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Abstract:

Mathematical models of biomolecular networks are commonly used to study mechanisms of
cellular processes, but their usefulness is often questioned due to parameter uncertainty. Here,
we employ Bayesian parameter inference and dynamic network analysis to study dominant
reaction fluxes in models of extrinsic apoptosis. Although a simplified model yields thousands of
parameter vectors with equally good fits to data, execution modes based on reaction fluxes
clusters to three dominant execution modes. A larger model with increased parameter
uncertainty shows that signal flow is constrained to eleven execution modes that use 53 out of
2067 possible signal subnetworks. Each execution mode exhibits different behaviors to in silico
perturbations, due to different signal execution mechanisms. Machine learning identifies
informative parameters to guide experimental validation. Our work introduces a probability-
based paradigm of signaling mechanisms, highlights systems-level interactions that modulate
signal flow, and provides a methodology to understand mechanistic model predictions with
uncertain parameters.
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Introduction

Many biological processes can be represented as networks of interconnected biochemical
components enabling the study of their dynamics and signaling mechanisms (Jordan, Landau
and lyengar, 2000; Bonneau, 2008; Janes, Reinhardt and Yaffe, 2008; Weerts, Van den Hof and
Dankers, 2018). These analyses typically entail building a network, either from prior knowledge
or through network inference, developing a mathematical model of the network interactions,
and subsequently calibrating the model to experimental data (Jagaman and Danuser, 2006;
Raue et al., 2011; Shockley, Vrugt and Lopez, 2018). Although small networks have been
studied with great success, the fact remains that for large networks many parameters remain
difficult to ascertain and optimization routines yield multiple parameter sets that reproduce the
protein concentration trajectories equally well (Ryan N. Gutenkunst et al., 2007; Eydgahi et al.,
2013; Mitra and Hlavacek, 2019). This has led to a common practice whereby one or a few
parameter vectors are chosen to make mechanistic predictions which can be validated by
experiments with varying degrees of success (Janes et al., 2005; Albeck et al., 2008; Becker et
al., 2010). However, criticisms remain regarding the usefulness of large and complex
mathematical models of cellular processes with many uncertain parameters.

Information Theory based methods (Shannon, 1948) have been one of the successful
approaches to date to explain input/output responses of intracellular signaling pathways
(Cheong et al., 2011; Brennan, Cheong and Levchenko, 2012; Levchenko and Nemenman, 2014;
Suderman et al., 2017; Shockley et al., 2019). These approaches cast signal transduction in
terms of channel capacities — the maximum amount of biochemical information that can travel
from an input stimulus to an output response. These analyses have revealed that the maximum
channel capacity of a biochemical process is context dependent and could require the
cooperativity of multiple cells to achieve actual information transfer (Suderman et al., 2017).
Previous work also applied information theoretic analysis to an allosterically regulated network
and observed that the preferred path for information flow through the network was highly
dependent on substrate concentrations (Shockley et al., 2019). Although these insights have
been valuable to advance our understanding cellular regulatory processes, questions still
remain about how reaction rates from non-equilibrium dynamics modulate signal flow in a
biochemical network and further how these transient dynamics are impacted by parameter
uncertainty.

Analysis of execution patterns in biochemical networks necessarily implies a detailed
understanding of instantaneous fluxes throughout the system. However, reaction-flux based
analysis is particularly challenging due to multiple concurrent biochemical interactions and their
associated reaction rate fluctuations in time (Nobeli, Favia and Thornton, 2009). Therefore, the
number of interactions and temporal dynamics makes it difficult to establish whether persistent
behaviors emerge from myriad biochemical reactions. Recent works in Tropical Geometry and
Ultradiscretization Theory have proposed a mathematical formalism that makes it possible to
map continuous functions into piecewise linear meshes in the Ultradiscrete space (Kato,
Tsujimoto and Zuk, 2017a). Approaches inspired in these novel mathematical treatments have
been used to guide biochemical model reduction and simplification (Noel, Grigoriev and
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72  Vakulenko, 2011). For this work, we hypothesized dynamic analysis using these methods could
73  enable us to identify dominant fluxes in a dynamic biochemical network, identify patterns of
74  execution, and explore their dependence on model parameters. We reasoned that we could
75  cast this analysis onto a Bayesian probability framework to assign statistical weight to the
76  identified execution patterns, thus providing a novel statistical interpretation to cellular
77  reaction mechanisms.
78
79  The remainder of the article is organized as follows. We first show how Bayesian inference of
80 model parameters can yield tens of thousands of parameter vectors that all reproduce an
81 experimental data set equally well. We then introduce a method, inspired in Ultradiscretization
82  Theory and Tropical Algebra, to define a dynamic signal execution fingerprint, which can then
83  be used to cluster execution modes according to model parameters. Surprisingly, we find that
84  despite the thousands of parameter vectors that fit the experimental data of a biological
85 system, only a handful of execution modes emerge as possible signal processing mechanisms.
86  Subsequently, we demonstrate how parameter vectors that belong to different execution
87  modes offer a biased view of signaling processes that could easily lead to misleading
88 interpretations of network-driven processes. We further demonstrate how increases in
89  parameter unidentifiability exacerbate the problem of model certainty in signal execution, but
90 still identify the signal execution path probabilities associated with a given set of parameters.
91  Our work therefore shows that network dynamics exploration, given available experimental
92  data, could play a central role to identify true systems-level processes that shed light on signal
93  processing mechanisms from a statistical perspective.
94
95  Results
96
97  Bayesian parameter optimization yields indistinguishable protein concentration dynamics.
98
99 Toinvestigate the role of parameter uncertainty on signal execution through biochemical
100 networks we focused on the extrinsic apoptosis form of programmed cell death (EImore, 2007).
101  Apoptosis is a ubiquitous biological process in metazoans used as a mechanism to maintain cell
102  numbers and overall organism homeostasis (Koonin and Aravind, 2002). For the first part of our
103  analysis we employed a modified version of the Extrinsic Apoptosis Reaction Model (EARMv2.0)
104  (Lopezetal., 2013). We found this abridged EARM (aEARM), depicted in Figure 1A, was the
105 largest model we could build that would both preserve key biochemical interactions that
106  represent extrinsic apoptosis, and in which all model parameters achieve convergence by the
107  Gelman-Rubin diagnostics after parameter calibration with Bayesian methods. The model
108 captures key biological features of apoptosis execution including signal initiation by TNF-
109 Related Apoptosis Inducing Ligand (TRAIL), subsequent activation of initiator caspases (Caspase
110  8) (Kantari and Walczak, 2011) type 1 and type 2 activation of effector caspases (Caspase 3)
111 (Ozéren and El-Deiry, 2002) and completion of apoptosis execution by cleavage of Poly(ADP-
112  ribose) polymerase (PARP) (Kaufmann et al., 1993). Overall, aEARM comprises 22 molecular
113  species and 34 kinetic parameters (see details in Methods). We used PyDREAM (Shockley, Vrugt
114  and Lopez, 2018) to calibrate the model to previously published experimental data that
115 comprises the concentration dynamics of truncated Bid (tBid) and cleaved PARP (cPARP). Given
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117 Figure 1. Abridged Extrinsic Apoptosis Reaction (aEARM) network and parameter calibration results. A) Reaction network using
118 the Kitano convention. Yellow nodes are protein receptors, green nodes are generic proteins, and red nodes are
119 truncated/cleaved proteins. B) Simulated trajectories of truncated Bid and Cleaved PARP calibrated to reproduce the
120 experimental data. Red dots and bars indicate the mean and standard deviation of the experimental data and blue lines
121 correspond to the simulated trajectories. C) Marginal probability distributions of the first 12 individual kinetic parameters that
122 were recovered from the PyDREAM run by integrating out all other dimensions. Forward rates, reverse rate, and catalytic values

123 were all found to be within biologically relevant ranges (Zhou, 2010). D) Probability of each of the unique parameter vectors
124 sampled after burn-in in the PyDREAM calibration. To obtain the probability of each parameter set the number of visits to a
125 specific parameter vector was normalized by the total number of visits.

126  that the model was calibrated to Hela cell data, we hypothesize that signal patterns are

127  representative of signal processing and execution of Type-Il cells treated with death-inducing
128  ligands such as TRAIL. In all, we ran the PyDREAM sampling for 100,000 steps after burn-in and
129  collected 300,000 parameter vectors from which 27,242 were unique. All unique parameter
130 vectors fit the data equally well (Figure 1B). All parameters were deemed to have converged by
131  the Gelman-Rubin diagnostics as shown in Supplemental Table 1 and Supplemental Figure 2
132  (Gelman and Rubin, 1992). We obtained the marginal distributions from the sampled

133  parameter vectors as show in Figure 1C and Supplemental Figure 3. Given the Markov Chain
134  Monte Carlo (MCMC) aspect of our parameter inference method, we were able to obtain

135  parameter vector probabilities as shown in Figure 1D (Chiband and Greenberg, 2008). The

136  probability distribution of parameter vectors exhibits characteristic exponential-like decay

137  shape indicating that some parameters are more likely than others. With this calibrated model
138 to experimental data, we then probed signal execution patterns in the aEARM network from a
139  probabilistic perspective. We note that throughout the manuscript, a parameter vector refers
140 to aset of positive real values, one value for each of the kinetic parameters defined in aEARM,
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141  used to run a simulation. A parameter distribution refers to the frequency of occurrence of

142  different values from the same kinetic parameter.

143

144 A discretized flux-based analysis of signal execution in networks.

145

146  Asshown in Figure 1B, all the parameter vectors obtained from the Bayesian calibration yield
147  protein concentration dynamics indistinguishable from the experimental trajectories of tBid
148  and cPARP. Individual parameters from these vectors take widely different values as depicted
149 by their distributions in Figure 1C. This uncertainty in the parameter values affects the reaction
150 rates of the protein interactions generating different reaction flux patterns in the network

151  during signal execution. We therefore wanted to study the non-equilibrium flux of the reactions
152  inthe aEARM network and aimed to explore whether parameter uncertainty yielded specific
153  patterns of signal execution.

154

155  Analysis of flux dynamics during signal execution requires tracking the signal flow through a

156  network at all simulation time points as multiple concurrent reaction rates consume or produce
157  molecular species. We assumed that the reactions with the highest flux at any given time

158 dominate the network signal execution and provide a proxy to observe the effect of different
159  parameter vectors in the network. Our aim was thus to identify the reaction rates with the

160 highest flux throughout the whole network as simulations evolved over time. To analyze the
161  non-equilibrium flux and find the dominant reaction paths during signal execution, we

162  developed an algorithm inspired by Ultradiscretization Theory and Tropical Algebra as

163  described in Methods (Noel, Grigoriev and Vakulenko, 2011; Kato, Tsujimoto and Zuk, 2017b).
164  Our approach enabled us to identify paths relevant for flux propagation in non-equilibrium

165  states. We refer to these paths of flux propagation through the network as execution modes for
166  the remainder of this manuscript.

167

168  We introduce the workflow for reaction flux discretization and execution mode identification as
169  shown schematically in Figure 2A-B. Signal discretization requires three steps. First, we identify
170  atarget node (Fig 2B) for which the signal flux will be tracked. Second, we calculate the reaction
171  rates that produce or consume the target node, identify the largest reaction rate (x) and test
172 whether it is dominant over other reactions (y) using the discretization operation |log;, x| —
173 |logio ¥l > p, where p is the order of magnitude difference necessary to consider dominance
174  (see Methods section for details). Third, we identify the chemical species produced by the

175 dominant reaction(s) and jump to that species, thus starting the process again from the first
176  step, and thereby tracking the dominant signal fluxes through the whole network and obtaining
177  asubnetwork. This dominant subnetwork is assigned a unique integer label as shown in Figure
178  2A.The procedure is repeated for all simulation time points. As a result, the dynamic nature of
179  signal execution for a given parameter vector is abstracted to a sequence of labels that can be
180 compared to other sequences using a suitable metric (Figure 2B). We call this sequence of

181 labels obtained from a simulation a dynamic fingerprint because it is unique for a given signal
182  processing event with a specific parameter set. A workflow of the algorithm is shown in

183  Supplemental Figure 1
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185 Figure 2. PyDyno workflow. A) First, the network of interaction is obtained from a model and a target node (labeled T) from
186 where the signal is going to be tracked is defined. Red nodes are molecular species in a model, edges represent interactions
187 between nodes, bolded edges are the dominant interactions. Next, at each time point of a simulation our analysis obtains a
188 dominant subnetwork, bolded edges in the network, through which most of the signal is going through and this subnetwork is
189 assigned a label. Sim 0 and Sim 1, simulations ran with different parameter sets, exhibit different dominant subnetworks. B) As
190 each subnetwork is assigned a label, we can get a sequence of labels per simulation that can be compared to other simulations
191 with the Longest Common Subsequence metric and obtain a distance matrix. This distance matrix can be used with clustering
192 algorithms to obtain groups with similar modes of signal execution.
193
194  Key execution modes emerge despite parameter uncertainty
195

196 To identify the dynamic execution patterns in aEARM in response to death ligand cues, we

197  carried out our signal discretization analysis for the 27,242 unique parameters and obtained
198  dynamic fingerprints for each parameter vector. We then asked whether there were similarities
199 among dynamic fingerprints across parameter sets. To investigate this question, we quantified
200 the distance between each dynamic fingerprint using the Longest Common Subsequence (LCS)
201  metric. We chose this metric due to its sensitivity to order differences in which successive

202  subnetworks labels appear (Studer and Ritschard, 2015). This metric thus assigns a larger

203  distance to a pair of dynamics fingerprints that execute the signal differently. Next, we

204  calculated the pairwise distance between all dynamic fingerprints obtaining a 27,242 by 27,242
205  distance matrix. This matrix enabled us to use an agglomerative clustering algorithm (Rokach
206  and Maimon, 2005) to probe whether clusters of dynamic fingerprints would emerge. As shown
207  in Figure 3A, we found that all 27,242 dynamic fingerprints could all be classified into three

208  clusters (Supplemental Table 2), which we denominate “execution modes”. Given that each
209 parameter vector has a defined probability (Figure 1D) and is associated with a dynamic

210 fingerprint, we could calculate the probabilities of signal execution through each mode as 42%,
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211  36%, and 22% for Execution Mode 1 (EM1), Execution Mode 2 (EM2), and Execution Mode 3
212 (EMB3) respectively. These three execution modes account for all the parameter vectors inferred
213  from the explored probability space and no vectors were found that did not belong to either of
214  these modes. We note that these execution modes are comprise three subnetworks out of

215  eight possible subnetworks for signal flow.

216

217  The dominant flux subnetwork for each execution mode is shown schematically in Figure 3B.
218  We note the highlighted paths represent the dominant reaction fluxes, i.e. these fluxes are

219  within an order of magnitude of the largest reaction at each node for the given parameter set
220 and simulation time point. As shown, Execution Mode 1 (EM1) comprises events from initial
221  death-ligand binding to the receptor, through formation of the Death Inducing Signaling

222  Complex (DISC), and subsequent activation of initiator Caspase. The initiator Caspase then

223  truncates and activates Bid, which in turn activates MOMP, a species that abstracts

224  mitochondrial outer membrane pore (MOMP) formation. Activated MOMP can then further
225  activate MOMP in a positive feedback loop and activate the effector Caspase downstream. As
226  highlighted in Figure 3B(EM1), activated MOMP is dominantly used to both activate more

227  MOMP, through the positive feedback loop, and activate the effector Caspase.

228

229  The flux through the network in Execution Mode 2 (EM2) is similar to that of Mode 1 but the
230  execution path differs at MOMP regulation. As highlighted in blue in Figure 3B EM2, activated
231  MOMP is largely consumed in the positive feedback loop to activate more MOMP. The signal
232 flux downstream of activated MOMP is at least an order of magnitude less than the highlighted
233 route for the parameters in EM2. Therefore, effector Caspase activation and apoptosis

234  execution takes place due to a smaller reaction flux in the network relative to the MOMP-level
235  activity in EM2. For those parameters belonging to EM3, signal execution seems to flow largely
236  toward PARP cleavage, with less MOMP-level regulation. Our results therefore show that

237  despite uncertainties in inferred model parameters due to limited available data, the modes of
238  signal execution are identifiable. Identifying a limited number of execution modes highlights the
239  need to thoroughly characterize the model parameter space, given experimental constraints, to
240 understand and make inferences about execution mechanisms. We note that using a single
241  vector of parameters would lead to incomplete model prediction as no one single parameter
242  vector captures the rich dynamics exhibited by all the statistically inferred parameter vectors.
243

244  To further understand the impact of each execution mode on MOMP regulation, we examined
245  the relative concentration of activated MOMP (MOMP*) and the binding complexes in which it
246  participates. We calculated the percentages of MOMP?¥*, inactive MOMP bound to MOMP*

247  (MOMP-MOMP#*), and effector caspase bound to MOMP* (EC-MOMP*). As shown in Figure 3C,
248  the relative abundance of these species over time exhibits different concentration patterns in
249  each execution mode. In EM1, the relative abundance of EC-MOMP* is ~20%, indicating that
250 the signal flow through this reaction is lower than in EM3 but still important in the overall

251  dynamics. In EM2, 85 % of MOMP* is bound to inactive MOMP at all time points before cell
252  death. This can be explained by a high MOMP activation rate due to Bid and the MOMP*

253  positive feedback loop autoactivation. In contrast to EM2, the MOMP-MOMP* abundance in
254  EM3 decreased to ~35%, while EC-MOMP* is increased to ~50%. This increase in EC-MOMP*
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255  abundance, indicates that the binding rate of MOMP* to EC is larger than the binding rate of
256 MOMP to MOMP*. We note that the initial concentration of inactive MOMP in the model is an
257  order of magnitude larger than that of EC. Thus, this result is in stark contrast with the result
258 from EM2 where the reaction rates exhibit different relative values.

259
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264 The complete aEARM network is shown in black, and the dominant subnetworks for Mode 1, 2, and 3 are highlighted in yellow,
265 blue, and red, respectively. C) Effect of the different signal execution modes in the relative concentration of activated MOMP
266 and its associated complexes. For each cluster, we calculated the temporal relative concentration of MOMP*, MOM*P-MOMP
267 and MOMP*-EC point by obtaining their individual average concentrations and dividing it by the sum of their concentrations.
268 This visualization provides insights about the usage MOMP* in each cluster.

269

270  Signal execution modes respond differently to eCaspase perturbation

271

272  We then asked whether in-silico experiments could help us understand differences in signal
273  execution that could lead to experimentally testable hypotheses. We therefore carried out in-
274  silico knockdown experiments of eCaspase, as its activation is essential for the final steps of
275  apoptosis execution (Mehal, Inayat and Flavell, 2006). In addition, effector caspase inhibitors
276  are readily available for laboratory use (Perry et al., 1997; Solania, Gonzalez-Paéz and Wolan,
277  2019). We hypothesized that each execution mode would exhibit different execution
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278 mechanisms when eCaspase was knocked down by 50%. To explore the impact of eCaspase
279  knockdown for each execution mode, we compared the concentration dynamics for MOMP and
280  cPARP given by wild type and eCaspase knockdown conditions.

281

282  For each execution mode we plotted the cPARP concentration trajectories and obtained the
283  time of death (ToD) for each simulated cell as described in Methods. As shown in Figure 4A, the
284  ToD in EM1 exhibits a modest decrease of 14.96 s, but also presents a larger standard deviation
285  of 702 s. For EM 2 the ToD increased from 10351 + 132 s (WT) to 10809 =+ 226 s for eCaspase
286  knockdown (At = 458 s). In contrast, EM3 eCaspase knockdown leads to a decreased ToD from
287 10261+ 83 in WT to 9507 + 516 s in the knockdown (At = -754 £ 523 s). These results therefore
288  show that each execution mode can exhibit significantly different —and a times juxtaposed —
289  responses to the same perturbation.

290

291  We then probed the effect of the eCaspase knockdown on the reaction rates associated to

292 MOMP* (a node where the signal bifurcates): MOMP* binding to MOMP, and MOMP* binding
293  to EC. Specifically, we focused on the reaction rate peak and the time to reach peak of the

294  reaction rate throughout the simulation, as shown in Figure 4B and supplementary Figure 2.
295  The peaks of the MOMP*+MOMP binding reaction (Figure 4B upper row) appear unchanged
296  across all execution modes, yet the time to reach the peaks vary significantly. The median time
297  to peaks were 6.14%, 0.36%, and 11.76% faster for modes 1, 2, and 3, respectively.

298  Concurrently, the peaks of the MOMP*+EC binding reaction (Figure 4B lower row) are reduced
299  approximately 50% as expected by the 50% reduction of the available EC, and the median time
300 to peaks were 6.77%, 0.4%, and 14.48% faster for modes 1, 2, and 3, respectively. In

301 combination, for mode 1, the relative change of the MOMP and EC reaction peaks have large
302 interquartile ranges IQR=-10.37% to —1.01% and IQR=-1.13% to —11.39%, respectively, which
303 explains the variability in the time to cell death. For mode 2, the time to the peak of MOMP and
304  EC reactions change marginally and given that the EC peak is 50% of the WT condition, this

305 leadsto longer times to accumulate the necessary number of EC molecules for cells to commit
306 to apoptosis. Finally, for mode 3, the median time to reach the MOMP reaction peak and the EC
307 reaction peakis 11.76% and 14.48%, faster than in the WT condition, respectively. This causes
308 faster activation of MOMP and EC which leads to earlier apoptosis in cells. To summarize,

309 although the biochemical signal flows differently in each execution mode, the protein

310 concentration dynamics exhibit similar outcomes (Figure 4A Wild Type). However, when a

311  perturbation is made to the network, the outcome can vary significantly, as shown for each
312  execution mode.

313

314  Reducing execution mode uncertainty through parameter measurements

315

316  Given that the aEARM calibrated parameter vectors yield three execution modes with their
317 respective probabilities, there is uncertainty about which execution mode is most

318 representative of the cellular process. We then asked whether we could identify parameters
319 that, if measured experimentally, would reduce the execution mode uncertainty. We

320 hypothesize that identifying key parameters that inform execution mechanisms could guide
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323 Figure 4. Time of death responses are markedly different for the same perturbation. A) Cleaved PARP (cPARP) protein
324 concentration trajectories for the “wild type” case (top row) grouped by Execution Modes. Mode 1, 2, 3 have 11270, 10727, and

325 5245 trajectories, respectively. Inset includes the average time to death and the standard deviation calculated from all

326 trajectories in each execution mode. PARP cleavage exhibits a markedly different trajectory pattern (bottom row) after eCaspase
327 is knocked down by 50%. B) MOMP* + MOMP and MOMP* + EC reaction rate trajectories. Dashed lines correspond to the mean
328 of all reaction rates trajectories in an execution mode and the shadows represent the standard deviations. Trajectories from the
329 “wild type” condition are colored in red and trajectories from the 50% effector caspase KD are colored in blue, and show key
330 differences in their dynamics. Insets include the median percentage change in the reaction rate peak (AF) and the time to reach

331 that peak (AT) in the EC KD condition relative to the wild type condition. The interquartile range is included as a measure of the
332 variation in the AF and AT changes.
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334  experiments to improve our knowledge about network-driven signal processing. To measure
335 the uncertainty of the execution modes, we used Shannon’s entropy H =

336 — i, P(x;)log, P(x;) (Shannon, 1948). As aEARM has 3 execution modes the maximum

337  entropy in the systemis log, 3 = 1.58, which would signify that each execution modes have a
338  33% probability. Using the probabilities of the previously obtained execution modes (Figure 3A)
339 and Shannon’s formula we calculated an entropy of 1.54 indicating a high uncertainty in the
340  execution across all modes. To determine the most informative parameters that should be

341 measured to reduce execution mode uncertainty, we used XGBOOST (Chen and Guestrin,

342  2016), a gradient boosted Machine Learning technique that can classify parameter vectors into
343  their corresponding execution modes. We used the calibrated parameter sets as training data
344  where each individual kinetic parameter (kf, kr, kc) is a feature, and the mode of execution is
345  our target variable.

346

347  Feature importance analysis from the XGBOOST analysis shows that parameters kf7 and kf6
348  contribute the most to training loss reduction during the classification task (Figure 5A). As

349  illustrated in Figure 5C, parameters kf6 and kf7 correspond to the binding rate of MOMP* to
350 inactivated MOMP, and MOMP* to EC, respectively. These two parameters are part of the

351 reactions where the signal flux is bifurcated in the network, indicating that their values play an
352  important role in the definition of the execution modes. To show the differences in parameter
353  values for each execution mode we plotted the values of the kf6 and kf7 parameters. As shown
354  in Figure 5B the execution modes have different distributions of the kf6 and kf7 parameters
355  with some overlap. As depicted in Figure 5D, we simulated 100 measurements of the kf7

356 parameter and found that these measurements have various degrees of entropy reduction.
357  Therefore, measuring MOMP-related parameters could help further reduce execution mode
358 uncertainty and improve model-based predictions.

359

360 Modes of signal execution in a detailed apoptosis model with increased parameter

361 uncertainty

362

363 Based on our results with aEARM, we then asked how a larger model with higher parameter
364  uncertainty would fare under the presented signal execution analysis. We shifted to a larger
365  extrinsic apoptosis reaction model (EARM V2.0), which has been studied and characterized in
366  previous work (Lopez et al., 2013). As illustrated in Figure 6A, EARMV2.0 is considerably larger
367 than aEARM as the biochemical interactions are described with higher molecular resolution. In
368 all, EARM V2.0 has 77 molecular species and 105 kinetic parameters. As described in Methods,
369 we used PyDREAM to calibrate the model to published experimental data (Spencer et al., 2009).
370  Although, the calibration yielded parameter vectors that fit the experimental data

371  indistinguishably well (supplemental Figure 4), we note that only 62 model parameters

372  converged according to the Gelman-Rubin diagnostic (GR < 1.2) after two million iterations (see
373  Supplemental Table 3 and Supplemental Figure 5). Distributions of 9 converged parameters are
374  shown in Figure 6B. The remaining parameters exhibited GR values between 1.21 and 13.52
375  (Supplemental Table 2 and Supplemental Figure 6). From a Bayesian perspective, non-

376  convergent parameters imply that the experimental data simply cannot constrain their values
377  toadistribution and thus results in higher variability. As our analysis is focused on
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378 understanding execution modes in network-driven processes, a model with poorly identified
379 parameters presents an opportunity to explore how signal execution could be best interpreted
380 andunderstood in large model systems with high parameter uncertainty.

381
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383 Figure 5. Parameter measurements reduce execution mode uncertainty. A) List of the 10 parameters that contribute the most to
384 model prediction. Parameters with higher total gains, compared to another parameter, provide larger improvements to
385 accuracy in model prediction. B) Parameter values of kfé and kf7 grouped by the execution mode they belong to. A Gaussian
386 kernel was used to estimate the density probability of parameter values in each execution mode. C) Schematic representation of
387 the aEARM network. Kinetic parameters kf6 and kf7 and their corresponding reactions are highlighted in the network. D)
388 Changes in the execution modes entropy after simulated measurements of kf7.

389 We followed the same procedure used in the previous sections to explore the execution modes
390 in EARM V2.0 (See Methods for details). Our analysis found that calibration to the experimental
391 data constrains the signal flow to eleven execution modes, that can be represented by 53

392 dominant subnetworks out of 2067 possible subnetworks. As shown in Figure 6C, the apoptosis
393  execution signal could flow through any of these paths with varying degrees of probability, with
394  Execution Mode 1 (EM1) exhibiting a probability of ~20 and the first four modes capturing

395  ~50% of the signal probability, thus suggesting high path entropy as we have seen in previous
396  work (Shockley et al., 2019). Videos can be found in the supplement that show animations of
397  signal flow for all execution modes in the context of EARM V2.0.

398

399  Next, we tested whether each execution mode exhibits different responses to the same

400 perturbation. We selected EM1 and EM2 for analysis as these modes exhibit the highest

401  probability for signal execution. As illustrated in Figure 6D, the mBid interaction with Mcl1 is
402 dominantin EM1. In contrast, the mBid interactions with Mcl1 and Bcl2 are both dominant in
403  EM2, thus highlighting the importance of both antiapoptotic proteins to understand the
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405 Figure 6. Modes of signal execution in the full Extrinsic Apoptosis Reaction Network. A) Network of the interactions between the

406 proteins in the apoptosis pathway. Proteins highlighted in green are nodes where the signal flux can be divided. The convention
407 of Kitano (Kitano et al., 2005) was followed. B) Marginal probability distributions of 9 individual kinetic parameters converged by
408 the Gelman-Rubin diagnostic. C) Dynamic fingerprints organized by the execution modes they belong to. Each cluster plot is
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411 Mode 1 (left) and Mode 2 (right) as defined by the most common subnetwork in each mode at t=7000s.
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signaling mechanisms during apoptosis execution during the cell response to an apoptotic
inducer.

We then performed two in silico experiments for EM1 and EM2: (i) a 50% knockdown (KD) of
the antiapoptotic protein Mcl1 as well as (ii) a 50% knockdown of the antiapoptotic protein
Bcl2. For the Mcl1 KD, we found that the EM1 median ToD decreased from 10022.46 s (WT) to
8686.52 s (Figure 7C-upper panel). This is expected since mBid and Mcl1 interactions are
dominant in this mode. By contrast the median ToD in EM2 decreased from 9943.65 s (WT) to
9335.85 s. This modest decrease in ToD can be attributed to the fact that although Mcl1 and
mBid interactions are important in EM2, the dominance of Bcl2 compensates for the absence of
Mcl1 and reduces the impact on ToD for the Mcl1 KD.

For the Bcl2 KD, we found that the median ToD in EM1 has a minor change from 10022.46 s to
10011.87 s, expected because mBid activity is not significantly affected by Bcl2 in this mode. By
contrast, in EM2, mBid activity is modulated by Mcl1 and Bcl2. Thus, a reduction in the initial
protein levels of Bcl2 enables more mBid proteins to activate pro apoptotic proteins and this
leads to an increase in ToD to 9580 s (Figure 7C-upper panel). Taken together this data shows
that distinct execution modes respond differently to the same perturbation and that their
responses can be predicted based on the dominant reactions for a given execution mode.

To further emphasize the importance of transient dynamics on signal processing, we explored
EM1 dynamic fingerprints and found that SMAC inhibition of XIAP occurs at later time points of
the simulations (>8640 s). Therefore, we hypothesized that XIAP inhibition would be more
effective earlier during signal execution. To test this, we added an XIAP inhibitor to EARMV2.0
at either 4000 s or 8000 s. As shown, when the inhibitor is added at the later time point, we
observed a small reduction (Figure 7A lower panel) in the median ToD from 9943.65 s in the WT
t0 9380.44 s (At = 563.21 s). In contrast, when the inhibitor is added at the earlier time point,
when SMAC is not yet released from the mitochondria, the inhibitor binds to XIAP enabling C3
to cleave PARP and thereby reducing the median ToD to 6766.10 (At =3177.55 s).

As combination therapies have become important to combat drug resistance (Gayvert et al.,
2017; Sarah, 2017), especially in cancers, we explored whether our analysis provided
information about potential targets for cotreatment. As we previously mentioned, Mcl1 and
XIAP are dominant antiapoptotic proteins in EM1, thus we hypothesized that inhibition of both
proteins would yield a shorter ToD compared to only inhibiting XIAP. To test this, we added two
drugs that independently inhibit XIAP and Mcl1 and obtained a ToD of 5951.11 s representing a
12% reduction in the ToD compared to XIAP inhibition only (Figure 7A lower panel). Finally, to
guide experiments that would identify the most likely execution mode out of the 11 execution
modes obtained, we developed an XGBOOST model of execution mode estimation and
performed feature importance analysis. As shown in Figure 7B, we found that the parameters
controlling the kinetics of mBid binding to BcxL, and XIAP binding to C3 yield the most
information about execution modes in EARMV2.0. Taken together, these results suggest that
the analysis of signaling dynamics from uncertain parameters help us identify dominant
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455  reactions that control signal flow in a network during signal processing and how these networks
456  are more sensitive to perturbations of those reactions.
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459 Figure 7. A) Upper panel: Time to death distributions in the execution modes 1 and 2 in the “wild type” condition, after a 50%
460 Mcl1 knockdown, and after a 50% knockdown of Bcl2. The boxplot inside the distributions shows the median, first quartile and
461 third quartile of the datasets. Execution modes 1 and 2 show substantial differences in their response to the knockdowns. Lower
462 panel: Time to death distributions in the execution mode 1 after adding a drug that binds XIAP at t=8000 s, and at t=4000, and a
463 drug that binds XIAP and Mcl1 at 4000 s. B) List of the 10 parameters in EARMVv2.0 that contribute the most to model prediction.

464

465  Discussion

466

467 It has been long recognized that model parameter optimization to experimental data is key to
468 investigate the dynamical properties that control cell behavior (Read et al., 2018).

469  Unfortunately, parameter optimization usually yields large parameter uncertainties due to a
470 general lack of quantitative data as well as model identifiability (Ashyraliyev et al., 2009). Even a
471 complete set of time course data is insufficient to constraint most rate parameters (Ryan N.

472  Gutenkunst et al., 2007). In this work. we wanted to examine the effects of parameter

473  uncertainty on signal execution through a biochemical network. Despite the many parameter
474  vectors which reproduce the experimental protein dynamics, we found that the signal flow in a
475  network was constrained to only a few modes of execution. Our analysis further shows that

476  within a Bayesian calibration scheme, it is possible to assign probabilities to each execution

477  mode, thus greatly improving our understanding of signal dynamics. Therefore, the probabilistic
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478  approach introduced in this work could open a novel perspective to understand network-driven
479  processes from a statistical perspective.

480

481 In this work we also showed that large models with high parameter uncertainty such as

482  EARMV2.0 can be used to make model-based predictions, but those predictions should be

483  considered within the probabilistic context provided by execution modes obtained from the
484  calibrated parameters. Our analysis shows that parameter uncertainty as a result of model

485  calibration can be mapped to signal execution modes that respond differently to perturbations,
486  thus demonstrating that using a single best fit parameter vector is insufficient to understand
487  signal dynamics in complex models. Further, our analysis allowed us to identify biochemical
488  species, model parameters and times to maximize a given perturbation. This information about
489  signal flow could be used to study drug-induced network rewiring processes (e.g. (Lee et al.,
490 2012)), provide mechanistic explanations to drug responses, and predict sequential

491 combinations of drugs that could better modulate a response signal in biochemical networks.
492

493  Finally, although our approach provided novel insights about signal execution in an important
494  biological network, it has certain limitations. Our analysis assumes that reactions with high flux
495  are the most important for signal processing in a network. However, this may not always be the
496  case for other networks or for networks with temporal changes in model topologies (Klinke,
497  2010). Although our approach is computationally expensive, particularly as models increase in
498  size, requiring hundreds of thousands of parameter samples to reach a convergence criterion,
499  we believe this is a relatively small price to pay in contrast to the number of experiments that
500 would be necessary to attain the same level of mechanistic knowledge about a network-driven
501 process.
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