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ABSTRACT

We consider a continuous-time sparse multichannel blind deconvo-
lution problem. The signal at each channel is expressed as the con-
volution of a common source signal and its impulse response given
as a sparse filter. The objective is to identify these sparse filters from
sub-Nyquist samples of channel outputs by leveraging the correla-
tion across channels. We present necessary and sufficient conditions
for the unique identification. In particular, the sparse filters should
not share a common sparse convolution factor and it is necessary
to have 2L or more samples per channel from at least two distinct
channels. We also show that L-sparse filters are uniquely identifi-
able from two channels provided that there are 2L2 Fourier mea-
surements per channel, which can be computed from sub-Nyquist
samples. Additionally, in the asymptotic of the number of channels,
2L Fourier measurements per channel are sufficient. The results are
applicable to the design of multi-receiver, low-rate, sensors in appli-
cations such as radar, sonar, ultrasound, and seismic exploration.

Index Terms— Sub-Nyquist sampling, correlated signals,
sparse signals, continuous-time blind deconvolution, multichannel
signals

1. INTRODUCTION

In many applications, a common signal is measured from multiple
receivers or channels. The diversity of the measurements across sen-
sors aids in improved signal recovery. For example, a multiple-input
multiple-output (MIMO) radar system improves spatial and Doppler
resolution [1]. In such applications, the implementation cost criti-
cally depends on the number of receivers and the sampling rates at
each receiver. Therefore it is highly desirable to lower these factors.

The sampling rate can be reduced by utilizing correlation among
the measurements, due to the common source signal. The multichan-
nel sampling framework by Papoulis [2] is one of early results in
this context. He showed that if a bandlimited signal is measured
via N(≥ 2) known filters, then the signal can be exactly recon-
structed from the uniform samples of the filtered signals provided
that the filters satisfy certain invertibility conditions. The sampling
rate of each filtered signal is greater than or equal to 1

N
of the cor-

responding Nyquist rate. The overall sampling rate is equal to the
Nyquist rate. A generalization to this model is to assume that the
filters are unknown and sparse. This model is ubiquitous in many
applications such as radar imaging [3, 4], seismic signal processing
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[5], room impulse response modeling [6], sonar imaging [7], and
ultrasound imaging [8, 9]. In these applications, a source signal is
reflected from sparsely located targets and the reflected signal is ob-
served from multiple receivers. Even though in many applications
the source signal is assumed to be known, typically, the signal is
distorted during propagation and hence unknown at the receiver end.
The problem of identifying the unknown source and the sparse filters
is known as the sparse multichannel blind deconvolution (S-MBD)
problem.

Existing S-MBD results consider a finite-dimensional problem.
In [10–12], the identifiability conditions were established by consid-
ering all the discrete measurements available in each channel and the
desired number of channels is proportional to the number of mea-
surements. Recently, we proposed a compressive S-MBD frame-
work where we show that L-sparse filters could be identified by us-
ing only 2L2 measurements per channel, and two-channels are suffi-
cient for filter identifiability [13]. To convert a continuous-time (CT)
S-MBD problem to a discrete problem and apply the existing results,
the sampling rate at each receiver should be inversely proportional
to the resolution of the sparse filters. The resolution of the filters
denotes the minimum distance between any two non-zero values.
Hence, high-resolution filter estimation requires a higher sampling
rate.

To date, only a few theoretical results for continuous-time S-
MBD are available in the literature. Xia and Li [14] proposed an
algorithm for CT-S-MBD in the context of MIMO channel estima-
tion and assumed that the sparse filters have common support. To
estimate the L-sparse filters, their algorithm requires N ≥ L chan-
nels and at least L + 3 Fourier measurements from each channel.
A common support of the filters is used to build a joint-annihilation
framework to estimate the filters. However, it is often the case that
the common support assumption is not satisfied in practical appli-
cations. For example, in a multi-receiver radar system, configura-
tions of receivers with respect to the target may result in sparse fil-
ters with non-identical supports. Da Costa and Chi [15] proposed
an atomic-norm-based optimization to solve CT-S-MBD problem.
They showed that the existence of a dual certificate in a specific form
guarantees the exact recovery of signals. However, conditions on the
number of measurements and the sparse filter to guarantees the exis-
tence of such a dual certificate were not derived.

In this paper, we consider the identifiability of the CT-S-MBD
problem from sub-Nyquist samples. Specifically, we show that by
using the correlation of the signals across channels, L-sparse filters
are uniquely identified from 2L2 Fourier measurements of the out-
put signals. These Fourier measurements can be computed from the
same number of time samples of the signals where the output signals
are time-limited. Note that the sampling rate is independent of the
(approximate) bandwidth of the signal and therefore sub-Nyquist.
We also establish necessary conditions for the identifiability of CT-



S-MBD, that is, 2L Fourier measurements per channel are necessary
for the unique identification of the filter. Although there is a gap be-
tween the sufficient and the necessary conditions, in the asymptotic
of the number of filters, the sufficient number of samples per channel
converges to 2L.

Our main results can be compared to relevant previous work as
follows: CT-S-MBD generalizes the recovery of signals at finite rate
of innovations [16]. We consider a more challenging scenario where
the measurements are taken from spike-model signals after convolu-
tion with a common unknown source signal. However, unlike [17],
we did not impose a stringent condition on the supports of the mul-
tiple sparse filters. Recent results (e.g. [18]) analyzed the sensitivity
of recovering spike-model signals, which shows the dependence on
the minimum separation. Similar to Vetterli et al. [16], our results
show that the number of samples sufficient for unique identification
grows in the number of spikes L but is independent of the minimum
separation requirement. However, we expect that sensitivity analy-
sis of CT-S-MBD in the presence of noise will involve the minimum
separation too.

The remainder of the paper is organized as follows. In Section 2,
we introduce the mathematical formulation of CT-S-MBD and de-
fine identifiability up to fundamental ambiguity. In Section 3, we
present our main results that include necessary conditions for iden-
tifying a CT-S-MBD without sampling, and sufficient and necessary
conditions for identifiability from sub-Nyquist sampling. We con-
clude the paper with final remarks in Section 4.

Notations: Signals in the time domain are labelled by lowercase let-
ters and their Fourier transforms are labelled by the corresponding
uppercase letters. For any positive integer N , the set {1, 2, · · · , N}
is denoted as [N ].

2. PROBLEM FORMULATION

Consider a set of N continuous-time correlated signals {yn(t)}Nn=1

given as

yn(t) = (f ∗ hn)(t), (1)

where f(t) and hn(t) denote a common source signal and the fil-
ter corresponding to the n-th channel, respectively. MBD refers to
the identification of the filters and/or source from measurements of
{yn(t)}Nn=1.

Any MBD problem suffers from the fundamental ambiguities of
scaling and shift. Let

(
f(t), {hn(t)}Nn=1

)
be the source-filters pair

corresponding to the ground-truth signals. Then the ambiguity class
is defined as the set of source-filters pairs given by

C
(
f(t), {hn(t)}Nn=1

)
={(

α−1f(t− τ), {αhn(t+ τ)}Nn=1

)
|α 6= 0, τ ∈ R

}
. (2)

Any source and filter pair in C(f(t), {hn(t)}Nn=1) generates the
same set of output signals, {yn(t)}Nn=1, as the ground-truth.
Hence, unique identifiability of the MBD problem implies that
every source-filters pair

(
f̂(t), {ĥn(t)}Nn=1

)
satisfying {yn(t) =

(f̂ ∗ ĥn)(t)}Nn=1 belongs to C
(
f(t), {hn(t)}Nn=1

)
.

We aim to identify the sparse filters from sub-Nyquist samples
of {yn(t)}Nn=1. Let SL denote the set of all CT L-sparse signals

DSPg(t)yn(t)

Ts

{Yn(k!0)}k2Kn

Fig. 1. Sub-Nyquist sampling framework for computing Fourier
samples of an CT signal. The minimum sampling rate is |Kn|ω0

rad./sec.

defined by

SL :=

{
L∑
`=1

a`δ(t− τ`) : a` ∈ R, τ` ∈ [0, τmax)

}
,

where δ(t) denotes Dirac’s impulse and τmax is the maximum delay
known a priori. We assume that hn(t) ∈ SL for all n ∈ [N ]. In other
words, we would like to identify a set of parameters {an,`}L`=1 ∈ CL
and {τn,`}L`=1 ∈ RL such that

hn(t) =

L∑
`=1

an,`δ(t− τn,`). (3)

We assume that the source signal f(t) has compact support in time.
This results in non-bandlimited measurements.

As in finite-rate-of-innovation (FRI) reconstruction [19], we
consider a frequency-domain approach that has the following ben-
efits: (i) the Fourier-domain samples of the output signal, that are
required to estimate the unknown parameters, can be effectively
computed from sub-Nyquist samples of the signals by applying
appropriate sampling kernels [8, 20] and (ii) since the filters are
sparse in the time domain they are well spread in the frequency
domain which helps in determining the filters from fewer Fourier
measurements.

To avail of the advantages, we consider a Fourier-domain fil-
ter identification problem. Consider the following Fourier measure-
ments of the output signals {yn(t)}Nn=1:

{Yn(kω0) = F (kω0)Hn(kω0) : k ∈ Kn, n ∈ [N ]} , (4)

where Kn is a set of integers and ω0 denotes the sampling interval
in the Fourier domain. The Fourier measurements are determined
from sub-Nyquist samples. Specifically, we apply kernel-based sub-
Nyquist sampling mechanism (cf. Fig. 1) proposed in [8, 20]. In this
framework, the design of the kernel, the sampling rate, and the digi-
tal signal processing (DSP) unit are a function of the Fourier-domain
sampling locations {kω0 : k ∈ Kn}. The minimum sampling rate
is independent of the bandwidth of yn(t) and typically much lower
than the Nyquist rate. The minimum sampling rate is |Kn|ω0. In
addition, Tur et al. [8] showed that |Kn| Fourier coefficient samples
are computed from |Kn| time-samples of the filtered signal provided
that the filter satisfies certain alias cancellation conditions. Since a
lower sampling rate is desirable, hence it is crucial to minimize |Kn|
for n ∈ [N ].

Given that the Fourier measurements in (4) are computed from
sub-Nyquist samples, the objective is to derive a set of conditions
for the unique identification of the filters up to a scaling and shift
ambiguity. More precisely, filter identifiability is defined as follows.

Definition 1 (Filter Identifiability). Suppose there exists a set of L-
sparse filters {ĥn(t)}n∈[N ] and a set of Fourier samples {F̂ (kω0) :



k ∈
⋃
n∈[N ]Kn} such that

Yn(kω0) = F̂ (kω0)Ĥn(kω0) : k ∈ Kn, n ∈ [N ]. (5)

Then there exists f̃(t) such that

1.
(
f̃(t), {ĥn(t)}Nn=1

)
∈ C

(
f(t), {hn(t)}Nn=1

)
.

2. F̃ (kω0) = F̂ (kω0) : k ∈
⋃
n∈[N ]Kn.

This definition implies that the Fourier measurements of any
feasible solution lie within the fundamental ambiguity class of the
ground truth.

Since the measurements, as well as the overall sampling rate, are
functions of N , ω0 and {Kn}Nn=1 in addition to the source and the
filters, we seek answers to the following questions in the context of
unique identifiability of the filters:

Q1 What are the conditions on the filters in addition to sparsity?

Q2 What are the conditions on the source?

Q3 How to choose the sampling interval ω0?

Q4 How to design the sampling sets {Kn}Nn=1?

Q5 What is the minimum number of channels N?

3. IDENTIFIABILITY RESULTS

3.1. Unique Identifiability Conditions for CT-S-MBD

We first present necessary conditions, which need to be satisfied by
the filters regardless of the sampling mechanism. To this end, we
introduce the coprime structure in a set of filters as follows.

Definition 2 (SL-Coprime Filters). Consider a set of N filters
hn(t) ∈ SL, n ∈ [N ]. The filters are coprime if they can not be
decomposed as

hn(t) = (ĥn ∗ h0)(t), n ∈ [N ], (6)

such that ĥn(t) ∈ SL and ĥ0(t) 6∈ S1.

In other words, the coprime filters can not have a common con-
volutional factor h0(t) which can not be represented as scaling and
shift, and L-sparse distinct factors ĥn(t). With this definition, we
state the necessary condition to identify the filters in a CT-MBD
problem in the following theorem.

Theorem 1 (CT-MBD Necessary Condition). Consider a set of N
signals {yn(t) = (f ∗ hn)(t)}Nn=1, where {hn(t) ∈ SL, n ∈
[N ]}. If the filters are uniquely identifiable, then they need to be
SL-coprime.

Proof. We prove the theorem by contradiction. Assume that the fil-
ters are not SL-coprime and have a decomposition as in (6). Then
the output signals are decomposed as

yn(t) = (f ∗ hn)(t) = (f ∗ h0 ∗ ĥn)(t) = (f̂ ∗ ĥn)(t), (7)

where f̂(t) = (f ∗h0)(t). Since h0(t) 6∈ S1, it follows that f̂(t) and
ĥn(t) cannot be written as scaled and shifted versions of f(t) and

hn(t). In other words,
(
f̂(t), {ĥn(t)}Nn=1

)
6∈ C

(
f(t), {hn(t)}Nn=1

)
.

Since the source signal is unconstrained, the alternative source, f̂(t),
is also feasible. In addition, since ĥn(t) ∈ SL, the alternative solu-

tion
(
f̂(t), {ĥn(t)}Nn=1

)
is a feasible source-filter pair that satisfies

the measurements and not within the ambiguity class. Hence, the
problem is not uniquely identifiable.

In essence, without any restriction on the source, especially on
the support of the source, theL-sparse filters should be coprime to be
uniquely identifiable. Hence, we make the following assumption that
also answers the first question that we put forward in the previous
section.

A1 The filters, {hn(t)}Nn=1, are SL-coprime.

3.2. Identifiability of CT-S-MBD from Fourier Measurements

From (4), we observe that if F (kω0) = 0 for any k ∈
⋃

n∈[N ]

Kn then

the corresponding measurement Yn(kω0) is zero across all the chan-
nels and is not useful. Hence, to avoid zero measurements across the
channels, we impose the following Fourier-domain constraint on the
source:

A2 Source constraint: F (kω0) 6= 0, ∀k ∈
⋃
n∈[N ]Kn.

In this work, this is the only restriction imposed on the source and
this answers our second question. The assumption A2 is readily sat-
isfied by both time-limited and band-limited sources. For a time-
limited source f(t), its spectrum F (ω) has infinite support. Hence,

one can always select the frequencies
{
kω0, k ∈

⋃
n∈[N ]Kn

}
such

that A2 is satisfied. Similarly, for a band-limited source, A2 is satis-
fied if the frequencies

{
kω0, k ∈

⋃
n∈[N ]Kn

}
are restricted to sup-

port of F (ω).
To design the sets {Kn}Nn=1 and frequency interval ω0, consider

the Fourier samples of the filters

Hn(kω0) =

L∑
`=1

an,` e
jkω0τn,` , k ∈ Kn, n ∈ [N ]. (8)

Let us consider a problem of estimating {an,`, τn,`}L`=1 from the
measurements in (8). This is indeed the problem considered in
the FRI framework where the source is assumed to be known. To
uniquely identify the time-delays, ω0 is chosen such that the ele-
ments in the set {ω0τn,`}L`=1 are distinct. One possible choice of ω0

is 2π
τmax

. We stick to this choice in the rest of the paper and make the
following assumption:

A3 Choice of frequency-interval: ω0 = 2π
τmax

.

Furthermore, the parameters {an,`, τn,`}L`=1 can be estimated from
{Hn(kω0)}k∈Kn by using Prony’s method [21] or annihilating filter
if |Kn| ≥ 2L (cf. [19, Ch. 15]). It can be shown that |Kn| ≥ 2L is
necessary and sufficient to uniquely determine {an,`, τn,`}L`=1 from
the measurements in (8) irrespective of the recovery algorithm. The
results are stated in the following theorem.

Theorem 2 (Identifying Sum of Exponentials). Consider the sum of
exponential sequence in (8) for any n ∈ [N ]. Let the assumption
A3 holds. The parameters {an,`, τn,`}L`=1 are uniquely determined
from the measurements iff |Kn| ≥ 2L.

The necessary and sufficient conditions that |Kn| ≥ 2L is for
a known source case. With an unknown source, the necessary con-
ditions still remain the same as one can not do better in terms of
lower bound on cardinality |Kn|. With this argument, we state the
necessary condition for identifying the filters from the Fourier mea-
surements in the following theorem.



Theorem 3 (Fourier-Domain Necessary Conditions). For N ≥ 2,
consider the sparse MBD signals {yn(t) = (f ∗ hn)(t)} such that
hn(t) ∈ SL. Consider the Fourier measurements as in (4). Suppose
that A1, A2, and A3 hold. Then the filters are not identifiable if
|Kn| < 2L for all n ∈ [N ].

Theorem 3 provides a partial answer to Q4, that is, we know
what is the minimum cardinally of the frequency sets but not yet
sure about how to design such sets. To obtain a complete answer to
this question as well as Q5, we present the sufficient conditions for
filter identifiability from the Fourier measurements below.

Theorem 4 (Fourier-Domain Sufficient Conditions). For N ≥ 2
consider the Fourier measurements as in (4) where the filters are L-
sparse. Suppose that (A1)–(A3) hold. Then the filters are identifiable
provided that there exist n1 6= n2 ∈ [N ] for which the following
conditions hold:

1. Kn1 = Kn2 and |Kn1 | ≥ 2L2.

2. Kn ⊆ Kn1 and |Kn| ≥ 2L for all n ∈ [N ]\{n1, n2}.

Proof. Let f̂(t) and {ĥn(t) ∈ SL}Nn=1 satisfy yn(t) = (f̂ ∗ ĥn)(t)
for all n ∈ [N ]. Then we have

Yn(kω0) = F̂ (kω0)Ĥn(kω0), n = n1, n2, k ∈ Kn1 . (9)

Moreover, by the measurement model in (4), we also have

Yn1(kω0)Hn2(kω0)− Yn2(kω0)Hn1(kω0) = 0, k ∈ Kn1 .
(10)

By plugging in (9) into (10), we obtain

F (kω0)
(
Hn1(kω0)Ĥn2(kω0)− Ĥn1(kω0)Hn2(kω0)

)
= 0. (11)

Since F (kω0) 6= 0 for all k ∈ Kn1 , it follows that (11) implies

Hn1(kω0)Ĥn2(kω0) = Ĥn1(kω0)Hn2(kω0), k ∈ Kn1 . (12)

Since each of the sequences Hn1(kω0), Ĥn2(kω0), Ĥn1(kω0), and
Hn2(kω0) consists of sum of L complex exponentials as in (8), the
products Hn1(kω0)Ĥn2(kω0) and Ĥn1(kω0)Hn2(kω0) consist of
maximum of L2 exponentials. Following Theorem 2, if |Kn1 | ≥
2L2, then both Hn1(ω)Ĥn2(ω) and Ĥn1(ω)Hn2(ω) are uniquely
determined. Therefore , we have

Hn1(ω)Ĥn2(ω) = Ĥn1(ω)Hn2(ω). (13)

This implies that there exists a function H0(ω) such that

Ĥn(ω) = H0(ω)Hn(ω), n = n1, n2. (14)

However, since Ĥn1(ω) and Ĥn2(ω) are Fourier transforms of
SL-coprime filters, H0(ω) is Fourier transform of h0(t) that is in
S1. Hence, the filters hn1(t) and hn2(t) are identified up to the
fundamental ambiguities, i.e. there exists f̃(t) satisfying(

f̃(t), {ĥn1(t), ĥn2(t)}
)
∈ C (f(t), {hn1(t), hn2(t)})

and
F̃ (kω0) = F̂ (kω0), k ∈ Kn1 . (15)

The identity in (15) implies that we have already computed the
Fourier measurements of f̃(t) at kω0 for k ∈ Kn1 . Let n ∈

[N ] \ {n1, n2}. Since Kn ⊂ Kn1 , it follows from (9) and (15) that

Yn(kω0)

F̃ (kω0)
= Ĥn(kω0), n = n1, n2, k ∈ Kn, (16)

where the left-hand side is known. Therefore, by the assumption
|Kn| ≥ 2L, Theorem 2 implies that ĥn ∈ SL is uniquely deter-
mined. In other words, we have(

f̃(t), {ĥn1(t), ĥn(t)}
)
∈ C (f(t), {hn1(t), hn(t)}) .

By repeating this for all n ∈ [N ]\{n1, n2}, we obtain that all sparse
filters are identified up to the fundamental ambiguity.

Theorem 4 implies that two channels are sufficient to uniquely
identify the filters and from those two channels 2L2 Fourier mea-
surements are sufficient. If there are more than 2 channels, then 2L
Fourier measurements from the rest of the channel are necessary and
sufficient. Hence, for N > 2, all the channels except any two oper-
ate at minimum number of measurements.

Since the sampling rate at each channel is proportional to the
number of desired Fourier measurements, the overall sampling rate
is
(
4L2 + 2(N − 2)L

)
ω0. The sampling rate neither depends on

the bandwidth of the signal nor on the resolution of the filters. Fur-
thermore, we require an overall 4L2 + 2(N − 2)L time-domain
measurements to identify the filters.

The sufficient number of Fourier measurements and the number
of channels for the filter identifiability scale similarly to the anal-
ogous results for the discrete-time case derived in [13]. A natural
question arises here is whether the results in [13] can be applied to
the problem considered in this paper. To apply the finite-dimensional
results in [13] to the CT-S-MBD problem in this paper, two addi-
tional conditions need to be satisfied. First, the time-delays are re-
quired to be on a grid. Second, the sampling should be on the grid,
which results in a very high sampling rate. In contrast, the results
in this paper do not require the time-delays to be on a grid and the
signal is sampled at a sub-Nyquist rate.

4. CONCLUSION

In this paper, we showed that a CT-S-MBD problem can be identi-
fied from sub-Nyquist samples. The sampling rate in each channel is
independent of the bandwidth of the output signals and only a func-
tion of sparsity of the filters. Additionally, we show that only two
channels are sufficient. As the cost of hardware of a multi-receiver
system is determined by the overall sampling rate, the results are
pivotal in designing low-cost receivers.
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