Anticipatory Planning and Dynamic Lost Person Models for
Human-Robot Search and Rescue

Larkin Heintzman, Amanda Hashimoto, Nicole Abaid, and Ryan K. Williams

Abstract—In this work, we consider the problem of planning
paths for a team of autonomous unmanned aerial vehicles
(UAVs) to assist search and rescue practitioners. To address the
problem, we develop a fully integrated framework that includes
information from all aspects of the search environment. We
take into consideration lost person motion via a behavior-based
predictive model, anticipated human searcher trajectories, as
well as measurements from fixed field of view sensors on board
UAVs. We use a metric of posterior risk as the optimization
target as it is an indicator of improved situational awareness
and the effectiveness of continuing search efforts. Monte Carlo
simulations are presented to demonstrate the effectiveness of the
proposed framework.

I. INTRODUCTION

In 2018, over 650,000 lost persons were reported in the
United States, and nearly 100,000 of these cases were an-
swered with organized searches in either urban or wilderness
environments by the search and rescue (SAR) community [1].
Search efforts usually involve a large team, in some cases over
100 people, working over several days to locate the lost person
[1], [2]. There have been efforts to increase the effectiveness
of SAR operations, taking into account advances in search
theory [2] and informative path planning [3]. In addition,
an unmanned aerial vehicle (UAV) recently was used in a
SAR mission that allowed searchers to inspect an area that
otherwise would have been dangerous and time consuming to
traverse [4]. However, the UAV in [4] was a remotely con-
trolled model, requiring a human pilot to provide continuous
control and image processing. In this work, we propose a
framework wherein autonomous UAVs, with knowledge of the
search scenario, can be used to improve situational awareness
and support of human SAR teams.

UAVs have been used extensively for aerial monitoring
and object detection tasks in recent years, especially with
the advent of lightweight imaging systems [4]. Authors of
the recent work [5] consider a related problem, the goal
being to detect and track multiple surface vehicles at sea
with an autonomous UAV. The major differences compared
to this work are that we focus on planning prior to detecting
a target and effectively collaborating with a ground team.
Another perspective is seen in [6] where authors consider
the more general problem of modeling interactions between
first responders and a team of autonomous UAVs, with a
goal of UAV task assignment for various mission scenarios.
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Fig. 1. Data flowchart overview of the proposed algorithm.

While undoubtedly necessary, the work of [6] functions at the
sector assignment level whereas we consider search paths and
lost person modeling within a single sector. Another similar
problem to ours is considered in [7], where autonomous agents
attempt to locate a target and transmit video information back
to a base station. However, the authors of [7] do not consider
models of lost person behavior nor collaboration with human
search teams.

A lost person (LP) is defined as a person who is unable to
identify their present location with respect to known locations
and has no effective method for reorientation [8]. This lack of
ability to reorient drives people to use a variety of different
recorded behaviors. In Lost Person Behavior, Robert Koester
has defined lost persons’ behavioral strategies seen in a
collection of data from the more-than-50,000-incident Inter-
national Search and Rescue Incident Database (ISRID) [9],
[10]. These behavioral profiles, or lost person types (LPTs),
will be used to inform a model of the LP moving in the
wilderness. The book identifies more than 30 LPTs, based on
activity or demographic information, and reports summarized
statistics, including the horizontal distance found from the
last known point and time an LP was mobile. In practice,
searchers use these statistics to create probability maps, like
the distance-ring model [11] an example of which is shown
in Figure 3b. However, these tactics assume that by the time
the search has started the subject has stopped moving [12].
Effectively, motion should be considered in order to create
a probability map that evolves in time. Existing models of
human behavior have been used to study pedestrian dynamics,
including force-based models showing collision avoidance,
vision-based guidance, or goal-oriented behaviors [13]-[15].
Fundamentally different from pedestrian dynamics, modeling
the behavior of an LP depends heavily on the landscape and
the person type, as evidenced by the statistics in ISRID. The
Bayesian model of such behavior in [16] considers terrain, but
not strategies or lost person types. Alanis et al. developed a
mechanistic model for a hiker that takes into account terrain
influence and behavior, but only simulated one LPT and



neglected characteristic LP behaviors, like route traveling on
known paths [17]. We seek to use a different approach from
the previous works, by proposing an improved version of the
dynamic model of LP behavior from [18] which synthesizes
information about the specific environment for a search, as
well as characteristics of different LPTs drawn from a large
database of search incidents.

In order to complement human searchers and improve
situational awareness, we propose a framework to plan a set
of paths for a team of UAVs to autonomously assist a human
ground team and to reduce the risk inherent in SAR scenarios
[19]. Using a probabilistic risk metric derived from a Gaussian
process model (GPM) coupled with gradient path optimization
over parameterized Bézier curves, UAVs take into account a
predictive LP model, topography in the search environment,
and anticipated human searcher trajectories (see Figure 1). By
utilizing the advantages afforded by UAVs, we aim to increase
the efficiency of SAR operations by maximizing situational
awareness with available resources while minimizing the
aerial time required [2]. Here we build upon our preliminary
work [20] by incorporating a much more in-depth treatment
of the terrain, LP model, and evaluation methods.

The remainder of this work is organized as follows, in
Section II we cover the background machinery required,
and formally state the problem considered in this work. In
Section III we discuss the path planning and optimization al-
gorithms. In Section IV, we discuss the Monte Carlo based LP
motion model. In Section V, we present several simulations
to compare and contrast the proposed solution with a variety
of other configurations and options. In Section VI, we offer
closing remarks and suggestions for future work.

II. MODELING
A. Searcher Trajectories

In a land SAR mission, a particular area of land will have
human searchers assigned to it, referred to as sectors [9]. We
assume that each searcher has an entry and exit point for each
sector, based on the overall sequence of sectors to be searched.
To anticipate ground team paths, we propose a human searcher
model with two modes, a waypoint following mode and a
gradient following mode. In waypoint mode, each searcher is
represented by a particle moving through a predefined set of
waypoints. Once a searcher reaches to within some tolerance
of the current waypoint, the next waypoint becomes the target.
In our case, the waypoints are arranged to generate lawn
mowing search paths. To better reflect reality, each searcher is
also influenced by the terrain gradient. If the terrain beneath a
searcher becomes too steep to climb, the searcher switches to
level-curve following to navigate around the obstacle. There
are scenarios in which a searcher could become trapped in a
local minima of the terrain, which we combat via a tenacity
parameter that allows searchers to overcome steeper terrain
over time. The tenacity approach helps model scenarios where
terrain is too steep for human searchers to easily navigate,
while also preventing searchers from getting stuck. Shown
in Figure 5 are two examples of terrain/feature maps from
real locations with anticipated searcher paths in grey being
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Fig. 2. Showing in (a) a 2D measurement model that uses the RBF kernel,
and in (b) a 2D measurement model that uses the Gibbs’ kernel.

affected by the terrain gradient. The proposed searcher model
provides a tractable anticipation of human paths as inputs
for our planning framework (see Algorithm 4 in [19] for a
complete statement of the human searcher model).

B. UAV Measurement Model

We use a GPM to combine the information from anticipated
human searcher paths, UAV measurements, and the LP model
(to be discussed in Section IV). Using a GPM allows us to
model realistic data collection from UAVs via a Gibbs’ kernel
where the length scale is a function of altitude [21]-[23]. Here
we model data collection from a downward facing sensor
such as a camera, or any other fixed field of view (FOV)
sensor that could be mounted on a UAV. With the proposed
method, we can simulate data collection from any 3D point
above the terrain. We use a Gibbs’ kernel [24], as opposed to
the commonly used radial basis function (RBF) kernel [25],
because it allows for realistic modeling of fixed FOV sensors.
The RBF kernel does not capture the change in FOV with
changing altitude, thus the Gibbs’ kernel is better suited here.
The generic Gibbs’ kernel is as follows:
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where x,x’ € R3*! are two arbitrary 3D points in the
environment, 7 is a tunable hyperparameter, and f(-) is the
lengthscale function which in this case is the altitude above
the terrain. Figure 2 has a visual comparison between the RBF
and Gibbs’ kernels for the 2D case at various altitudes; notice
when the altitude decreases the width of measurement also
decreases while the covariance increases, following intuition
for a fixed FOV sensor.



C. Problem Statement

Given an environment of interest, a rectangular area defined
by GPS referenced points, build a set of trajectories for a
team of N aerial agents that effectively complement human
searcher efforts and minimize risk. The risk metric in this case
is the uncertainty in LP location, thus reducing risk increases
environmental awareness and search effectiveness. The metric
of risk includes information from all sources, the LP heatmap,
anticipated human searcher paths, and UAV trajectories.

In more formal terms, generate trajectories, parameterized
by A € RP*3 to generate 0, (t), for all UAVs that approxi-
mately minimizes the following:

A" = argmin R [0 (t)] 3)

AEA

where R is the metric of risk which quantifies our uncertainty
in the location of the LP(s), the details of which are discussed
in the next section. The result of solving this problem is a set
of trajectories for all UAVs, 0« (t), that complement human
searchers and improve situational awareness due to optimized
UAV measurements.

III. PATH PLANNING
A. Initial Robot Paths

Initial planning is necessary due to the potential of a UAV
colliding with the terrain or obstacles. We compute the initial
set from the sampling based approach of RRTs, in this case
we use RRT* [19]. In our framework, we independently plan
paths for all robots while avoiding inter-agent collisions, using
the same sector entry and exit points as the human searchers,
and quantify the information gathered from all paths using the
GPM.

B. Risk Quantification

To optimize UAV paths, we must quantify the risk inherent
in a given scenario and trajectory set. Risk indicates the
uncertainty in LP location given the current system config-
uration and prior knowledge, making risk uniquely suited to
replanning efforts as well. We use a GPM, and Gibbs’ kernel,
to calculate the mean and covariance of an occupancy map
quantifying our belief in the LP location. Both humans and
UAVs use the Gibbs’ kernel to generate measurements, with
a fixed altitude of 2m for the human searchers. The state,
measurement, and inference points are in the form of:
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where xpc € R™c*3 is the set of points from the LP heatmap
above a tunable threshold 7 € [0, 1], xps € R™s%3 is the set
of human searcher paths, and xgp € R™8%3 is the (initial) set
of UAV trajectories. The term x € R!*3 is referred to as the
state vector, only the UAV trajectory portion is optimized, and
I = nmc+nus+nrs. As for the measurements, yyc € Rmex1
is the set of log-odd probabilities for occupancy at each point
in xymc, yus € R™X1 is the set of log-odds for points in

Xps, and similarly yrg € R™8*! is the set of log-odds for
points in xgp. Lastly, x* € R™*! is the set of inference points,
derived from discretizing the search sector based on resolution
parameter ¢,, where the occupancy map is evaluated. The
purpose of the occupancy map is to estimate the posterior
probability p(m|y,x) where m represents the map state for
points in x*. We use the log-odds form of probabilities to
simplify the coming calculations, defined for probability p as
logit(p) = log(p/(1 — p)).

Using the terms in (4), we can calculate terms to create
a metric of risk. The covariance of the state is calculated
by Kx = Ksar(x,x) + 0?1 where I is the square identity
matrix of size 1. Here 02 € R'*! is the measurement variance,
another tunable parameter. Similarly, the covariance of the
inference points is calculated by Ky« = Kgar(x*,x*), and
cross-covariance between state and inference points Ky |y« =
ICS AR (X7 x* ) .

We can now calculate the mean and covariance of the
occupancy map, in log-odds form, as px- = KI|x*K; ly
and Xy = Ky« — KI‘X* K;le|x* respectively. Where fiy+
is the log-odds ratio of occupancy for each point in x*, this
can be thought of as the log-odds result of combining all
information sources. A value of ;- = 0 indicates a 0.5
probability that the point z; is occupied by an LP. Similar
to [26], we develop our risk metric as:
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where Yx+ is the i" diagonal element of the covariance matrix
)N

C. Objective Function

As discussed, we have an initial set of trajectories that are
optimized to reduce the risk cost. The goal of the optimiza-
tion process is to generate UAVs trajectories that effectively
complement the ground searchers, subject to constraints. The
constraints are start and end points, smoothness, and time
expenditure (path length). We parameterize UAV paths with
Bézier curves, which enables evaluation of smoothness and
path length [27] and provides a set of p parameters A € RP*3,
which define trajectories 6 (t). Our goal is to find param-
eters, A, to minimize the risk cost R [fx(¢)]. Incorporating
constraints and writing as an objective functional:

FOA0)] = RIND)] + acLOx()] + asS[A([1)]  (6)

where £ [0,(t)] is the path length cost, and S[0x(t)] is the

path smoothness cost, oy and as are scaling terms for the

path length and the path smoothness costs, respectively. The

restated goal is to minimize the objective functional F [0 (¢)]

to maximize the efficiency of the planned UAV trajectories.
1) Trajectory Optimization:

)\Hl:)\l—nv,\]—"[%\], 221,2, (7)

where 7) is a tunable descent rate parameter. Since the objec-
tive functional is of high dimension and non-convex, we use an
optimization method typically found in neural network-based
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Fig. 3. Lost person model results. In (a), the linear features (grey lines),
inaccessible areas (shaded blue), MC path trajectories (shaded green), final
MC trajectory points (green circles), and IPP (white star) are overlaid on a
satellite image of Hungry Mother State Park. In (b), the corresponding LP
model heatmap of the final MC trajectory points and the circles representing
the ring model for a hiker LP type are shown.

machine learning applications, referred to as Adam [28]. Even
using Adam, the optimization process can be quite slow so, in
the inference step, points from the grid are sorted based on the
Morton Z-order space filling curve [29]. Using this technique
allows us to approximate large blocks of the matrix as zeros
as they correspond to spatially distant points.

IV. LoST PERSON MODEL

People lost in the wilderness use one or more typical
behaviors to move around [8]. In this section, we present
a model of how an LP uses these behaviors, which is an
improved version of the model from [18]. The LP is modeled
as a self-propelled agent moving in discrete time on a 2D
grid. At every time step, the agent can move from its position
to to any of its neighboring cells or the current cell. Here
the map is informed not only by elevation, but also by USGS
layers for roads, railroads, powerline easements, hiking trails,
rivers, and lakes. These layers define the map’s linear features
as common routes often followed by an LP as a strategy for
navigation. The boundaries of rivers and lakes are separated
from the interior areas to simulate riverbank linear features
and inaccessible areas. These added features provide a realistic
simulation environment.

A. Behaviors

In the LP model, we have defined six possible strategies
that are based on [9]: Random Walking (RW), Route Travel-
ing (RT), Direction Traveling (DT), Staying Put (SP), View
Enhancing (VE), and Backtracking (BT). Each LPT has a
6D vector PMF that captures the probability of the agent
using each strategy over time. Independent realizations of this
distribution are generated at each time step and the agent’s
position is updated based on the strategy. For example, a LPT
with a probability of (RW, RT, DT, SP, VE, BT) = (3, 0, ¢,
%, 0, 0) has a 50% chance of random walking, a 17% chance
of direction traveling, and a 33% chance of staying put at a
given time step.

In a realization of the model, the initial and second position
of the agent z(1) € N? and z(2) € N? are selected as two

Fig. 4. The table in (a) lists the PMFs for each behavior strategy which are
defined by the 9 ordered positions of the 3 x 3 grid, shown in (b), representing
the agent’s location in body coordinates relative to the entire map.

adjacent cells. At each time step ¢, the velocity is computed
as v(t) = x(t + 1) — x(¢), and we use a smoothing factor
« to factor in the previous velocity to make the trajectories
more realistic. The updated position at each ¢ is computed as
z(t+1)=2—a)z(t)+ (a—1)z(t — 1)+ awv(t). Placing the
agent at the center of a 3 x 3 grid, in body coordinates, we
generate the next step by selection of one of the six strategies.
The PMFs for each behavior strategy, listed in Figure 4a, are
defined by the order of the positions (1,2, 3,4,5,6,7,8,9) for
the cells neighboring the agent, shown in Figure 4b. At each ¢,
an independent realization of the PMF is generated, defining
the strategy the LP will use to update its position z(t + 1)
and velocity v(t + 1). The model is iterated for T' time steps
to generate the agent’s entire trajectory.

B. Mobility

The length of each simulation, 7', is dependent upon the LP
mobility data from [9], given as CDFs of 25%, 50%, 75%,
and 95% quartiles for each LPT’s mobile time, with 50% as
the median. We take the mobility CDF for each LPT and fit
it with a Weibull distribution, defined as cdf = 1 — e~ (&)’
with a and b as fit parameters. Depending on the selection of
a and b, the distribution can mimic shapes from exponential
to Gaussian. Using MATLAB’s curve fitting toolbox, we find
the best fit parameters to define a Weibull PDF, that we then

sample to find the simulation lengths for each LPT.

C. Map

All possible trajectories for a LP are simulated on a map
generated from USGS geographic information system (GIS)
data. The data provides map layers at a given resolution, roads,
railroads, powerlines, trails, and water features. Along with
structural linear features, additional paths are derived from
elevation, such as drainages and mountain peaks, and are
visible as critical points in the magnitude of the gradient of
the elevation. After the gradient field’s magnitude is computed
and smoothed using the derivative of a Gaussian filter, linear
features are found using the Canny Edge Detection method by
locating edges in the local maxima and minima of the scalar
field. By including these terrain features, the model from [18]
becomes more realistic since landscape necessarily affects lost
person behavior [8]. In Figure 3a, the combined map layers
representing the linear features (grey lines) and inaccessible
areas (shaded blue) are shown over a satellite image of the
area.



(a) H.M. State Park

(b) Kentland Farms

Fig. 5. Showing in (a) a full pipeline test for the H.M. state park location with a 1.2km extent, and in (b) a full pipeline test for the Kentland Farms location

with a 1.2km extent.

In an actual search, searchers need to know the initial
location of the LP, whether it is the point last seen, given by an
eyewitness, or the last known point where there is substantial
evidence to place the subject. This point is called the initial
planning point (IPP) and measures the progress of the search.
In this model, the initial positions of the agent are assumed
to be the IPPs.

D. Behavioral profiles

For this work, we simulate one type of LP, a hiker, based
on the statistics from [9], [10]. A hiker was chosen due to
the large amount of data for its type. In order to fit a hiker’s
behavioral profile, all permutations of the six behaviors are
generated as LPT PMFs with each strategy weight as a multi-
ple of %. We have a set of 462 LPTs with varying proportions
of each behavior. Each LPT distribution is simulated for 100
iterations for each initial location. For each LPT and initial
location, the total distance covered is determined, allowing us
to compare the model performance when different behavioral
profiles are used. To evaluate the model, we use the Kullback-
Leibler (KL) divergence to compare the simulated data from
the model to the statistics from ISRID. Using statistics on
the distances from the IPP to each find location from [9], we
compute a database PMF and compare it to the model PMF
from simulation. For two discrete distributions P and (), the
symmetric KL divergence is defined as:

DskL(P || Q) = Z P(z)log (ggi;)+z Q(z)log (ggg)
zEX

reX
®)
where x € X are realizations of the distributions [30]. We can
use this measure of differences to show which model LPT fits
best with distributions from ISRID.

Using the KL divergence metric with the horizontal distance
from the IPP, we can find the best behavioral profile. For a
given initial position, the database CDF of horizontal distance
is resampled to match the size of the simulation data and both
the ISRID and simulation CDFs are numerically differentiated
to find PMFs. Then we interpolate both the model and
database distributions over their overlapping bins to ensure
that neither distribution has any zeros, which may cause the
KL divergence to go to infinity. The KL divergences are then
computed on these PMFs to compare the ISRID PMF to the

simulated ones, pairwise, allowing us to find the best fitting
model LPT for a hiker type.

E. Generating the occupancy map

Once the behavioral profile is determined for the hiker,
the model is initialized at an IPP and a probability field is
generated for the lost person over the search area. We run
100 replicates of the Monte Carlo simulation and generate
a probability distribution from the final locations of each
simulation. This is used as the occupancy map for the path
planning algorithm.

V. SIMULATIONS
A. Implementation

The components of our framework, LP model, human
searcher model, and GPU gradient-based optimization were
implemented in Python v3.6.8 and MATLAB 2020a. The
code used to generate all results shown is available at our
Gitlab', the ARCGIS layer information was generated with
AGS Tools.?

B. Background

For the coming simulated experiments, the parameters used
are shown in Table I. The terrain and features are generated
using real data from ARCGIS services.? In Table 1, 1 refers
to the learning rate in (7), 7 is the heatmap threshold, the
FOVs are the detection radii for UAVs and searchers. We are
comparing the LP model against the current SAR standard, the
ring model, as shown in Figure 3b. The ring mobility distance
values are listed in [9] for a typical lost hiker moving on hilly
terrain. Later we will compare the proposed method against
two other methods, basic lawn-mower sweeps (the Sweep
method) and manually controlled drones (the RC method).
In the sweep case, the UAV team traverses the environment
in a set number of passes, with fixed height independent of the
human searchers. The sweep case provides a comparison to a
more brute force approach to searching. In the RC case, UAVs
hover above searchers at a fixed height, due to the pilots’ need
to remain within line of sight.

IGitlab link text: https:/git.caslab.ece.vt.edu/hlarkin3/planning_llh_bgc
2AGS link text: https://git.caslab.ece.vt.edu/hlarkin3/ags_grabber
3The majority of layers were derived from https://hydro.nationalmap.gov
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Tihin Tmax: (—600, 600)m Sweep Alt. : 15m
Ymin: Ymax' (—600, 600)m Opt. lter. : 100 epochs
n: 5 lo: 5 x 105
ap: 1x 107 ag: 1x 10°
e 25 v 5
N (UAVs): {1,2,3,4,5,6} 'S (Searchers): {1, 27
o 0.55 T 850
MC Reps 100 P type : hiker
UAV FOV: 5m S. FOV: 10m
Train Batch %: 0.90 Test Batch %: 0.10
Ring Mobi.: {0.6,1.8,3.2}km T 0.2
S. Sweep # 3 UAV Sweep # 1
H.M. Park Lat: 36.891640 H.M. Park Lon: —81.524214
Kentland Lat: 37.197730 Kentland Lon: —80.585233
TABLE I

SIMULATION PARAMETERS

We chose the Hungry Mother (H.M.) state park in Smyth
County, VA as a test location because SAR practitioners
frequently use the area to perform mock search training
exercises. The park also presents a varied foothill environment
with linear features and bodies of water. The second location
is Kentland Farms, VA which was chosen as a flatter environ-
ment with fewer roads, for comparison. For the lost person
model, we find a best fit behavioral profile for the simulated
searches in each location. The profiles for H.M. and Kentland
are (%, %, 0,0, %, %) and (0,0, %, %, 0, %), respectively.
C. Qualitative Results

Comparing the heatmaps generated via the LP model to
the state-of-the-art ring model demonstrates the value of a
dynamic LP model. In Figure 3b, the final locations are based
on a specific behavior profile, and they are contained in a
dramatically smaller area, as compared to the ring model.
This improved specificity comes from the LP model taking
into account the surrounding landscape and linear features,
whereas the ring model is based solely on the distance from
the IPP. The improved situational awareness afforded to the
path planning algorithm from this model allows for more
effective allocation of searchers.

Two example scenarios are shown in Figure 5. The terrain
is displayed as a surface, upon which the LP heatmap is
shown as the surface color. In addition to the heatmap, the
terrain features are plotted on the surface as light blue lines
and red polygons, indicating linear features and inaccessible
areas respectively, and the IPPs are plotted as orange dots.
In Figure 5, the UAV paths indicate effective planning in 3
dimensions as shown by the UAVs covering high probability
points while controlling altitude. Note that the green UAV
path in Figure 5b is drawn towards the high probability areas
of the LP heatmap, whereas the blue UAV path is covering
many less probable locations at a higher altitude. This clearly
demonstrates that risk is being mitigated and the search task
load is being distributed.

D. Quantitative Results

To evaluate the proposed method, we compare the risk
metric and path length of all solutions. See Figure 6 for results
from the risk metric in (6), where a lower value indicates lower
cost. Each entry in the comparison plots was averaged over 10
iterations and the error bars indicate 1 standard deviation.
The scale of plots in Figure 6 is due to weighting terms used

UAV Team Size (N)

(a) Objective functional, H.M.

UAV Team Size (N)

(b) Objective functional, Kentland

Fig. 6. Showing objective function costs under increasing UAV team sizes
for the two locations. The solid lines indicate the overall cost value while the
dashed lines show the length cost contribution.

in objective functional (6) (see Table I) which are necessary
to match the scale of the risk metric itself.

By the comparisons shown, clearly the optimized case
performs best for all team sizes examined. As expected the
naive methods, sweep and RC, perform significantly worse in
overall cost, and note the major contribution of path length.
In the optimized case, the overall cost remains fairly constant
for both locations as each additional vehicle reduces the risk
cost but also increases the path length cost. The specific
performance of each case is highly location based, as shown
in Figure 6b at N = 6 when the overall cost of the optimized
case decreases due to the environment becoming saturated
with aerial agents.

In the proposed method, the risk is maintained at a sig-
nificantly lower level than all other cases whilst incurring a
fraction of the path length penalties. This outcome is achieved
by complementing searchers’ efforts and controlling altitude
effectively, balancing FOV and quality of measurement. The
scenarios considered here are reasonably consistent with how
searches are currently performed within the SAR community
[4], and the results in Figures 6a and 6b indicate that using
autonomous aerial agents, here modeled as UAVs, can greatly
improve the effectiveness of search missions via risk mini-
mization.

VI. CONCLUSIONS

In this work, we presented a framework to plan paths for
autonomous UAVs to complement human searchers and im-
prove situational awareness during a SAR scenario. Included
in the framework are models of dynamic LP motion given en-
vironmental factors, anticipatory human searcher models, and
expected measurements from an aerial fixed FOV sensor. We
used a probabilistic risk metric to optimize UAV trajectories
and assess performance in reference to typical SAR practices.
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