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Abstract 8 
Mathematical models are often used to study the structure and dynamics of network-driven cellular 9 
processes. In cell biology, models representing biochemical reaction networks have provided significant 10 
insights but are often plagued by a dearth of available quantitative data necessary for simulation and 11 
analysis. This has in turn led to questions about the usefulness of biochemical network models with 12 
unidentifiable parameters and high-degree of parameter sloppiness. In response, approaches to 13 
incorporate highly-available non-quantitative data and use this data to improve model certainty have been 14 
undertaken with various degrees of success. Here we employ a Bayesian inference and Machine Learning 15 
approach to first explore how quantitative and non-quantitative data can constrain a mechanistic model of 16 
apoptosis execution, in which all models can be identified. We find that two orders of magnitude more 17 
ordinal data measurements than those typically collected are necessary to achieve the same accuracy as 18 
that obtained from a quantitative dataset. We also find that ordinal and nominal non-quantitative data on 19 
their own can be combined to reduce model uncertainty and thus improve model accuracy. Further 20 
analysis demonstrates that the accuracy and certainty of model predictions strongly depends on accurate 21 
formulations of the measurement as well as the size and make-up of the nonquantitative datasets. Finally, 22 
we demonstrate the potential of a data-driven Machine Learning measurement model to identify 23 
informative mechanistic features that predict or define nonquantitative cellular phenotypes, from a 24 
systems perspective. 25 
 26 
Introduction 27 
The combination of systems approaches and quantitative data promised a novel understanding of cellular 28 
mechanisms that would spur science-driven innovation in biology and medicine – as happened in physics, 29 
chemistry, and engineering1-3. Despite massive research efforts and data accumulation, our understanding 30 
of cellular regulation, signaling and many other processes as biomolecular systems remains rudimentary. 31 
The systems and quantitative biology fields continue to employ strategies from physics and engineering 32 
to construct models of biological mechanism from first principles4,5. However, these strategies are 33 
incompatible with the types of measurements and observations that predominate biological investigations. 34 
Observations from biological experiments investigating cell fate outcomes (apoptosis, necroptosis, etc.) 35 
are collected as categorical values, which are hard to define in terms of variables encoded in mathematical 36 
mechanistic models of biological processes6. Therefore, the connection of mechanistic models to 37 
corresponding biological measurements is subject to practitioner interpretation. As a result, vast amounts 38 
of existing nonquantitative data in cell biology have led to mechanistic formulations based on simple 39 
inference and informal reasoning. Noise, complexity and the hierarchical organization of biology limits 40 
how we can experimentally perturb and measure biological systems7,8. Therefore, a relative dearth of 41 
quantitative data exists that reveals itself in mechanistic models with poor parameter constraints. 42 
Unfortunately, both non-quantitative and quantitative data, collected in an unplanned manner, results in 43 
missed opportunities to quantitatively explain complex cellular mechanisms9.  44 
 45 
This data-to-knowledge problem in biology has prompted researchers to incorporate nonquantitative data 46 
as a complement or substitute for quantitative data in the development of mechanistic models10-13. The 47 
traditional workflow employed to train mechanistic models to data comprises mechanistic models and 48 
experimental measurements linked through a calibration method (Box 1)14, 15. Such workflows have been 49 
adapted to incorporate nonquantitative data into mechanistic models and have revealed their intrinsic 50 
value in mechanistic hypothesis exploration. For example, pioneering work by Pargett and co-workers 51 
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employed optimal scaling and multi-objective optimization for training mechanistic models to large 52 
ordinal datasets10. Schmiester et al. incorporated this strategy into PyPESTO, a model parameter 53 
estimation framework11. Their formulation imposes discrete boundaries on the mechanistic model to 54 
reflect discrete ordinal values in the data, but this approach limits their ability to integrate multiple 55 
datatypes or use Bayesian methods for training and uncertainty estimation of mechanistic models. More 56 
recently, Mitra et al. applied predefined constraint-based models of categorical data and modified their 57 
approach to allow definition of a likelihood function within a Bayesian formalism.12, 13 However, the ad 58 
hoc nature of their constraint models leaves room for biasing assumptions. Given the limited application 59 
of Bayesian methods and biases introduced by ad hoc assumptions, the field still has a limited 60 
understanding of the contribution of nonquantitative and quantitative data to mechanistic knowledge in 61 
biological systems.  62 
  63 
In this work, we tackle the data-to-knowledge challenge by introducing the concept of a measurement 64 
model, a statistical construct, into systems modeling approaches, which aims to rigorously define 65 
measurements and observations in terms of an underlying mechanisms16. This definition entails 66 
formulation of a function that maps variables encoded in a mechanistic model to values in the 67 
nonquantitative data. Our approach departs from previous work in that it uses machine-learning based 68 
classifiers whose free parameters are estimated to accomplish data-driven identification of measurement 69 
model properties. It also uses a probabilistic formulation that lends itself to Bayesian methods and can 70 
therefore provide an unbiased evaluation of the predictive power of models trained to nonquantitative 71 
data. In what follows, we present our findings about common types of biological measurements, followed 72 
by a presentation of our methodology. In this work we use a mechanistic model of apoptosis execution to 73 
demonstrate how the amount and type of data applied to a mechanistic model can affect its predictive 74 
power. It is well established that apoptosis signaling is involved in many cellular processes in health, 75 
disease, and development17. Its biological importance is further underscored by available quantitative and 76 
nonquantitative empirical data18. We also establish how an ad hoc formulation of a measurement model 77 
can lead to spurious results and further show how these a priori assumptions can be examined within a 78 
Bayesian, data-driven context. Finally, we demonstrate the potential of a machine learning measurement 79 
model formulation to identify phenomenological links between features (e.g. predictors and drivers) of a 80 
biomolecular mechanism and emergent biological phenotype. We expect our approach to improve our 81 
understanding of the data-to-knowledge relationship in biological processes, leading to a probabilistic 82 
understanding of biochemical mechanisms, and accelerated identification of systems-level interactions 83 
that drive biological network dynamics.  84 
 85 
Results 86 
Contributions and biases from different data types to mechanistic models 87 
We first explored how experimental data measurements are used to constrain mathematical models of 88 
cellular processes. Mechanistic models typically employ physical chemistry formalisms comprised of 89 
reaction rates and chemical species concentrations to represent networks of biochemical reactions. Direct 90 
quantitative measurement of all chemical reactions and species would provide needed model parameters 91 
to carry out simulations and in silico experiments. However, these measurements are typically not 92 
available and likely untenable for real systems, thus leading to indirect measurements used to infer model 93 
parameter values using an objective function (Eq. 7) or a likelihood function (Eq. 8). When these 94 
functions are optimized, the resulting mathematical model can provide valuable new predictions and 95 
insights about the cellular process. Measurements from cell biology experiments comprise four broad 96 
types, namely, nominal, ordinal, semiquantitative, and quantitative (Figure 1); each data type reveals 97 
different insights about the cellular process. In apoptosis signaling, for instance, nominal observations 98 
supported early research where it helped identify key components in the apoptosis signaling pathway19. 99 
Apoptosis and survival outcomes – as indicated by nominal nuclear fragmentation data (Figure 1 top row) 100 
– helped determine two parallel signaling arcs that proceed following initiator caspase activation: 101 
mitochondria-dependent and -independent pathways19. These pathways trigger apoptosis by activating 102 
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effector caspases19. We built an abridged Extrinsic Apoptosis Reaction Model (aEARM)20, which 103 
represents these extrinsic apoptosis execution mechanisms as biomolecular reactions (Figure 2A). 104 
Nominal observations do not provide a definitive estimation of their quantity of interest (i.e. their 105 
measurand) and instead, encode weak constraints on the measurand values (Eq. 1). They can guide 106 
mechanistic modeling by revealing salient structural elements of a cellular process but provide limited 107 
insight into the dynamics and complex regulatory cues of apoptosis signaling. Ordinal measurements 108 
have featured prominently in works investigating apoptosis signaling. They have uncovered clues about 109 
the dynamics and complex regulatory mechanisms of apoptosis. For instance, ordinal measurements of 110 
DISC (i.e. a ligand-dependent membrane bound ‘death inducing signaling complex’) components, 111 
initiator and effector caspases (Figure 1 second row), bid, etc. revealed how cells resist apoptosis by 112 
limiting (but not totally eliminating) pro-apoptotic cues21; the sub-maximal pro-apoptotic signaling 113 
presents as delay in the dynamics of caspase activation22. To better understand caspase activation 114 
dynamics and its effect on apoptosis and survival, we need mathematical models of the apoptosis 115 
signaling dynamics. Ordinal measurements, however, do not readily support a mathematical description 116 
of apoptosis signaling dynamics. Emerging work has leveraged ordinal and nominal measurements in the 117 
development of mathematical models of biological signaling but the weak constraints encoded by these 118 
measurements (Eq. 1 and Eq. 2) add uncertainty and bias to the modeling process.  119 
 120 
Technical challenges confine our quantitative and semi-quantitative measurement to just a few apoptotic 121 
signaling proteins. Fluorescence indicators of caspase activity18 (and by proxy, caspase substrate 122 
cleavage) enabled time course measurements of Bid and PARP cleavage dynamics (Figure 1 third row)18. 123 
They revealed pro-apoptotic activation of Bid and PARP, in TRAIL induced apoptotic HeLa cells, 124 
follows sigmoidal dynamics with delays and switch times that are sensitive to various regulatory factors. 125 
These measurements provide the details necessary for a mathematical description of apoptosis signaling 126 
dynamics and complexity. Our mathematical model aEARM captures the events from initial death ligand 127 
cue, initiator caspase activation, BID truncation (tBID), mitochondrial outer membrane permeabilization 128 
(MOMP) and eventual PARP cleavage (cPARP), as shown schematically on Figure 223-27. The model was 129 
calibrated to above fluorescence data, as described in Methods28. Semi-quantitative measurements like 130 
fluorescence, like non-quantitative measurements lack a definitive estimation of the measurand because 131 
their interpretation requires mathematical manipulation, typically through scaling (Eq. 3), which can also 132 
add uncertainty and bias. Quantitative measurements can be used directly in a model without further 133 
modifications (Figure 1, fourth row) thus minimizing the uncertainty and bias introduced in the model 134 
from measurement interpretation. Therefore, the specific type of measurement and its interpretation could 135 
add significant uncertainty and bias to the mechanistic explanation of a given process. 136 
 137 
To study the bias and uncertainty originating from different types of measurements, we introduce a 138 
concept from statistics, and social sciences: the measurement model (Box 1)29. Briefly, a measurement 139 
model is a function (Eq. 6) that describes the relationship between the measurement and its measurand. 140 
This function maps variables from the mechanistic model 𝒙 to the values expressed in the data 𝑦̂. This 141 
function is often assumed or implied, particularly for semi-quantitative data that can more readily be 142 
applied to the model calibration. However, the application of nominal and ordinal datatypes to 143 
mechanistic models is not straightforward, because their interpretation (as we show in the following 144 
sections) can significantly bias model-derived insights. Consequently, modeling efforts have relied almost 145 
exclusively on quantitative and semi-quantitative data. By contrast, the much more abundant non-146 
quantitative datatypes are often ignored or used inappropriately. 147 
 148 
Early modeling efforts interpreted nonquantitative data as a series of arbitrary surrogate quantities for the 149 
ordinal or nominal values in a corresponding dataset14. More recently, discrete boundaries on the values 150 
of the measurand were imposed along with a distance metric to describe how well the mechanistic model 151 
satisfies nominal or ordinal constraints in the non-quantitative data10-13. These approaches reveal the value 152 
of nonquantitative data for mechanistic model calibration, but the often-ad hoc nature of these constraint-153 
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based measurement models has been an overlooked source of model bias. To minimize biases from the 154 
interpretation of non-quantitative datatypes and apply Bayesian inference methods for model calibration, 155 
we developed a data-driven probabilistic measurement model (Box 2). Our measurement model is data-156 
driven in that it possesses free parameters that are calibrated to match data; this lets us replace a priori 157 
assumptions about the measurement with a data-driven parametrization, and thereby calibrate mechanistic 158 
models whose accuracy and precision better reflect the information contained in the data. Our 159 
measurement model is probabilistic as it replaces discrete boundary-based measurement models and 160 
distance metrics with a probability (Box 2, Eq. 9) of the ordinal or nominal value, which enables easy 161 
formulation of a likelihood function and application of Bayesian optimization methods that utilize 162 
MCMC sampling. In our approach, the measurement model is a mathematical construct that represents 163 
the measurand through a Machine-Learning probabilistic classifier whose free parameters are 164 
simultaneously estimated with the free parameters of the mathematical model during calibration (Box 2). 165 
As a probabilistic classifier, the measurement model effectively describes the probability of the categories 166 
encoded in the non-quantitative data given values of the measurand (Eq. 9). The measurand, in our case, 167 
is encoded in the mechanistic model. For example, the measurement model (Eq. 9, Box 2) can use ordinal 168 
logistic classifiers to model the probability of a categorical value as a function of variable(s) encoded by 169 
the mechanistic model. Also, the probability that a cell death or survival observations represents a specific 170 
state of the mechanistic model. In the calibration process, the measurement model is an explicit 171 
intermediate step between simulation of the mechanistic model dynamics and calculation of the likelihood 172 
(Box 2). As described in the Methods section, this approach uses the Python based PySB models-as-173 
programs framework and PyDREAM, a Python implementation of the DREAM(ZS) algorithm to sample 174 
posterior values of models’ free parameters. However, other model building and parameter sampling (or 175 
optimization) algorithms could be employed by the user. In what follows, we examine the impact of 176 
different measurement modalities and interpretations on mechanistic model constraints in apoptosis 177 
execution. This work motivates an approach that could be generalized to any mathematical model to 178 
rigorously integrate quantitative and nonquantitative data types. 179 
 180 
Uncertainty associated with different data types in model calibration  181 
To date, molecular biology investigations of intracellular signaling processes and their mechanisms 182 
predominantly report nonquantitative measurements. However, it is unclear exactly how well these 183 
measurements support the development of mechanistic models. We therefore asked how various 184 
measurement datatypes impact the certainty and accuracy of model calibrations. Specifically, we explored 185 
how to adjust the size and make-up of nonquantitative datasets to better support mechanistic inferences. 186 
The resulting posterior predictive region for tBID dynamics of aEARM calibrated to (semi-quantitative) 187 
fluorescence data is shown in Figure 2 (B, top row). As expected, the data can effectively constrain the 188 
model and the 95% credible region of posterior predictions for tBid dynamics falls within the data 189 
uncertainty region. We then extracted a parameter vector from the fluorescence optimized data and used it 190 
as a baseline (reference) to generate ordinal datasets for tBID and other aEARM variables as described in 191 
Methods and shown Figures 2 (B, bottom four rows). These synthetic datasets could be considered as 192 
numerical representations of a time-course western blot dataset. We then calibrated aEARM kinetic rate 193 
and measurement model parameters to the ordinal and nominal datasets.  194 
 195 
As shown in Figure 2B, ordinal datasets accurately predicted quantitative predictions of “ground truth” 196 
dynamics for tBID. The 95% credible region of posterior predictions of tBID dynamics of aEARM 197 
trained to these ordinal datasets each contained “ground truth” dynamics for tBID. We also use the area 198 
bounded by the 95% credible region of posterior predictions of tBID as a measure of model certainty; 199 
with a smaller area indicating higher certainty. The ordinal dataset containing measurements at every 25-200 
minute interval (i.e. typical of time-dependent western blot datasets), however, did not significantly 201 
constrain the posterior predictive regions of these dynamics (Figure 2D). Increasing the number of 202 
measurements, however, increases the certainty of the posterior predictions of tBID dynamics; this 203 
certainty approaches that of the typical semi-quantitative (fluorescence) dataset, which has an area of 2.7, 204 
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when then the number of ordinal measurements is increased threefold, which had an area of 6.2. The areas 205 
bounded by the 95% credible region for each ordinal time-course dataset is described in the Figure 2B 206 
(Bottom two rows). 207 
 208 
To explore the impact of nominal data on model optimization, we again extracted a parameter vector from 209 
the fluorescence optimized data and used it as a baseline (reference) to generate nominal datasets akin to 210 
an apoptosis execution observation as described in Methods. Previous work has described how features of 211 
apoptosis signaling dynamics can predict cell death vs survival18. The generated nominal dataset describes 212 
binary cell-fate outcomes that emerge as a consequence of extrinsic apoptosis signaling dynamics. We 213 
encode this information in a nominal measurement model as described in Methods. Parameters of 214 
aEARM and the free-parameters encoded in the measurement model were jointly calibrated to a 215 
synthetically generated dataset of 400 survival vs death outcomes as shown in Figure 3A (left). As shown 216 
in Figure 3A (right), the binary cell-fate data minimally constrain the posterior predictive region of tBID 217 
dynamics relative to the prior constraints on the model. This is expected as the binary cell-fate data-type 218 
essentially condenses complex apoptotic signaling dynamics to a single categorical value.  219 
 220 
In lieu of its limited ability to constrain mechanistic models, modeling efforts understandably disregard 221 
nominal data. However, we hypothesized that combining nonquantitative datatypes and covering multiple 222 
variables in the model could improve model certainty. To explore the effect of multiple data type 223 
combinations on model calibration, we again optimized the aEARM model parameters, but this time to a 224 
dataset containing nominal and ordinal measurements. As described in Methods, we added a synthetic 225 
dataset containing 61 ordinal time-course measurements for the DISC complex to the nominal dataset 226 
described above (Figure 3B (left)). We modeled the likelihood of this combined dataset as the product of 227 
the likelihoods of the individual constituent datasets (see Methods for details). In Figure 3A and 3B 228 
(right), we see the nominal and ordinal datasets yields larger 95% credible regions for the posterior 229 
predictions of tBID dynamics. However, (in Figure 3C) the combined dataset better constrained the 230 
posterior predictions of normalized tBID dynamics than either dataset alone, with a 95% credible region 231 
area of 26.5 (compared to 55.0 and 56.4 for the ordinal and nominal datasets alone). Therefore, the model 232 
uncertainty stemming from only using tBID nominal data was decreased by including more detailed 233 
upstream measurements. However, the contribution of DISC ordinal data alone was comparable to that of 234 
the tBID nominal data in isolation (Figure 3B (right)). This data suggests that distributed measurements 235 
across multiple variables in a pathway yield synergistic effects on calibrated model accuracy and 236 
certainty.  237 
 238 
Data-driven measurement model as an indicator of model bias 239 
Traditionally, applying quantitative or semi-quantitative data to a mechanistic model has been relatively 240 
straightforward as they typically follow a well-establish and simple relationship between the measurement 241 
and the measurand. However, for non-quantitative data, measurement uncertainty can prompt researchers 242 
to make assumptions about the relationship between measurement and measurand, which may negatively 243 
impact in the resulting mechanistic model. We therefore asked how the encoding of assumptions into our 244 
models of non-quantitative measurements could impact mechanistic model calibrations. To attain this 245 
goal, we calibrated aEARM kinetic rate parameters to the ordinal dataset, but this time we replaced the 246 
free parameters in the measurement model fixed a priori parameterizations or we encoded our 247 
assumptions as priors on the measurement model’s free-parameters. We tested four situations: (i) fixed 248 
parameters, a case where the measurement model is pre-parameterized by the user, presumably reflecting 249 
full confidence in their assumptions about the measurement;  (ii) strong prior knowledge, a case where 250 
there is strong belief in the assumed values of the measurement model parameters; (iii) weak prior 251 
knowledge, a case where there is only weak belief in the assumed values of the measurement model 252 
parameters; and (iv) no prior knowledge, that is no constraints on the measurement model parameters. 253 
 254 
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Figures 4A and 4B show the ordinal class probabilities for tBID as modeled by (i) two distinct pre-255 
parameterized measurement models. In case 1, lowest and highest categories correspond to a narrow 256 
range of tBID values, while the three internal categories each account for roughly 1/3rd of the tBID range. 257 
This parameterization might aim to account for effects of sensitivity and saturation on the measurement. 258 
In case 2, all five ordinal categories each account for 1/5th of the range of tBID values. The right panels in 259 
Figures 4A and 4B show the assumed relationship between tBID concentration and probability of each 260 
ordinal category. Figures 4A and 4B (left plots) also show posterior predictions of tBID dynamics by 261 
aEARM calibrated to the ordinal dataset using these fixed pre-parameterized measurement models. The 262 
different measurement model pre-parameterization produced markedly different posterior predictions of 263 
tBID dynamics by the resulting aEARM calibrations. This raises potential concerns that assumptions in 264 
our interpretation of the measurement can artificially influence our interpretation of the mechanism. 265 
 266 
In Figure 4B, the 50% probability boundary between adjacent categories occurs at every 0.2 interval; 267 
essentially dividing the [0,1] range of tBID values into five equally spaced ordinal categories. Shown in 268 
Figure 4C-E, we represent this as a flexible assumption by encoding it in our priors (ii – iv) i.e., Cauchy 269 
distributions centered at every 0.2 interval (as detailed in Methods). The smaller the scale – more 270 
narrowly focused – prior distributions reflect less flexibility in the free-parameter and a stronger belief in 271 
our prior assumptions. Figure 4C-E shows the posterior predictions of tBID dynamics of aEARM 272 
calibrated to the ordinal dataset using increasingly more constrained priors on the measurement model 273 
parameters. The resulting posterior predictions of tBID dynamics were all less constrained than that of 274 
aEARM calibrated using fixed pre-parameterized measurement models (Figure 4A and 4B) but, they were 275 
more accurate as they contained the “ground-truth” tBID dynamics. Strongly constrained priors on the 276 
measurement model parameters (ii) produced a less certain mechanistic model; as indicated by its wider 277 
95% credible region of posterior predictions of tBID dynamics (Figure 4E). The posterior distributions of 278 
measurement model parameters were spread out enough to give significant support of both the “ground 279 
truth” and the a priori assumed parameter values. This uncertainty in the measurement model parameter 280 
distributions translated into a less certain measurement model and less certain predictions of tBID 281 
dynamics.  Weaker constraints on the measurement model parameters were encoded via larger scale prior 282 
distribution (Figure 4D). In Figure 4D we see these prior distributions, while centered on our a priori 283 
assumptions, includes the “ground truth” parameters. The posterior distributions of the measurement 284 
model parameters were therefore more constrained; likewise, the measurement model and posterior 285 
predictions of tBID dynamics had more certainty. This is also observed, in Figure 4C, the case where no 286 
prior assumptions were applied to the measurement model parameters (iv). The accuracy of the 287 
predictions of tBID dynamics comes from the flexibility of the data-driven measurement models’ 288 
parameters. This flexibility enables optimization (or prediction) of key properties of the measurement 289 
given the data. Figure 4 (right panels) shows the predicted probabilities of the ordinal categories (as a 290 
function predicted cellular tBID content); these predictions are accurate in that they contain “ground 291 
truth” probabilities. Using this approach, we calibrated more accurate models of mechanism by 292 
simultaneously learning a more accurate model of the measurement. This motivates us to further explore 293 
the data-driven measurement model as a potential new avenue for insights.  294 
 295 
Mechanistic insights from data-driven measurement models 296 
We have shown thus far how a machine-learning measurement model can reduce uncertainty and increase 297 
accuracy in model calibration. Through mechanistic model calibration to categorical data, we effectively 298 
employ machine-learning classifiers to constrain mechanistic model dynamics to a corresponding 299 
categorical phenotype. We can then employ the measurement model in reverse, to better understand how 300 
properties of a biological mechanism predict, drive and define a particular phenotype. This kind of 301 
knowledge would be essential for model-driven experimental data acquisition and model-guided 302 
validation. 303 
 304 
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To demonstrate this concept, we calibrated aEARM to nominal cell survival vs death data using a 305 
measurement model that estimated the contribution of variables in aEARM to the cell survival vs. death 306 
predition. The survival vs death dataset was synthesized based on maximum log-rate of change of tBID 307 
and the time at which the rate of change maximized; these features were encoded into the measurement 308 
model, but their contribution was represented as a free parameter. In addition, the measurement model 309 
also considered the potential contribution of an unrelated variable (i.e. concentration of a reactants in 310 
reactions that occurred independently of the cell death ligand). Jointly calibrating aEARM and this 311 
measurement model to cell survival vs death data allowed data-driven predictions of how variables 312 
encoded in aEARM relate to cell survival vs death. Figure 5 shows posterior predictions of the values of 313 
potential predictors of cell survival vs death. The shade region marks the 95% credible interval for the 314 
line marking 50% cell survival probability. Figure 5 (bottom row) provides the posterior distribution of 315 
weight coefficients for each the features encoded in the measurement model. (Larger absolute values of 316 
the weight coefficient indicate greater importance of the feature.) The calibrated measurement model 317 
correctly identified time at maximum Bid truncation as the most important predictor of cell survival; and 318 
the unrelated variable as the least important predictor. Calibration of aEARM to the mixed dataset, 319 
described in the previous section, yielded a measurement model that equivalently predicted identified 320 
time at maximum Bid truncation as the most important predictor of cell survival; and the unrelated 321 
variable as the least important predictor. Calibration of a mechanistic model to categorical phenotype 322 
data, using data-driven measurement models, enabled correct identification of predictors (and potentially 323 
drivers or markers) of categorical phenotypes. The data-driven probabilistic measurement model we 324 
propose in this research was essential to this finding. 325 
 326 
Discussion 327 
We used data-driven probabilistic measurement models to calibrate, using Bayesian methods, a dynamical 328 
model of biological mechanism to quantitative and nonquantitative data. Our approach allowed us to 329 
estimate posterior predictive regions for the calibrated models and to observe how the size of a dataset, its 330 
different measurement types, and our assumptions about the measurements affect model accuracy and 331 
certainty. Our findings support results from previous studies that suggest nonquantitative data are 332 
valuable for mechanistic modeling efforts10-13. For instance, a sufficiently large ordinal dataset can 333 
constrain the posterior predictions of a mechanistic model as much as quantitative dataset. However, we 334 
far more nonquantitative data than is typically generated would be necessary for nonquantitative assays to 335 
match the information content of quantitative assays. In Figure 2B (second row), fourteen ordinal 336 
measurements of tBID – typical of common immunoblot measurements of intracellular biology – did not 337 
constrain the model around an accurate prediction of tBID dynamics. Instead, it took 24x as many ordinal 338 
measurements of tBID (336 measurements) to constrain the mechanistic model of apoptosis as well as the 339 
fluorescence dataset (112 measurements). We also found that datasets that combined categorical 340 
measurements of multiple variables in aEARM out-perform the datasets with measurements of an 341 
individual variable. These findings suggest one could overcome challenges posed by a dearth of 342 
quantitative data by devising experiments that, while nonquantitative, produce a larger number of diverse 343 
measurements that can cover multiple variables.  344 
 345 
We also found the posterior predictions of our mechanistic model were sensitive to the assumptions, we 346 
encode in the measurement model, about the relationship between measurement and measurand. All 347 
measurements possess uncertain (or unknown) properties, but this uncertainty has a pronounced presence 348 
in nonquantitative measurements. The limitations of nonquantitative data exist because they impose less 349 
informative constraints on models, and this leaves room for biasing assumptions and/or uncertainty. 350 
Uncertainty in nonquantitative measurements drives the, often unacknowledged and implicit, assumptions 351 
about the relationship between measurement and measurand (i.e. between data and model). With the 352 
proposed Bayesian calibration framework, we are able to observe how assumptions about measurement 353 
affected the uncertainty and accuracy of the posterior predictions, in essence providing a measurable 354 
quality of how well the model can make mechanistic predictions. We found that inaccurate ad hoc 355 
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assumptions about the measurement could produce models that suggested, with a higher degree certainty, 356 
an inaccurate prediction (Figure 4B). This finding suggests that ad hoc assumptions about measurements 357 
can lull practitioners into a false sense of confidence about the model and the data. This concern also 358 
motivated Schmiester and co-workers to avoid certain ad hoc assumption in their model calibration 359 
approach11. 360 
 361 
Having a measurement model whose attributes are determined by data creates an opportunity to learn new 362 
details about the relationship between a measurement and its measurand(s). For instance, could a model 363 
of biological mechanism plus cell phenotype observations data enable identification of cell phenotype 364 
predictors? To explored this, we encoded a small number of suspected cell-fate predictors into our 365 
measurement model and let the data (and the mechanistic model) determine, through model calibration, 366 
their respective contribution to phenotype. In doing so, model calibration using our data-driven 367 
measurement model performed feature selection to correctly identify the most important predictor of cell 368 
death. In general, this kind of measurement model, which relates mechanism to cellular phenotype, can be 369 
used to predict phenotype outcomes and identify potentially informative experimental conditions from in 370 
silico perturbation experiments. 371 
 372 
The present work presents an analysis and a proof-of-concept that can be improved upon in future work. 373 
We chose linear logistic classifiers, as they enable easy formulation of a likelihood function and 374 
application of Bayesian calibration methods, but other probabilistic classifiers could be used. We 375 
constrained our measurement representation to small number of potential features to avoid complications 376 
of high dimensionality to our machine learned measurement model. However, dimensionality reduction 377 
and feature learning (e.g. PCA) can, in theory, be integrated into the measurement model’s preprocessing 378 
and/or model calibration workflow. Possibilities for integrating more complex machine learning into 379 
models of measurement will depend on dataset size, computational power, and modeling goals.  380 
 381 
Our work introduces the concept of measurement models to the mechanistic modeling paradigm. 382 
Measurement models have their origin in social sciences and statistics29. They also appear in more 383 
quantitative applications; some recent examples include management, manufacturing, and computer 384 
vision30-32. These measurement models can take on more complexity than the examples we provided, 385 
depending on the unique needs of the problems in these areas. The use of measurement models in these 386 
areas is motivated by a desire to define and quantify observations of nuanced and/or subjective 387 
phenomena; and connect those observations to an underlying theory. Biology, being “harder” than social 388 
sciences, but arguably “softer” than physics will straddle the technical domains of both. As a field, we 389 
face the same challenge as these social sciences given that our mechanistic models are situated within a 390 
larger context of explaining nuanced and subjective biological phenomena (e.g. cell-fate, morphology, 391 
physiology and overall health vs. pathology). As practitioners, we never encode everything into our 392 
mechanistic models; instead there is always some aspect of the model (or its interpretation) that aims to 393 
connect back to these relevant biological phenomena. This fact ultimately motivates our application of 394 
data-driven probabilistic measurement models in our mechanistic models of intracellular biology. 395 
 396 
Methods 397 
Extrinsic Apoptosis Reaction Model 398 
We built an abridged extrinsic apoptosis reaction model (aEARM) and trained it using PyDREAM to 399 
normalized fluorescence time-course data20. We built this abridged version of EARM to simplify 400 
convergence of Bayesian calibration algorithms and thus make feasible probability-based predictions on 401 
the model-data relationship20. The aEARM abstracts detailed mitochondrial reactions from the original 402 
model as two sequential mitochondrial outer membrane pore (MOMP) “signal” activation steps. In 403 
addition, apoptosome formation and effector caspase activation reactions take place in a single activation 404 
step. The aEARM does capture key dynamic characteristics, such as the snap-action delay dynamics of 405 
apoptotic effector molecules that is observed empirically28. For this work, three additional non-apoptotic 406 
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species were encoded and linked via feedback activation and inactivation loops to test whether our data-407 
driven measurement model could discriminate between drivers and non-drivers of apoptosis. 408 
(Supplemental Table 2). These additional species and reactions do not interact with any species or 409 
reaction in the aEARM model. The aEARM was encoded using rule-based modeling python package 410 
PySB33.  411 
 412 
The aEARM parameters – initial conditions and rate coefficients – were adapted from the previously 413 
developed EARM and/or calibrated to fit available fluorescence data. Initial conditions parameters were 414 
lifted from the previously developed EARM (Supplemental Table 1). Previous work characterized 415 
extrinsic heterogeneity in the expression of proteins and its effect on apoptosis. To model extrinsic 416 
heterogeneity in apoptosis signaling, initial values of certain species (marked in table 1) were sampled 417 
from a log-normal distribution such that its mean equaled that in Supplemental Table 1 and coefficient of 418 
variation was 0.20. Rate coefficients were calibrated (described below) to fit normalized fluorescence 419 
time-course measurements of initiator and effector caspase reporter proteins (IC-RP and EC-RP 420 
respectively).  421 
 422 
Integrating aEARM Dynamics  423 
Snap-action delay dynamics present challenges for Ordinary Differential Equation (ODE)-based models, 424 
as they feature rapid non-stiff to stiff transitions during integration. For this work we employed the 425 
LSODA integrator (from scipy, via the PySB solver suite), suitable for non-stiff/stiff systems34. However, 426 
we found that particularly poorly behaved parameter vectors could prolong integration evaluations in 427 
LSODA. Integrator settings were adjusted for efficiency and accuracy of integration as follows: mxstep 428 
(2^20), atol (1e-6 default), rtol (1e-3 default). The aEARM was integrated over a linear space of 100 429 
time-points spanning 0 to 20160 seconds, in direct correspondence with the fluorescence time-course 430 
data28. Additional time-points in the data were obtained via linear interpolation. 431 
 432 
Measurement Models and Likelihood Functions 433 
Likelihood formulations incorporated a measurement model and resulting distance metric for each 434 
datatype in the study: fluorescence time-course data, synthetic ordinal time-course data, and synthetic 435 
survival vs death binary data for a sample of 400 initial conditions. These likelihood functions were used 436 
to calibrate the models to each dataset. In addition to their use in the likelihood formulation, the 437 
measurement models, were also used to generate synthetic non-quantitative datasets.  438 
 439 
We first trained the aEARM to normalized fluorescence time-course data for IC-RP and EC-RP, i.e. 440 
fluorescent proxies for substrates of initiator and effector caspase, respectively (i.e. Bid and PARP, 441 
respectively). Consistent with previous work, we defined a likelihood that assume an i.i.d. Gaussian-noise 442 
component 𝜖~𝑁(0, 𝜎2) on normalized tBID and cPARP predictions of the aEARM; where 𝜎2assumedly 443 
equals the variance of the data20,35. This yields a log-likelihood function (Eq. 11) where data the, 𝑦̂, and 444 
normalized aEARM predictions, 𝑦, are compared for each time-point, 𝑡, and observable, 𝑖 (i.e. tBID/IC-445 
RP and cPARP/EC-RP). The aEARM trained to these fluorescence data served as the starting point in the 446 
synthesis of ordinal, nominal, mixed, etc. datasets, below.  447 
 448 
 log ℒ(𝒚̂|𝜽) =  ∑ ∑ −1 2𝜎𝑖(𝑡)2⁄  × (𝑦̂𝑖(𝑡) − 𝑦𝑖(𝑡, 𝜽))

2𝑇
𝑡

𝑁
1      (11) 449 

 450 
To train the aEARM to synthetic ordinal time-course data, a measurement model (i.e. that models the 451 
probability of each ordinal category as a function of an aEARM variable) was defined and applied in the 452 
formulation of a likelihood function36. The ordinal logistic regression python package, MORD, applies 453 
empirical ordering constraints to Scikit-Learn’s logistic regression class; this class then calculates a 454 
probability for each ordinal category36. The ordinal logistic model, encoded in MORD, defines ordinal 455 
constraints as a linear function of predicted values of an aEARM variable (e.g.  𝑝(𝑦𝑡𝐵𝐼𝐷 ≥ 𝑐𝑗|𝑥𝑡𝐵𝐼𝐷) =456 
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𝜑(𝛼𝑥𝑡𝐵𝐼𝐷 +  𝛽𝑗) for aEARM variable, 𝑥𝑡𝐵𝐼𝐷) where each ordinal constraint, 𝑗, is a logistic function 𝜑(𝑧) 457 
with a different offset coefficient, 𝛽𝑗, but shared slope coefficient, 𝛼, for each of the ordinal categories. 458 
Each ordinal constraint function is combined, using the sequential model (i.e. the product of the logistic 459 
functions), to give a probability of each ordinal category, 𝑃(𝑦𝑖(𝑡) = 𝑐𝑗|𝑥𝑖(𝑡, 𝜽), 𝛼𝑖 , 𝛽𝑖,𝑗)37, 38. These offset 460 
and slope coefficients are additional free parameters to be inferred in the model calibration. For example, 461 
a measurement model with 𝐾 categories can be defined using 𝐾 − 1 ordinal constraints and will therefore 462 
add a total of 𝐾 free parameters (i.e. 𝐾 − 1 offset coefficients and 1 shared slope coefficient) to the 463 
model. We also encoded error in our synthetic ordinal data by defining a 5% misclassification probability; 464 
i.e. we assume 95% probability the reported ordinal category, 𝑐𝑗 =  𝑦̂, and 2.5% probability of adjacent 465 
categories, 𝑐𝑗 =  𝑦̂ ± 1, (5% for adjacent terminal categories). We model this by the marginal probability 466 
that the observation classified into the category predicted by the model: ∑ 𝑃(𝑦̂𝑖(𝑡)|𝑦𝑖(𝑡) = 𝑐𝑗)𝐾

𝑗
38. 467 

Together, this yields a log-likelihood function (Eq. 12) where the probability of each category 𝑐𝑗 is 468 
calculated for each time-point, 𝑡, and observable, 𝑖; and applied toward a likelihood of the data 𝑦̂ given 469 
the model. Where noted, we also trained the aEARM using measurement models with preset fixed 470 
parameters (Supplemental Table 3).  471 

 472 
log ℒ(𝒚̂|𝜽, 𝜶, 𝜷) = ∑ ∑ log ∑ 𝑃(𝑦̂𝑖(𝑡)|𝑦𝑖(𝑡) = 𝑐𝑗)𝑃(𝑦𝑖(𝑡) = 𝑐𝑗|𝑥𝑖(𝑡, 𝜽), 𝛼𝑖 , 𝛽𝑖,𝑗)𝐾

𝑗
𝑻
𝒕

𝑵
𝒊  (12) 473 

 474 
We trained aEARM to synthetic binary (survival vs death) data by incorporating a measurement model 475 
(i.e. logistic model of the probability of each categorical outcome) similar to that used for the ordinal data. 476 
We used the Scikit-Learn logistic regression class to model the probability of a cell-death outcome, 𝑦 =477 
𝑐1, as a linear function of features, 𝑥𝑙, derived from the aEARM simulation:  𝑝(𝑦 = 𝑐1|𝒙) =478 
𝜑 (𝛼(𝛽 + ∑ 𝛽𝑙𝑥𝑙

𝐿
𝑙 )), where 𝛼 is a slope term, 𝛽 is an intercept and 𝛽𝑙 are weight coefficients for each of 479 

the 𝐿 features39. Previous studies used a priori knowledge and assumptions about which features of a cell-480 
fate marker’s dynamics to associate with the binary outcome. For instance, recent work delineates 481 
necrotic and survival cell fate outcomes using a threshold in the concentration of a known necroptosis 482 
marker (this assumption enabled models of necroptosis in the absence of an established relationship 483 
between the dynamics of the marker and commitment to necroptosis). Roux et al, investigated an 484 
empirical relationship between initiator caspase reporter protein (IC-RP), a fluorescent indicator of 485 
caspase activity or proxy for caspase substrate cleavage, and apoptosis in TRAIL stimulated HeLa cells18. 486 
They found, instead of concentration, the maximum rate of change in IC-RP and the time when that rate 487 
of change maximized better predicted the apoptosis-survival decision18. The features we use in our study 488 
are based on findings by Roux et al18. The features are derived from aEARM simulated tBID dynamics, 489 
𝑥𝑡𝐵𝐼𝐷(𝑡, 𝜽): time at maximum rate of change, and log-maximum rate of change. To test the measurement 490 
model’s ability to discriminate between predictors and non-predictors of cell death, we encoded an 491 
additional feature: the concentration of an unrelated non-apoptotic species (USM2 in Table 2) when bid 492 
truncation maximizes. Together this totals three features. We interpret each observation in the dataset as 493 
an independent Bernoulli random variable. Each cell death vs survival observation is compared with these 494 
three features, 𝑥𝑙,𝑚, extracted from an aEARM trajectory that was simulated from a unique vector of 495 
initial conditions. There were 400 observations; 2 sets of 200 observations corresponding to 10 and 496 
50ng/mL initial ligand concentration. Together, this yields a log-likelihood function (Eq. 13) where each, 497 
𝑚, of the 𝑀 aEARM simulated trajectories corresponds to an observation 𝑦̂𝑚. Given the definitiveness of 498 
observed surviving vs dead outcomes, we considered the chance of misclassification to be zero (i.e. 499 
𝑃(𝑦̂𝑚|𝑦𝑚 = 𝑐1) = 0 when 𝑦̂𝑚 ≠ 𝑐1).  500 
 501 
 log ℒ(𝒚̂|𝜽, 𝜶, 𝜷) = ∑ 𝑃(𝑦̂𝑚|𝑦𝑚 = 𝑐1) log 𝜑 (𝛼(𝛽 + ∑ 𝛽𝑙𝑥𝑙,𝑚

𝐿
𝑙 ))𝑴

𝒎   502 

       + ∑ (1 − 𝑃(𝑦̂𝑚|𝑦𝑚 = 𝑐1)) log [1 −  𝜑 (𝛼(𝛽 + ∑ 𝛽𝑙𝑥𝑙,𝑚
𝐿
𝑙 ))]𝑴

𝒎   (13) 503 
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 504 
Generating Synthetic Datasets 505 
The calibration of aEARM to IC-RP and EC-RP fluorescence time-course data provided an optimally fit 506 
vector of rate coefficient parameters, which served as the “ground truth” parameter vector in the synthesis 507 
of the nonquantitative datasets (Supplemental Table 5). These parameters were applied to aEARM, and 508 
the resulting aEARM was used simulate time-courses for variables to be indicated in the nonquantitative 509 
data: truncated BID (tBID), initiator caspase localization to the death inducing signaling complex (IC-510 
DISC), and cleaved PARP (cPARP).  511 
 512 
These time-courses were converted to ordinal time-course datasets. The effective bit resolution of a 513 
measurement technology dictates how many unique values it can distinguish40. The total number of 514 
ordinal categories, 𝐾, was set such that resulting dataset had less than 70% of the effective bit resolution, 515 
𝐸𝐵𝑅, (Eq. 14) of the IC-RP of EC-RP data. The signal to noise ratio, 𝑆𝑁𝑅, (Eq. 15) assumes the data, 𝑑, 516 
were subject to Gaussian noise and a 0.10 misclassification rate between adjacent values; modeled as the 517 
0.95 quantile of a unit normal distribution40. Therefore, the number of ordinal categories were 5 and 4 for 518 
tBID and cPARP, respectively. The number of ordinal categories for IC-DISC were arbitrarily set to 4. 519 
Arbitrary values of slope and offset coefficients (Supplemental Table 3) were designated “ground truth” 520 
and applied to ordinal measurement models (described above). The resulting measurement models map 521 
the values in the aEARM simulated time-courses to probabilities of each ordinal category. These 522 
probabilities were used to simulate random class assignments for synthetic ordinal datasets (see Fig 2). 523 
The aEARM was trained to time-course ordinal values of tBID and cPARP or time-course ordinal values 524 
of IC-DISC and nominal data described below.  525 
 526 
𝐾 ≤ 0.7 × 2𝐸𝐵𝑅 ,        𝐸𝐵𝑅 = −(𝑆𝑁𝑅 +  1.76) 6.02⁄       (14) 527 
𝑆𝑁𝑅 = 20 log10 𝑞0.95rms(𝑑) (max 𝑑 − min 𝑑)⁄       (15) 528 
 529 
To generate synthetic nominal (binary cell survival vs death) data, two heterogeneous populations of 200 530 
aEARM tBID (and an unrelated non-apoptotic species, USM2) trajectories were simulated from ground 531 
truth parameters. The populations had distinct initial ligand concentrations (10 or 50 ng/mL). 532 
Heterogeneity was modeled by a log-normal random sample of certain initial conditions (described 533 
above). These time-courses were preprocessed to yield values of the features encoded in nominal 534 
measurement model, above. This measurement model (which was encoded with preset “ground truth” 535 
values of slope, intercept and weight coefficients – See Supplemental Table 4) maps these features to 536 
probabilities of the binary outcomes. These probabilities were used to simulate random class assignments 537 
for synthetic nominal datasets (Fig 3b).  538 
 539 
To generate a synthetic distribution of times at which Bid truncation was half-maximal, two heterogenous 540 
populations of 200 aEARM tBID time-courses, corresponding to 10 and 50ng/mL initial ligand 541 
concentrations, were simulated from ground truth parameters (as above). Time at half-maximal tBID was 542 
calculated via linear interpolation and rounded to the nearest 3-minute time-point (i.e. to reflect temporal 543 
resolution of common time-series intracellular experiments) (Fig 3a).  544 
 545 
Model Calibration via Bayesian Inference 546 
The aEARM was calibrated using DREAM(ZS) algorithm for all datasets41. Rate parameters in aEARM 547 
were given independent log-normal distribution prior probability functions with a location equal to the 548 
ground-truth parameter vector and a scale term of 1.5. The nominal (cell death vs survival) dataset 549 
features a heterogeneous population of values. We modeled this heterogeneity with a random sample of 550 
initial conditions (described above). This random sample was shifted and scaled according to inferred 551 
values of the model mean and variance. The mean (if estimated) was given a log-normal distribution prior 552 
probability function with a location equal to ground-truth and a scale term of 1.5. The extrinsic noise (or 553 
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variance) was given inverse gamma distribution with 𝑎 and 𝑏 terms such that the resulting coefficient of 554 
variation had a prior mean and standard deviation of 0.20 and 0.015 respectively. 555 
 556 
Prior probability functions were also applied to the measurement models’ free-parameters. To in encode 557 
empirical ordering constraints on the ordinal measurement model, the slope terms, 𝛼, were greater than 558 
zero; they were given independent exponential distribution prior probability functions (with location of 559 
0.0 and scale of 100.0). To insure monotonically increasing offset terms, each offset, 𝛽𝑗, was defined by 560 
the distance, 𝜃𝑗, from its preceding offset term; 𝛽𝑗 =  𝛽𝑗−1 +  𝜃𝑗. The first offset, 𝛽0 =  𝜃0,  and 561 
subsequent distance, 𝜃𝑗, terms were given independent exponential distribution prior probability functions 562 
(with location of 0.0 and scale of 0.25). We explored the effect of increasingly biased priors on the 563 
ordinal measurement model parameters. Where noted, the slope terms, 𝛼, were given increasingly 564 
constrained independent prior probability functions: uniform (0.0 - 100.0 bounds), Cauchy (50.0 location 565 
and 10.0 scale) and Cauchy (50.0 location and 1.0 scale). The offset, 𝛽0, and distance, 𝜃𝑗, terms were 566 
similarly given independent uniform (0.0 - 1.0 bounds), Cauchy (0.2 location and 0.05 scale) and Cauchy 567 
(0.2 location and 0.005 scale) distribution prior probability functions. Parameters for the measurement 568 
model were given independent Laplace distribution prior probability functions with a location of 0.0 and 569 
scale of 1.0 for the slope, 𝛼,  and 0.10 for the intercept and weighting coefficients, 𝛽and 𝛽𝑙. 570 
 571 
The likelihood functions were described above. Additional settings applied to the DREAM(ZS) algorithm 572 
were: number of chains (4) number of crossover points (nCR=25), adaptive gamma (TRUE), probability 573 
of gamma=1 (p_gamma_unity=0.10), gamma term resolution (gamma_levels=8).  A burn-in period 574 
wherein crossover weights are adapted was set to 50,000-step burn-in for ordinal datasets and 100,000+ 575 
step burn-in. The calibration algorithm continued until it reached the stopping criterion: when the 576 
Gelman-Rubin metric (calculated on the latter 50% of the traces) was less than or equal to 1.2 for all free-577 
parameters in the model; at which point the parameter traces were considered converged32. Gelman-Rubin 578 
metrics for each calibration are listed in Supplemental Table 6. Model calibrations were run on a x64 Intel 579 
with 32 total CPU threads (256GB RAM) and x64 AMD with 256 threads (1024GB RAM). Run times 580 
varied widely given the stochastic nature of the optimization algorithm but were typically one to seven 581 
days for simple model calibrations. Random samples of 1000 parameter were taken from the latter 50% of 582 
the resulting parameter-traces were used in subsequent analyses. Source code for the model calibrations 583 
as well as code for downloading the resulting parameter-traces is found at https://github.com/LoLab-584 
VU/Opt2Q.   585 
 586 
Model Predictions 587 
We simulated the equal-tailed 95% credible region of the posterior predictions of aEARM via samples of 588 
the model parameters posterior distribution. This was done by randomly generating 1000 parameter sets 589 
sub-sampled from the posterior sample of parameters generated via PyDREAM. For each parameter set, 590 
tBID time-courses (and/or cPARP, IC-DISC) were simulated from aEARM. The 95% credible region of 591 
the predictions was then determined via 0.025 and 0.975 quantile bounds on the tBID (or other variables) 592 
values for each time-point in the simulated time-course. The area bounded in the 95% posterior credible 593 
interval was determined by summing the difference between the 0.025 and 0.975 quantile bounds across 594 
100 equally spaced time points on the trajectory. The 95% posterior credible intervals on the 595 
measurement model predictions were similarly the described by calculating 0.025 and 0.975 quantile 596 
boundaries on the predictions of the measurement model parameterized via 1000 parameter set samples 597 
from a posterior. This includes the posterior probability distributions of the feature coefficients encoded 598 
in the nominal measurement model. To model predictions of the nominal dataset, however, we randomly 599 
generated 100 parameter sets via sub-sampling of the posterior parameter distribution. For each parameter 600 
set, we simulate tBID dynamics from the set of 400 initial conditions as described above; from that we 601 
compute maximum BID truncation rate and time at maximum BID truncation rate for each of the 400 602 
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trajectories. The 0.05 contour of the KDE of the resulting 400 values of maximum BID truncation rate 603 
and time at maximum BID truncation rate was plotted for each of the 100 parameter sets.  604 
 605 
Figure Legends: 606 
Figure 1: Measurements encountered in cell biology. Nominal measurements (top) can help 607 
understand intracellular signaling activity as it relates to broader cellular and physiological 608 
behaviors. With cellular phenotype markers or drivers, we can attribute different nominal 609 
observations to distinct (intra)cellular states. This is often modeled as in Eq. 1, where each 610 
observable measurement (𝑦𝑜𝑏𝑠) corresponds to a given state. Ordinal measurements (second 611 
row) can be graded cellular phenotype observations (e.g., cell state transitions in cellular 612 
differentiation) or measurements of intracellular contents where noise can obscure intervals 613 
between values (e.g. Western Blots). Ordinal measurements imply a relative ordering of 614 
quantities along an axis but not their relative distance; i.e. we may know 𝑦𝑖 ≤ 𝑦𝑗 without 615 
knowing 𝑦𝑖 − 𝑦𝑗 (Eq. 2). Semi-quantitative measurements (third row) typically arise when an 616 
investigation has progress toward a more quantitative understanding of the intracellular 617 
signaling. Semi-quantitative measurements (e.g. fluorescent intracellular markers) imply a 618 
quantitative relationship but a scaling function is necessary for true quantitation (Eq. 3). True 619 
quantitative measurements (bottom row) do not imply assumptions and the quantity measured 620 
can be used directly in the model (Eq. 4), such as mass-spectrometry protein concentration 621 
measurements. As shown schematically on the left triangle schematic, ordinal and nominal 622 
measurements are more abundant in biology due to their ease of production but are more difficult 623 
to interpret, whereas semiquantitative and quantitative measurements are less common but have 624 
a more straightforward interpretation.  625 
 626 
Figure 2. Predicted Bid truncation dynamics of aEARM trained to different sized ordinal 627 
datasets. Multiple Bayesian optimizations were run on the A.) abridged Extrinsic Apoptosis 628 
Reaction Model (aEARM) using different sized ordinal dataset to probe how dataset size 629 
influenced certainty of aEARM predictions.  B.) Initiator caspase reporter (IC-RP) fluorescence 630 
time-course measurements (at 180s intervals) were measured (top left) as a proxy for truncated 631 
tBid (data from Albeck et al28). The plot shows the mean (dotted line) +/- 1 standard deviation 632 
(shaded region) for each time point. The 95% credible region (top right) of posterior predictions 633 
(shaded region) for tBID concentration in aEARM, calibrated to fluorescence measurements of 634 
IC-RP and EC-RP (See also supplemental figure 3). The median prediction (solid-line) and true 635 
(dotted line) tBID concentration trajectories are shown. In the next four rows (from top to 636 
bottom), Ordinal measurements of tBID (left) at every 1500, 300, 180 and 60s interval, 637 
respectively. The 95% credible region of predictions (shaded region), median prediction (solid 638 
line) and true (dotted line) tBID dynamics for aEARM calibrated to ordinal measurements of 639 
tBID and cPARP occurring at every 1500, 300, 180 and 60s timepoint are plotted in plots on the 640 
right. The plots for cPARP ordinal measurements and predictions are found in Supplemental 641 
Figure 3.  642 
 643 
Figure 3. Predicted Bid truncation dynamics of aEARM trained to nominal and ordinal 644 
datasets. A.) Nominal cell death (x) vs survival (o) outcomes data for cells treated with 10ng/mL 645 
(orange) and 50ng/mL (grey) of TRAIL and with known relative values of DISC formation (x-646 
axis).  The 95% credible region (shaded region) of posterior predictions of tBID dynamics of 647 
aEARM calibrated to nominal data (right plot). The median prediction (solid-line) and true 648 
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(dotted line) are also plotted. B.) Ordinal measurements for initiator caspase-DISC colocalization 649 
(IC-DISC) at 300s intervals (left plot). The 95% credible region (shaded region) of posterior 650 
predictions of tBID dynamics of aEARM calibrated to ordinal IC-DISC data (right plot), and C.) 651 
of aEARM calibrated to nominal and ordinal IC-DISC data. The median prediction (solid-line) 652 
and true (dotted line) were also plotted. The fit to IC-DISC data are shown in Supplemental 653 
Figure 9. 654 
 655 
Figure 4: Predicted Bid truncation dynamics of aEARM trained to ordinal data using 656 
different measurement model parameterizations. A.) and B.) The 95% credible region of 657 
posterior predictions (shaded region) of tBID dynamics for aEARM calibrated to ordinal 658 
measurements two fixed parameterizations for the measurement model (see Supplemental Table 659 
3). The adjacent panels plot the measurement models predicted probability of class membership 660 
(x-axis) as a function of normalized tBID concentration (y-axis). C.) D.) and E.) The 95% 661 
credible region of posterior predictions (shaded region) of tBID dynamics of aEARM calibrated 662 
to ordinal measurements uniform, Cauchy (scale=0.05) and Cauchy (scale=0.005) prior 663 
distributions for the parameterizations for the measurement model, respectively. In each, the 664 
median prediction (solid line) and true (dotted line) tBID dynamics are also shown. The adjacent 665 
panels give the 95% credible region of posterior predictions of the probability of class 666 
membership (x-axis) as a function of normalized tBID concentration (y-axis). Four 667 
accompanying plots show the prior (blue), posterior (orange) and true (dashed line) values of 668 
measurement model parameters.  669 
 670 
Figure 5: Measurement model predicts features of cell death vs. survival using aEARM 671 
calibrated to cell death datasets.  672 
Normalized predicted values of the features used in the cell death vs. survival measurement 673 
model – the x-axis is the maximum Bid truncation rate, and the y-axis is the time at maximum 674 
Bid truncation rate (top row) or an unrelated non-apoptotic signal (middle row) – for 675 
corresponding to observed cell death (x) and survival (o) outcomes. These feature values are 676 
modeled by aEARM parameterized by 100 parameter vectors randomly drawn from the 677 
posterior; for each parameterization, 5 out of the total simulated population of 400 cells were 678 
plotted. The grey and orange curves, in these plots, are 0.05 contours for the estimated density of 679 
simulated cell populations produced for each of the 100 parameter vectors – grey and orange 680 
correspond to 50 and 10ng/ml TRAIL treatments, respectively. The measurement model predicts 681 
a probability of cell death vs survival based on simulated values of the above features. The lower 682 
right region of the plots in the top row. (i.e., early maximization of Bid truncation and higher 683 
maximal Bid truncation rates) is associated with higher probability of cell death. The shaded 684 
region is the 95% credible region of the posterior prediction of the line marking 50% probability 685 
of cell death or survival. The black and blue lines are the median predicted and true 50% 686 
probability lines, respectively. The bottom row plots the posterior distributions of the weight for 687 
each feature (i.e. the product of the slope term and feature coefficient encoded in the 688 
measurement model): maximum Bid truncation rate (green), time at maximum Bid truncation 689 
(orange) and unrelated non-apoptotic signal (blue). Plots in the left column are predictions of 690 
aEARM calibrated to the cell death vs. survival dataset. Plots right column were those of 691 
aEARM calibrated to the cell death vs survival + ordinal IC-DISC combined dataset.  692 
 693 
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Box 1: Objective functions and the role of a measurement model. Mechanistic models of 694 
biological processes are typically encoded as systems of (ordinary) differential equations (Eq. 5). 695 
Model calibration relies on an objective function (Eq. 7) -- or in a Bayesian setting, a likelihood 696 
function (Eq. 8) -- quantifies the degree of dissimilarity or similarity between model variables 697 
and corresponding measurements. Note, the objective or likelihood function uses measurement 698 
model (Eq. 6) which converts modeled variables 𝒙(𝑡) to a quantity 𝑦(𝑡𝑖 ,  𝜽) that can be 699 
compared to data 𝑦̂(𝑡𝑖). In physics and engineering, where measurements are typically 700 
quantitative, the measurement model can be neglected. For nonquantitative measurements and 701 
observations, the measurement model takes more consideration.  702 
 703 
Box 2: Model calibration with the data-driven probabilistic measurement model. A.) The 704 
measurement model is an intermediate step between the mechanistic model and likelihood 705 
function of the measurement/observations. It receives variables from the mechanistic model and 706 
transforms for use in the likelihood function. This probabilistic machine-learning measurement 707 
model estimates probabilities of class membership as a function of the mechanistic model 708 
variables (Eq. 9). This measurement model is data-driven in that it contains free-parameters that 709 
are evaluated via the likelihood function (Eq. 10). B.) The measurement model uses values of 710 
e.g. tBID (grey curve) to estimate the probability of membership in an ordinal category (dotted 711 
data). C.) Plots a posterior ensemble of estimates of the probability of membership into 5 ordinal 712 
categories (x-axis) as a function of normalized tBID concentration (y-axis). The plot shows the 713 
median (solid line) and 95% credible region (shaded region) of the predictions (Category colors 714 
match data plotted in B). Algorithm) The mechanistic model and measurement model are 715 
calibrated simultaneously using Bayesian sampling methods through stepwise operations as 716 
described in each numeral.  717 
 718 
 719 
 720 

721 
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