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Abstract

The zeta function of a curve C over a finite field may be expressed in terms of the char-
acteristic polynomial of a unitary matrix �C . We develop and present a new technique to
compute the expected value of tr (�n

C) for various moduli spaces of curves of genus g
over a fixed finite field in the limit as g is large, generalising and extending the work of
Rudnick [Rud10] and Chinis [Chi16]. This is achieved by using function field zeta func-
tions, explicit formulae, and the densities of prime polynomials with prescribed ramific-
ation types at certain places as given in [BDF+16] and [Zha]. We extend [BDF+16] by
describing explicit dependence on the place and give an explicit proof of the Lindelöf
bound for function field Dirichlet L-functions L(1/2 + i t, χ). As applications, we com-
pute the one-level density for hyperelliptic curves, cyclic �-covers, and cubic non-Galois
covers.
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226 BUCUR, COSTA, DAVID, GUERREIRO AND LOWRY–DUDA

1. Introduction and statement of results

Let Fq be a finite field of odd cardinality, and let C be a smooth curve over Fq . The Weil
conjectures tell us that the Hasse–Weil zeta function has the form

ZC(u) := exp

( ∞∑
n=1

#C(Fqn )
un

n

)
= PC(u)

(1 − u)(1 − qu)
,

where

PC(u) := det
(
1 − u Frob |H 1

et

(
C

(
Fq

)
, Q�

)) ∈ Z[u]
is the characteristic polynomial of the Frobenius automorphism, whose roots have absolute
value q−1/2 and are stable (as a multiset) under complex conjugation. Furthermore, PC(u)

corresponds to a unique conjugacy class of a unitary symplectic matrix �C ∈ USp(2g) such
that the eigenvalues eiθ j correspond to the zeros q−1/2eiθ j of PC(u). This conjugacy class �C

is called Frobenius class of C , and the real numbers θ j are the eigenangles of C .
For many different families of curves C , Katz and Sarnak [KS99] showed that as q → ∞,

the Frobenius classes �C become equidistributed in certain subgroups of unitary matrices,
where the group depends on the monodromy group of the family of curves. Stated more
precisely, suppose F(g, q) is a natural family of curves of genus g over Fq with symmetry
type M(2g) ⊂ U(2g), equipped with the Haar measure. The expected value of a function F
evaluated on the eigenangles of curves in F(g, q) is defined as

〈F〉F(q,g) := 1

#F(q, g)

∑
C∈F(q,g)

F(�C).

Katz and Sarnak predicted that

lim
q→∞ 〈F〉F(q,g) =

∫
M(2g)

F(U ) dU,

where the integral is taken with the respect to the Haar measure. This means that many
statistics of the eigenvalues can be computed, in the limit, as integrals over the corresponding
unitary monodromy groups.

One particularly important and well-studied statistic is the one-level density, which con-
cerns low-lying zeroes. The definition of the one-level density W f (U ) of a N × N unitary
matrix U and with test function f in the function field setting is given by (2·4) in Section 2.

The work of Katz and Sarnak concerns the q-limit. Recently, there has been work ex-
ploring another type of limit, examined by fixing a constant finite field Fq and looking at
statistics of families of curves as their genus g → ∞, such as the work of Kurlberg and
Rudnick [KR09] who first investigated that type of limit for the distribution of tr

(
�C

)
for

the family of hyperelliptic curves. The statistics are then given by a sum of q+1 independent
and identically distributed random variables, and not as distributions in groups of random
matrices. In a subsequent work, Rudnick [Rud10] investigated the distribution of tr

(
�n

C

)
for

the same family of hyperelliptic curves. Denote by F2g+1 the family of hyperelliptic curves
of genus g given in affine form by

C : Y 2 = Q(X)

where Q(X) is a square-free, monic polynomial of degree 2g + 1. Rudnick showed that the
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Traces, high powers and one level density 227

g-limit statistics for trace of high powers tr
(
�n

C

)
over the family F2g+1 agrees (for n in a

certain range) with the corresponding statistics over USp(2g) given by:

∫
USp(2g)

tr U n dU =

⎧⎪⎨
⎪⎩

2g n = 0,

−ηn 1 < |n| < 2g,

0 |n| > 2g.

(1·1)

where

ηn =
{

1 n even,

0 n odd.
(1·2)

More precisely:

THEOREM 1 ([Rud10]). For all n > 0

〈
tr �n

C

〉
F2g+1

= ηnq− n
2

∑
deg v| n

2

deg v

qdeg v + 1
+ O

(
gq−g

) +

⎧⎪⎨
⎪⎩

−ηn 0 < n < 2g,

−1 − 1
q−1 n = 2g,

O
(
nq

n
2 −2g

)
n > 2g,

where the sum is over all finite places of Fq[X ].
Furthermore, if 3 logq g < n < 4g − 5 logq g and n � 2g, then

〈
tr �n

C

〉 =
∫

USp(2g)

tr U n dU + o

(
1

g

)
.

Moreover, if f is an even test function in the Schwartz space S(R) with Fourier transform
f̂ supported in (−2, 2), then

〈
W f

〉
F2g+1

=
∫

USp(2g)

W f (U ) dU + dev( f )

g
+ o

(
1

g

)
,

where

dev( f ) = f̂ (0)
∑

v

deg v

q2 deg v − 1
− f̂ (1)

1

q − 1

and the sum is over all finite places of Fq[X ].

We remark that the bias towards having more points over Fqn whenever n is even (and in
a certain range with respect to g), which follows from the symplectic symmetry, was first
pointed out by Brock and Granville [BG01], and then further investigated by Katz [Kat01].

The results of Rudnick [Rud10] hold for statistics over the space F2g+1, which is only
a subset of the moduli space of hyperelliptic curves of genus g, Hg (cf. Section 2). The
statistics for the whole moduli space of hyperelliptic curves of genus g, Hg, were obtained
by Chinis [Chi16], and they differ slightly from the statistics for F2g+1.

THEOREM 2 ([Chi16]). For n odd,〈
tr

(
�n

C

)〉
Hg

= 0,
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228 BUCUR, COSTA, DAVID, GUERREIRO AND LOWRY–DUDA

and for n even,

〈
tr

(
�n

C

)〉
Hg

= q− n
2

∑
deg v| n

2
deg v�1

deg v

qdeg v + 1
+ O

(
gq

−g
2
) +

⎧⎪⎨
⎪⎩

−1 0 < n < 2g,

−1 − 1
q2−1 n = 2g,

O
(
nq

n
2 −2g

)
2g < n,

where the sum is over all finite places of Fq[X ].
It is interesting that when studying the distribution of zeta zeros for hyperelliptic curves

Faifman and Rudnick [FR10] can restrict to half of the moduli space (in this case, poly-
nomials of even degree) without it affecting the result; but when one restricts to F2g+1 the
one-level density is not quite the same as the one-level density on the whole moduli space
Hg. The difference is explained by the fact that the infinite place behaves differently in F2g+1

and F2g+2.
The results of Rudnick were vastly generalized in a recent paper of Bui and Florea [BF16],

which give formulas for the one-level density which are uniform in q and d, and they can
then identify lower order terms when the support of the test function holds in various ranges.
For the one-level density of classical Dirichlet L-functions associated to quadratic charac-
ters, some recent work of Fiorilli, Parks and Sodergren [FPS16] exhibits all the lower order
terms which are descending powers of log X .

We are interested in a different generalisation, extending the statistics of Rudnick and
Chinis to statistics of families of curves for fixed q and as g varies. In Section 2, we first
present a new proof for Theorem 2 using function field zeta functions and explicit formulae,
specifically relying on densities of prime polynomials of different ramification types, as
described in [BDF+16]. Our technique is much simpler than what is used in [Rud10] and
[BF16], and the result presented in Section 2 is weaker than the results of Rudnick and
Chinis (as our result holds for a more limited range of n), but it has the benefit of having
clear generalisation to many families of curves. We present two such generalisations here. In
Section 3 we generalize the result from Section 2 for cyclic �-covers curve, and in Section 4,
we do the same for cubic curves corresponding to non-Galois extensions. We summarise
our main results in the following theorems, whose details can be found in Section 3 and 4.
Throughout this paper, all explicit constants in the error terms can depend on � and q.

THEOREM 3. Let � be an odd prime and let Hg,� be the moduli space of � covers of genus
g. For any ε > 0 and n such that 6 logq g < n < (1 − ε) (2g/(� − 1) + 2), as g → ∞ we
have 〈

tr �n
C

〉
Hg,�

=
∫

U(2g)

tr U n dU + O

(
1

g

)
.

Let f be an even test function in the Schwartz space S(R) with supp f̂ ⊂
(−1/(� − 1), 1/(� − 1)), then

〈
W f (�C)

〉
Hg,�

=
∫

U(2g)

W f (U ) dU

− f̂ (0)
� − 1

g

∑
v

deg v

(1 + (� − 1)q− deg v)(q� deg v/2 − 1)
+ O

(
1

g2−ε

)
,

where the sum is over all places v of Fq(X) (including the place at infinity).
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Traces, high powers and one level density 229

THEOREM 4. Let E3(g) be the space of cubic non-Galois extensions of Fq(X) with dis-
criminant of degree 2g + 4, and let δ, B > 0 be fixed constants as in Theorem 15. For each
cubic non-Galois extension in E3(g), let C be the curve whose function field is the given
extension.

For 6 logq g < n < δg/(B + 1/2), and as g → ∞,

〈
tr �n

C

〉
E3(g)

=
∫

USp(2g)

tr U n dU + O

(
1

g

)
.

Let f be an even test function in the Schwartz space S(R) with supp f̂ ⊂
(−δ/(2B + 1), δ/(2B + 1)), then for any ε > 0,

〈
W f (�C)

〉
E3(g)

=
∫

USp(2g)

W f (U ) dU − f̂ (0)

g
κ + O

(
1

g2−ε

)
,

where κ is defined by (4·2).

We remark that the one-level densities exhibit the predicted symmetries: unitary for cyclic
covers of order � (for � an odd prime), and symplectic for cubic non-Galois extensions.

The main theorems of Sections 2 and 3 rely on results concerning the densities of prime
polynomials with prescribed ramification types at particular places from [BDF+16], but also
require understanding of dependence on those places. In Section 5, we show how to make
explicit this dependence, which involves proving the explicit Lindelöf bound for L(s, χ).

2. Hyperelliptic covers

In this section we present a weaker version of Theorem 2, using a different technique,
namely using the results of [BDF+16] to count the function field extensions corresponding
to the hyperelliptic curves in Hg with prescribed ramification/splitting conditions. Let Hg be
the moduli space of hyperelliptic curves of genus g. Every such curve has an affine model

C : Y 2 = Q(X),

with Q(X) is a square-free polynomial of degree 2g + 1 or 2g + 2.

THEOREM 5. Let E(Z/2Z, g) be the set of quadratic extensions of genus g of Fq[X ],
let v0 be a place, and let E(Z/2Z, g, v0, ω) be the subset of E(Z/2Z, g) with prescribed
behavior ω ∈ {ramified, split, inert} at the place v0. Then for any ε > 0,

#E(Z/2Z, g, v0, ramified)

#E(Z/2Z, g)
= q− deg v0

1 + q− deg v0
+ O

(
q−2g

)
#E(Z/2Z, g, v0, split)

#E(Z/2Z, g)
= #E(Z/2Z, g, v0, inert)

#E(Z/2Z, g)

= 1

2
(
1 + q− deg v0

) + O
(
q (ε−1)(g+1)+ε deg v0

)
.
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230 BUCUR, COSTA, DAVID, GUERREIRO AND LOWRY–DUDA

Proof. It is shown in [BDF+16] that

#E(Z/2Z, g) = 2q2g+2
(
1 − q−2

)
#E(Z/2Z, g, v0, ramified) = q− deg v0

1 + q− deg v0
2q2g+2

(
1 − q−2

) + O(1)

#E(Z/2Z, g, v0, split) = #E(Z/2Z, g, v0, inert)

= 1

2
(
1 + q− deg v0

)2q2g+2
(
1 − q2

) + Ov0

(
q(g+1)(1+ε)

)
,

where Ovo indicates that the implicit constant may depend on v0. We prove in Section 5 that
keeping track of the dependence on v0 gives

#E(Z/2Z, g, v0, ω) = 1

2(1 + q− deg v0)
2q2g+2(1 − q2) + O

(
q (g+1)(1+ε)+ε deg v0

)
,

for ω ∈ {split, inert} which proves the theorem.

LEMMA 6. Let C be a fixed Fq-point in the moduli space Hg, Fq(C) its function field and
tr �n

C be the nth power of the trace of C. Then

−q
n
2 tr �n

C =
∑

deg v|n
v split in
Fq (C)

deg v +
∑

deg v| n
2

v inert in
Fq (C)

2 deg v −
∑

deg v|n
v inert in

Fq (C)

deg v, (2·1)

where the sums are over all places v of Fq(X) (including the place at infinity) with the
prescribed behavior.

Proof. For any function field K , over Fq(X), we denote its zeta function by ζK (s). The
lemma follows by taking the logarithmic derivative on both sides of

2g∏
j=1

(
1 − q1/2q−seiθ j

) = PC

(
q−s

) = ζFq (C)(s)

ζFq (X)(s)

with respect to q−s after expressing ζFq (C)(s)/ζFq (X)(s) as an Euler product.

THEOREM 7. The average nth moment of the trace over hyperelliptic curves of genus g
is given by

〈−q
n
2 tr �n

C

〉
Hg

= ηnq
n
2 −

∑
deg v| n

2
deg v�1

deg v

1 + qdeg v
+ O

(
q(ε−1)(g+1)+n(1+ε)

)

for all ε > 0, and where the sum is over all finite places v of Fq(X).

Proof. We start out by averaging equation (2·1) over hyperelliptic curves of genus g,
hence

〈−q
n
2 tr �n

C

〉
Hg

equals

1

#E(Z/2Z, g)

∑
C∈Hg

⎛
⎜⎜⎜⎜⎝

∑
deg v|n

v split in
Fq (C)

deg v +
∑

deg v| n
2

v inert in
Fq (C)

2 deg v −
∑

deg v|n
v inert in

Fq (C)

deg v

⎞
⎟⎟⎟⎟⎠ .
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Traces, high powers and one level density 231

Swapping the order of summation gives us

〈−q
n
2 tr �n

C

〉
Hg

=
∑

deg v|n
deg v

#E(Z/2Z, g, v, split)

#E(Z/2Z, g)

+
∑

deg v| n
2

2 deg v
#E(Z/2Z, g, v, inert)

#E(Z/2Z, g)

−
∑

deg v|n
deg v

#E(Z/2Z, g, v, inert)

#E(Z/2Z, g)
.

Applying Theorem 5 we get

〈−q
n
2 tr �n

C

〉
Hg

=
∑

deg v|n
deg v

(
1

2(1 + q− deg v)
+ O

(
q(ε−1)(g+1)+ε deg v

))

+
∑

deg v| n
2

deg v

(
1

1 + q− deg v
+ O

(
q(ε−1)(g+1)+ε deg v

))

−
∑

deg v|n
deg v

(
1

2(1 + q− deg v)
+ O

(
q(ε−1)(g+1)+ε deg v

))
.

The main terms of the first and the third sums cancel, but their error terms do not. Therefore

〈−q
n
2 tr �n

C

〉
Hg

=
∑

deg v| n
2

deg v

1 + q− deg v
+ O

⎛
⎝q (ε−1)(g+1)

∑
deg v|n

deg v qε deg v

⎞
⎠

=
∑

deg v| n
2

deg v

1 + q− deg v
+ O

(
q (ε−1)(g+1)+n(1+ε)

)
,

where the last equality follows from the prime number theorem for Fq[X ] (as proved
in [Ros02] for instance). Using the following identity

qn =
∑
d|n

d π(d), (2·2)

where π(d) is the number of irreducible polynomials of degree d defined over Fq , we have
for n even that

∑
deg v| n

2

deg v

1 + q− deg v
=

∑
deg v| n

2

deg v −
∑

deg v| n
2

deg v

1 + qdeg v

=
∑
d| n

2

d π(d) + 1 −
∑

deg v| n
2

deg v

1 + qdeg v

= q
n
2 −

∑
deg v| n

2
deg v�1

deg v

1 + qdeg v
.

We remark that in the second equality above, the extra 1 arises from the place at infinity.
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232 BUCUR, COSTA, DAVID, GUERREIRO AND LOWRY–DUDA

As expected from [Rud10] and [Chi16], the previous theorem agrees with corresponding
statistics over USp(2g). Recall from [DS94] that

∫
USp(2g)

tr U n dU =

⎧⎪⎨
⎪⎩

2g n = 0,

−ηn 1 < n < 2g,

0 n > 2g.

(2·3)

COROLLARY 8. For any ε > 0, and as g → ∞,

〈
tr �n

C

〉
Hg

= −ηn

(
1 − 1

1 + q
n
2

)
+ O

(
q− n

4 + q (ε−1)g+n(ε+ 1
2 )
)

.

Moreover, for any ε′ > 0 and n such that 4 logq g < n < 2g
(
1 − ε′), we have as g → ∞

〈
tr �n

C

〉
Hg

=
∫

USp(2g)

tr U n dU + O

(
1

g

)
.

Proof. Applying the prime number theorem to Theorem 5, we have

∑
deg v| n

2
deg v�1

deg v

1 + qdeg v
= ηn

q
n
2

1 + q
n
2

+ ηn O
(
q

n
4
)
.

To prove the second statement, we apply the first statement choosing ε small enough such
that (ε − 1) + 2

(
1 − ε′) (ε + 1/2) < 0.

We can apply the last result to determine the one-level density of hyperelliptic curves, as
done in [Rud10], and we recall the definition of the one-level density in the function field
setting with the relevant properties below for completeness. We will also apply this to other
families of curves in the following sections.

Let f be an even test function in the Schwartz space S(R), and for any integer N � 1,
we define

F(θ) :=
∑
k∈Z

f

(
N

(
θ

2π
− k

))
,

which has period 2π and is localised in an interval of size approximatively 1/N in R/2πZ.
Then, for a unitary matrix N × N matrix U with eigenvalues eiθ j , j = 1, . . . , N , we define
the one-level density

W f (U ) :=
N∑

j=1

F(θ j ), (2·4)

counting the number of angles θ j in an interval of length approximatively 1/N around 0
(weighted with the function f ). Using the Fourier expansion, we have that

W f (U ) =
∫ ∞

−∞
f (x)dx + 1

N

∑
n�0

f̂
( n

N

)
tr U n. (2·5)

Katz and Sarnak conjectured that for any fixed q, the expected value of W f (�c) over Hg

will converge to
∫

USp(2g)
W f (U ) dU as g → ∞ for any test function, and we show in the

next theorem that this holds for test functions on a limited support (which is more restrictive
than the support obtained in [Rud10, corollary 3]).
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Traces, high powers and one level density 233

THEOREM 9. Let f be an even test function in the Schwartz space S(R) with supp f̂ ⊂
(−1, 1). Then for any ε > 0,

〈
W f (�C)

〉
Hg

=
∫

USp(2g)

W f (U ) dU + f̂ (0)

g

∑
deg v�1

deg v

q2 deg v − 1
+ O

(
1

g2−ε

)
,

where the sum is over all finite places v of Fq(X). Moreover,

lim
g→∞

〈
W f (�C)

〉
Hg

= lim
g→∞

∫
USp(2g)

W f (U ) dU

=
∫

R

f (x)

(
1 − sin(2πx)

2πx

)
dx .

As we mentioned in the introduction, a vast generalization of the formula above was
obtained by Bui and Florea [BF16] in some recent work.

Proof. As f̂ is continuous and supported on (−1, 1), then its support is contained in
[−α, α] for some 0 < α < 1. By the Fourier expansion of the one-level density (2·5), we
get

W f (�C) =
2g∑
j=1

∑
k∈Z

f

(
2g

(
θ j

2π
− k

))

=
∫

R

f (x) dx + 1

2g

∑
n�0

f̂

(
n

2g

)
tr �n

C

= f̂ (0) + 1

g

2αg∑
n=1

f̂

(
n

2g

)
tr �n

C ,

(2·6)

where the last equality follows from f being even and the condition on the support of f̂ .
Averaging W f (�C) over our family of curves using (2·6) and Theorem 7 with

0 < ε <
1 − α

2 + 2α
,

we get

〈
W f (�C)

〉
Hg

= f̂ (0) − 1

g

αg∑
n=1

f̂

(
n

g

)

+ 1

g

αg∑
n=1

f̂

(
n

g

)
1

qn

∑
deg v|n
deg v�1

deg v

1 + qdeg v
+ O

(
q−εg

)

=
∫

USp(2g)

W f (U ) dU

+ 1

g

αg∑
n=1

f̂

(
n

g

)
1

qn

∑
deg v|n
deg v�1

deg v

1 + qdeg v
+ O

(
q−εg

)
,

where we note that by (2·3), (2·5) and recalling that f is even and supp f̂ ⊂ (−1, 1),∫
USp(2g)

W f (U ) dU = f̂ (0) − 1

g

αg∑
n=1

f̂

(
n

g

)
.
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We now compute

αg∑
n=1

f̂

(
n

g

)
1

qn

∑
deg v|n
deg v�1

deg v

1 + qdeg v

=
∑

deg v�αg
deg v�1

deg v

1 + qdeg v

∑
k deg v�αg

f̂

(
k deg v

g

)
1

qk deg v
(2·7)

Suppose φ(g) is a function tending to 0 as g tends to infinity, to be specified later. We break
the range of the inside sum of the right-hand side at gφ(g). For the first range, we use the
Taylor expansion for f̂ to write f̂ (x) = f̂ (0) + O(x) = f̂ (0) + o(1), explicitly,

f̂

(
k deg v

g

)
= f̂ (0) + O

(
k deg v

g

)
.

Thus, in the first range, (2·7) can be rewritten as(
f̂ (0) + O (φ(g))

) ∑
deg v�αg
deg v�1

deg v

1 + qdeg v

(
1

qdeg v − 1
+ O

(
q−gφ(g)

))

= f̂ (0)
∑

deg v�αg
deg v�1

deg v

q2 deg v − 1
+ O

(
φ(g) + q−gφ(g)

)

= f̂ (0)
∑

deg v�1

deg v

q2 deg v − 1
+ O

(
φ(g) + q−gφ(g) + q−2αg

)
.

For the remaining range,∑
deg v�αg
deg v�1

deg v

qdeg v + 1

∑
gφ(g)�k deg v�αg

f̂

(
k deg v

g

)
1

qk deg v

�
∑

deg v�αg
deg v�1

deg v

qdeg v + 1

∑
gφ(g)�k deg v�αg

q−gφ(g)

� αgq−gφ(g).

Thus, by choosing φ(g) = g−1+ε, we get that

1

g

αg∑
n=1

f̂

(
n

g

)
1

qn

∑
deg v|n
deg v�1

deg v

1 + qdeg v
= f̂ (0)

g

∑
deg v�1

deg v

q2 deg v − 1
+ O

(
1

g2−ε

)
,

which proves the first statement. Taking the limit g → ∞ we get the second part of the
theorem.

3. General cyclic �-covers

Let � be an odd prime and assume that q ≡ 1 mod �. Let Hg,� be the moduli space of
general �-covers of genus g. Every such cover has an affine model

C : Y � = Q(X),

where Q(X) is an �-powerfree polynomial in Fq[X ].
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We first state an explicit form of [BDF+16, corollary 1·2] for the number of cyclic exten-
sions with prescribed behaviour at a given place v0, keeping the dependence on the place v0.
All implied constants in the error term of this section can depend on q and �.

THEOREM 10. Let E(Z/�Z, d) be the set of cyclic extensions of degree � of Fq[X ] with
conductor of degree d, let v0 be a place, ω ∈ {ramified, split, inert}, and E(Z/�Z, d, v0, ω)

be the subset of E(Z/�Z, d) with prescribed behaviour ω at the place v0. Then for any
ε > 0, we have

#E(Z/�Z, d, v0, ω)

#E(Z/�Z, d)
= cv0,ω

Pv0,ω(d)

P(d)
+ O

(
q(ε− 1

2 )d+ε deg v0

)
,

where

cv0,ω =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(� − 1)q− deg v0

1 + (� − 1)q− deg v0
if ω = ramified,

1

�(1 + (� − 1)q− deg v0)
if ω = split or inert,

and where P(x), Pv0,split(x), Pv0,ramified(x) ∈ R[x] are monic polynomials of degree �−2 and

Pv0,inert(x) = (� − 1)Pv0,split(x). (3·1)

Furthermore,

Pv0,inert(d)

P(d)
= (� − 1) + O

(
deg v0

d
+ · · · +

(
deg v0

d

)�−2
)

. (3·2)

Finally, if ω = ramified, the error term can be written as O
(

q(ε− 1
2 )d

)
, i.e., there is not

dependence on the place v0 in that case.

Proof. This follows from [BDF+16, corollary 1·2], keeping the dependence of the error
term on the place v0 as done in Section 5. This gives

#E(Z/�Z, d) = C�q
d P(d) + O

(
q( 1

2 +ε)d
)

#E(Z/�Z, d, v0, ramified) = cv0,ωC�q
d Pv0,ω(d) + O

(
q( 1

2 +ε)d
)

#E(Z/�Z, d, v0, split) = #E(Z/�Z, d, v0, inert)

= cv0,ωC�q
d Pv0,ω(d) + O

(
q( 1

2 +ε)d+ε deg v0

)
.

To bound the quotient Pv0,inert(d)/P(d), we also need the dependence on the coefficients of

Pv0,inert(x) = (� − 1)x�−2 + av0,�−3x�−3 + · · · + av0,0

for the place v0. It follows from the computations of [BDF+16, page 4327] that

av0,i � (deg v0)
�−2−i for 0 � i � � − 3.

(This comes from the residue computation at u = q−1.) The bound (3·2) then follows.

Recall that for a function field extension L/K cyclic of order �, the discriminant and
conductor of L/K are related by

deg Disc(L/K ) = (� − 1) deg Cond(L/K ),
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(as given in [Ros02, theorem 7·16]) and from the Riemann–Hurwitz formula, we have

2g + 2(� − 1) = deg Disc(L/K ).

Thus we can interpret Theorem 10 in terms of the genus g by taking

d = 2g

� − 1
+ 2. (3·3)

LEMMA 11. Let C be a given curve in Hg,�, Fq(C) its function field and tr �n
C be the nth

power of the trace of C. Then

−q
n
2 tr �n

C = (� − 1)
∑

deg v|n
v split in
Fq (C)

deg v + �
∑

deg v| n
�

v inert in
Fq (C)

deg v −
∑

deg v|n
v inert in

Fq (C)

deg v, (3·4)

where the sums are over all places v of Fq(X) (including infinity) with the prescribed beha-
vior.

Proof. Mutatis mutandis Lemma 6.

THEOREM 12. For any ε > 0, we have

〈−q
n
2 tr �n

C

〉
Hg,�

=
∑

deg v| n
�

(� − 1) deg v

1 + (� − 1)q− deg v
+ O

(
qn/�n�−2

d
+ q(ε− 1

2 )d+n(1+ε)

)
,

where d is defined by (3·3).

Proof. We average (3·4) over E(Z/�Z, d) with d = 2g/(� − 1) + 2 using Theorem 10 to
obtain 〈−q

n
2 tr �n

C

〉
Hg,�

= (� − 1)
∑

deg v|n
deg v

(
cv,split

Pv,split(d)

P(d)
+ O

(
q(ε− 1

2 )d+ε deg v
))

+ �
∑

deg v| n
�

deg v

(
cv,inert

Pv,inert(d)

P(d)
+ O

(
q(ε− 1

2 )d+ε deg v
))

−
∑

deg v|n
deg v

(
cv,inert

Pv,inert(d)

P(d)
+ O

(
q(ε− 1

2 )d+ε deg v
))

.

Since cv,inert = cv,split and Pv,inert(x) = (� − 1)Pv,split(x), the main term in the first and the
third sum cancel. Thus, using (3·2)

〈−q
n
2 tr �n

C

〉
Hg,�

= �
∑

deg v| n
�

Pv,inert(d)

P(d)
cv,inert deg v + O

⎛
⎝q(ε− 1

2 )d
∑

deg v|n
deg vqε deg v

⎞
⎠

=
∑

deg v| n
�

(� − 1) deg v

1 + (� − 1)q− deg v
+ O

⎛
⎝1

d

∑
deg v| n

�

deg v�−2

⎞
⎠+ O

(
q(ε− 1

2 )d+n(1+ε)
)

.

=
∑

deg v| n
�

(� − 1) deg v

1 + (� − 1)q− deg v
+ O

(
qn/�n�−2

d
+ q(ε− 1

2 )d+n(1+ε)

)
.
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The previous theorem agrees with the corresponding statistics over the unitary group
U(2g), as we have, by [DS94],∫

U(2g)

tr U n dU =
{

2g n = 0,

0 n � 0.

COROLLARY 13. For any ε > 0 and n such that 6 logq g < n < (1−ε) (2g/(� − 1) + 2),
as g → ∞ we have

〈
tr �n

C

〉
Hg,�

=
∫

U(2g)

tr U n dU + O

(
1

g

)
.

Proof. Using Theorem 12, we have that〈
tr �n

C

〉
Hg,�

= O
(
qn/�−n/2n�−2 + q (2ε−1)g/(�−1)+n(1/2+ε)

)
and we proceed as in the proof of Corollary 8.

THEOREM 14. Let f be an even test function in the Schwartz space S(R) with supp f̂ ⊂
(−1/(� − 1), 1/(� − 1)), then

〈
W f (�C)

〉
Hg,�

=
∫

U(2g)

W f (U ) dU

− f̂ (0)
� − 1

g

∑
v

deg v

(1 + (� − 1)q− deg v)(q� deg v/2 − 1)
+ O

(
1

g2−ε

)
,

where the sum is over all places v of Fq(X) (including the place at infinity). Moreover,

lim
g→∞

〈
W f (�C)

〉
Hg,�

= lim
g→∞

∫
U(2g)

W f (U ) dU

=
∫

R

f (x) dx = f̂ (0).

Proof. Pick α ∈ (0, 1/(� − 1)), such that the support of f̂ is contained in [−α, α]. By
writing out the definition of the one-level density and obtaining the Fourier expansion for
each variable θ j , we get

W f (�C) =
2g∑
j=1

∑
k∈Z

f

(
2g

(
θ j

2π
− k

))

=
∫

R

f (x) dx + 1

2g

∑
n�0

f̂

(
n

2g

)
tr �n

C

= f̂ (0) + 1

g

2αg∑
n=1

f̂

(
n

2g

)
tr �n

C ,

where the last equality follows from f being even and the condition on the support of f̂ .
Averaging W f (�C) over our family of curves using (2·6) and Theorem 12 with

0 < ε <
1 − α(� − 1)

� + 1 + 2α(� − 1)
,
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we get

〈
W f (�C)

〉
Hg,�

= f̂ (0) − � − 1

g

2αg/�∑
n=1

f̂

(
�n

2g

)
1

q�n/2

∑
deg v|n

deg v

1 + (� − 1)q− deg v

+ O

(
1

g2

2αg∑
n=1

f̂

(
n

2g

)
qn/�−n/2n�−2

)
+ O(q−εg)

= f̂ (0) − � − 1

g

2αg/�∑
n=1

f̂

(
�n

2g

)
1

q�n/2

∑
deg v|n

deg v

1 + (� − 1)q− deg v
+ O

(
1

g2

)
.

We now compute

2αg/�∑
n=1

f̂

(
�n

2g

)
1

q�n/2

∑
deg v|n

deg v

1 + (� − 1)q− deg v

=
∑

deg v�2αg/�

deg v

1 + (� − 1)q− deg v

∑
k deg v�2αg/�

f̂

(
k� deg v

2g

)
1

q�k deg v/2
.

As in the proof of Theorem 9, let φ(g) be a function which tends to 0 as g tends to ∞,
and we split the range of the inner sum at gφ(g). We start by addressing the first range,
k deg v � gφ(g). From the Taylor expansion of f̂ (x) at 0, we have

f̂

(
k� deg v

2g

)
= f̂ (0) + O

(
k deg v

g

)
,

thus ∑
deg v�2αg/�

deg v

1 + (� − 1)q− deg v

∑
k deg v�gφ(g)

f̂

(
k� deg v

2g

)
1

q�k deg v/2

=
(

f̂ (0) + O(φ(g))
) ∑

deg v�2αg/�

deg v

1 + (� − 1)q− deg v

(
1

q� deg v/2 − 1
+ O

(
q−�gφ(g)/2

))

= f̂ (0)
∑

deg v�2αg/�

deg v

(1 + (� − 1)q− deg v)(q� deg v/2 − 1)
+ O

(
φ(g) + q−gφ(g)

)

= f̂ (0)
∑

v

deg v

(1 + (� − 1)q− deg v)(q� deg v/2 − 1)
+ O

(
φ(g) + q−gφ(g) + q− (2+�)αg

�

)
.

For the remaining range,∑
deg v�2αg/�

deg v

1 + (� − 1)q− deg v

∑
gφ(g)�k deg v�2αg/�

f̂

(
k� deg v

2g

)
1

q�k deg v/2

�
∑

deg v�2αg/�

deg v

1 + (� − 1)q− deg v

∑
gφ(g)�k deg v�2αg/�

q−k deg v

� αgq−gφ(g).

Using φ(g) = g−1+ε , this completes the proof of the first statement of the theorem. As

lim
g→∞

∫
U(2g)

W f (U ) dU =
∫

R

f (x) dx = f̂ (0),

we get the second part of the theorem by taking the limit g → ∞.
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4. Cubic non-Galois covers

In this section, we consider the family of cubic non-Galois curves. As a first step we need
to count the number of cubic non-Galois extensions of genus g of Fq(X) with prescribed
splitting at given places v with an explicit error term (in the genus g and in the place v).
The following result was recently obtained by Zhao [Zha]. The count was previously estab-
lished by Datskovsky and Wright [DW88], but without an error term which is needed for the
present application. As the final version of the preprint [Zha] is not available, we write the
explicit constants appearing in the error term as general constants, δ for the power saving in
the count, and B for the dependence on the place v. This allows to get a general result that
could be applied to different versions of Theorem 15. The same convention was adopted by
Yang [Yan09] who considered the one level-density for cubic non-Galois extensions of Q,
and this also allows us to compare our results with his.

THEOREM 15 ([Zha]). Let E3(g) be the set of cubic non-Galois extensions of Fq(X) with
discriminant of degree 2g + 4. For any finite set of primes S, and any set � of splitting con-
ditions for the primes contained in S, define E3(g,S, �) to be the subset of E3(g) consisting
of the cubic extensions satisfying those splitting conditions. Then, as g → ∞,

#E3(g,S, �)

#E3(g)
=

∏
v∈S

cv + O

(
q−δg

∏
v∈S

q B deg v

)
,

where δ, B > 0 are fixed constants, and

cv = q2 deg v

1 + qdeg v + q2 deg v

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

1/6 v totally split,

1/2 v partially split,

1/3 v inert,

q− deg v v partially ramified,

q−2 deg v v totally ramified.

We also need the explicit formulas for the curves C associated to the cubic non-Galois
extensions in E3(g). This is proven following exactly the same lines as the proofs of the
explicit formulas for the families of hyperelliptic curves and cyclic covers of order � in
Lemmas 6 and 11. The result can also be found in a paper of Thorne and Xiong [TX14,
proposition 3] who computed other statistics for the same family.

PROPOSITION 16. Let C be a given curve with function field Fq(C) ∈ E3(g), and tr �n
C

be the nth power of the trace of C. Then

−q
n
2 tr �n

C =
∑

deg v|n
v totally split in

Fq (C)

2 deg v +
∑

deg v| n
2

v partially split in
Fq (C)

2 deg v

+
∑

deg v|n
v partially ramified in

Fq (C)

deg v +
∑

deg v| n
3

v inert in
Fq (C)

3 deg v −
∑

deg v|n
v inert in

Fq (C)

deg v,
(4·1)

where the sums are over all places v of Fq(X) (including the place at infinity) with the
prescribed behavior.

Let E3,g be the moduli space of curves whose function fields lie in E3(g).
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THEOREM 17. Let δ, B > 0 be as in Theorem 15. The average nth moment of the trace
over cubic non-Galois curves in E3,g is given by

〈−q
n
2 tr �n

C

〉
E3,g

= ηnqn/2 + ηn −
∑

deg v| n
2

(qdeg v + 1) deg v

1 + qdeg v + q2 deg v

+
∑

deg v|n

qdeg v deg v

1 + qdeg v + q2 deg v
+

∑
deg v| n

3

q2 deg v deg v

1 + qdeg v + q2 deg v

+ O
(
q−δgq (B+1)n

)
,

where the sums are over all places v of Fq(X) (including the place at infinity).

Proof. We rewrite equation (4·1) as

−q
n
2 tr �n

C =
∑

α

∑
v∈Vα(C)
deg v| n

dα

δα deg v,

where α = 1, 2, 3, 4, 5 indexes the five terms in equation (4·1); we also use the index α to
refer to the type of ramification associated to the curve C in each term, more precisely as
v ∈ Vα(C). Note that δ1 = δ2 = 2, δ3 = 1, δ4 = 3, δ5 = −1 and d1 = d3 = d5 = 1, d2 = 2
and d4 = 3.

We now average over E3,g (which has cardinality equal to #E3(g)) to obtain

〈−q
n
2 tr �n

C

〉
E3,g

= 1

#E3,g

∑
C∈E3,g

∑
α

∑
v∈Vα(C)
deg v| n

dα

δα deg v

=
∑

α

∑
deg v| n

dα

δα deg v
#E3(g, v, α)

#E3(g)

=
∑

α

∑
deg v| n

dα

(
δα deg v cv,α + O

(
deg v q−δgq B deg v

))
,

where the second equality is obtained by swapping the order of the sums and the third
equality follows from Theorem 15. Note that the sum of the error terms is

O
(
q−δgq (B+1)n

)
.

Writing

A(v) = q2 deg v deg v

1 + qdeg v + q2 deg v
,

we have ∑
α

∑
deg v| n

dα

δα deg v cv,α =
∑

deg v| n
2

A(v) +
∑

deg v|n
A(v)q− deg v +

∑
deg v| n

3

A(v),
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and ∑
deg v| n

2

A(v) =
∑

deg v| n
2

deg v −
∑

deg v| n
2

(
qdeg v + 1

)
deg v

1 + qdeg v + q2 deg v

= ηn

(
qn/2 + 1

) −
∑

deg v| n
2

(
qdeg v + 1

)
deg v

1 + qdeg v + q2 deg v

using (2·2) and taking into account the contribution of the place at infinity.

COROLLARY 18. For any ε > 0, and as g → ∞,〈
tr �n

C

〉
E3,g

= −ηn + O
(

q− n
6 + q−δg+(B+ 1

2 )n
)

.

Further, for 6 logq g < n < δg/(B + 1/2), and as g → ∞,

〈
tr �n

C

〉
E3,g

=
∫

USp(2g)

tr U n dU + O

(
1

g

)
.

Proof. Mutatis mutandis Corollaries 8 and 13.

THEOREM 19. Let δ, B > 0 be fixed constants as in Theorem 15. Let f be an even test
function in the Schwartz space S(R) with supp f̂ ⊂ (−δ/(2B + 1), δ/(2B + 1)), then for
any ε > 0,

〈
W f (�C)

〉
E3,g

=
∫

USp(2g)

W f (U ) dU − f̂ (0)

g
κ + O

(
1

g2−ε

)
,

where

κ = 1

q − 1
−

∑
v

(1 + qdeg v) deg v(
qdeg v − 1

) (
1 + qdeg v + q2 deg v

)
+

∑
v

qdeg v deg v(
qdeg v/2 − 1

) (
1 + qdeg v + q2 deg v

)
+

∑
v

q2 deg v deg v(
q3 deg v/2 − 1

) (
1 + qdeg v + q2 deg v

) ,

(4·2)

where the sums are over all places of Fq(X) (including the place at infinity). Moreover,

lim
g→∞

〈
W f (�C)

〉
E3,g

= lim
g→∞

∫
USp(2g)

W f (U ) dU

=
∫

R

f (x)

(
1 − sin(2πx)

2πx

)
dx .

Proof. Since the function f̂ is continuous and supported on (−δ/(2B + 1), δ/(2B + 1)),
its support is contained in [−α, α] for some 0 < α < δ/(2B + 1). Averaging W f (�C) over
our family of curves using (2·6) and Theorem 17 with 0 < ε < δ − 2α(B + 1), we get

〈
W f (�C)

〉
E3,g

= f̂ (0) − 1

g

αg∑
n=1

f̂

(
n

g

)
− 1

g

2αg∑
n=1

f̂

(
n

2g

)
q−n/2 F(n) + O

(
q−εg

)
,
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where

F(n) := ηn −
∑

deg v| n
2

(qdeg v + 1) deg v

1 + qdeg v + q2 deg v

+
∑

deg v|n

qdeg v deg v

1 + qdeg v + q2 deg v
+

∑
deg v| n

3

q2 deg v deg v

1 + qdeg v + q2 deg v
.

Moreover, the two first terms can be rewritten as∫
USp(2g)

W f (U ) dU = f̂ (0) − 1

g

∑
1�n�αg

f̂

(
n

g

)
,

using (2·3). Therefore, for 0 < ε < δ − α(2B + 2) we have

〈
W f (�C)

〉
E3,g

=
∫

USp(2g)

W f (U ) dU − 1

g

2αg∑
n=1

f̂

(
n

2g

)
q−n/2 F(n) + O

(
q−εg

)
.

We now compute the lower order terms for each of the sums of F(n) as defined above.
We have

2αg∑
n=1

f̂

(
n

2g

)
1

qn/2

∑
deg v| n

2

(1 + qdeg v) deg v

1 + qdeg v + q2 deg v

=
∑

deg v�αg

(1 + qdeg v) deg v

1 + qdeg v + q2 deg v

∑
k deg v�αg

f̂

(
k deg v

g

)
1

qk deg v
;

2αg∑
n=1

f̂

(
n

2g

)
1

qn/2

∑
deg v|n

qdeg v deg v

1 + qdeg v + q2 deg v

=
∑

deg v�2αg

qdeg v deg v

1 + qdeg v + q2 deg v

∑
k deg v�2αg

f̂

(
k deg v

2g

)
1

qk deg v/2
;

2αg∑
n=1

f̂

(
n

2g

)
1

qn/2

∑
deg v| n

3

q2 deg v deg v

1 + qdeg v + q2 deg v

=
∑

deg v�2αg

q2 deg v deg v

1 + qdeg v + q2 deg v

∑
3k deg v�2αg

f̂

(
3k deg v

2g

)
1

q3k deg v/2
.

As before, we break the range of the inside sum at gφ(g) where φ(g) is a function which
tends to 0 as g tends to infinity, and we use the Taylor expansion for f̂ (x) in the first range
to get that the first, second and third sum above are respectively

f̂ (0)
∑

v

(1 + qdeg v) deg v(
qdeg v − 1

) (
1 + qdeg v + q2 deg v

) + O
(
φ(g) + q−gφ(g) + q−2αg

)

f̂ (0)
∑

v

qdeg v deg v(
qdeg v/2 − 1

) (
1 + qdeg v + q2 deg v

) + O
(
φ(g) + q−gφ(g) + q−3αg

)

f̂ (0)
∑

v

q2 deg v deg v(
q3 deg v/2 − 1

) (
1 + qdeg v + q2 deg v

) + O
(
φ(g) + q−gφ(g) + q−3αg

)
,
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and similarly
gφ(g)∑
n=1

f̂

(
n

2g

)
ηn

qn/2
= f̂ (0)

q − 1
+ O

(
φ(g) + q−gφ(g)

)
.

For the remaining range from gφ(g) to 2αg, working as in the proofs of Theorems 9 and 14,
we have that each of the four sums is O

(
αgq−gφ(g)

)
. By choosing φ(g) = g−1+ε, we get

that

−1

g

2αg∑
n=1

f̂

(
n

2g

)
q−n/2 F(n) = −1

g
f̂ (0)κ + O

(
1

g2−ε

)
,

which proves the first statement. Taking the limit g → ∞ we get the second part of the
theorem.

We now compare the results of the above theorem with the results obtained by Yang for
the one-level density of cubic non-Galois extensions over number fields [Yan09]. Yang’s
results hold for supp f̂ ⊂ (−c, c), where

c = 2(1 − A)

2B + 1
,

and the parameters 0 < A < 1 and B > 0 are such that

Np(X, T ) = cP,T X + O
(
X A pB

)
, (4·3)

where Np(X, T ) is the number of cubic non-Galois extensions of Q with discriminant
between 0 and X and such that the splitting behavior at the prime p is of type T , see [Yan09,
proposition 2·2·4]. In order to compare it with Theorem 19, we need to find the correspond-
ence between the A of (4·3) and the δ of Theorem 15 (the B’s are the same). We rewrite
(4·3) by dividing by the main term given by N (X), the number of non-Galois cubic fields of
discriminant up to X which is C X for some absolute constant C , and we rewrite (4·3) as

Np(X, T )

N (X)
= c′

P,T + O
(
X A−1 pB

)
. (4·4)

In the situation of Theorem 15, since #E3(g) ∼ q2g+4, we have for one place v that

#E3(g, {v}, �)

#E3(g)
= cv + O

((
q2g

)−δ/2
q B deg v

)
. (4·5)

Then, to compare (4·4) and (4·5), we set

A − 1 = − δ

2
⇐⇒ δ = 2 − 2A.

Then, we have that the support of the Fourier transform in Theorem 19 is (−c, c) where

c = δ

2B + 1
= 2 − 2A

2B + 1
,

which agrees with the support of the Fourier transform in [Yan09, proposition 2·2·4].

5. Explicit error terms and the Lindelöf bound

In this section we explain our approach to make the dependence on the place v0 explicit
in Theorems 5 and 10. We start by reviewing how the counting of function field extensions

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S030500411700041X
Downloaded from https://www.cambridge.org/core. MIT Libraries, on 22 Nov 2021 at 12:31:32, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S030500411700041X
https://www.cambridge.org/core


244 BUCUR, COSTA, DAVID, GUERREIRO AND LOWRY–DUDA

ramifying (or splitting or inert) at a given finite place v0 is obtained in [BDF+16], and how
the dependence on the place v0 reduces to obtaining the Lindelöf bound for the Dirichlet
L-functions L(1/2 + i t, χ), where χ is a Dirichlet character of modulus v0 and order �. We
conclude this section by proving this bound.

The counting of function fields extensions in [BDF+16] is done by writing explicitly
the generating series for the extensions, and applying the Tauberian Theorem [BDF+16,
theorem 2·5] to the generating series. As usual, this involves moving the line of integration
and applying Cauchy’s residue theorem to the relevant region. The main term will be given
by the sum of the residues at the poles in the region, and this is where the main terms
of Theorems 5 and 10 come from. The error term comes from evaluating the integral at the
limit of the region of analytic continuation of the generating series, which involves bounding
the generating series on some half line.

We start by looking at the counting for cyclic extensions of degree � with conductor of
degree d which ramify (or not ramify) at a given place v0. In this case, the generating series
FR(s) and FU (s), respectively, converge absolutely for Re (s) > 1/(� − 1) with a pole of
order �−1 at s = 1/(� − 1), which gives the main term. Each generating series has analytic
continuation to Re (s) = 1/2(� − 1) + ε for any ε > 0, and the error term is then bounded
by

O
(

q ( 1
2 +ε)d M

)
,

where M is the maximum value taken by FR(s) (or FU (s)) on the line Re (s) = 1/2(� − 1)+
ε. It is important to note that the generating series are absolutely bounded on this line, i.e.,
the bound does not depend on v0, but might depend on q and �, and the results of Theorems 5
and 10 follow. There is a difference between the case � = 2 and � � 3, as the generating
series is written as the sum of two functions, one with a pole of order � − 1, and one with
poles of order 1. If � � 3, the main term comes from the pole of order � − 1 only. If � = 2,
the two poles are simple and there is some cancellation between contributions of the residues
at the two poles.

It remains to deal with the error terms for the two unramified cases, namely counting
extensions split at v0 and inert at v0. In this case the argument works the same way for all
� � 2. Let ξ� be a primitive �-th root of unity, and let

χv,�(v0) =
(v0

v

)
�
,

be the �th power residue symbol, which is a Dirichlet character of order � and modulus v0

over Fq(X).
The generating series for E(Z/�Z, �, v0, split) is

FS(s) = 1

�
FU (s) + 1

�2

�−1∑
j=0

�−1∑
k=1

(
�−1∑
r=0

ξ
−rk deg v0

�

)
M j,k(s, v0, split), (5·1)

where M j,k(s, v0, split) is given by∏
v�v0

(
1 +

(
ξ

j deg v

� χv,�(v0)
k + · · · + ξ

(�−1) j deg v

� χv,�(v0)
(�−1)k

)
Nv−(�−1)s

)
.

As before, the count is then obtained by applying the Tauberian theorem to the generating
series FS(s). This series converges absolutely for Re (s) > 1/(� − 1) with a pole of order
� − 1 at s = 1/(� − 1), which gives the main term. The function FS(s) has analytic
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continuation to Re (s) = 1/2(� − 1) + ε for any ε > 0. The error term is bounded by

O
(

q
1
2 +ε M

)
,

where M is the maximal value of FS(s) for Re (s) = 1/2(� − 1) + ε. As we mentioned
above, FU (s) is absolutely bounded on this line, thus we have to bound FS(s) − 1

�
FU (s) on

the aforementioned line. We can rewrite M j,k(s, v0, split) as

G(s)
�−1∏
r=1

∏
v�v0

(
1 − ξ

r j deg v

� χv,�(v0)
rk N (v)−(�−1)s

)−1
,

where the function G(s) converges absolutely for Re (s) > 1/2(� − 1)+ε, and it is uniformly
bounded in that region. Hence our task is reduced to bounding the L-functions

L j,k(s) =
∏
v�v0

(
1 − ξ

j deg v

� χv,�(v0)
k

N (v)(�−1)s

)−1

,

on the line Re (s) = 1/2(� − 1)+ε. The L j,k(s) (0 � j, k � �−1) are Dirichlet L-functions
associated to some character χ of modulus v0 and order � and we need to evaluate them at
s = 1/2 + ε + i t . Indeed, if ξ be any root of unity and we write ξ = q−iθ , then we have

∏
v

(
1 − χ(v)ξ deg v

N (v)s

)−1

=
∏

v

(
1 − χ(v)q−(s+iθ) deg v

)−1 = L(s + iθ, χ).

In the following theorem we prove that the Lindelöf Hypothesis is true for the L-functions
L(s, χ) associated with non-trivial Dirichlet characters of Fq[X ]. There are two main in-
gredients in our proof, the Riemann Hypothesis and [CV10, theorem 8·1], an Erdös–Turán-
type inequality, proved by Carneiro and Vaaler, bounding the size of polynomials inside the
unit circle. This approach was suggested to us by Soundararajan who used the same approach
in a paper in collaboration with Chandee [CS11] to get similar bounds for ζ(1/2 + i t). We
are very thankful for his suggestion and his help. There are other bounds in the literature for
log

∣∣L(1/2 + i t, χv0)
∣∣, for example the bound proved by Altung and Tsimerman in [AT14,

p.45]

log
∣∣L(1/2, χv0)

∣∣ � 2g

logq (g)
+ 4q1/2g1/2,

where q is prime. Then, the bound below improves the constant from 1 to the optimal con-
stant log 2/2 (we recall that d = 2g + 2 for hyperelliptic curves). Very recently, similar
bounds with the constant log 2/2 were obtained by Florea [Flo16, corollary 8·2] using a dif-
ferent proof based in similar ideas, inspired by the work of Carneiro and Chandee [CC11].
Her proof also allows her to get better bounds for log

∣∣L(α + i t, χv0)
∣∣ for α � 1/2 (the

L-function gets smaller as one moves away the critical line).

THEOREM 20. Let v0 be a finite place of Fq(X) and denote by χv0 be the �-th power
residue symbol, which is a Dirichlet character of modulus v0. Let d be the degree of the
conductor of the character, and let L(s, χv0) be the L-function attached to χv0 . For any
s = σ + i t with σ � 1/2, we have as d → ∞,

log
∣∣L(s, χv0)

∣∣ �
(

log 2

2
+ o(1)

)
d

logq d
. (5·2)
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Hence, for any ε > 0, we have

L(s, χv0) � q,ε

(
qd

)ε
. (5·3)

Proof. Let v0(X) be the polynomial of Fq[X ] corresponding to the place v0, and consider
the curve

Cv0 : Y � = v0(X).

Let g be the genus of the curve. Then, d −2 = 2g/(�−1), and the zeta function of the curve
Cv0 writes as

ZCv0
(u) =

∏2g
j=1

(
1 − ueiθ j

)
(1 − u)(1 − qu)

=
∏�−1

k=1 L(u, χ k
v0
)

(1 − u)(1 − qu)
,

where

L(u, χ k
v0
) =

2g/(�−1)∏
j=1

(
1 − √

qeiθk, j u
)
,

renaming the roots of ZCv0
(u).

Without loss of generality, take k = 1 and rewrite

L(u, χv0) =
d−2∏
j=1

(
1 − √

qeiθ j u
)
.

Evaluating at u = q−s for s = σ + i t with σ � 1/2, we have

L(s, χv0) =
d−2∏
j=1

(
1 − ei(θ j −t log q)q1/2−σ

)
. (5·4)

We consider the polynomial

F(z) =
d−2∏
j=1

(
z − ei(θ j −t log q)q1/2−σ

)
,

and we notice that all α j = q1/2−σ ei(θ j −t log q) are such that |α j | � 1 since σ � 1/2. We now
use [CV10, theorem 8.1] which says that for

FM(z) =
M∏

m=1

(z − αm)

where |αm | � 1 for 1 � m � M , we have for any positive integer N that

sup
|z|�1

log |FM(z)| � log 2
M

N + 1
+

N∑
n=1

1

n

∣∣∣∣∣
M∑

m=1

αn
m

∣∣∣∣∣ . (5·5)

We then have to evaluate the sums of powers

d−2∑
j=1

αn
j �

d−2∑
j=1

einθ j .

Taking the logarithm derivative on both sides of (5·4) (similarly to the proofs of Lemmas 6
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and 11), we derive the following identity for n � 1

d−2∑
j=1

einθ j = −q− n
2

∑
deg v|n

deg v
(
χv0(v)

) n
deg v ,

where the sum is over all places v of Fq(X) (including the place at infinity). Therefore, using
(2·2), ∣∣∣∣∣∣

d−2∑
j=1

einθk, j

∣∣∣∣∣∣ = q− n
2 (1 + qn) � 1 + q

n
2 .

Replacing the bound above in (5·5) with M = 2g/(� − 1) = d − 2, we get

sup
|z|�1

log |F(z)| � log 2
d − 2

N + 1
+

N∑
n=1

1 + q
n
2

n

� log 2
d − 2

N + 1
+ log 2N + 2

q
N
2

N
.

The theorem follows by taking N = �(2 − f (d)) logq d�, where f (d) is any positive
function f (d) such that f (d) = o(1) and e− f (d) logq d = o(1), for example f (d) =
logq logq d/logq d . Without loss of generality assume N > 0, and we have

sup
|z|�1

log |F(z)| � log 2
d

(2 − f (d)) logq d
+ o

(
d

logq d

)

�
(

log 2

2
+ o(1)

)
d

logq d
,

which shows (5·2), and (5·3) follows.
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[FPS16] D. FIORILLI, J. PARKS and A. SÖDERGREN. Low-lying zeros of quadratic Dirichlet

L-functions: Lower order terms for extended support. Preprint (2016),
arXiv:1601.06833.

[FR10] D. FAIFMAN and Z. RUDNICK. Statistics of the zeros of zeta functions in families of hyperel-
liptic curves over a finite field. Compos. Math. 146(1) (2010), 81–101.

[Kat01] N. M. KATZ. Frobenius-Schur indicator and the ubiquity of Brock-Granville quadratic excess.
Finite Fields Appl. 7(1) (2001), 45–69. Dedicated to Professor Chao Ko on the occasion of
his 90th birthday.

[KR09] P. KURLBERG and Z. RUDNICK. The fluctuations in the number of points on a hyperelliptic
curve over a finite field. J. Number Theory 129(3) (2009), 580–587.

[KS99] N. M. KATZ and P. SARNAK. Random matrices, Frobenius eigenvalues, and monodromy.
American Mathematical Society Colloquium Publications. vol. 45 American Mathematical
Society, Providence, RI, 1999.

[Ros02] M. ROSEN. Number theory in function fields, Graduate Texts in Mathematics. vol. 210
(Springer-Verlag, New York, 2002).

[Rud10] Z. RUDNICK. Traces of high powers of the Frobenius class in the hyperelliptic ensemble. Acta
Arith. 143(1) (2010), 81–99.

[TX14] F. THORNE and M. XIONG. Distribution of zeta zeroes for cyclic trigonal curves over a finite
field. Preprint (2014).

[Yan09] A. YANG. Distribution problems associated to zeta functions and invariant theory. PhD. Thesis
Princeton University (2009).

[Zha] Y. ZHAO. On sieve methods for varieties over finite fields. Preprint.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S030500411700041X
Downloaded from https://www.cambridge.org/core. MIT Libraries, on 22 Nov 2021 at 12:31:32, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S030500411700041X
https://www.cambridge.org/core

