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cellular processes, but their usefulness is often questioned due to parameter uncertainty. Here, 9 
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Introduction 28 
 29 
Many biological processes can be represented as networks of interconnected biochemical 30 
components enabling the study of their dynamics and signaling mechanisms (Jordan, Landau 31 
and Iyengar, 2000; Bonneau, 2008; Janes, Reinhardt and Yaffe, 2008; Weerts, Van den Hof and 32 
Dankers, 2018). These analyses typically entail building a network, either from prior knowledge 33 
or through network inference, developing a mathematical model of the network interactions, 34 
and subsequently calibrating the model to experimental data (Jaqaman and Danuser, 2006; 35 
Raue et al., 2011; Shockley, Vrugt and Lopez, 2018). Although small networks have been 36 
studied with great success, the fact remains that for large networks many parameters remain 37 
difficult to ascertain and optimization routines yield multiple parameter sets that reproduce the 38 
protein concentration trajectories equally well (Ryan N. Gutenkunst et al., 2007; Eydgahi et al., 39 
2013; Mitra and Hlavacek, 2019). This has led to a common practice whereby one or a few 40 
parameter vectors are chosen to make mechanistic predictions which can be validated by 41 
experiments with varying degrees of success (Janes et al., 2005; Albeck et al., 2008; Becker et 42 
al., 2010). However, criticisms remain regarding the usefulness of large and complex 43 
mathematical models of cellular processes with many uncertain parameters. 44 
 45 
Information Theory based methods (Shannon, 1948) have been one of the successful 46 
approaches to date to explain input/output responses of intracellular signaling pathways 47 
(Cheong et al., 2011; Brennan, Cheong and Levchenko, 2012; Levchenko and Nemenman, 2014; 48 
Suderman et al., 2017; Shockley et al., 2019). These approaches cast signal transduction in 49 
terms of channel capacities – the maximum amount of biochemical information that can travel 50 
from an input stimulus to an output response. These analyses have revealed that the maximum 51 
channel capacity of a biochemical process is context dependent and could require the 52 
cooperativity of multiple cells to achieve actual information transfer (Suderman et al., 2017). 53 
Previous work also applied information theoretic analysis to an allosterically regulated network 54 
and observed that the preferred path for information flow through the network was highly 55 
dependent on substrate concentrations (Shockley et al., 2019). Although these insights have 56 
been valuable to advance our understanding cellular regulatory processes, questions still 57 
remain about how reaction rates from non-equilibrium dynamics modulate signal flow in a 58 
biochemical network and further how these transient dynamics are impacted by parameter 59 
uncertainty. 60 
 61 
Analysis of execution patterns in biochemical networks necessarily implies a detailed 62 
understanding of instantaneous fluxes throughout the system. However, reaction-flux based 63 
analysis is particularly challenging due to multiple concurrent biochemical interactions and their 64 
associated reaction rate fluctuations in time (Nobeli, Favia and Thornton, 2009). Therefore, the 65 
number of interactions and temporal dynamics makes it difficult to establish whether persistent 66 
behaviors emerge from myriad biochemical reactions. Recent works in Tropical Geometry and 67 
Ultradiscretization Theory have proposed a mathematical formalism that makes it possible to 68 
map continuous functions into piecewise linear meshes in the Ultradiscrete space (Kato, 69 
Tsujimoto and Zuk, 2017a). Approaches inspired in these novel mathematical treatments have 70 
been used to guide biochemical model reduction and simplification (Noel, Grigoriev and 71 
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Vakulenko, 2011). For this work, we hypothesized dynamic analysis using these methods could 72 
enable us to identify dominant fluxes in a dynamic biochemical network, identify patterns of 73 
execution, and explore their dependence on model parameters. We reasoned that we could 74 
cast this analysis onto a Bayesian probability framework to assign statistical weight to the 75 
identified execution patterns, thus providing a novel statistical interpretation to cellular 76 
reaction mechanisms. 77 
 78 
The remainder of the article is organized as follows. We first show how Bayesian inference of 79 
model parameters can yield tens of thousands of parameter vectors that all reproduce an 80 
experimental data set equally well. We then introduce a method, inspired in Ultradiscretization 81 
Theory and Tropical Algebra, to define a dynamic signal execution fingerprint, which can then 82 
be used to cluster execution modes according to model parameters. Surprisingly, we find that 83 
despite the thousands of parameter vectors that fit the experimental data of a biological 84 
system, only a handful of execution modes emerge as possible signal processing mechanisms. 85 
Subsequently, we demonstrate how parameter vectors that belong to different execution 86 
modes offer a biased view of signaling processes that could easily lead to misleading 87 
interpretations of network-driven processes. We further demonstrate how increases in 88 
parameter unidentifiability exacerbate the problem of model certainty in signal execution, but 89 
still identify the signal execution path probabilities associated with a given set of parameters. 90 
Our work therefore shows that network dynamics exploration, given available experimental 91 
data, could play a central role to identify true systems-level processes that shed light on signal 92 
processing mechanisms from a statistical perspective. 93 
 94 
Results 95 
 96 
Bayesian parameter optimization yields indistinguishable protein concentration dynamics.  97 
 98 
To investigate the role of parameter uncertainty on signal execution through biochemical 99 
networks we focused on the extrinsic apoptosis form of programmed cell death (Elmore, 2007). 100 
Apoptosis is a ubiquitous biological process in metazoans used as a mechanism to maintain cell 101 
numbers and overall organism homeostasis (Koonin and Aravind, 2002). For the first part of our 102 
analysis we employed a modified version of the Extrinsic Apoptosis Reaction Model (EARMv2.0) 103 
(Lopez et al., 2013). We found this abridged EARM (aEARM), depicted in Figure 1A, was the 104 
largest model we could build that would both preserve key biochemical interactions that 105 
represent extrinsic apoptosis, and in which all model parameters achieve convergence by the 106 
Gelman-Rubin diagnostics after parameter calibration with Bayesian methods. The model 107 
captures key biological features of apoptosis execution including signal initiation by TNF-108 
Related Apoptosis Inducing Ligand (TRAIL), subsequent activation of initiator caspases (Caspase 109 
8) (Kantari and Walczak, 2011) type 1 and type 2 activation of effector caspases (Caspase 3) 110 
(Özören and El-Deiry, 2002) and completion of apoptosis execution by cleavage of Poly(ADP-111 
ribose) polymerase (PARP) (Kaufmann et al., 1993). Overall, aEARM comprises 22 molecular 112 
species and 34 kinetic parameters (see details in Methods). We used PyDREAM (Shockley, Vrugt 113 
and Lopez, 2018) to calibrate the model to previously published experimental data that 114 
comprises the concentration dynamics of truncated Bid (tBid) and cleaved PARP (cPARP). Given  115 
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  116 
Figure 1. Abridged Extrinsic Apoptosis Reaction (aEARM) network and parameter calibration results. A) Reaction network using 117 
the Kitano convention. Yellow nodes are protein receptors, green nodes are generic proteins, and red nodes are 118 
truncated/cleaved proteins. B) Simulated trajectories of truncated Bid and Cleaved PARP calibrated to reproduce the 119 
experimental data. Red dots and bars indicate the mean and standard deviation of the experimental data and blue lines 120 
correspond to the simulated trajectories. C) Marginal probability distributions of the first 12 individual kinetic parameters that 121 
were recovered from the PyDREAM run by integrating out all other dimensions. Forward rates, reverse rate, and catalytic values 122 
were all found to be within biologically relevant ranges (Zhou, 2010). D) Probability of each of the unique parameter vectors 123 
sampled after burn-in in the PyDREAM calibration. To obtain the probability of each parameter set the number of visits to a 124 
specific parameter vector was normalized by the total number of visits. 125 

that the model was calibrated to HeLa cell data, we hypothesize that signal patterns are 126 
representative of signal processing and execution of Type-II cells treated with death-inducing 127 
ligands such as TRAIL. In all, we ran the PyDREAM sampling for 100,000 steps after burn-in and 128 
collected 300,000 parameter vectors from which 27,242 were unique. All unique parameter 129 
vectors fit the data equally well (Figure 1B). All parameters were deemed to have converged by 130 
the Gelman-Rubin diagnostics as shown in Supplemental Table 1 and Supplemental Figure 2 131 
(Gelman and Rubin, 1992). We obtained the marginal distributions from the sampled 132 
parameter vectors as show in Figure 1C and Supplemental Figure 3. Given the Markov Chain 133 
Monte Carlo (MCMC) aspect of our parameter inference method, we were able to obtain 134 
parameter vector probabilities as shown in Figure 1D (Chiband and Greenberg, 2008). The 135 
probability distribution of parameter vectors exhibits characteristic exponential-like decay 136 
shape indicating that some parameters are more likely than others. With this calibrated model 137 
to experimental data, we then probed signal execution patterns in the aEARM network from a 138 
probabilistic perspective. We note that throughout the manuscript, a parameter vector refers 139 
to a set of positive real values, one value for each of the kinetic parameters defined in aEARM, 140 
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used to run a simulation. A parameter distribution refers to the frequency of occurrence of 141 
different values from the same kinetic parameter. 142 
 143 
A discretized flux-based analysis of signal execution in networks. 144 
 145 
As shown in Figure 1B, all the parameter vectors obtained from the Bayesian calibration yield 146 
protein concentration dynamics indistinguishable from the experimental trajectories of tBid 147 
and cPARP. Individual parameters from these vectors take widely different values as depicted 148 
by their distributions in Figure 1C. This uncertainty in the parameter values affects the reaction 149 
rates of the protein interactions generating different reaction flux patterns in the network 150 
during signal execution. We therefore wanted to study the non-equilibrium flux of the reactions 151 
in the aEARM network and aimed to explore whether parameter uncertainty yielded specific 152 
patterns of signal execution. 153 
 154 
Analysis of flux dynamics during signal execution requires tracking the signal flow through a 155 
network at all simulation time points as multiple concurrent reaction rates consume or produce 156 
molecular species. We assumed that the reactions with the highest flux at any given time 157 
dominate the network signal execution and provide a proxy to observe the effect of different 158 
parameter vectors in the network. Our aim was thus to identify the reaction rates with the 159 
highest flux throughout the whole network as simulations evolved over time. To analyze the 160 
non-equilibrium flux and find the dominant reaction paths during signal execution, we 161 
developed an algorithm inspired by Ultradiscretization Theory and Tropical Algebra as 162 
described in Methods (Noel, Grigoriev and Vakulenko, 2011; Kato, Tsujimoto and Zuk, 2017b). 163 
Our approach enabled us to identify paths relevant for flux propagation in non-equilibrium 164 
states. We refer to these paths of flux propagation through the network as execution modes for 165 
the remainder of this manuscript.  166 
 167 
We introduce the workflow for reaction flux discretization and execution mode identification as 168 
shown schematically in Figure 2A-B. Signal discretization requires three steps. First, we identify 169 
a target node (Fig 2B) for which the signal flux will be tracked. Second, we calculate the reaction 170 
rates that produce or consume the target node, identify the largest reaction rate (𝑥) and test 171 
whether it is dominant over other reactions (𝑦) using the discretization operation |log'( 𝑥| 	−172 
	|log'( 𝑦| 	> 	ρ, where r is the order of magnitude difference necessary to consider dominance 173 
(see Methods section for details). Third, we identify the chemical species produced by the 174 
dominant reaction(s) and jump to that species, thus starting the process again from the first 175 
step, and thereby tracking the dominant signal fluxes through the whole network and obtaining 176 
a subnetwork. This dominant subnetwork is assigned a unique integer label as shown in Figure 177 
2A. The procedure is repeated for all simulation time points. As a result, the dynamic nature of 178 
signal execution for a given parameter vector is abstracted to a sequence of labels that can be 179 
compared to other sequences using a suitable metric (Figure 2B). We call this sequence of 180 
labels obtained from a simulation a dynamic fingerprint because it is unique for a given signal 181 
processing event with a specific parameter set. A workflow of the algorithm is shown in 182 
Supplemental Figure 1 183 
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 184 
Figure 2. PyDyno workflow. A) First, the network of interaction is obtained from a model and a target node (labeled T) from 185 
where the signal is going to be tracked is defined. Red nodes are molecular species in a model, edges represent interactions 186 
between nodes, bolded edges are the dominant interactions. Next, at each time point of a simulation our analysis obtains a 187 
dominant subnetwork, bolded edges in the network, through which most of the signal is going through and this subnetwork is 188 
assigned a label. Sim 0 and Sim 1, simulations ran with different parameter sets, exhibit different dominant subnetworks. B) As 189 
each subnetwork is assigned a label, we can get a sequence of labels per simulation that can be compared to other simulations 190 
with the Longest Common Subsequence metric and obtain a distance matrix. This distance matrix can be used with clustering 191 
algorithms to obtain groups with similar modes of signal execution. 192 

 193 
Key execution modes emerge despite parameter uncertainty 194 
 195 
To identify the dynamic execution patterns in aEARM in response to death ligand cues, we 196 
carried out our signal discretization analysis for the 27,242 unique parameters and obtained 197 
dynamic fingerprints for each parameter vector. We then asked whether there were similarities 198 
among dynamic fingerprints across parameter sets. To investigate this question, we quantified 199 
the distance between each dynamic fingerprint using the Longest Common Subsequence (LCS) 200 
metric. We chose this metric due to its sensitivity to order differences in which successive 201 
subnetworks labels appear (Studer and Ritschard, 2015). This metric thus assigns a larger 202 
distance to a pair of dynamics fingerprints that execute the signal differently. Next, we 203 
calculated the pairwise distance between all dynamic fingerprints obtaining a 27,242 by 27,242 204 
distance matrix. This matrix enabled us to use an agglomerative clustering algorithm (Rokach 205 
and Maimon, 2005) to probe whether clusters of dynamic fingerprints would emerge. As shown 206 
in Figure 3A, we found that all 27,242 dynamic fingerprints could all be classified into three 207 
clusters (Supplemental Table 2), which we denominate “execution modes”. Given that each 208 
parameter vector has a defined probability (Figure 1D) and is associated with a dynamic 209 
fingerprint, we could calculate the probabilities of signal execution through each mode as 42%, 210 
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36%, and 22% for Execution Mode 1 (EM1), Execution Mode 2 (EM2), and Execution Mode 3 211 
(EM3) respectively. These three execution modes account for all the parameter vectors inferred 212 
from the explored probability space and no vectors were found that did not belong to either of 213 
these modes. We note that these execution modes are comprise three subnetworks out of 214 
eight possible subnetworks for signal flow. 215 
 216 
The dominant flux subnetwork for each execution mode is shown schematically in Figure 3B. 217 
We note the highlighted paths represent the dominant reaction fluxes, i.e. these fluxes are 218 
within an order of magnitude of the largest reaction at each node for the given parameter set 219 
and simulation time point. As shown, Execution Mode 1 (EM1) comprises events from initial 220 
death-ligand binding to the receptor, through formation of the Death Inducing Signaling 221 
Complex (DISC), and subsequent activation of initiator Caspase. The initiator Caspase then 222 
truncates and activates Bid, which in turn activates MOMP, a species that abstracts 223 
mitochondrial outer membrane pore (MOMP) formation. Activated MOMP can then further 224 
activate MOMP in a positive feedback loop and activate the effector Caspase downstream. As 225 
highlighted in Figure 3B(EM1), activated MOMP is dominantly used to both activate more 226 
MOMP, through the positive feedback loop, and activate the effector Caspase.  227 
 228 
The flux through the network in Execution Mode 2 (EM2) is similar to that of Mode 1 but the 229 
execution path differs at MOMP regulation. As highlighted in blue in Figure 3B EM2, activated 230 
MOMP is largely consumed in the positive feedback loop to activate more MOMP. The signal 231 
flux downstream of activated MOMP is at least an order of magnitude less than the highlighted 232 
route for the parameters in EM2. Therefore, effector Caspase activation and apoptosis 233 
execution takes place due to a smaller reaction flux in the network relative to the MOMP-level 234 
activity in EM2. For those parameters belonging to EM3, signal execution seems to flow largely 235 
toward PARP cleavage, with less MOMP-level regulation. Our results therefore show that 236 
despite uncertainties in inferred model parameters due to limited available data, the modes of 237 
signal execution are identifiable. Identifying a limited number of execution modes highlights the 238 
need to thoroughly characterize the model parameter space, given experimental constraints, to 239 
understand and make inferences about execution mechanisms. We note that using a single 240 
vector of parameters would lead to incomplete model prediction as no one single parameter 241 
vector captures the rich dynamics exhibited by all the statistically inferred parameter vectors.   242 
 243 
To further understand the impact of each execution mode on MOMP regulation, we examined 244 
the relative concentration of activated MOMP (MOMP*) and the binding complexes in which it 245 
participates. We calculated the percentages of MOMP*, inactive MOMP bound to MOMP* 246 
(MOMP-MOMP*), and effector caspase bound to MOMP* (EC-MOMP*). As shown in Figure 3C, 247 
the relative abundance of these species over time exhibits different concentration patterns in 248 
each execution mode. In EM1, the relative abundance of EC-MOMP* is ~20%, indicating that 249 
the signal flow through this reaction is lower than in EM3 but still important in the overall 250 
dynamics. In EM2, 85 % of MOMP* is bound to inactive MOMP at all time points before cell 251 
death. This can be explained by a high MOMP activation rate due to Bid and the MOMP* 252 
positive feedback loop autoactivation. In contrast to EM2, the MOMP-MOMP* abundance in 253 
EM3 decreased to ~35%, while EC-MOMP* is increased to ~50%. This increase in EC-MOMP* 254 
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abundance, indicates that the binding rate of MOMP* to EC is larger than the binding rate of 255 
MOMP to MOMP*. We note that the initial concentration of inactive MOMP in the model is an 256 
order of magnitude larger than that of EC. Thus, this result is in stark contrast with the result 257 
from EM2 where the reaction rates exhibit different relative values.  258 
 259 

 260 
Figure 3. Modes of signal execution in aEARM. A) Dynamic fingerprints organized by the clusters they belong to. Each cluster 261 
plot is composed of horizontal lines that correspond to dynamic fingerprints, i.e. sequences of dominant subnetworks, and each 262 
subnetwork is assigned a different color. B) Signal execution modes as defined by the most common subnetwork in each cluster. 263 
The complete aEARM network is shown in black, and the dominant subnetworks for Mode 1, 2, and 3 are highlighted in yellow, 264 
blue, and red, respectively. C) Effect of the different signal execution modes in the relative concentration of activated MOMP 265 
and its associated complexes. For each cluster, we calculated the temporal relative concentration of MOMP*, MOM*P-MOMP 266 
and MOMP*-EC point by obtaining their individual average concentrations and dividing it by the sum of their concentrations. 267 
This visualization provides insights about the usage MOMP* in each cluster. 268 

 269 
Signal execution modes respond differently to eCaspase perturbation 270 
 271 
We then asked whether in-silico experiments could help us understand differences in signal 272 
execution that could lead to experimentally testable hypotheses. We therefore carried out in-273 
silico knockdown experiments of eCaspase, as its activation is essential for the final steps of 274 
apoptosis execution (Mehal, Inayat and Flavell, 2006). In addition, effector caspase inhibitors 275 
are readily available for laboratory use (Perry et al., 1997; Solania, González-Paéz and Wolan, 276 
2019). We hypothesized that each execution mode would exhibit different execution 277 
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mechanisms when eCaspase was knocked down by 50%. To explore the impact of eCaspase 278 
knockdown for each execution mode, we compared the concentration dynamics for MOMP and 279 
cPARP given by wild type and eCaspase knockdown conditions. 280 
 281 
For each execution mode we plotted the cPARP concentration trajectories and obtained the 282 
time of death (ToD) for each simulated cell as described in Methods. As shown in Figure 4A, the 283 
ToD in EM1 exhibits a modest decrease of 14.96 s, but also presents a larger standard deviation 284 
of 702 s. For EM 2 the ToD increased from 10351 ± 132 s (WT) to 10809 ± 226 s for eCaspase 285 
knockdown (Dt = 458 s). In contrast, EM3 eCaspase knockdown leads to a decreased ToD from 286 
10261 ± 83 in WT to 9507 ± 516 s in the knockdown (Dt = -754 ± 523 s). These results therefore 287 
show that each execution mode can exhibit significantly different – and a times juxtaposed –288 
responses to the same perturbation. 289 
 290 
We then probed the effect of the eCaspase knockdown on the reaction rates associated to 291 
MOMP* (a node where the signal bifurcates): MOMP* binding to MOMP, and MOMP* binding 292 
to EC. Specifically, we focused on the reaction rate peak and the time to reach peak of the 293 
reaction rate throughout the simulation, as shown in Figure 4B and supplementary Figure 2. 294 
The peaks of the MOMP*+MOMP binding reaction (Figure 4B upper row) appear unchanged 295 
across all execution modes, yet the time to reach the peaks vary significantly. The median time 296 
to peaks were 6.14%, 0.36%, and 11.76% faster for modes 1, 2, and 3, respectively. 297 
Concurrently, the peaks of the MOMP*+EC binding reaction (Figure 4B lower row) are reduced 298 
approximately 50% as expected by the 50% reduction of the available EC, and the median time 299 
to peaks were 6.77%, 0.4%, and 14.48% faster for modes 1, 2, and 3, respectively. In 300 
combination, for mode 1, the relative change of the MOMP and EC reaction peaks have large 301 
interquartile ranges IQR= -10.37% to –1.01% and IQR=-1.13% to –11.39%, respectively, which 302 
explains the variability in the time to cell death. For mode 2, the time to the peak of MOMP and 303 
EC reactions change marginally and given that the EC peak is 50% of the WT condition, this 304 
leads to longer times to accumulate the necessary number of EC molecules for cells to commit 305 
to apoptosis. Finally, for mode 3, the median time to reach the MOMP reaction peak and the EC 306 
reaction peak is 11.76% and 14.48%, faster than in the WT condition, respectively. This causes 307 
faster activation of MOMP and EC which leads to earlier apoptosis in cells. To summarize, 308 
although the biochemical signal flows differently in each execution mode, the protein 309 
concentration dynamics exhibit similar outcomes (Figure 4A Wild Type). However, when a 310 
perturbation is made to the network, the outcome can vary significantly, as shown for each 311 
execution mode.  312 
 313 
Reducing execution mode uncertainty through parameter measurements 314 
 315 
Given that the aEARM calibrated parameter vectors yield three execution modes with their 316 
respective probabilities, there is uncertainty about which execution mode is most 317 
representative of the cellular process. We then asked whether we could identify parameters 318 
that, if measured experimentally, would reduce the execution mode uncertainty. We 319 
hypothesize that identifying key parameters that inform execution mechanisms could guide  320 
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  321 
 322 

Figure 4. Time of death responses are markedly different for the same perturbation. A) Cleaved PARP (cPARP) protein 323 
concentration trajectories for the “wild type” case (top row) grouped by Execution Modes. Mode 1, 2, 3 have 11270, 10727, and 324 
5245 trajectories, respectively. Inset includes the average time to death and the standard deviation calculated from all 325 
trajectories in each execution mode. PARP cleavage exhibits a markedly different trajectory pattern (bottom row) after eCaspase 326 
is knocked down by 50%. B) MOMP* + MOMP and MOMP* + EC reaction rate trajectories. Dashed lines correspond to the mean 327 
of all reaction rates trajectories in an execution mode and the shadows represent the standard deviations. Trajectories from the 328 
“wild type” condition are colored in red and trajectories from the 50% effector caspase KD are colored in blue, and show key 329 
differences in their dynamics. Insets include the median percentage change in the reaction rate peak (DF) and the time to reach 330 
that peak (DT) in the EC KD condition relative to the wild type condition. The interquartile range is included as a measure of the 331 
variation in the DF and DT changes. 332 

 333 
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experiments to improve our knowledge about network-driven signal processing. To measure 334 
the uncertainty of the execution modes, we used Shannon’s entropy 𝐻 =335 
−∑ 𝑃(𝑥2) log4 𝑃(𝑥2)5

26'  (Shannon, 1948). As aEARM has 3 execution modes the maximum 336 
entropy in the system is log4 3 = 	1.58, which would signify that each execution modes have a 337 
33% probability.	Using the probabilities of the previously obtained execution modes (Figure 3A) 338 
and Shannon’s formula we calculated an entropy of 1.54 indicating a high uncertainty in the 339 
execution across all modes. To determine the most informative parameters that should be 340 
measured to reduce execution mode uncertainty, we used XGBOOST (Chen and Guestrin, 341 
2016), a gradient boosted Machine Learning technique that can classify parameter vectors into 342 
their corresponding execution modes. We used the calibrated parameter sets as training data 343 
where each individual kinetic parameter (kf, kr, kc) is a feature, and the mode of execution is 344 
our target variable.  345 
 346 
Feature importance analysis from the XGBOOST analysis shows that parameters kf7 and kf6 347 
contribute the most to training loss reduction during the classification task (Figure 5A). As 348 
illustrated in Figure 5C, parameters kf6 and kf7 correspond to the binding rate of MOMP* to 349 
inactivated MOMP, and MOMP* to EC, respectively. These two parameters are part of the 350 
reactions where the signal flux is bifurcated in the network, indicating that their values play an 351 
important role in the definition of the execution modes. To show the differences in parameter 352 
values for each execution mode we plotted the values of the kf6 and kf7 parameters. As shown 353 
in Figure 5B the execution modes have different distributions of the kf6 and kf7 parameters 354 
with some overlap. As depicted in Figure 5D, we simulated 100 measurements of the kf7 355 
parameter and found that these measurements have various degrees of entropy reduction. 356 
Therefore, measuring MOMP-related parameters could help further reduce execution mode 357 
uncertainty and improve model-based predictions. 358 
  359 
Modes of signal execution in a detailed apoptosis model with increased parameter 360 
uncertainty 361 
 362 
Based on our results with aEARM, we then asked how a larger model with higher parameter 363 
uncertainty would fare under the presented signal execution analysis. We shifted to a larger 364 
extrinsic apoptosis reaction model (EARM V2.0), which has been studied and characterized in 365 
previous work (Lopez et al., 2013). As illustrated in Figure 6A, EARMV2.0 is considerably larger 366 
than aEARM as the biochemical interactions are described with higher molecular resolution. In 367 
all, EARM V2.0 has 77 molecular species and 105 kinetic parameters. As described in Methods, 368 
we used PyDREAM to calibrate the model to published experimental data (Spencer et al., 2009). 369 
Although, the calibration yielded parameter vectors that fit the experimental data 370 
indistinguishably well (supplemental Figure 4), we note that only 62 model parameters 371 
converged according to the Gelman-Rubin diagnostic (GR < 1.2) after two million iterations (see 372 
Supplemental Table 3 and Supplemental Figure 5). Distributions of 9 converged parameters are 373 
shown in Figure 6B. The remaining parameters exhibited GR values between 1.21 and 13.52 374 
(Supplemental Table 2 and Supplemental Figure 6). From a Bayesian perspective, non-375 
convergent parameters imply that the experimental data simply cannot constrain their values 376 
to a distribution and thus results in higher variability. As our analysis is focused on 377 
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understanding execution modes in network-driven processes, a model with poorly identified 378 
parameters presents an opportunity to explore how signal execution could be best interpreted 379 
and understood in large model systems with high parameter uncertainty.  380 
 381 

 382 
Figure 5. Parameter measurements reduce execution mode uncertainty. A) List of the 10 parameters that contribute the most to 383 
model prediction. Parameters with higher total gains, compared to another parameter, provide larger improvements to 384 
accuracy in model prediction. B) Parameter values of kf6 and kf7 grouped by the execution mode they belong to. A Gaussian 385 
kernel was used to estimate the density probability of parameter values in each execution mode. C) Schematic representation of 386 
the aEARM network. Kinetic parameters kf6 and kf7 and their corresponding reactions are highlighted in the network. D) 387 
Changes in the execution modes entropy after simulated measurements of kf7. 388 

We followed the same procedure used in the previous sections to explore the execution modes 389 
in EARM V2.0 (See Methods for details). Our analysis found that calibration to the experimental 390 
data constrains the signal flow to eleven execution modes, that can be represented by 53 391 
dominant subnetworks out of 2067 possible subnetworks. As shown in Figure 6C, the apoptosis 392 
execution signal could flow through any of these paths with varying degrees of probability, with 393 
Execution Mode 1 (EM1) exhibiting a probability of ~20 and the first four modes capturing 394 
~50% of the signal probability, thus suggesting high path entropy as we have seen in previous 395 
work (Shockley et al., 2019). Videos can be found in the supplement that show animations of 396 
signal flow for all execution modes in the context of EARM V2.0. 397 
 398 
Next, we tested whether each execution mode exhibits different responses to the same 399 
perturbation. We selected EM1 and EM2 for analysis as these modes exhibit the highest 400 
probability for signal execution. As illustrated in Figure 6D, the mBid interaction with Mcl1 is 401 
dominant in EM1. In contrast, the mBid interactions with Mcl1 and Bcl2 are both dominant in 402 
EM2, thus highlighting the importance of both antiapoptotic proteins to understand the  403 
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 404 
Figure 6. Modes of signal execution in the full Extrinsic Apoptosis Reaction Network. A) Network of the interactions between the 405 
proteins in the apoptosis pathway. Proteins highlighted in green are nodes where the signal flux can be divided. The convention 406 
of Kitano (Kitano et al., 2005) was followed. B) Marginal probability distributions of 9 individual kinetic parameters converged by 407 
the Gelman-Rubin diagnostic. C) Dynamic fingerprints organized by the execution modes they belong to. Each cluster plot is 408 
composed of horizontal lines that correspond to dynamic fingerprints, i.e. sequences of dominant subnetworks, and each 409 
subnetwork is assigned a different color. Execution modes are sorted from highest to lowest probability. D) Signal execution in 410 
Mode 1 (left) and Mode 2 (right) as defined by the most common subnetwork in each mode at t=7000s.  411 
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signaling mechanisms during apoptosis execution during the cell response to an apoptotic 412 
inducer. 413 
 414 
We then performed two in silico experiments for EM1 and EM2: (i) a 50% knockdown (KD) of 415 
the antiapoptotic protein Mcl1 as well as (ii) a 50% knockdown of the antiapoptotic protein 416 
Bcl2. For the Mcl1 KD, we found that the EM1 median ToD decreased from 10022.46 s (WT) to 417 
8686.52 s (Figure 7C-upper panel). This is expected since mBid and Mcl1 interactions are 418 
dominant in this mode. By contrast the median ToD in EM2 decreased from 9943.65 s (WT) to 419 
9335.85 s. This modest decrease in ToD can be attributed to the fact that although Mcl1 and 420 
mBid interactions are important in EM2, the dominance of Bcl2 compensates for the absence of 421 
Mcl1 and reduces the impact on ToD for the Mcl1 KD.  422 
 423 
For the Bcl2 KD, we found that the median ToD in EM1 has a minor change from 10022.46 s to 424 
10011.87 s, expected because mBid activity is not significantly affected by Bcl2 in this mode. By 425 
contrast, in EM2, mBid activity is modulated by Mcl1 and Bcl2. Thus, a reduction in the initial 426 
protein levels of Bcl2 enables more mBid proteins to activate pro apoptotic proteins and this 427 
leads to an increase in ToD to 9580 s (Figure 7C-upper panel). Taken together this data shows 428 
that distinct execution modes respond differently to the same perturbation and that their 429 
responses can be predicted based on the dominant reactions for a given execution mode. 430 
 431 
To further emphasize the importance of transient dynamics on signal processing, we explored 432 
EM1 dynamic fingerprints and found that SMAC inhibition of XIAP occurs at later time points of 433 
the simulations (>8640 s). Therefore, we hypothesized that XIAP inhibition would be more 434 
effective earlier during signal execution. To test this, we added an XIAP inhibitor to EARMV2.0 435 
at either 4000 s or 8000 s. As shown, when the inhibitor is added at the later time point, we 436 
observed a small reduction (Figure 7A lower panel) in the median ToD from 9943.65 s in the WT 437 
to 9380.44 s (Δt = 563.21 s). In contrast, when the inhibitor is added at the earlier time point, 438 
when SMAC is not yet released from the mitochondria, the inhibitor binds to XIAP enabling C3 439 
to cleave PARP and thereby reducing the median ToD to 6766.10 (Δt = 3177.55 s). 440 
 441 
As combination therapies have become important to combat drug resistance (Gayvert et al., 442 
2017; Sarah, 2017), especially in cancers, we explored whether our analysis provided 443 
information about potential targets for cotreatment. As we previously mentioned, Mcl1 and 444 
XIAP are dominant antiapoptotic proteins in EM1, thus we hypothesized that inhibition of both 445 
proteins would yield a shorter ToD compared to only inhibiting XIAP. To test this, we added two 446 
drugs that independently inhibit XIAP and Mcl1 and obtained a ToD of 5951.11 s representing a 447 
12% reduction in the ToD compared to XIAP inhibition only (Figure 7A lower panel). Finally, to 448 
guide experiments that would identify the most likely execution mode out of the 11 execution 449 
modes obtained, we developed an XGBOOST model of execution mode estimation and 450 
performed feature importance analysis. As shown in Figure 7B, we found that the parameters 451 
controlling the kinetics of mBid binding to BcxL, and XIAP binding to C3 yield the most 452 
information about execution modes in EARMV2.0. Taken together, these results suggest that 453 
the analysis of signaling dynamics from uncertain parameters help us identify dominant 454 
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reactions that control signal flow in a network during signal processing and how these networks 455 
are more sensitive to perturbations of those reactions. 456 
 457 

 458 
Figure 7. A) Upper panel: Time to death distributions in the execution modes 1 and 2 in the “wild type” condition, after a 50% 459 
Mcl1 knockdown, and after a 50% knockdown of Bcl2. The boxplot inside the distributions shows the median, first quartile and 460 
third quartile of the datasets. Execution modes 1 and 2 show substantial differences in their response to the knockdowns. Lower 461 
panel: Time to death distributions in the execution mode 1 after adding a drug that binds XIAP at t=8000 s, and at t=4000, and a 462 
drug that binds XIAP and Mcl1 at 4000 s. B) List of the 10 parameters in EARMv2.0 that contribute the most to model prediction. 463 

 464 
Discussion 465 
 466 
It has been long recognized that model parameter optimization to experimental data is key to 467 
investigate the dynamical properties that control cell behavior (Read et al., 2018). 468 
Unfortunately, parameter optimization usually yields large parameter uncertainties due to a 469 
general lack of quantitative data as well as model identifiability (Ashyraliyev et al., 2009). Even a 470 
complete set of time course data is insufficient to constraint most rate parameters (Ryan N. 471 
Gutenkunst et al., 2007). In this work. we wanted to examine the effects of parameter 472 
uncertainty on signal execution through a biochemical network. Despite the many parameter 473 
vectors which reproduce the experimental protein dynamics, we found that the signal flow in a 474 
network was constrained to only a few modes of execution. Our analysis further shows that 475 
within a Bayesian calibration scheme, it is possible to assign probabilities to each execution 476 
mode, thus greatly improving our understanding of signal dynamics. Therefore, the probabilistic 477 
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approach introduced in this work could open a novel perspective to understand network-driven 478 
processes from a statistical perspective.  479 
 480 
In this work we also showed that large models with high parameter uncertainty such as 481 
EARMv2.0 can be used to make model-based predictions, but those predictions should be 482 
considered within the probabilistic context provided by execution modes obtained from the 483 
calibrated parameters. Our analysis shows that parameter uncertainty as a result of model 484 
calibration can be mapped to signal execution modes that respond differently to perturbations, 485 
thus demonstrating that using a single best fit parameter vector is insufficient to understand 486 
signal dynamics in complex models. Further, our analysis allowed us to identify biochemical 487 
species, model parameters and times to maximize a given perturbation. This information about 488 
signal flow could be used to study drug-induced network rewiring processes (e.g. (Lee et al., 489 
2012)), provide mechanistic explanations to drug responses, and predict sequential 490 
combinations of drugs that could better modulate a response signal in biochemical networks. 491 
 492 
Finally, although our approach provided novel insights about signal execution in an important 493 
biological network, it has certain limitations. Our analysis assumes that reactions with high flux 494 
are the most important for signal processing in a network. However, this may not always be the 495 
case for other networks or for networks with temporal changes in model topologies (Klinke, 496 
2010). Although our approach is computationally expensive, particularly as models increase in 497 
size, requiring hundreds of thousands of parameter samples to reach a convergence criterion, 498 
we believe this is a relatively small price to pay in contrast to the number of experiments that 499 
would be necessary to attain the same level of mechanistic knowledge about a network-driven 500 
process.  501 
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