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Abstract:  

This study investigates the application of an artificial neural network to predict the complex dielectric 
properties of granular catalysts commonly used in microwave reaction chemistry. The study utilizes finite 
element electromagnetic simulations and two-dimensional convolutional neural networks to solve for a 
large solution space of varying dielectrics. This convolutional neural network was trained using a 
supervised learning approach and a common backpropagation. The frequency range of interest was 
between 0.1 – 13.5 GHz with the real part of the dielectric constants ranging from 1 – 100 and the 
imaginary part ranging from 0 – 0.2. The network was double validated using experimental data collected 
from a coaxial airline. The model was demonstrated to convert either experimental or computational 
derived scattering parameters to complex permittivities.  
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Introduction 

With recent advances in dielectrics and their synthesis techniques, there has been a need to 
increase the fidelity of inverse models to predict the dielectric properties of materials based on a 
measurable observable. In most cases and in the case of this study, these observables are scattering 
parameters derived from coaxial transmission line testing of the dielectrics. Having confidence in the 
measurement of a material’s dielectric properties is important for fundamental device design in the fields 
of microwave engineering. It is hypothesized that a machine learning (ML) approach could be designed 
for transforming scattering parameter derived from experimental measurements to permittivity 
properties for the entire range of dielectrics materials, providing a general model. This research will rely 
on the use of electromagnetic computational solutions to generate synthetic data to train the ML model.    

At GHz frequencies, the electromagnetic (EM) interactions are quantized by a material’s dielectric 
properties or the dynamics of dipole interactions. The dielectric constant of a material is the ability of the 
material to store electrical energy.  While the loss tangent of a material is a quantification of the energy 
loss. The complex dielectric is defined as εr= ε’-iε”, where ε’ is the real portion and ε” is the imaginary 
portion.  For microwave material engineering, the characterization of material dielectrics as a function of 
frequency and temperature are critical to understanding the response. Dielectric properties can often be 
difficult to ascertain for granular materials as the shape and distribution influence the polarizability and 
subsequently the dielectric response (Zangwill 2013),(Bussey 1967).  

To date, the characterization of these properties has been done using a multitude of inverse 
mathematical techniques. Many of the techniques require initial guesses to avoid discontinuities arising 
from the resonance of the system (Nicolson & Ross 1970; Blakney & Weir 1975; Yaw 2006) . Schwab et al. 
have recently shown what a powerful tool that machine learning can be for solving inverse problems using 
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latent information in high dimensions (Schwab et al. 2019). Recent computational advancements in the 
ability to conduct large numbers of permutations of solutions with high accuracy have ushered in the 
potential to revisit many of these inverse methods using a machine learning approach. By utilizing the 
inverse space of a problem Sahoo et al. showed that machine learning could be used to understand 
functional relationships between data to extract underlying equations showing great agreement with the 
paper published by Schwab et al (Sahoo et al. 2018). Moreover, Zhao et al. showed that machine learning 
methods could be applied to a wide verity of microwave device modeling techniques, both of active and 
passive devices achieving efficient and fast characterization(Zhao et al. 2013).   

The complexity of many dielectric materials such as in the case in microwave chemistry and the 
use of heterogeneous (multi-component, macroscopic, granular) catalysts leads to inaccuracies in 
dielectric constant calculations, steaming from non-standard synthesis procedural approach and 
therefore high dimensionality of inverse space. In Mueller et al.’s review of current machine learning 
approaches in materials they establish how supervised learning techniques like the one used in this paper 
have achieved excellent structure-property predictions (Mueller et al. 2016). The most direct method of 
determining an observable-property relationship, in the case of this study for the complex dielectric 
properties, are from calculations based on scattering parameters (S-parameters). Multiple measurement 
techniques utilize S-parameters, such as a rectangular free-space waveguide, open-ended probe, free 
space, resonant cavity, parallel plate and coaxial precision airline (Baker-Jarvis et al. 1992; Bois 1999; 
Geyer et al. 2005; Zangwill 2013). These different methods utilize different inverse techniques such as 
Nicholson-Ross-Weir (NRW), NRW polynomial, The National Institute of Standards and Technology (NIST) 
Iterative, NIST non-iterative, and the short circuit line (SCL) methods (Nicolson & Ross 1970; Yaw 2006; 
Bartley & Begley 2010). All these techniques suffer from intrinsic errors such as the need to de-embed the 
void space within each testing apparatus as well as mathematical discontinuities that must be eliminated 
or ignored. 

Artificial neural networks (ANNs) and convolutional neural networks (CNN) are a subset of 
machine learning that lend themselves well to material science problems. The usage of these networks 
has been steadily on the rise over the past decade, with more and more studies investigating the 
possibilities of ANNs to map non-linear relationships (Nigrin 1993). ANNs are part of the biologically 
inspired computational techniques used in different artificial intelligence applications (Scott et al. 2007; 
Raff et al. 2012). ANNs have been used in many applications of chemistry, material science, and 
microwave engineering (Yasin et al. 2020; Raff et al. 2012). In Li et al.’s paper they proved that machine 
learning models are more accurate than traditional linear and non-linear statistical regression methods 
when dealing with high dimensional inputs (Li & Yuan 2017). This advantage of machine learning 
algorithms only increases as the dimensionality and non-linearity of the relationships increases (Guo et al. 
2002; Agostinelli et al. 2015; Li et al. 2017). 

 Machine learning models and ANNs, in particular, have recently been used in the literature to try 
and relate complex geometric parameters or certain material characteristics to dielectric constants (Scott 
et al. 2007; - et al. 2013). However, Tuck and Coad (Tuck & Coad 1995) showed that ANNs can be used to 
calculate the dielectric properties of liquids directly from the S-parameters using a coaxial probe method 
without the need for de-embedding the data first. By calculating the dielectric properties directly from 
the recorded S-parameters without needing to de-embed the data in the time domain Tuck and Coad 
were able to achieve a significant reduction in the intrinsic error. This was because the ANN was able to 
capture the realities of the non-ideal system by training the ANN on vectors of reflected coefficient data 
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and correlating that to the permittivities of the substance being studied. This method avoided the need 
for any parametric models of the cable such as those used by Stuchly et al. in their attempt to solve the 
inverse problem (Gajda & Stuchly 1983).  

Chen et al. (Chen et al. 2011) demonstrated that this same de-embedding approach was suited 
for different geometries. More importantly, Chen et al. were able to show that finite different time-
domain (FDTD) simulation data can be used to accurately train an ANN for prediction on experimental 
data. They even postulate that this method would work for granular materials and at high temperatures. 
These ANNs however, were limited in scope to only liquids due to both the computational restrictions of 
the time and method chosen to solve the inverse problem. The probe method that Tuck et al and Chen et 
al utilized only looks at the non-linear and complex relationships between a single observable, reflected 
coefficient of the scattering parameters (S11) and the dielectric properties. In more advanced 
measurement techniques utilizing different methods such as the coaxial airline, in which two observables, 
S11 and S22 are utilized it is believed more accurate results are possible. Regardless the results of both 
studies were fast and extremely accurate calculations of dielectric properties of a combination of different 
liquids.   

This study investigates and implements a machine learning algorithm for the use of calculating 
the dielectric properties of solid materials in a coaxial airline using the observable parameters S11 and 
S21. This approach like Tuck and Coad’s will allow for the calculation of the dielectric material to take 
place directly from the measured S-parameters without the need to de-embed the air in the coaxial airline. 
Thus, simplifying the mathematics and intrinsic error. The approach is to use supervised learning to teach 
and validate an algorithm using simulated S-parameters and dielectric data. The advances in modern 
computational power allow for high fidelity simulated data for almost all feasible combinations of this 
observable-property relationship.  

Once trained the CNN model is validated on experimentally collected S-parameters for known 
dielectric materials. This approach was selected because of the precise control of the input and outputs 
being used in training the system and its reproducibility as well as its ability to capture a large portion of 
the solution space. The system attempts to achieve increased accuracy over previous models by utilizing 
the additional input parameters available when testing in the coaxial airline. The previous studies were 
only able to utilize the reflected coefficient of the S-parameters (S11) because of the limitations of the 
coaxial probe method. The coaxial airline method provides both the forward and reflected coefficients of 
the S-parameters (S11 and S21).  

The methodology for this study is to generate simulation solutions for a wide variety of dielectrics. 
In addition to varying the dielectric properties in the simulation, the specimen length within the coaxial 
line was also varied. It is postulated that for any sample length and dielectric constant there exists a unique 
set of inputs (S-parameters) that generate that solution for a given testing geometry. This would allow the 
ANN method to be length invariant, a considerable advantage over the precise length measurements 
needed by some of the classical measuring techniques. By teaching a machine learning algorithm these 
relationships based on multiple conversion methods a more robust and accurate solution can be obtained 
than previously existed. Utilizing the simulation results with machine learning can potentially result in a 
much faster and less computationally intensive solution methodology. Together these techniques can 
provide a new solution method for converting S-parameters to dielectric properties.  

1. Classic Measurement Methods 
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The most common conversion model for S-parameters to dielectric properties is the NRW method 
as it gives information on both the electric and magnetic properties of a material. The NRW provides a 
direct calculation of the dielectric properties from the S-parameters. This method utilizes the S11 and S21 
parameters which are the amplitude and ration of the electric field that is reflected and passed through a 
material respectively (Yaw 2006). It is a very robust method that can solve for the dielectric properties of 
many different types of materials. The popular Keysight vector network analyzer utilizes this approach as 
the standard option when calculation dielectric properties. However, the main drawback to this method 
is that the solution diverges at frequencies of integer multiples of ½ wavelength for low loss materials. 
This leads to this method performing better with shorter samples (Nicolson & Ross 1970; Blakney et al. 
1974).  

Another extensively used method in literature is the NRW polynomial method, this method takes 
the NRW conversion method and fits a polynomial to the dielectric properties. This eliminates the 
discontinuity peaks at ½ wavelength but turns the entire solution into a close approximation rather than 
a high precision measurement (Bartley & Begley 2010). NIST iterative conversation method is another 
method for calculating the dielectric properties that utilize the Newton-Raphson’s root finding method to 
calculate the dielectric properties. This method avoids the discontinuities that happen when using the 
NRW method by requiring a good initial guess and is good for long samples and low loss materials (Yaw 
2006). Without a good initial estimate, the solution will diverge and/or be highly inaccurate. The NIST 
iterative method also assumes that permeability is equal to unity making it applicable for only 
nonmagnetic materials (Geyer et al. 2005).  

The other NIST method is a non-iterative method that closely resembles the NRW method but 
assumes the permeability is equal to unity. Unlike many of the other methods, there are no sample length 
criteria for this method any arbitrary sample length is acceptable (Yaw 2006). The biggest drawback to 
this method is the smaller scope of materials it can measure because of the non-magnetic assumptions 
(Geyer et al. 2005). A unique measurement method among transmission line measurements of S-
parameters is the SCL method. Calculations are performed using only the S11 parameter and accurate 
sample positional information to calculate the complex dielectric properties of a material. The SCL method 
uses Newton-Raphson’s numeric approach to calculate dielectric properties. The simplicity of the inputs 
for this method makes it suited for broadband measurements and long samples with low loss. Like all the 
methods but the NRW methods the SCL method also assumes a permeability equal to one (Yaw 2006).  

 

2. Computational Details 
2.1 Material Dataset Generation 

The calculations from S-parameters for varying dielectric properties were determined using a 
finite element (FE) EM wave modeling software COMSOL Multiphysics® (COMSOL AB). All solutions were 
solved in the frequency domain, using the finite element frequency domain (FEFD) approach. While it is 
beyond the scope of this study to elaborate on the advantages of FEFD method over an FDTD method, 
the advantage is two-fold. First, the FE approach is an implicit technique that relies on a energy 
minimization method while the FD involves a explicit stability criterion dependent on the mesh 
characteristics. Second, by solving in the frequency domain the computational time is significantly 
reduced by eliminating time-stepping criteria. While these advantages do not apply to all problems, 
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especially large (time and spatial) non-linear problems, the frequency domain was appropriate for the 
following 2D axis-symmetric linear (steady state, non-temperature dependent properties) study.  

Using the FEFD model a series of parametric sweeps of both the real and imaginary portions of 
the dielectric properties was performed to encompass most naturally occurring dielectric materials. 
Properties were swept from a real dielectric constant of 1 to 100 in increments of 0.5 while the imaginary 
portion of the dielectric properties were varied from 0 to 2 in increments of 0.05. These parametric 
sweeps were done in conjunction with a  gradually increasing sample length. The length of the sample 
was increased from an initial 10 mm to 50 mm in 1 mm increments. These dielectric properties were 
evaluated in correspondence with a frequency range of 0.1 to 13.5 GHz at 51 equally spaced points. The 
computational model was set up to represent a real world two-port vector network analyzer by means of 
a high precision coaxial airline of length 150 mm. The airline is modeled based on the experimental airline 
used for validation. The coaxial airline is an HP model no. 85051-60010 with a 0.70 cm diameter. 

A 2D axis-symmetric FE model was constructed, which represented the 150mm coaxial airline that 
is used in the experimental measurement setup. Figure 1 is an illustration of the coaxial airline modeled 
with the FE solver software. The walls of the airline, as well as the center electrode, were assumed to be 
perfect electrical conductors. Due to the axis-symmetric assumption, it is assumed only a 2D 
representation of a slice in the +r and +z directions needed to be constructed. The plane was partitioned 
at an initial z=10 mm to form to material regions increasing after each full parametric sweep. The region 
between z=0 mm and z=10-50 mm will be defined as the sample region. The remaining will be assigned 
air (vacuum, εr=µr=1). Two ports were defined at extremes in the z-dir. Port 1 was defined at z=150 mm 
and Port 2 was defined at z=0 mm. A coaxial boundary condition (TEM mode) was specified for both ports. 
The scattering parameter was measured at both port planes without the de-embedding of the void air 
space, as would be representative of experimental measurement where de-embedding has taken place 
during the calculation of the dielectric properties from the S-parameters observed at the ports. Figure 1B 
is a contour plot of the radial electric field (Er) at 13 GHz and 1W of input power at Port 1. For the 
remainder of the study, 0.1W will be used as the input power with the understanding that 1) material 
properties are linear and are not changed by field strength or temperature, 2) scattering parameters are 
a function of normalized power, and 3) the experimental network analyzer will utilize much lower port 
power. The color contours of Figure 1B and the inset image confirm the radial electric field is synonymous 
with a TEM mode. 

2.2 Artificial Neural Network Implementation 

The ANN was developed using open-source TensorFlow developed by Google in python for ease 
of implementation with all data scaled to be within the same power factor. The ANN used two different 
approaches one in which all 5 input features of, frequency, the magnitude of S11 and S21, and the phase 
in radians of S11 and S21 were studied independently of one another. This first approach would allow for 
researchers to get discrete answers at any frequency point independent of the solutions to previous 
frequencies. The other approach was to look at all the inputs for a given dielectric at once, in this case, all 
51 data points from 0.1 to 13.5 GHz. This second approach attempts to pull the latent information that 
exists in the transition between wavelengths to achieve a better characterization across the whole 
frequency range. The data was broken down into 3 different sets 60% was allocated to training data, 20% 
to validation data, and 20% to test data. With the experimental data being kept separate until a suitable 
algorithm had been created. This breakdown allows the algorithm to be tested on unseen data ensuring 
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that it was not overfitted to the training and validation data before it was tested on experimental data. 
To achieve the ideal performance of this network multiple different loss functions were looked at as well 
as different combinations of the number of neurons and number of hidden layers. Different regularizes 
were investigated to help encourage convergence. These different combinations were evaluated using 
the mean squared error (MSE) and the mean absolute error (MAE).  

To ensure optimization of these parameters the ANN utilized the ReLU activation function and the 
Adadelta optimizer. The network also introduced Gaussian noise into the training data to represent real 
world errors in experimental setups. The ReLU activation function was chosen because of its proven ability 
to represent sparsity (Li & Yuan 2017; Ramachandran et al. 2017). Sparsity is useful in ANN because of its 
ability to imitate a biological neural network. Sparsity in an ANN allows for models to have better 
predictive power with less noise and overfitting by encouraging neurons to only process meaningful 
aspects of the problem (Agostinelli et al. 2015; Ramachandran et al. 2017). In the work by Maas et al. 
(Maas et al. 2013) and Narang et al. (Narang et al. 2017), they demonstrated that increased sparsity 
helped to improve an ANNs training performance and reduce computational time for several problems.   

 The Adadelta optimizer is a gradient descent method that utilizes a dynamic updating system. The 
system adapts using first-order information and stochastic gradient descent which reduces its 
computational cost over many of the other optimizers available (Zeiler 2012). One of the key advantages 
of this optimizer for the ANN system of interest is that it requires no human training of the learning rate 
and can handle training data that may have lower signal to noise ratios. These two hyperparameters were 
chosen after some initial data testing and held constant for the remainder of the study. The first scheme 
when considering frequency points independently employed, two convolutional layers, and two fully 
connected layers. The second scheme in which an array of frequency points is used employed, two 
convolutional layers, one max pooling layer, and two fully connected layers. 

2.3 Experimental Data Collection Method 

Data was collected on a Teflon (PTFE) plug, replicating the standard NRW test that validated their 
measurement model. To take a measurement the sample was loaded into the airline with the center 
electrode in place, as shown in Figure 2A. All interfaces between the airline and cables were thoroughly 
cleaned using isopropyl alcohol and dried using dry compressed air. Each test was conducted with a 
frequency range from 0.1 to 13.5 GHz. The scattering parameters were recorded at 51 equally spaced 
points within this range. The relative dielectric constant for each point was calculated using the NRW 
method. All measurements reported in the study were conducted using a 0.70 cm diameter coaxial airline 
(HP model no. 85051-60010), as shown in Figure 2A, and connected to a Keysight N5231A PNA-L 
microwave network analyzer shown in Figure 2B. 

3. Results and Discussion 
3.1 Correlation Analysis Method 

The simulation derived dielectric datasets consisted of several million values with real portions of the 
dielectric constant (ε’) ranging from 1 to 100 and the imaginary portion of the dielectric constant (ε”) 
ranging from 0 to 2. The corresponding inputs of S-parameters include the magnitude and phase of S11 
and S21. Because the system is symmetric S11=S22 and S21=S12 and therefore only S11 and S21 are 
necessary. To create an efficient and accurate machine learning model a statistical analysis of the input 
features needed to be performed to determine their significance on output targets. Strong correlations 
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can be both good and bad for ANNs, strong correlations can help to reduce the number of input features 
needed for the network. However, these correlations can also skew the network towards harmful bias 
creating multicollinearity with a single input and the target feature. Resulting in small changes to the input 
data leading to large changes in the model output. To check on these traits a Pearson correlation was 
performed between all the input features and the output targets (Mittlböck & Schemper 1996). Table 1 is 
a summary of the correlation between the inputs and outputs. With a 1.0 meaning a very strong positive 
correlation and a -1.0 corresponding to an inversely related correlation. The scattering parameter 
magnitude is denoted as |S11| and |S21|. The associated phase angle of the scattering parameter is 
denoted as ∠S11 and ∠S21. 

As seen in Table 1 the magnitudes of S11 and S21 are strongly correlated to the real part of the 
dielectric constant. The features that correlate linearly to a dielectric constant are the magnitude of the 
wave that is reflected from a material and magnitude of the same wave that passes through the material. 
This correlation of magnitudes is expected since the real part of the dielectric constant is the ability of a 
material to store energy. It is noted from Table 1 that there is no linear correlation between the phase 
angle and the magnitude of scattering parameters. There is also a lack of correlation between the phase 
angle and the dielectric constant. While this is correct for the assumed linear materials and constant 
sample geometry (plug length) some caution must be taken with this correlation. If the phase angles of 
the scattering parameters were eliminated it would make this system highly linearly correlated to the 
magnitude of the scattering parameters. This would result in poor system performance as small changes 
in the magnitude of the scattering parameters would have larger effects on the output of the system 
(dielectric properties). CNN's are uniquely suited to this type of problem because not only do they perform 
their calculations in high dimensionality, but they use convolutional math applied over the input data. 
Therefore, the inclusion of the phase angle allows the network to eliminate its dependence on the 
magnitude of the scattering parameters as seen in other multi-layer perceptron networks.  

To achieve a more extensive understanding of the different relationships between input features and 
output targets joint plots were created for each input. These are shown in Figure 3A-D where the entire 
spectrum of dielectric properties as a function of the inputs. The darker regions of the contour plot 
representing a stronger correlation. From these plots, a better understanding of the correlation 
coefficient from Table 1 can be gained. The strong positive and negative correlation for the magnitudes 
of S11 and S21 can be seen in Figures 3a and 3b. However, the figure illustrates that there is a direct effect 
on correlation based on the magnitude of the dielectric properties (|S11| and |S21|). Lower dielectric 
constants (ε’<20) express little to no correlation between the input parameters and the output. While 
high dielectric constants (>40) show an increasingly strong correlation between the inputs and the output 
as the dielectric constant approaches 100. This growing correlation will provide a unique challenge to the 
design of the ANN architecture as traditional approaches to strong and weak correlation architecture will 
be insufficient to capture the unique relationship. It can be seen from Figure 3C and 3D that while a 
Pearson coefficient of zero indicated no relationship between phase and the imaginary portion of the 
dielectric, there does in fact exist regions in which these two parameters are corelated.  

4. Results 
6.1 ANN Results 

The trained neural network was used to predict on randomly generated test data that the ANN was 
not explicitly trained or validated on. Multiple models with a varying number of convolutional layers, 
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hidden layers, neurons, and loss metrics were evaluated for their applicability in the calculation of the 
complex dielectric properties. Each test was run for 500 epochs to allow for convergence to an optimized 
set of weights and used the Relu activation function along with the adadelta optimizer. The training set 
used in the network had a mean dielectric constant of 50.4 and a standard deviation of 28.6 while the test 
set had a mean of 50.8 and a standard deviation of 28.7. This similarity confirms that the test datasets 
contains a good representation of the whole dataset. Demonstrating that the data was well randomized 
and ANN performance was not due to the selection of a certain sub-dataset. 

Considering the first approach where each frequency point is considered independently, Figure 4A is 
a plot of the results of the CNN outputs for the dielectric constant plotted against the actual dielectric 
constant recorded from COMSOL. The statistical results of the network showed an MSE of 0.25 and a MAE 
of only 0.36, meaning that there were no range of dielectrics or parts of the frequency spectrum that the 
network could not learn. The network was also able to achieve an MSE and MAE of 0.001 and 0.03 
respectively on the imaginary portion of the dielectric. It is noted however, that as dielectric constant 
increases there exist a larger divergence of the predicted values against that of the actual values.  

A comparison between Figure 4A and Figure 3A and B illustrates this, due to the adverse relationship 
between how strongly input and output features are correlated, the predictive accuracy of the ANN starts 
to degrade because of an increase in multicollinearity. As dielectric constant approaches, 100, and the 
correlation between the magnitudes of S11 and S21 show a much stronger relationship the predictive 
accuracy of the ANN goes down due to the strong dependence on a single input parameter. This 
multicollinearity is unfavorable at high dielectric constants where variables can be linearly predicted from 
the others with a high degree of accuracy resulting in erratic responses to small changes. The strong 
correlation skews the values of predictions with small changes in the weight resulting in larger responses 
in the output neurons. At smaller dielectric constants were the predictive accuracy of the ANN is much 
greater showing little scattering from the regression line. 

The second approach results where the entire frequency spectrum is used as an input to the CNN are 
shown in Figure 4B. As with the results shown in Figure 4A, the network can accurately predict the 
dielectric constant for all values looked at in this study. However, a comparison of Subfigures 4A and 4B 
confirms that this second approach has a much smaller spread of predictions, especially at high dielectrics. 
Statistically, the results between these two approaches are very similar to this approach having an MSE 
of 0.430 and an MAE of 0.511 for the real portion of the dielectric. While the imaginary portion had an 
MSE of 0.002 and MAE of 0.035. It can be seen that the second approach while limited to frequency 
independent dielectrics results in a higher accuracy across a wider range of dielectrics.  

6.2 Experimental Data Results 

To validate that the ANN architecture that was selected could be used in future applications 
experimentally collected data needed to be tested on it. This was accomplished using a Teflon piece of  
44.45 mm in length and machined to fit the high precision coaxial airline. The validation metrics used 
previously in this study were performed on the dielectric constant of the Teflon piece as well as other 
dielectric properties such as the loss tangent. The scattering parameters from the Teflon piece were 
evaluated using the different CNN approaches. The pre-trained ANN was loaded into python as a json file 
with the weights saved as an h5 file. The Teflon’s scattering parameters were evaluated over the 
frequency range and compared to the NRW results for evaluation. The performance of ANN at predicting 
the dielectric constant and the loss tangent of the Teflon is shown in Table 2, once again the system was 
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evaluated using the MSE and MAE. The equation for loss tangent is shown in Equation 1, epsilons are the 
associated components of the complex dielectric. 

 
tan(𝛿𝛿) =

ε′′
ε′

 

 

Eq. (1) 

 

5. Conclusions and Recommendations 

A machine learning ANN has been designed that predicts the dielectric properties of any material 
inside of coaxial airline geometry using only the standard inputs of S11 and S21. With either method 
discussed in this paper showing excellent results. The system showed exceptional performance on training 
datasets and experimentally collected datasets. Input data required very little prepossessing, with scaling 
being the only numeric manipulation done to the datasets. This study shows that with a high-fidelity 
model of a given geometry an ANN can be created on computational data that will allow the prediction 
of dielectric properties without the need to de-embed air. It should be noted that as the dielectric 
constant increased the ANN had a harder time predicting. This problem could be eliminated using a 
filtering system with multiple downstream neural networks that train on smaller ranges of data to increase 
accuracy within ranges of interest.  

As part of a larger project, the ANN developed here can help to form a vital link between in-situ 
reactions in the microwave regime and real-time characterization of EM wave material interactions. The 
methodology can be extremely helpful in characterizing things such as microwave catalysts in real-time 
to further the study of catalytic materials.   
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 |S11| |S21| ∠S11  ∠S21  ε’ ε" 

|S11| (Input) 1.0 --- --- --- --- --- 

|S21| (Input) -0.9 1.0 --- --- --- --- 

∠S11 (Input) 0.0 0.0 1.0 --- --- --- 

∠S21 (Input) 0.0 0.0 0.0 1.0 --- --- 

ε’ (Output) 0.8 -0.9 0.0 0.0 1.0 --- 

ε" (Output) 0.0 -0.2 0.0 0.0 0.0 1.0 

Table 1. Correlation matrix for input and output parameters. Values range from -1 to 1. Negative values 
are associated with inverse correlation.  
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 MAE Model 1 MSE Model 1 MAE Model 2 MSE Model 2 
ε' 0.24 0.22 0.56 0.66 

tan(δ) 0.19 0.16 0.59 0.64 

Table 2. Comparison of the predicted dielectric properties with experimentally determined dielectric 
properties of Teflon. The experimental values are based on NRW method with ε' = 2.16 and loss 
tangent = 0.0007. MSE=mean squared error and MAE=mean absolute error. Model 1 is associated 
with the Figure 4A and Model 2 is associated with Figure 4B. 
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Figure 1. Illustration of the axis-symmetric coaxial airline model with a 10mm dielectric sample 
embedded within the airline. Subfigure A is an illustration of the geometry of the 150mm coaxial 
airline. Subfigure B is a contour plot of the radial electric field (Er) at 13.0 GHz@1W with a 3:2 
CeO2:Parafin 10mm plug. Contours visually confirm a TEM standing wave within coaxial transmission 
line. 
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Figure 2. Photographs of the experimental coaxial airline and network analyzer. Subfigure A is a 
photograph normal to the port plane with a Teflon (dielectric) plug within the airline. Subfigure B is 
the coaxial airline connected to a network analyzer. 
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Figure 3. Collection of correlation density maps that are associated with Table 1. These plots provide 
a qualitative understanding of correlation between input features and output targets. Subfigure A 
illustrates a strong positive sloping correlation. Subfigure B illustrates a inverse correlation.  Subfigures 
C and D illustrate weak correlation between phase angle and imaginary dielectric properties. 
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Figure 4. Plots of the predicted dielectric versus the actual dielectric. Figure A is the ANN 
results based on training each dielectric and frequency independently. Figure B is the ANN 
results based on training with dielectric associated with an array of frequency ranging 0.1 to 
13.5 GHz. 

 


