
IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED DEC, 2020 1

Multi-Agent Intermittent Interaction Planning via
Sequential Greedy Selections Over Position Samples

Larkin Heintzman, and Ryan K. Williams

Abstract—In this work, we propose a method to solve the
interaction planning problem for a set of mobile agents with
obstacles and agent collisions via a core path planner and
constrained random position sampling approach. The interaction
constraint is posed in the form of an arbitrary number of dis-
cretized times in which we enforce a desired topological condition.
The general objective function, to be maximized subject to the
interaction constraint, is coverage of an environmental process
here modeled as a Gaussian mixture model. The main tool
we use to select positions and the times of interaction is the
greedy algorithm, along with a submodular objective function and
matroid constraint. Through this we guarantee strong theoretical
lower bounds on sub-optimality. Simulations, including several
Monte Carlo trials, are presented to corroborate our proposed
methods.

Index Terms—Surveillance Robotic Systems, Path Planning for
Multiple Mobile Robots or Agents, Multi-Robot Systems

I. INTRODUCTION

MULTI-agent systems (MASs) are of great interest to
researchers because they allow difficult problems to be

broken down into more manageable parts. One such problem
that we consider in this paper is environmental monitoring.
In such a problem, where a single robot may fail, a team
of multiple robots may excel, often by exploiting interaction.
The question then becomes, how does one guide a MAS to
accomplish its objectives, such as monitoring an environment,
subject to some constraints on agent-to-agent interaction?

This question can take many forms for various applications
above ground, underwater, or in static sensor networks. In [1],
[2], this question takes the form of maintaining observability of
the agents’ states during underwater mapping [3]. While in [4]
the tasks of localization and objective function improvement
are split up over the agent set, reinforcing the idea that MASs
are adaptable to many different scenarios. MASs can also be
found in the field of wireless power transfer (WPT) [5]–[7],
where the goal is to generate a network of wireless charging
stations subject to the constraint of graph connectivity.

While multi-agent interaction has been investigated quite
deeply, planning with interaction constraints poses a chal-
lenge due to general intractability and limited computational
resources in fielded systems [8]. To cope with intractable

Manuscript received: Aug, 20, 2020; Revised Nov, 17, 2020; Accepted Dec,
17, 2020.

This paper was recommended for publication by Editor M. Ani Hsieh upon
evaluation of the Associate Editor and Reviewers’ comments. *This work was
supported by the National Science Foundation through grant # CNS-1830414

L. Heintzman and R. K. Williams are with the Department of Electrical
and computer Engineering, Virginia Polytechnic Institute and State University,
Blacksburg, VA USA {hlarkin3, rywilli1}@vt.edu

Digital Object Identifier (DOI): see top of this page.

planning problems, researchers have developed methods that
maintain tractability, but also give performance guarantees
compared to the optimal solution [5]–[7], [9], [10]. An ex-
ample of a scalable method in a combinatorial optimization
setting is the greedy algorithm which, when paired with a
submodular set function and a matroid constraint, generates
strong approximation ratios [10]–[12]. While other, more
computationally complex algorithms have been developed for
multi-agent planning with interaction constraints [13], in this
work we use the greedy approach, tailored to our setting of
environmental monitoring with interaction constraints.

Specifically, we propose a method to solve the interaction
planning problem for a set of mobile agents, with predeter-
mined starting and goal locations, via a constrained random
position sampling approach while avoiding obstacles in the
environment. Agents have fixed sensing and interaction radii,
giving rise to interaction links between agents, known as
a proximity graph. We discretize time into a set of time
slices, and pose the interaction constraint in the form of an
arbitrary number of time slices to achieve a desired topological
condition. We choose completeness of the interaction graph
as it allows for one-hop communication between agents. The
objective function, to be maximized under given constraints, is
coverage of an environmental process modeled as a Gaussian
mixture model (GMM). Here we are interested in coverage
via direct paths to the goal locations, rather than potentially
meandering paths to maximize coverage [14]. Maximizing
coverage while maintaining intermittent communication is
challenging because we are forced to reduce coverage to meet
the constraint.

The motivation for our problem comes from practical con-
siderations of battery life, computation resources, and data
storage on-board mobile robots in a search and rescue scenario.
During a monitoring application, agents rapidly deplete their
reserves of battery life and data storage space. Rather than
ceasing the operation to offload data, in such cases the agents
could re-distribute the information among themselves if the
opportunity were available. Also predefined entry and exit
points allow human operators to better utilize the autonomous
system as a whole. In this context, we address the following
question: how do we efficiently determine when and where it
is appropriate for a multi-agent team to interact, in response
to team objectives and the environment?

Here we discuss works that have solved problems related
to the current one, while noting our novelties. The problem
of intermittent connectivity has been approached via linear
temporal logic (LTL) [15] very recently, and the method has

2 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED DEC, 2020

yielded powerful results, however with significant complexity.
The main result of [15] is that of robot-to-robot information
exchange occurring infinitely often while accomplishing inde-
pendent tasks. However, in [15] during initialization each agent
must solve a potentially large number of control synthesis
problems. The number of problems for a single agent grows
with the set of meeting locations available to each team the
agent belongs to, which could be quite large. The control
synthesis problems can be derived using graph search tech-
niques, so a single synthesis can be computationally intensive.
Instead, our method exploits a greedy algorithm, along with
sampling-based path planning methods, which allows us to
make a trade off of less representational power for vastly
improved computational scaling [10], [16]. In addition our
method explicitly deals with, and takes advantage of, coverage-
based task execution rather than the general tasks treated in
[15].

In [13], and in the expanded work [17], the authors consider
multi-robot informative path planning (MIPP) with periodic
connectivity, and derive an algorithm with strong performance
guarantees. However, the method proposed in [13] is com-
putationally complex, being a form of coordinate ascent in
the robot path space, requiring multiple iterations of path
planning to converge and a discretized environment graph.
The running time of the algorithm in [13] is exponential in
the depth of the planned paths, meaning that longer periods
between re-planning results in large computation times. Both
our method and [13] consider obstacles, however we explicitly
deal with inter-agent collisions and goal locations. In addition,
our method does not require multiple iterations to converge
nor does it scale exponentially with path length/depth. The
algorithm we propose relies on multiple greedy selections,
unlike any previous work in this area [13], [15], [17], [18].
Later we will present simulations comparing the proposed
method to the method of [13] and it’s extension [17].

Finally, a related problem known as the multirobot con-
nectivity maintenance problem is first addressed in [19], and
later in [18], [20]. In these works, the goal is to optimally
redeploy a team of robots from starting locations, in a graph-
represented environment, such that they form a connected
communication subgraph while minimizing distance traveled.
In [20], connected goal locations for robots are selected via
ILP1 based on the environment and a distance-based objective
function. In our problem, however, intermediate locations are
instead determined by the change in environmental process
coverage that results from the interaction, and we also focus
on approximate solutions with guarantees rather than optimal
ones. It is also worth noting that we plan multi-agent paths
while using a more stringent form of connectivity, one-hop
communication or completeness, as compared to other works
in this area [13], [15], [18], [20]. Using a complete graph
does constrain the planning space compared to the general
problem, which has a PSPACE-complete complexity result for
multi-agent connected path planning (MCPP) [13], [17], [21].
However, in our complete graph approach we retain complex

1Integer linear programming (ILP), where instances were solved with a
commercial solver GUROBI.

temporal constraints as well as suboptimality guarantees.
The remainder of this work is organized as follows, in

Section II we discuss background information and formally
introduce the problem. In Section III we discuss the position
sampling process, and the greedy algorithm. In Section IV
we discuss selecting the times of interaction, and derive a
lower bound on performance. In Section V we present in depth
simulations to demonstrate the effectiveness and adaptability
of the results derived, as well as comparisons to a similar
solution. Lastly, in Section VI we conclude this work.

II. PRELIMINARIES

We will model the interaction planning problem as a time
of interaction (TOI) selection problem. As such we define
a set of discretized times from which to make selections,
denoting the set of time indexes as Tt = {1, 2, . . . , Tend},
where k ∈ Tt is a single time index, and Tend ∈ N is the final
time. In defining uniformly discretized times, it is expected
that the coarseness of discretization will effect solution quality,
however this is expected and a natural trade off. From Tt we
select K ≤ |Tt| time slices, during which agents must form a
complete interaction graph. We take Assumption 1 regarding
selection from Tt. Assumption 1 will be of critical importance
in deriving an efficient algorithm. However, the assumption
also implies a certain understanding an agent’s feasible paths,
to be discussed in more detail in Section III.

Assumption 1. Time slices in Tt are considered independently
from one another, meaning that interacting in an arbitrary time
slice does not impact future choices. Formally, any T ⊆ Tt
with |T | ≥ K is considered a feasible solution to the problem,
regardless of the times in T .

In this work, the interaction constraint will be completeness
of the agent interaction graph, meaning that all agents can
communicate with each other. We choose completeness as
it implies one-hop communication between all agents, and
thus maximizes information exchange [22]. The TOI selection
method proposed in this work, to be discussed in Section IV,
is a general model for planning multi-agent interactions. As
such, other constraints could be used. For example, in the
case of connectivity, several algorithms exist that have a
lower bounded disc-based coverage performance [5]–[7] any
of which could be used in this work. Note however, the value
of the lower bound would affect the approximation ratio.

Next, let us define the sampled 2D positions from which
a MAS trajectory is built. For every time k ∈ Tt, and every
i ∈ A, with A = {1, 2, . . . , N} being the set of agent indexes,
let us define Vki =

{
x
(k)
ij ∈ R2 | ∀j ∈ Tp

}
⊂ R2×|Tp| as the

set of all sampled positions available to agent i at time k,
where we represent the set of position indexes with Tp, with
|Tp| samples available to each agent. A single position sample
x
(k)
ij indicates a 2D position, available to agent i ∈ A during

trajectory planning, with position index j ∈ Tp, at time slice
k ∈ Tt. Let us also define Vk = {x ∈ Vki | ∀i ∈ A} as the
positions available to all agents at time k. The specifics on
how these samples are generated will be discussed in Section
III. The team of agents is also given starting locations, as V1,

HEINTZMAN et al.: INTERMITTENTGREEDY 3

and goal locations, as VTend , both of which are assumed to be
given a priori. Both V1 and VTend can be thought of as sets,
at the starting and ending times, with exactly N pre-selected
positions each.

In the coming sections, we will derive a method for selecting
|Tt| sub-goal positions for each agent, one for each time slice,
while respecting the completeness interaction constraint at K
time slices and avoiding obstacle and inter-agent collisions.
This sequence of positions can be thought of as a list of in-
termediate goal positions along some path between the team’s
starting locations and the team’s goal locations. In Section V
we show one possible method, from [23], for linking these
samples to generate a path that takes into account collision and
obstacle avoidance. Of course the method of [23] is not the
only way to generate fully realized paths, but it is convenient
for our purposes.

A. Agent Modeling

Here we discuss the agent model and sensing capabil-
ities. The stacked system vector of all agents is xk =
{p>1k, p>2k, . . . , p>Nk}> ∈ R2N , where pik ∈ R2 is the position
of agent i at time slice k. We assume a generic motion
model for all agents ẋk = f(xk) through which the agents’
motion can be controlled. In addition, each agent has an
interaction radius, ρ, and a sensing radius, δ, which are the
maximum distance at which agents can communicate and
gain information about the environment, respectively. Since
we wish to generate dynamically feasible paths for all agents,
we take the following assumption regarding agent motion.
Assumption 2. Agents using the motion model, as described by
ẋk = f(xk), can execute dynamically feasible paths with an
upper bounded tracking error, with the upper bound of tracking
error being known a priori.

Assumption 2, inspired by [23], is not highly limiting
because, given a known upper bound on tracking error, we
can perform the proposed method within a configuration space
(increasing the size of obstacles and agent collision radii
accordingly) [9]. Further, the upper bound of tracking error
can be chosen quite conservatively if required.

B. Interaction and Environmental Modeling

Agent interactions are modeled by a graph, as is common
in MAS literature [22], [24]. We define graph Gk = (Vk, Ek),
with position samples as vertices, for every k ∈ Tt. Further,
e = (u, v) ∈ Ek ⇐⇒ ‖u − v‖ ≤ ρ, where u, v ∈ Vk
are position samples at time k. Each graph Gk is undirected,
symmetric, static, and without self-loops. During interaction
we require that S ⊆ Vk induces a complete induced subgraph
Gk(S), where all edges exist.

The environment, E ⊂ R2, is a subset of the plane that
contains all objects of interest, obstacles, and an environmental
process, modeled as a GMM as in [25], that we would like
to sense. The environment can represent a physical space
of interest, or a configuration space depending upon the
application. To define the GMM, a set of means are chosen,
µ =

[
µ>1 , . . . , µ

>
m

]>
, where each µj = [µjx , µjy]> ∈ R2,

where m is the number of means. A set of covariances
are also selected σ2 = [(σ2

1)>, . . . , (σ2
m)>]>, where each

σ2
j = [σ2

jx
, σ2
jy

]> ∈ R2. We assume the mixture weights sum
to unity to correctly define the PDF.

We assume that the environment, obstacles, and GMM are
known a priori. The methods we derive also apply to scenarios
where the process model is being learned. For example,
the GMM can be redefined to represent points of highest
uncertainty in some unknown process [22]. In the case where
we have zero a priori information, a uniform distribution can
be used instead.

C. Multi-Agent Objective

To gain information about an environmental process, we
define an objective function based on sensing radius, agent
position, and the process itself. Let us define a function z :
2Vk → R2, that maps samples to a subset of the plane:

z(S ⊆ Vk) =
⋃
u∈S

Nδ
E(u) (1)

where Nδ
E(u) indicates the δ-radius closed neighborhood in E

centered at the sample u ∈ S. Now we can define the objective
function g : 2Vk → R as:

g(S ⊆ Vk) = fE(z(S)) (2)

where fE : R2 → R is the coverage of the GMM in some
subset of the plane. Here z(S) gives a subset of the plane,
and fE(z(S)) gives the GMM coverage associated with that
subset. The coverage function is defined as:

fE(P ⊆ R2) =

∫∫
P

fpdf (x, y)dA (3)

where fpdf (x, y) is the PDF of the GMM, and dA represents
integration over area P (i.e. dA = dxdy). The effect of (2) is
that more benefit is gained the more probability mass is within
the sensing radii of agents. A result of this objective is that the
optimal positions will tend to not overlap in terms of sensing
radius, creating a trade-off between the topological constraint
and coverage. Set coverage is well known to be a submodular
function [10], [26], which we will later exploit to derive an
efficient interaction planner.

D. Problem Statement

We state the problem considered in this work, and discuss
the impact of assumptions.
Problem 1. Given agent set A satisfying Assumption 2, known
environment E, and position sample set Vk, find N position
samples for the agents by solving:

S = arg max
S⊆Vk, |S|=N

g(S) (4)

Maximizing g(S), from (2), by selecting a set S for each time
k ∈ Tt subject to the interaction constraint:∑

k∈Tt

K
(
Gk(S)

)
≥ K, where

K(G) =

{
1, if G is complete
0, otherwise

(5)

4 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED DEC, 2020

requiring agents to form a complete graph in at least K time
slices, under Assumption 1.

The result of solving Problem 1 is a selection of position
samples, each with an associated time. These samples max-
imize coverage of the environmental process subject to an
intermittent interaction constraint.

We make several assumptions in solving this problem. The
the path tracking error is assumed to be known, Assumption 2,
allowing us to apply the current work to a much wider
variety of application areas by specifying which robotic motion
models could be used. The environment is assumed to be
known fully, which includes knowledge of the obstacles as
well as the environmental process. It is certainly possible for
a higher dimension configuration space to be used, rather
than a 2D space we use here. Although assuming a known
environment is certainly significant, we argue that it does not
trivialize the problem since [17] takes a similar assumption,
and that extensions are straightforward.

Regarding the independence of time slices, Assumption 1,
it allows us to model the TOI selection as a modular min-
imization problem [11], while retaining the representational
power of time indexed MAS trajectories. An implication
of Assumption 1 is trajectory feasibility being guaranteed.
The implication can be restated as the next sample being
reachable from any point in the previous bounding set, details
in Section III-A. In practice, this feasibility requirement will
be satisfied via a core path that guarantees each agent’s path
is feasible without collisions.

III. GENERATING MULTI-AGENT POSITION SAMPLES

Position samples for time k ∈ Tt are generated within a
bounding set, Bk, of the plane via a uniform distribution and
feasibility check. We discuss the method of constructing these
bounding sets for two cases in each time slice, unconstrained
and constrained, and how they are placed with regard to a
core path. Once generated, we impose a matroid constraint on
the selection of samples then detail the greedy algorithm as it
pertains to sample selection.

A. Bounding Set Selection

Here we discuss the bounding sets that guide the position
sampling process, and determine the extents of agent paths.
A bounding set, Bk for time slice k, allows us to generate
samples within it and to control agent interaction. In order to
ensure interaction we require conditions on each bounding set
to force the desired constraint. However, at an arbitrary time
k ∈ Tt it is unknown during sample generation whether agents
are interacting. Thus we define two bounding sets for each k,
one that allows coverage Bk, and one to ensure the interaction
constraint Bk. We give explicit definitions for each case.

1) Unconstrained Bounding Set Bk: We begin by generat-
ing a so-called core path from the team’s mean starting location
to the team’s mean goal location, creating a reference for
individual agents to plan around. We employ CL-RRT*, seen
in [9], [23], to plan the core path (we use the same method later
to plan agent paths). We label the core path Cp ∈ R2×L where
L is the number of points along the path. Further, we take the

mild assumption that each agent has a feasible path from their
starting location to the beginning of Cp, similarly for their
end of Cp and goal location. This assumption is not highly
limiting because it is easily satisfied by having no obstacles
directly separating the agent’s starting locations, and similarly
for the agent’s goal locations. See Figure 1 for an example of
a core path, and starting/goal locations satisfying the previous
assumption.

The next step is to define bounding set Bk ⊆ E, a
rectangular area of width r and height h, centered on the
2D point ck, for each time slice k. The rectangle is oriented
parallel to Cp at each point ck, such that the width r is in-line
with Cp. Each center point ck is selected at distance intervals
of ‖Cp‖|Tt| along Cp, where ‖Cp‖ is the length of the core path.

Further, select r =
‖Cp‖
|Tt|+1 such that the length of Cp is evenly

divided between bounding sets, and overlap is minimized.
The height h controls the maximum distance from the core
path agents can move. The value of h selected will have an
effect on the solution generated, as will the environment and
obstacles, larger values allow agents to explore more. As we
are interested in directed paths we select h = 2δ(N−1), which
is the minimum non-overlapping distance for agents distributed
along the height of Bk. It is important to note that rectangular
bounding sets are not required for our work, they serve as a
straightforward method of defining the position sample space
in reference to the core path.

2) Constrained Bounding Set Bk: Here we derive the con-
strained bounding sets Bk, such that the induced interaction
graph, Gk(Sk), achieves our desired topological condition
of completeness. Define the diameter of Bk as dmax =
max

{
‖x− y‖ : for (x, y) ∈ Bk ⊂ R2

}
. Select Bk such that

dmax ≤ ρ, thus we achieve completeness of Gk(Sk). We
will assume equality to maximize coverage, i.e. dmax = ρ.
The constrained bounding set should be a subset of the
unconstrained, Bk ⊆ Bk. To maximize objective (2), place
the center of Bk at the region of most interest within Bk
given sensing radius δ. Let Nρ

E : R2 → R2 be the ρ-radius
neighborhood around a point. The center, ck, is selected via:

arg max
ck∈Bk :NρE(ck)⊂Bk

fE(Nρ
E(ck)) (6)

We select ck such that Bk does not intersect with obstacles.
We calculate ck by a discretization of Bk, ignoring points < ρ
from the boundary or obstacles, and evaluating fE(Nρ

E(ck))
for each point. Perfect selection of ck is not necessary due
to the sensing radii of agents. Given a limiting diameter of
ρ, we select Bk = Nρ

E(ck). When constrained we are forced
to reduce coverage to meet the requirement, given that we
maximize available coverage via our selection of Bk. See
Figure 1 for an example of bounding sets Bk and Bk, the
core path, agent paths, obstacles, and position samples.

B. Sample Generation

Within a Bk, we generate |Tp| samples for each agent via
a 2D uniform random distribution, while checking validity
with a simple local planner. The local planner’s purpose is
to check that each sample has a direct path to the center of

HEINTZMAN et al.: INTERMITTENTGREEDY 5

bounding set, via an obstacle intersection calculation. Going
back to the highway analogy, each position sample must have
access to the highway, otherwise infeasible conditions can
occur such as the sample being surrounded by an obstacle.
The local planner used here is very similar to, and inspired
by, the local planner used in many RRT-type algorithms [9],
[23]. See Figure 1 for an example where the grey position
samples do not appear in areas that are obscured/blocked by
obstacles. Note that the local planner is a conservative solution,
but it is quick to compute and is adaptable to complex motion
models/configuration spaces [9].
Remark 1. Using the core path, we can generate bounding sets
that guarantee feasible paths under the interaction constraint.
The bounding sets, Bk∈Tt , allow for coverage increase, while
remaining feasible due to the local planner and core path, and
the bounding sets, Bk∈Tt , allow agents to meet the interaction
constraint.

C. Matroid Constraint
To select position samples, we need a matroid constraint. A

matroid provides a general method of defining independence
in combinatorial optimization [10], [27], [28]. A matroidM is
an ordered pair (V, I) consisting of a finite ground set V and
a collection I of independent subsets of V satisfying three
axioms as described in detail in [10]. We omit the axioms
here for brevity. We make use of a uniform selection matroid
so that we assign a single position per agent per time slice.
Specifically, Mu,k = (Vk, Iu,k) for each time k ∈ Tt. The
independent sets are:

Iu,k = {S ⊂ Vk : |Si ∩ i| ≤ 1,∀i ∈ A} (7)

where Si is the set of agent indexes associated with samples
in S. The constraint seems intuitive, but the rigor is necessary
when considering approximation ratios. As we have |Tt| time
slices to consider, we define a matroidMu,k ∀k ∈ Tt because
there are different ground sets, however the condition remains
the same.

D. Sample Selection
We use a greedy algorithm to select samples for each

agent. The greedy algorithm is well suited to submodular
function maximization subject to a matroid constraint, as it
guarantees a performance lower bound [10], [11], [26]. The
greedy algorithm is as follows, begin with an empty set, add
the element that maximizes partial benefit, continue until no
additions are possible. Let the partial benefit from selecting
element e ∈ Vk, given an existing set Sk ⊆ Vk \ {e}, for
objective function g defined in (2), be:

∆g(e|Sk) = g(Sk ∪ {e})− g(Sk) (8)

For time slice k ∈ Tt, we initialize S0 = {∅}, and itera-
tively select the position x

(k)
ij ∈ Vk \ Sn−1, that maximizes

∆g(x
(k)
ij |Sn−1) for step n, that is:

Sn = Sn−1 ∪

 arg max
x
(k)
ij /∈Sn−1 :Sn−1∪{x(k)

ij }∈Iu,k

∆g(x
(k)
ij |Sn−1)


(9)

Where Iu,k is defined in (7), and the algorithm terminates
when n = N giving |Sk| = N . Let a greedily constructed
set be Sk = G(Bk ∩ Vk), meaning Sk is based on Bk and
Vk. Note that Bk ∩ Vk indicates selection within bounding
set Bk. Similarly, let an optimally constructed set be S∗k =
O(Bk ∩ Vk). That is, S∗k is the best possible selection from
Bk ∩ Vk. Optimal selections are generally not tractable [6],
[10], but we use it for comparison.

IV. TIME OF INTERACTION SELECTION

Now we make the TOI selection of when to interact to meet
the constraint. For all k ∈ Tt, we have the performances of the
unconstrained and constrained greedy selections g(G(Bk∩Vk))
and g(G(Bk∩Vk)), respectively. Similarly for the optimal case,
we have selections g(O(Bk ∩ Vk)) and g(O(Bk ∩ Vk)). We
can begin by noting that:

g(G(Bk ∩ Vk)) ≥ g(G(Bk ∩ Vk))

g(O(Bk ∩ Vk)) ≥ g(O(Bk ∩ Vk))
(10)

This is a consequence of Bk ⊂ Bk, leading to more samples
and possibly higher coverage. Further, by referencing [11], and
by noting that (2) is a submodular function, under a matroid
constraint, Mu,k, we immediately get a lower bounded ap-
proximation ratio:

g(G(Bk ∩ Vk)) ≥ 1

2
g(O(Bk ∩ Vk))

g(G(Bk ∩ Vk)) ≥ 1

2
g(O(Bk ∩ Vk))

(11)

When using greedy selection, we are guaranteed to perform at
least half as well as the optimal case per time slice.

In order to make choices about the TOI, we need to express
the difference in performance between the constrained and
unconstrained cases, define:

L(T) =
∑
k∈T

g(G(Bk ∩ Vk))− g(G(Bk ∩ Vk)) ≥ 0

L∗(T) =
∑
k∈T

g(O(Bk ∩ Vk))− g(O(Bk ∩ Vk)) ≥ 0
(12)

Where L(T) and L∗(T) are the sum of losses due to the
constraint, for the times T ⊂ Tt. Given a set of times to
interact T ⊂ Tt, with Tt \ T being the non-interacting times,
define a total performance function:

P (T) =
∑
k∈T

g(G(Bk ∩ Vk)) +
∑

k∈Tt\T

g(G(Bk ∩ Vk))

P ∗(T) =
∑
k∈T

g(O(Bk ∩ Vk)) +
∑

k∈Tt\T

g(O(Bk ∩ Vk))

(13)
where P (T) and P ∗(T) are the total coverage for the greedy
and optimal selections, respectively.

We claim that selecting T ⊂ Tt, with |T | = K for some
K ∈ {1, 2, . . . , Tend}, such that P (T) is maximized, is equiv-
alent to picking T such that L(T) is minimized. Minimizing
the performance loss due to constraints will naturally maximize
the total performance. Consider the following Lemma:
Lemma 1. Maximizing P (T) is equivalent, in the optimal and
greedy cases, to minimizing L(T).

6 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED DEC, 2020

Proof. To see this, we have the following list of equivalent
statements:

arg max
T⊂Tt, |T |≤N

P (T)

= arg min
T⊂Tt, |T |≤N

(∑
k∈Tt

g(G(Bk ∩ Vk))− P (T)
)

= arg min
T⊂Tt, |T |≤N

(∑
k∈Tt

g(G(Bk ∩ Vk))

−
(∑
k∈T

g(G(Bk ∩ Vk)) +
∑

k∈Tt\T

g(G(Bk ∩ Vk))
))

= arg min
T⊂Tt, |T |≤N

(∑
k∈T

g(G(Bk ∩ Vk))−
∑
k∈T

g(G(Bk ∩ Vk))
)

= arg min
T⊂Tt, |T |≤N

L(T)

(14)
Thus we maximize P (T) via minimizing L(T). Note that
summing over all of Tt for a given Bk results in a fixed
value.

A key part of the coming result is that Assumption 1
holds. By definition, L(T) is a modular performance function
[26]. Minimization of a modular function, with a cardinality
constraint, is known to be optimally-solved by the greedy
algorithm [11]. The algorithm to generate T is as follows,
evaluate L(k) for each k ∈ Tt, sort into ascending order,
and select the first K time slices. We need to generate
unconstrained and constrained solutions to evaluate each L(k).

Now for a lower bound on total performance using greedy
selections. Let To and Tg be the set of times:

To = arg max
S⊂Tt:|S|=K

L∗(S)

Tg = arg max
S⊂Tt:|S|=K

L(S)
(15)

Recall we refer to P (Tg) as the performance of the greedy
algorithm, and the set {Sk,∀k ∈ Tg} as the greedy solution.
Similar nomenclature applies to the optimal case. Comparing
performances yields the following result:
Theorem 1. The approximation ratio for the greedy solution
to the interaction planning problem defined in Problem 1,
compared to the optimal solution is P (Tg)

P∗(To)
= 1

2 .

Proof.
P (Tg)

P ∗(To)

=

∑
k∈Tg g(G(Bk ∩ Vk)) +

∑
k∈Tt\Tg g(G(Bk ∩ Vk))∑

k∈To g(O(Bk ∩ Vk)) +
∑
k∈Tt\To g(O(Bk ∩ Vk))

≥
∑
k∈To g(G(Bk ∩ Vk)) +

∑
k∈Tt\To g(G(Bk ∩ Vk))∑

k∈To g(O(Bk ∩ Vk)) +
∑
k∈Tt\To g(O(Bk ∩ Vk))

≥
∑
k∈To

1
2g(O(Bk ∩ Vk)) +

∑
k∈Tt\To

1
2g(O(Bk ∩ Vk))∑

k∈To g(O(Bk ∩ Vk)) +
∑
k∈Tt\To g(O(Bk ∩ Vk))

=
1
2P
∗(To)

P ∗(To)
=

1

2
(16)

Fig. 1. Showing the core path Cp in purple, the bounding sets Bk as dashed
black polygons, the bounding sets Bk as dashed black circles, the available
position samples in grey, and obstacles in black. The environmental process
is represented by the heatmap in the background, with red being higher value.
Here N = 3 and agent paths are shown in red, blue, and green, with squares
as start locations and diamonds as goal locations.

The first inequality is derived from Tg being selected so that
P (Tg) is maximized, any other set of K times has smaller total
performance. The second inequality is from (11).

Theorem 1 is a powerful result that allows us to quickly gen-
erate a solution to this problem which is otherwise intractable
[10], [11], [16]. Using the proposed method allows for a much
larger problem scale to be considered, while paying a small
price in performance.

V. SIMULATIONS

Here we give simulations that verify the results derived.
The simulations include a comparison to the method from
[13] which solves a related problem. In addition, to achieve
complete paths in our proposed solution, we use a MAS
planning solution from [23], referred to as decentralized multi-
agent RRT (DMA-RRT). Once samples are selected, we use
DMA-RRT to plan paths for each agent from the start position,
through samples avoiding obstacles and collisions, to the goal
position. See Figure 1 for an example of DMA-RRT coupled
with our method, where K = 1 with |Tt| = 3, the solution
chosen has the second time slice to interact because it sacrifices
the least coverage. Note that if there is a time difference
between agents’ arrivals at an interacting time slice, pauses
in motion are introduced to account for it.

We compare with the work of [13] that solves a similar
problem to ours, in the following we will refer to our method
as intermittent interaction planning (IIP). Authors of [13],
hereafter referred to as HS from the authors’ initials, use a
MIPP approach which does not include goal locations. To
avoid introducing bias, we limit the path lengths between
methods to be approximately equal per iteration. In addition,
HS assumes the existence of a low level collision avoidance
algorithm, where IIP explicitly deals with collisions, thus we
omit the collision avoidance portion of IIP to match. Lastly, the
interaction constraints are the same between solutions, these
alterations allow us to fairly compare IIP with HS.

HEINTZMAN et al.: INTERMITTENTGREEDY 7

2 4 6 8 10
0

100

200

300

400

500

600
100 samp.

150 samp.

200 samp.

250 samp.

(a)

2 4 6 8 10
4

7

10

13

16

19
K = 1

K = 2

K = 3

K = 4

K = 5

(b)

Fig. 2. Showing in (a) the effect on computation time with increasing values
of N at several values of |Tp|, and in (b) the effect on total performance with
increasing values of N at several values of K. Each result is averaged for 120
fully randomized iterations, error bars correspond to one standard deviation.

The simulation parameters used are ρ = 0.5, and δ = 0.25.
The interval of disconnection, the distance agents can move
before reconnecting in HS, was set to be 3 which limits
the path lengths to compare. A square environment is used
with xmax = ymax = 5, with randomized GMM parameters,
obstacles, and starting positions, on each iteration, in this way
environmental bias is removed. Obstacles are generated via
smoothed perlin noise, cases without a solution are ignored.
The environmental discretization parameter for HS is repre-
sented as ex, here we use a rectangular grid of nodes for the
environment graph though there are other possibilities [13].

In Figures 2 and 3 are Monte Carlo simulations which
show computation time and total performance, P (T), with
randomized environmental conditions. In Figure 2 are two
simulations that show computation time and total performance
with increasing N for IIP only. For Figure 2a, with |Tt| = 5,
K = 2, and for Figure 2b |Tp| = 150. Figure 2a shows
the computation time of IIP with increasing N when |Tp| =
100, . . . , 250. The computation time of IIP increases with N
as well as with the size of the ground set, Vk. Moreover,
we are implicitly increasing Vk by increasing the number of
agents, because the samples are taken for each agent. The
ground set is of size |Vk| = N |Tp| thus it is natural that
computation time would have the roughly N2 scaling we see
in Figure 2a. Furthermore, it follows that the computation time
should scale linearly with increasing |Tp|, seen in Figure 2a as
roughly uniform spacing between cases. In Figure 2b we show
how the total performance of IIP changes with increasing N
when K = 1, . . . , 5. As the interaction constraint increases we
get lower performance, with the worst performing case being
K = 5, because we are forced to give up coverage in favor of
interacting more often. Also note that with higher numbers
of agents the performance becomes saturated in all cases,
as expected with a coverage based objective function. The
increase in error bar size with larger N , regarding Figures 2b
and 3b, is due to the high number of variations that become
possible with a large team of agents. There are simply more
available options for a larger team in terms of paths chosen,
interaction locations, and connected configurations.

Shown in Figure 3 are plots of computational time and total
performance of both IIP and HS under increasing agent num-
ber and position fidelity, which is |Tp| for IIP and ex for HS.
For Figure 3 we take |Tt| = 3 and K = 1 where HS follows

the same interaction constraint (i.e. HS and IIP begin in a con-
nected configuration, interact once along a path, and finish in
a connected configuration). Readers are reminded that the time
and sample parameters between Figures 2 and 3 are different.
In Figure 3a, starting with computation time, the scaling of HS
is expected, with a better represented environment the size of
the path set also increases which heavily impacts computation
time. For IIP, more samples having the same effect of better
representing the environment, computation scales linearly as
we are increasing the number of evaluations required for
each agent by a constant multiple. The ranges of values for
ex and |Tp| were selected to give roughly the same density
of positions to each method. Now for total performance in
Figure 3a, as expected HS outperforms IIP, though IIP respects
and often outperforms the 1

2 sub-optimality bound derived. The
green line in Figure 3a is the difference between HS and IIP,
provided for intuition on the 1

2 bound. Total performance for
each method increases slowly with increasing position fidelity,
which follows intuition. The key concept of our IIP method,
to scale tractably while maintaining bounded performance, is
clearly seen in Figure 3a. As HS scales exponentially (right-
hand side of Figure 3a top), IIP maintains comparatively low
computational load while preserving guaranteed performance
with HS. Taking into account the high computational cost
of using HS, applications requiring fielded systems or edge
computing would certainly benefit from using IIP in place of
HS, especially when computational time is a priority (as in
our previous search and rescue example).

Shown in Figure 3b is a comparison between IIP and HS
under increasing N . Here we take ex = 0.1 and |Tp| = 1200.
Since both methods theoretically scale linearly with N , and
being informed by Figure 3a, we should expect a linear result
from both methods with HS being slower than IIP. We see in
Figure 3b, IIP having a smaller per agent gain in computation
time compared to HS. For P (T) comparison, in Figure 3b both
methods exhibit near-linear scaling with increasing N , and IIP
respects the bound derived in theory.

This work is accompanied by a repository where we have
made code available at this Gitlab link2 if others would like
to simulate the proposed method.

VI. CONCLUSIONS

In this work we developed a method for environmental
monitoring whilst intermittently interacting and avoiding ob-
stacles. We accomplished this via a position sampling approach
combined with greedy sample selection. For each time slice,
we selected two position sets which allowed the times of
interaction to be selected. Through this method, we achieved a
performance ratio of 1

2 compared to the optimal. We also pre-
sented several in-depth simulations to corroborate the results
derived, and we compare to a method that uses iterative ascent
in the path space. The Monte Carlo simulations showed the
scalability of the proposed method under large agent and sam-
ple sets. In addition, the time required to compute the greedy
solution compared with the optimal solution demonstrated the
tractability of the proposed method.

2http://git.caslab.ece.vt.edu/hlarkin3/multi-agent-interaction-planning.git

http://git.caslab.ece.vt.edu/hlarkin3/multi-agent-interaction-planning.git

8 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED DEC, 2020

200 335 470 605 741 876 1011 1147

0

50

100

150

200

250

0.10260.10940.11620.12290.12970.13650.14320.15

200 335 470 605 741 876 1011 1147

0

5

10

15

0.10260.10940.11620.12290.12970.13650.14320.15

(a)

2 3 4 5 6 7 8

0

200

400

600

800

1000

2 3 4 5 6 7 8

0

10

20

30

(b)

Fig. 3. In (a) showing a comparison between HS and IIP under increasing position fidelity, which is increasing |Tp| for IIP and decreasing ex for HS. The top
plot shows computation time for both methods, while the bottom plot shows total performance for both methods, each data point is averaged for 24 iterations
and the error bars represent ±1 standard deviation. In (b) showing a comparison between HS and IIP under increasing N . The top and bottom plots show
computation time and total performance, respectively, and here each data point is averaged for 18 iterations. The horizontal dashed lines represent the mean
value across all data points, and the green dashed line represents the difference in value between HS and IIP.

REFERENCES

[1] T. Glotzbach, N. Crasta, and C. Ament, “Observability Analyses
and Trajectory Planning for Tracking of an Underwater Robot using
Empirical Gramians1,” IFAC Proceedings Volumes, vol. 47, no. 3, pp.
4215–4221, 2014. [Online]. Available: http://www.sciencedirect.com/
science/article/pii/S1474667016422639

[2] J. D. Quenzer and K. A. Morgansen, “Observability based control in
range-only underwater vehicle localization,” in 2014 American Control
Conference, Jun. 2014, pp. 4702–4707.

[3] L. Heintzman and R. K. Williams, “Nonlinear observability of unicycle
multi-robot teams subject to nonuniform environmental disturbances,”
Autonomous Robots, vol. 44, no. 7, pp. 1149–1166, 2020.

[4] A. Bahr, J. J. Leonard, and M. F. Fallon, “Cooperative localization for
autonomous underwater vehicles,” The International Journal of Robotics
Research, vol. 28, no. 6, pp. 714–728, 2009.

[5] N. Yu, H. Dai, A. X. Liu, and B. Tian, “Placement of connected wireless
chargers,” in IEEE INFOCOM 2018-IEEE Conference on Computer
Communications. IEEE, 2018, pp. 387–395.

[6] T.-W. Kuo, K. C.-J. Lin, and M.-J. Tsai, “Maximizing submodular
set function with connectivity constraint: Theory and application to
networks,” IEEE/ACM Transactions on Networking (TON), vol. 23, no. 2,
pp. 533–546, 2015.

[7] L. Huang, J. Li, and Q. Shi, “Approximation algorithms for the connected
sensor cover problem,” in International Computing and Combinatorics
Conference. Springer, 2015, pp. 183–196.

[8] R. K. Williams and G. S. Sukhatme, “Constrained interaction and co-
ordination in proximity-limited multiagent systems,” IEEE Transactions
on Robotics, vol. 29, no. 4, pp. 930–944, 2013.

[9] M. Svenstrup, T. Bak, and H. J. Andersen, “Trajectory planning for
robots in dynamic human environments,” in 2010 IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems. IEEE, 2010, pp.
4293–4298.

[10] R. K. Williams, A. Gasparri, and G. Ulivi, “Decentralized matroid op-
timization for topology constraints in multi-robot allocation problems,”
in 2017 IEEE International Conference on Robotics and Automation
(ICRA). IEEE, 2017, pp. 293–300.

[11] G. L. Nemhauser, L. A. Wolsey, and M. L. Fisher, “An analysis of
approximations for maximizing submodular set functions—i,” Mathe-
matical programming, vol. 14, no. 1, pp. 265–294, 1978.

[12] J. Liu and R. K. Williams, “Submodular optimization for coupled task
allocation and intermittent deployment problems,” IEEE Robotics and
Automation Letters, vol. 4, no. 4, pp. 3169–3176, 2019.

[13] G. Hollinger and S. Singh, “Multi-robot coordination with periodic
connectivity,” in 2010 IEEE International Conference on Robotics and
Automation. IEEE, 2010, pp. 4457–4462.

[14] G. Mathew and I. Mezić, “Metrics for ergodicity and design of ergodic
dynamics for multi-agent systems,” Physica D: Nonlinear Phenomena,
vol. 240, no. 4-5, pp. 432–442, 2011.

[15] Y. Kantaros, M. Guo, and M. M. Zavlanos, “Temporal logic task
planning and intermittent connectivity control of mobile robot networks,”
IEEE Transactions on Automatic Control, 2019.

[16] J. Vondrák, “Submodularity in combinatorial optimization,” 2007.
[17] G. A. Hollinger and S. Singh, “Multirobot coordination with periodic

connectivity: Theory and experiments,” IEEE Transactions on Robotics,
vol. 28, no. 4, pp. 967–973, 2012.

[18] J. Banfi, N. Basilico, and F. Amigoni, “Multirobot reconnection on
graphs: Problem, complexity, and algorithms,” IEEE Transactions on
Robotics, no. 99, pp. 1–16, 2018.

[19] E. Stump, N. Michael, V. Kumar, and V. Isler, “Visibility-based de-
ployment of robot formations for communication maintenance,” in 2011
IEEE international conference on robotics and automation. IEEE, 2011,
pp. 4498–4505.

[20] J. Banfi, N. Basilico, and S. Carpin, “Optimal redeployment of mul-
tirobot teams for communication maintenance,” in 2018 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS).
IEEE, 2018, pp. 3757–3764.

[21] D. Tateo, J. Banfi, A. Riva, F. Amigoni, and A. Bonarini, “Multiagent
connected path planning: Pspace-completeness and how to deal with it,”
in Thirty-Second AAAI Conference on Artificial Intelligence (AAAI2018),
2018, pp. 4735–4742.

[22] R. K. Williams, A. Gasparri, A. Priolo, and G. S. Sukhatme, “Distributed
combinatorial rigidity control in multi-agent networks,” in 52nd IEEE
Conference on Decision and Control. IEEE, 2013, pp. 6061–6066.

[23] V. R. Desaraju and J. P. How, “Decentralized path planning for multi-
agent teams in complex environments using rapidly-exploring random
trees,” in 2011 IEEE International Conference on Robotics and Automa-
tion. IEEE, 2011, pp. 4956–4961.

[24] R. K. Williams and G. S. Sukhatme, “Observability in topology-
constrained multi-robot target tracking,” in 2015 IEEE International
Conference on Robotics and Automation (ICRA). IEEE, 2015, pp.
1795–1801.

[25] J. Liu and R. K. Williams, “Optimal intermittent deployment and sensor
selection for environmental sensing with multi-robot teams,” in 2018
IEEE International Conference on Robotics and Automation (ICRA).
IEEE, 2018, pp. 1078–1083.

[26] L. Lovász, “Submodular functions and convexity,” in Mathematical
Programming The State of the Art. Springer, 1983, pp. 235–257.

[27] J. Oxley, “On the interplay between graphs and matroids,” LONDON
MATHEMATICAL SOCIETY LECTURE NOTE SERIES, pp. 199–239,
2001.

[28] I. Shames and T. H. Summers, “Rigid network design via submodular
set function optimization,” IEEE Transactions on Network Science and
Engineering, vol. 2, no. 3, pp. 84–96, 2015.

http://www.sciencedirect.com/science/article/pii/S1474667016422639
http://www.sciencedirect.com/science/article/pii/S1474667016422639

	Introduction
	Preliminaries
	Agent Modeling
	Interaction and Environmental Modeling
	Multi-Agent Objective
	Problem Statement

	Generating Multi-Agent Position Samples
	Bounding Set Selection
	Unconstrained Bounding Set Bk
	Constrained Bounding Set Bk

	Sample Generation
	Matroid Constraint
	Sample Selection

	Time of Interaction Selection
	Simulations
	Conclusions
	References

