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Abstract— Grasping in dynamic environments presents a
unique set of challenges. A stable and reachable grasp can
become unreachable and unstable as the target object moves,
motion planning needs to be adaptive and in real time, the
delay in computation makes prediction necessary. In this paper,
we present a dynamic grasping framework that is reachability-
aware and motion-aware. Specifically, we model the reachability
space of the robot using a signed distance field which enables
us to quickly screen unreachable grasps. Also, we train a
neural network to predict the grasp quality conditioned on the
current motion of the target. Using these as ranking functions,
we quickly filter a large grasp database to a few grasps in
real time. In addition, we present a seeding approach for arm
motion generation that utilizes solution from previous time step.
This quickly generates a new arm trajectory that is close to
the previous plan and prevents fluctuation. We implement a
recurrent neural network (RNN) for modelling and predicting
the object motion. OQur extensive experiments demonstrate the
importance of each of these components and we validate our
pipeline on a real robot.

I. INTRODUCTION

Roboticists have made significant progress in developing
algorithms and methods for robotic manipulation in static
environments. However, robotic manipulation becomes much
harder in dynamic environments which is often the case in
the real world. For example, in dynamic grasping, ball catch-
ing, human-robot handover, etc., the targets and obstacles to
be interacted with might be moving with an unknown motion.
Providing robots with the ability to manipulate objects in
dynamic environments, despite being less explored, can be
extremely important in realizing automation in both industry
and daily life. Figure 1 illustrates a conveyor belt setting;
an ability to pick up the target object without pausing the
conveyor belt or knowing the speed of the target object a
priori can improve the overall efficiency of the system.

There are many challenges brought by dynamic envi-
ronments. First, continuous changes in the environments
require online and fast motion replanning. Sampling-based
methods (RRT, PRM, etc.) are not well-suited for this
requirement because the randomness of solutions leads to
jerky and wavy motion due to the replanning at each time
step. Optimization-based methods (CHOMP, STOMP, etc.)
can be time-consuming in highly cluttered scenes, making
fast replanning in dynamic environments extremely difficult.
Second, most works in the grasp planning literature rarely
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Fig. 1: Dynamic Grasping Problem: A moving target object is to
be grasped and lifted. The object pose and motion is not known a
priori and has to be estimated online. Full degree-of-freedom grasps
should be explored to come up with feasible grasps that can pick-up
the object before it escapes the robot’s workspace.

consider the approach and close motion of the grasp, which
makes a difference for a moving target. For example, a grasp
facing the moving direction of a target can have a higher
success rate than a grasp catching the target from the back.
Third, we need to understand and predict the motion of the
object because computed plans are obsolete when executed.

Previous works have addressed dynamic grasping by intro-
ducing a number of assumptions such as prior knowledge of
the object motion [1], waiting for the object to come to rest
before grasping, limiting the grasping directions to a single
direction (e.g. only top-down grasps [2]). In this work, we
relax some of these assumptions and tackle the problem of
robotic grasping for moving objects with no prior knowledge
of the object’s motion profile and no restrictions on the
possible grasping directions of the object. The increase in
the range of possible grasping directions has the advantage of
expanding the workspace of the robot leading to more grasp
options that can be very useful in the dynamic setting. How-
ever, as the range of feasible grasp options grows, so does
the range of infeasible ones. Without a notion of reachability,
it is usually preemptively time-consuming to compute IKs
for all the grasps in the database. Our method, illustrated in
Figure 2, embraces the advantage of an expanded workspace
for full degree-of-freedom (DOF) grasps and mitigates the
reachability problem by constraining the grasp selection
process to the more reachable and manipulable regions of
the workspace. In addition, we observe that the robustness
of a grasp may vary depending on the speed and direction
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Fig. 2: Dynamic Grasping Framework. a) Instantaneous pose estimation runs continuously to keep track of the moving object and we
use a recurrent neural network to model the motion of the target object and predict its future pose. b) Full grasp database are ranked
and filtered based on reachability. ¢) Pick the grasp from filtered list that is closest to the current arm configuration. Arm trajectory is
generated based on the future pose of the moving object. Arm trajectory from previous time step is used to seed the planner in current
step. d) Approach and grasp are executed when CANGRASP condition is satisfied.

of the moving object. To handle this, we learn a function
that predicts the robustness of grasps given the motion of
the object. This is used to rank and select a robust reachable
grasp. To generate arm motion, rather than planning from
scratch each time, we seed the planning process by the
solution from the previous time step. This method allows
the newly planned trajectory to be similar and also speed up
the computation. In summary, our main contributions are:

a) Reachability and motion-aware grasp planning:
ranking functions that predict the reachability and success
probability for different grasps based on target pose and
motion of the target. These ranking functions are used for
real-time grasp filtering.

b) Adaptive motion generation: an effective trajectory
generation approach that incorporates the solution from pre-
vious timestep to seed the search process to achieve quicker
and smoother transition between different motion plans.

c) Simulation and real robot evaluation: procedure
of systematically evaluating dynamic grasping performance
in simulation with randomized linear / nonlinear motion with
different objects, and a real robot demonstration to pick up
objects moving on a conveyor belt.

II. RELATED WORKS

1) Grasping in Dynamic Environments: Grasping of static
objects can be achieved via visual servoing [3], [4], [5],
[61, [7], [8], [9], [10]; however, grasping in a changing
environment presents a unique challenge. The robot not only
tracks the object but also has to reason about the geometry
of the object to determine how to pick it up. Some learning-
based grasping systems [11] have been applied to slightly
moving scenes. Previous works demonstrate grasping of a
static object in the midst of moving obstacles [12]. Our work
deals with picking a moving object while avoiding collision
with static obstacles.

2) Database-based Robotic Grasping: Previous works
[13], [14] have looked at the idea of grasping using a pre-
computed database. Most of these methods sample different
grasps and evaluate them in simulation using a geometry-
based metric. These metrics use static analysis which does
not account for the dynamics of the approach and lift process.
Some other methods [15], [16] generate grasp database using
a real robot which can be valuable but such data is very

expensive to collect. A recent concurrent work [17] used
this technique to examine different approaches for sampling
grasps when generating a grasp database and evaluated their
coverage of possible grasping directions. They very densely
sample “billions” of grasping direction and measure the
robustness of each grasp candidate using the success rate of
it’s neighbours. [18] collects grasps with randomly added
perturbations on the object poses.

3) Object Tracking: Visual feedback is crucial to grasping
and manipulation in dynamic environments. For a position-
based system like ours, the visual input from a camera
(color and/or depth) is continuously processed into the pose
(position and orientation) of the objects in the environment.
Bayesian methods [19], [20] or deep learning techniques
[21], [22] can be applied to the input image stream to
produce object poses in the camera’s frame of reference.
The noisy pose results from object pose detection systems
can be filtered into more stable values using methods such as
Kalman filtering [23]. Since Kalman filtering builds a model
for the motion, this model serves as a good predictor for the
future pose of the object being tracked.

4) Motion Generation: When obstacles are present, reach-
ing a moving target requires some trajectory planning (such
as RRT [24], PRM [25]) or trajectory optimization meth-
ods (such as CHOMP [26], STOMP [27]) that are able
to generate collision-free paths for the arm. Recent works
[28], [29] presented an approach to generate a sequence of
constraint-based controllers to reactively execute a plan while
respecting specified constraints like collision avoidance. Our
work is more similar to works that generate arm motion from
a library of stored arm motions [30], [31], [32]. Building
on these works, we propose an approach that only keeps
the solution from previous time step without a precomputed
database of arm motions. This previous solution is used to
initialize tree/roadmap for sampling-based methods or as a
seed for trajectory optimization solver.

A recent work [2] presented an approach that uses motion
prediction to grasp a moving block using top-down grasps;
they illustrated their approach using simulated experiments.
Our work differs from [2] in that we do not limit the grasp
direction to only top-down direction, we handle different
objects and we incorporate a notion of reachability [33] to



guide the grasping process. In addition, we demonstrate our
method on real hardware. Another recent work [34] looked
holistically at the problem of dynamic grasping especially
during handover between a human and a real robot. As
the object moves, approximate inverse kinematics (IK) are
computed on a database of pre-computed grasps and the
quality of the IK solutions are computed and ranked. In our
work, we compare the IK of filtered grasps to the current
robot joint values and pick the closest grasp.

III. PROBLEM DEFINITION

The task is for a robot to pick up a moving object whose
motion is not known a priori and avoid colliding with the
surrounding obstacles. We assume that the models of the
objects and obstacles exist so the system can model the
environment using object detection and pose estimation. The
task is successful if the robot is able to pick up and lift the
correct target object without knocking over the surrounding
objects/obstacles. We also want target object to be picked
up as fast as possible. This task imitates many warehouse
conveyor belt scenarios when both the obstacle and target
objects are fragile and moveable with unplanned contact.

IV. METHOD

In this section we describe the various components of
our system (illustrated in Figure 2). First, we describe the
visual processing unit that detects object poses. We then
discuss the predictive component that estimates the future
pose of the object. Next, we discuss the online grasp planning
component that produces motion-conditioned reachable and
stable grasps in real time. Finally, we present our arm motion
generation method.

A. Overview

The overall algorithm is presented in Algorithm 1. Each
grasp consists of a grasp pose and a pregrasp pose generated
by backing off the grasp pose for distance b. Our pipeline
takes in a known object O. It first retrieves a pre-computed
database of grasps Gpp for the target object; grasps in
Gpp are all in object frame. In the dynamic grasping loop,
it estimates the current pose p. of the target and predicts
a future pose py with duration ¢. ¢ is defined as a step
function of the euclidean distance d from the arm end-
effector to the planned pregrasp: ¢ = 2s if d > 0.3m,
t =1sif 0.1m < d < 0.3m, and ¢t = 0s if d < 0.1m. We
convert the grasps in G pp from object frame to robot frame
according to predicted pose py and then filtered the grasps
using the reachability and motion-aware ranking functions
described later in Section IV-C and keep the shortlisted top
10 grasps G . We pick the grasp g. from G that is closest
to the current robot configuration and move the arm if p, is
reachable otherwise we continue to the next loop. We keep
executing the algorithm until the condition for executing the
grasp is satisfied. Define the euclidean distance between the
end-effector position and the planned grasp position to be
dp, and the absolute quaternion distance between the end-
effector orientation and planned grasp pose orientation to be

dg, then CANGRASP returns true if d, < 1.1b and d, < 20°,
where b is the back-off distance.

After the condition is met, we get an updated estimate of
the object pose, predict with horizon ¢’ = 1s, and convert g..
using the newly predicted pose p}. The arm is then moved
to g.. The hand is closed while moving with the target for
another ¢’/ = 0.1s. In our pipeline, ¢, ¢, and ¢’ are configured
experimentally but the optimal prediction horizon should be
a function of the end-effector speed, the distance between
the end-effector and the planned grasp pose, and the motion
of the target. We leave this for future research. Finally, we
check if the object has been lifted to determine success.

Algorithm 1 Dynamic Grasping Pipeline

1: function DYNAMICGRASP(O)

2: Gpp < RETRIEVEGRASPDATABASE(O)
3 while True do

4 pe < DETECTPOSE(O)

5: py < PREDICT(pc, t)

6: Gw < CONVERTGRASPS(Gppg, pf)
7 G < FILTERGRASPS(Gw, py)

8 ge < PICKGRASP(GF)

0 %

Continue to next iteration if g. is not reachable
10: Move arm to g.
11: if CANGRASP() then
12: pl. < DETECTPOSE(O)
13: p} + PREDICT(p., t')
14: ge + CONVERTGRASPS(gc, p/f)
15: Move arm to g,
16: Close hand while moving with the target for ¢'
17: Break loop
18: end if
19: end while
20: return CHECKSUCCESS()

21: end function

B. Object Motion Modelling

Picking up moving objects requires instantaneously de-
tecting the relevant objects in the scene. We continuously
track/model the motion of the object to be able to handle
cases where the motion profile changes with time.

1) Object Detection and Tracking: In real-world experi-
ments of this work, we use a recent learning-based method
(DOPE [21]) to get instantaneous poses of moving objects in
the scene. DOPE trains a neural network model that takes an
RGB image as input and outputs the pose of a target object
relative to the camera frame. A different model is trained for
each object of interest and each model can detect multiple
instances of their target object. Images of the grasping scene
are captured using a kinect and passed through the DOPE
models to detect objects and obstacles in the scene. To
achieve robustness, we use the published model [21] that
was trained on data collected in different lighting condition.
In simulation, we directly access the pose of the objects and
obstacles in the grasping scene.

2) Recursive State Estimation/Object Pose Prediction:
Grasp/motion planning has a time cost and a computed
grasp/ motion plan can become obsolete very quickly as the
object moves. As a result, an ability to predict the future
pose of the target object can improve the overall success of
a dynamic grasping system. The motion prediction ability is



needed for both planning a grasp and executing a grasp (the
approach and close motion). While Kalman filtering (KF)
[23] is a practical approach for linear motion prediction,
we adopt a recurrent neural network (RNN) approach to
be able to generalize to non-linear motions as well. The
RNN continuously takes in a sequence of instantaneous pose
measurements (p;:—n, - - - Pt—1, P¢) to update it’s internal state
which is used to predict future pose at different prediction
horizon lengths (pi;,,Ptsy, s Pty,,)- To train the RNN
1 we create a dataset contains planar linear, circular and
sinusoidal sequence of waypoints (2000 each) randomly gen-
erated along different directions with different start points. To
aid learning and generalization, each sequence data point is
normalized to the start of the sequence i.e. ((0,- - ,pi—1 —
Pt—n,Pt — pt—n) - (ptf1 - pt—n;ptfg—pf,_n))~ This RNN
approach can also be used to model object motion during
human-robot handovers.

C. Grasp Planning for Moving Objects

1) Grasp Database Generation: To generate grasps for
moving objects, we pre-compute a database of grasps for all
target objects while they remain static. Similar to [17], this
database was collected and evaluated purely in simulation
with dynamics turned on. First, we densely generate 5000
stable grasps for each object using a simulated annealling
approach [35], and we then evaluate all the grasps in simu-
lation; each grasp is executed to lift the object 50 times and
each time we add random noise to the object pose [18]. The
success rate gives a measure of the robustness of the grasp
and we choose the top 100 robust grasps.

2) Reachability-Aware Grasping: In the dynamic grasp-
ing setting, it is important to have a fast way to choose a
feasible grasp out of the list of stable and robust grasps.
Generating collision-free IK for all the grasps can be time-
consuming; instead, we use our pre-computed reachability
space to quickly rank the grasps for the given object pose
estimate (See [33] for more details). The larger reachability
value the grasp has, with higher probability a valid IK
can be found for that grasp. Reachability can also be an
index of manipulability and it follows the intuition that
the most reachable grasp has higher probability to continue
being reachable in the future, reducing the number of grasp
switches while the target moves around. The interpolation
and indexing of a pre-computed 6D space gives a fast way
to reduce the grasp database to a few more reachable grasps
whose IK can then be found. This approach is much faster
that computing IK for the entire database and is important in
dynamic settings. We can use this reachability computation
as a rank function for FILTERGRASP in Algorithm 1. An
example using reachability is shown in Figure 2.

3) Motion-Aware Grasping: We observe that the success
rate of a stable grasp varies depending on the motion of the
object. For example, picking up an object from behind as it
moves away can result in different success rate statistics com-
pared to approaching in the direction opposite it’s motion. To

IRNN model: LSTM(100), 2x Dense(100), Dense(output_shape).
output_shape = num.future X dim

address this, we learn a neural network model M(g, pg, v, 6)
that predicts the success probability of a grasp g given the
motion profile of the object (speed v and motion direction
#). The input into the model includes:

o The 6D grasp pose (g € RY) i.e. the {z,y, 2} position
and {roll, pitch, yaw} orientation in the object’s frame
of reference.

o The 6D pre-grasp pose (pg € RY) which is the grasp
pose backed off (5 cm for Mico hand and 7.5cm for
robotiq hand) along the approach direction (i.e. a vector
pointing from the end-effector towards the object).

e The speed v € R of the object.

o The motion direction 6 € [0,2x]. We assume a 2D
planar motion parameterized by a polar angle direction
around the z-axis of the object frame.

The model has two hidden layers (512 each) and an output
predicting the success probability. We generated a dataset
of 10000 grasp attempts each on 7 different objects in
simulation using the robot’s end-effector only. For each
grasp attempt, the end-effector starts at the pregrasp pose
and moves towards the object while the object moves in
a randomly sampled planar direction, at a speed sampled
uniformly between 0.5cm /s and Scm/s. We record the result
of the grasp attempts and use this as supervision to train the
models (one for each object). We train 100 epochs for each
object. The average training time is ~ 5mins and the average
validation accuracy is 0.963 with False Positive Rate (FPR)
0.017 and False Negative Rate (FNR) 0.117. Ultimately,
the probability of success output by the network can be
used as a motion-aware quality conditioned on the object
motion. We can use this network to quickly filter grasps
that has the highest motion-aware quality for FILTERGRASP
in Algorithm 1. In general, the motion-aware model prefers
grasps facing the moving direction of the target.

4) Combining Reachability and Motion-aware: We want
to include grasps in the shortlisted pool G that are both
reachable and are stable conditioned on the object motion.
There are many different ways to combine the reachability
and motion-aware quality for each grasp in the database.
We empirically find that simply including the top 5 grasps
with highest reachability and the top 5 grasps with highest
motion-aware quality outperforms other ways of combina-
tion, including the weighted sum of two values or filtering
by reachability and then motion-aware quality, etc.

D. Motion Generation and Grasp Execution

There are three stages of motion generation when picking
up an object: reaching, grasping and lifting [36]. In our
implementation, we transform the planned grasp to match the
predicted future pose of the object and generate arm motion
for all three phases.

To be able to generate and update the reaching trajectories
as the object moves, we introduce the idea of trajectory seed-
ing that uses the trajectory solution of a previous time step
as an initialization for finding a new trajectory at the current
time-step. For sampling-based methods like RRT or PRM,
this entails initializing the sampling tree or roadmap with the
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Fig. 3: Dynamic Grasping Tasks. Experimental scenarios for picking up objects on a conveyor belt. The red line shows the conveyor
belt trajectory. (a), (b), (¢) Linear, circular and sinusoidal motion of target object with no surrounding obstacles. (d) Linear motion with
surrounding static obstacles. Green rectangles are the sub-regions where we sample obstacle locations. (e) Linear motion with slab fixture

that limits feasible grasping directions. (f) Real Robot Demo: Linear motion of target object moving at 4.46 cm/s.

waypoints found from the previous time step. This seeds the
search to be quite close to the previous path and empirically
helps find new solutions that are not drastically different
from the previous solution. An unconstrained sampling based
approach can return drastically different trajectories in subse-
quent trajectories which can be disadvantageous in dynamic
settings. Another benefit of our seeding approach is that a
good initialization from seeding can reduce the time used to
find a valid solution. We implement our seeding approach
on CHOMP, RRT and PRM and find that PRM works best
for our experimental tasks.

Note that the motion plan is executed once generated
interrupting the previous trajectory that was being executed.
To ensure that the arm does not slow down as new trajectories
are computed and updated, we retime the trajectory solution
from the solver so that it blends with the current arm veloc-
ities and it moves at fast as possible while also respecting
joint limits [37]. We use cartesian control to move the arm
during the grasping and lifting stages.

V. EXPERIMENTS

We extensively evaluate the performance of our algo-
rithm picking different target objects in randomized lin-
ear/nonlinear motion with/without static obstacles in simu-
lation. We then demonstrate that our method works reliably
on a real robot. Videos showing some of the experiments
can be found at our project website http://crlab.cs.
columbia.edu/dynamic_grasping.

A. Experimental Setup

We create different scenarios illustrated below using the
Bullet simulator [38] to evaluate the performance of our
methods on two robot arms with parallel jaw grippers:

the Kinova Mico and the URS5-Robotiq robots. These two
robots have different workspace dimensions, manifolds, joint
limits as well as different gripper spans/width. URS arm
has a wider span and moves quicker than Mico arm, so
we intentionally make the tasks for URS5-Robotiq harder.
For each robot, we simulate the task of linear and non-
linear conveyor belt pickup, which plays a significant role in
warehouse packaging and assembly lines. In these scenarios,
there is a target object moving on a belt, possibly among
surrounding static obstacles. Both the target and the obstacle
objects can be fragile and and we cannot knock them over.

a) Linear Motion: The target object moves linearly at
a constant speed (3cm/s for Mico and 5cm/s for URS-
Robotiq) as shown in Figure 3a. The conveyor trajectories
are randomized using 4 parameters as shown in Figure 4. 6§
specifies the counter clockwise angle of the line perpendic-
ular to the linear motion, connecting the middle point of the
motion and the base of the arm. r is the distance between
the linear trajectory and the arm base. [ is the length of the
linear trajectory. d € {41, —1} indicates the direction of the
motion, where +1 means moving counter clockwise and —1
means moving clockwise. We set 0 < 6 < 27 (radians),
0.15m < r < 0.4m for Mico and 0.3m < r < 0.7m for
URS5-Robotiq, and I = 1m.

b) Linear with Obstacles: We add 3 static obstacles
to the linear motion in the grasping scene. Specifically, we
divide the near region (distance between 0.15m and 0.25m)
surrounding the linear motion into 5 sub-regions, as shown
in Figure 3d. For each obstacle, we randomly pick a sub-
region and uniformly sample a location in the sub-region. We
make sure there is no collision between obstacle and robot
or between two obstacles. The arm has to avoid hitting both



obstacles and the target.

¢) Linear with Top Slab: A 2cm-thick slab of width
10cm is placed 40cm directly on top of the conveyor belt.
This limits the grasping directions (e.g. top-down grasps) and
makes motion planning/grasping more challenging.

d) Linear with Z Motion: We relieve the constraint of
the linear motion so that the object can also move in the
Z axis. The starting height and the end height is randomly
sampled between 0.0lm and 0.4m.

e) Linear with Varying Speed: The target is accelerated
from Iecm/s to 3cm/s and from 3cm/s to Scm/s for Mico
and URS5-Robotiq respectively.

f) Circular Motion: A smooth non-linear circular mo-
tion as shown in Figure 3b. The speed of the conveyor
belt is constant (2cm/s for Mico and 3cm/s for URS-
Robotiq). The circular motion trajectory is also randomized
by 4 parameters as shown in Figure 4. 6 controls the angle
of the starting position on the circle. r is the radius of the
circle. [ specifies the length of the motion. d € {+1,—1}
indicates the direction of the motion, where +1 means
moving counter clockwise and —1 means moving clockwise.
We set 0 < 6 < 27 (radians), 0.15m < r < 0.4m for Mico
and 0.3m < r < 0.7m for UR5-Robotiq, and [ = 1m.

g) Sinusoidal Motion: This is a more challenging non-
linear motion where the object moves along a sinusoidal
path as shown in Figure 3c. To do this, a sinusoid is super-
imposed on the randomly generated linear motion as shown
in Figure 4. In addition to the parameters of the linear motion
(@,r,1,d), we specify the amplitude A and frequency f of
the sinusoid. We set A =1/8m and f = 27/(l/3)Hz.

Arm

Fig. 4: A bird’s-eye view of randomized linear, circular and
sinusoidal conveyor belt motion generation process. A random
experiment motion is parameterized by angle 6, distance r, direction
d, and length [. The cross indicates the position of the robot base.
The red line shows the motion of the conveyor belt, with an arrow
indicating the direction. The horizontal dashed line indicates the
z-axis of the world frame. Left: linear motion. Middle: circular
motion. Right: sinusoidal motion.

Each experiment in simulation is run on 7 different target
objects shown in Figure 5 whose sizes can physically fit in
the robots’ hands. The randomized process for generating
conveyor belt motion ensures that the results are not biased
to a specific robot configuration. For example, a particular
starting pose might be close to the robot arm end-effector
and will have a higher success rate. For each object, we
run each 100 times and report the average success rate and
grasping time across 700 trials. In each setting, we compare
the performance of the below methods.

e Ours (R+M). This is our proposed method that uses

all the discussed modules and filters grasp in the grasp
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Fig. 5: Seven objects from the YCB Object Database selected as
the graspable objects in our experiments. All seven are used for
simulation experiments while the last three are used for the real
robot experimentation.

database combining both reachability and motion-aware
quality as discussed in Section I'V-C.4.

¢ Ours (Reachability). Same as Ours (R+M) except the
grasps are filtered with only reachability.

o Ours (Motion-aware). Same as Ours (R+M) except the
grasps are filtered with only motion-aware quality.

« Baseline. Using randomly sampled 10 grasps from the
grasp database as the filterd grasps. We need to use
a subset because checking IK for all grasps from the
database during dynamic grasping is unfeasible with
very low success rate that is not worth comparing.

o No Traj. Seeding. This ablation study picks the model
from above with best performance and removes the
trajectory seeding module to study its importance.

e No Prediction. Similar to No Traj. Seeding, this re-
moves the prediction module to study its importance.

We evaluate a subset of the experiments on a real robot
hardware to validate our approach. For this, we use the URS
robot arm fitted with a Robotiq parallel jaw gripper to pick
up an object moving on a conveyor belt.

B. Experimental Results and Discussion

Shown in Table I, our proposed methods with reachability
and motion awarenesses or a combination of both outperform
the baseline in all cases. The ablation studies demonstrate the
importance of the trajectory seeding and motion prediction
components.

1) Effect of Grasp Planning: The results show that reach-
ability and motion awarenesses help extenssively in dynamic
grasping tasks. This is because our methods leverage these
two ranking functions to quickly filter grasps that are likely
to be reachable or stable conditioned on the current motion
of the object. They help to focus on those grasps which
are near-optimal given the object pose and motion and
reduce unnecessary IK calls. Without reachability or motion
awareness, even though all grasps in the grasp database are
stable in static cases, the selected 10 grasps might not be
as optimal given the current location where the object has
moved or the current motion the object is following.

We also notice that Ours (Reachability) almost always
performs better than Ours (Motion-aware). This shows that
in dynamic grasping setting, reachability awareness can be
a slightly more important factor than motion-aware. Though
being stable for the motion of the object, the selected grasps
by motion-aware might still be unreachable and waste some
IK computing time. We further investigate the relationship
between reachabiity performance and the distance of the
conveyor motion to the robot base, using linear motion



TABLE I: Simulation Experiments for the Kinova Mico (Top) and URS (Bottom) robot arms. For each entry, run on 7 objects and 100

trials each. We report success rate, dynamic grasping time (s) averaged over 700 trials.

. Linear (3cm/s) Linear (2cm/s) Linear (3cm/s)  Linear (1-3cm/s) Circular Sinusoidal
Methods Linear (3cm/s) with Obstacles  with Top Slab  with Z Motion Varying Speed (2cm/s) (lcm/s)
Ours (R + M) 0.799, 10.23s 0.796, 11.43s 0.781, 21.92s 0.814, 10.39s 0.869, 9.988s 0.875, 10.38s | 0.895, 8.661s
Ours (Reachability) 0.802, 10.21s 0.795, 10.13s 0.759, 19.91s 0.806, 9.836s 0.836, 9.609s 0.861, 9.421s | 0.867, 7.857s
Ours (Motion-aware) | 0.722, 15.30s 0.780, 14.37s 0.697, 25.07s 0.710, 14.61s 0.819, 14.45s 0.857, 15.43s | 0.827, 13.19s
Baseline 0.439, 23.85s 0.419, 24.15s 0.431, 38.12s 0.430, 23.19s 0.610, 25.72s 0.716, 24.89s | 0.643, 20.22s
No Traj. seeding 0.769, 10.61s 0.777, 10.83s 0.706, 22.29s 0.800, 10.41s 0.827, 10.23s 0.857, 10.01s | 0.827, 8.588s
No Prediction 0.610, 12.91s 0.614, 13.30s 0.609, 25.84s 0.737, 12.60s 0.761, 11.96s 0.767, 13.11s | 0.807, 9.045s
. Linear (S5cm/s) Linear (3cm/s) Linear (5cm/s)  Linear (3-5cm/s) Circular Sinusoidal
Methods Linear (Scm/s) with Obstacles  with Top Slab ~ with Z Motion  Varying Speed (3cm/s) (lem/s)
Ours (R + M) 0.874, 8.134s 0.854, 9.104s 0.748, 19.86s 0.858, 8.166s 0.917, 7.895s 0.909, 8.311s | 0.946, 9.243s
Ours (Reachability) 0.857, 8.730s 0.841, 9.646s 0.652, 18.52s 0.872, 8.864s 0.907, 8.748s 0.890, 9.512s | 0.925, 8.608s
Ours (Motion-aware) | 0.744, 9.976s 0.752, 9.896s 0.675, 19.86s 0.717, 10.47s 0.854, 8.935s 0.840, 10.68s | 0.930, 9.645s
Baseline 0.676, 12.64s 0.576, 13.63s 0.606, 22.89s 0.659, 12.65s 0.788, 12.84s 0.810, 14.09s | 0.716, 17.19s
No Traj. seeding 0.849, 9.107s 0.810, 10.22s 0.631, 20.01s 0.836, 9.047s 0.906, 8.859s 0.899, 9.610s | 0.904, 11.17s
No Prediction 0.284, 10.31s 0.269, 11.41s 0.457, 20.04s 0.261, 10.89s 0.344, 10.44s 0.594, 9.891s | 0.310, 11.96s
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Fig. 6: Success rate vs. distance. Improvement from reachability
awareness becomes more significant when the moving object is
extremely close to or far from the robot.

while varying r, as demonstrated in Figure 6. We find that
reachability being especially beneficial in difficult-to-reach
near and far portions of the workspace.

Ours (R + M) outperforms Ours (Reachability) in all cases
except linear motion for Mico and linear with Z motion
for URS arm. Combining reachbility and motion awareness
include grasps that are both reachable and robust for the
current motion. This combines the advantages of both meth-
ods and provides a pool of wider variety for PICKGRASP
to choose from. For example, even though a grasp might
not be the most reachable, but it can also be included in
the filtered grasps because of high motion-aware quality.
For the two cases where Ours (Reachability) outperforms
Ours (R+M), we believe it is because the most motion-aware
grasps happen to have very low reachability but are closer to
the current robot configuration. They are picked but cannot
remain reachable and result in unnecessary grasp switches.

2) Effect of Seeding in Arm Trajectory Generation: We
observe that the value of seeding during trajectory generation
becomes significant for tasks when slab fixture is above
the conveyor belt limiting the range of motion of the arm
(column 3 of Table I, Mico and URS show a performance

drop of 7.5% and 11.7% respectively), and when the motion
is sinusoial and hard to model (column 7 of Table I, Mico
and URS show a performance drop of 6.8% and 4.2%
respectively). Without seeding, computing arm trajectory
from scratch at each time step is computationally expensive.
Besides, seeding makes the new trajectory solution similar
to the previous one. Qualitatively, we noticed that seeding
makes the arm motion less wavy given that the arm trajec-
tories generated in subsequent time steps is seeded to be
similar to the immediate previous one.

3) Effect of Object Motion Prediction: Our results also
show that object motion prediction is an important compo-
nent for dynamic grasping and we see the biggest drop in
performance without motion prediction. This is expected as
we can image without prediction in dynamic grasping, even
with perfect grasp planning and optimal motion generation,
the gripper will never catch the target because of the delay
from computation. Its importance becomes more pronounced
as the object’s motion is hard to predict (non-linear/ varying
speed) and also when the gripper width is smaller. We ob-
serve that there is a bigger drop in performance for the URS-
Robotiq robot, compared to the Mico robot. Qualitatively,
we observe that a lot of the failure cases occur during the
approach-and-grasp phase where the robot finger narrowly
knocks off the object. The wider span of the Mico gripper
enables it to be more robust in this sense.

4) Real Robot Demonstration: We demonstrate our algo-
rithm on the real robot by picking up objects 5, 6, 7 shown
in Figure 5 as each object moves on a conveyor belt with
no surrounding obstacles. We repeat this experiment 5 times
and the success rates for objects 5, 6, 7 are 4/5, 5/5 and 3/5
respectively. Even though the object is moving relatively fast
(4.46 cm/s), our method is able to pick the objects 5 and 6
reliably well. The robot is able to align its gripper along the
narrow axis of the objects and pick them up while moving.
The failure cases for object 7 is because the radius of the



tomato can is slightly smaller than the gripper span with a
tight margin for error in the approach and grasp stage.

VI. CONCLUSION

This work presents a novel pipeline for dynamic grasping
moving objects with reachability and motion awareness.

We

demonstrate its ability with a RNN motion predictor

and adapive motion planning with seeding. We show in
experiments with various settings that these elements are
important to improve the performance. This work is a model-
based visual-pose feedback system. A future work will be the
image-based analogue where arm-hand trajectory commands
are directly generated based on image/depth image features
using learning-based techniques.
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