5)

7] o &) cl =9 {1a =4 3 Bo Bi B
) € &) &) d {12 (4 a3 Bo B B2
73 €o 3l ) é 4“17% —4 3 —Bo B B
4 o 1 ) é 155 —4 a2 Bo =B B
5 o 1 &) d iy =04 3 Bo B )

generators of L over K is listed in Table 1. For the convenience of the reader, the table also
lists the action of 7;, fori = 1, ..., 5, on other interesting elements of L.
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