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Abstract

Mathematical models are often used to study the structure and dynamics of network-driven cellular
processes. In cell biology, models representing biochemical reaction networks have provided significant
insights but are often plagued by a dearth of available quantitative data necessary for simulation and
analysis. This has in turn led to questions about the usefulness of biochemical network models with
unidentifiable parameters and high-degree of parameter sloppiness. In response, approaches to
incorporate highly-available non-quantitative data and use this data to improve model certainty have been
undertaken with various degrees of success. Here we employ a Bayesian inference and Machine Learning
approach to first explore how quantitative and non-quantitative data can constrain a mechanistic model of
apoptosis execution, in which all models can be identified. We find that two orders of magnitude more
ordinal data measurements than those typically collected are necessary to achieve the same accuracy as
that obtained from a quantitative dataset. We also find that ordinal and nominal non-quantitative data on
their own can be combined to reduce model uncertainty and thus improve model accuracy. Further
analysis demonstrates that the accuracy and certainty of model predictions strongly depends on accurate
formulations of the measurement as well as the size and make-up of the nonquantitative datasets. Finally,
we demonstrate the potential of a data-driven Machine Learning measurement model to identify
informative mechanistic features that predict or define nonquantitative cellular phenotypes, from a
systems perspective.

Introduction

The combination of systems approaches and quantitative data promised a novel understanding of cellular
mechanisms that would spur science-driven innovation in biology and medicine — as happened in physics,
chemistry, and engineering'~. Despite massive research efforts and data accumulation, our understanding
of cellular regulation, signaling and many other processes as biomolecular systems remains rudimentary.
The systems and quantitative biology fields continue to employ strategies from physics and engineering
to construct models of biological mechanism from first principles*®. However, these strategies are
incompatible with the types of measurements and observations that predominate biological investigations.
Observations from biological experiments investigating cell fate outcomes (apoptosis, necroptosis, etc.)
are collected as categorical values, which are hard to define in terms of variables encoded in mathematical
mechanistic models of biological processes®. Therefore, the connection of mechanistic models to
corresponding biological measurements is subject to practitioner interpretation. As a result, vast amounts
of existing nonquantitative data in cell biology have led to mechanistic formulations based on simple
inference and informal reasoning. Noise, complexity and the hierarchical organization of biology limits
how we can experimentally perturb and measure biological systems’®. Therefore, a relative dearth of
quantitative data exists that reveals itself in mechanistic models with poor parameter constraints.
Unfortunately, both non-quantitative and quantitative data, collected in an unplanned manner, results in
missed opportunities to quantitatively explain complex cellular mechanisms’.

This data-to-knowledge problem in biology has prompted researchers to incorporate nonquantitative data
as a complement or substitute for quantitative data in the development of mechanistic models'®'*. The
traditional workflow employed to train mechanistic models to data comprises mechanistic models and
experimental measurements linked through a calibration method (Box 1)'*'*. Such workflows have been
adapted to incorporate nonquantitative data into mechanistic models and have revealed their intrinsic
value in mechanistic hypothesis exploration. For example, pioneering work by Pargett and co-workers
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52 employed optimal scaling and multi-objective optimization for training mechanistic models to large
53 ordinal datasets'®. Schmiester et al. incorporated this strategy into PyPESTO, a model parameter
54  estimation framework''. Their formulation imposes discrete boundaries on the mechanistic model to
55  reflect discrete ordinal values in the data, but this approach limits their ability to integrate multiple
56  datatypes or use Bayesian methods for training and uncertainty estimation of mechanistic models. More
57  recently, Mitra et al. applied predefined constraint-based models of categorical data and modified their
58  approach to allow definition of a likelihood function within a Bayesian formalism.'* > However, the ad
59  hoc nature of their constraint models leaves room for biasing assumptions. Given the limited application
60  of Bayesian methods and biases introduced by ad hoc assumptions, the field still has a limited
61  understanding of the contribution of nonquantitative and quantitative data to mechanistic knowledge in
62  biological systems.
63
64  In this work, we tackle the data-to-knowledge challenge by introducing the concept of a measurement
65  model, a statistical construct, into systems modeling approaches, which aims to rigorously define
66  measurements and observations in terms of an underlying mechanisms'®. This definition entails
67  formulation of a function that maps variables encoded in a mechanistic model to values in the
68  nonquantitative data. Our approach departs from previous work in that it uses machine-learning based
69  classifiers whose free parameters are estimated to accomplish data-driven identification of measurement
70 model properties. It also uses a probabilistic formulation that lends itself to Bayesian methods and can
71  therefore provide an unbiased evaluation of the predictive power of models trained to nonquantitative
72 data. In what follows, we present our findings about common types of biological measurements, followed
73 by a presentation of our methodology. In this work we use a mechanistic model of apoptosis execution to
74  demonstrate how the amount and type of data applied to a mechanistic model can affect its predictive
75  power. It is well established that apoptosis signaling is involved in many cellular processes in health,
76  disease, and development'’. Its biological importance is further underscored by available quantitative and
77  nonquantitative empirical data'®. We also establish how an ad hoc formulation of a measurement model
78  can lead to spurious results and further show how these a priori assumptions can be examined within a
79  Bayesian, data-driven context. Finally, we demonstrate the potential of a machine learning measurement
80  model formulation to identify phenomenological links between features (e.g. predictors and drivers) of a
81  biomolecular mechanism and emergent biological phenotype. We expect our approach to improve our
82  understanding of the data-to-knowledge relationship in biological processes, leading to a probabilistic
83 understanding of biochemical mechanisms, and accelerated identification of systems-level interactions
84  that drive biological network dynamics.
85
86  Results
87  Contributions and biases from different data types to mechanistic models
88  We first explored how experimental data measurements are used to constrain mathematical models of
89  cellular processes. Mechanistic models typically employ physical chemistry formalisms comprised of
90 reaction rates and chemical species concentrations to represent networks of biochemical reactions. Direct
91  quantitative measurement of all chemical reactions and species would provide needed model parameters
92  to carry out simulations and in silico experiments. However, these measurements are typically not
93  available and likely untenable for real systems, thus leading to indirect measurements used to infer model
94 parameter values using an objective function (Eq. 7) or a likelihood function (Eq. 8). When these
95  functions are optimized, the resulting mathematical model can provide valuable new predictions and
96 insights about the cellular process. Measurements from cell biology experiments comprise four broad
97  types, namely, nominal, ordinal, semiquantitative, and quantitative (Figure 1); each data type reveals
98  different insights about the cellular process. In apoptosis signaling, for instance, nominal observations
99  supported early research where it helped identify key components in the apoptosis signaling pathway'.
100  Apoptosis and survival outcomes — as indicated by nominal nuclear fragmentation data (Figure 1 top row)
101  —helped determine two parallel signaling arcs that proceed following initiator caspase activation:
102 mitochondria-dependent and -independent pathways'®. These pathways trigger apoptosis by activating
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effector caspases'®. We built an abridged Extrinsic Apoptosis Reaction Model (aEARM)?°, which
represents these extrinsic apoptosis execution mechanisms as biomolecular reactions (Figure 2A).
Nominal observations do not provide a definitive estimation of their quantity of interest (i.e. their
measurand) and instead, encode weak constraints on the measurand values (Eq. 1). They can guide
mechanistic modeling by revealing salient structural elements of a cellular process but provide limited
insight into the dynamics and complex regulatory cues of apoptosis signaling. Ordinal measurements
have featured prominently in works investigating apoptosis signaling. They have uncovered clues about
the dynamics and complex regulatory mechanisms of apoptosis. For instance, ordinal measurements of
DISC (i.e. a ligand-dependent membrane bound ‘death inducing signaling complex’) components,
initiator and effector caspases (Figure 1 second row), bid, etc. revealed how cells resist apoptosis by
limiting (but not totally eliminating) pro-apoptotic cues’'; the sub-maximal pro-apoptotic signaling
presents as delay in the dynamics of caspase activation®”. To better understand caspase activation
dynamics and its effect on apoptosis and survival, we need mathematical models of the apoptosis
signaling dynamics. Ordinal measurements, however, do not readily support a mathematical description
of apoptosis signaling dynamics. Emerging work has leveraged ordinal and nominal measurements in the
development of mathematical models of biological signaling but the weak constraints encoded by these
measurements (Eq. 1 and Eq. 2) add uncertainty and bias to the modeling process.

Technical challenges confine our quantitative and semi-quantitative measurement to just a few apoptotic
signaling proteins. Fluorescence indicators of caspase activity'® (and by proxy, caspase substrate
cleavage) enabled time course measurements of Bid and PARP cleavage dynamics (Figure 1 third row)'®.
They revealed pro-apoptotic activation of Bid and PARP, in TRAIL induced apoptotic HeLa cells,
follows sigmoidal dynamics with delays and switch times that are sensitive to various regulatory factors.
These measurements provide the details necessary for a mathematical description of apoptosis signaling
dynamics and complexity. Our mathematical model aEARM captures the events from initial death ligand
cue, initiator caspase activation, BID truncation (tBID), mitochondrial outer membrane permeabilization
(MOMP) and eventual PARP cleavage (cPARP), as shown schematically on Figure 2**. The model was
calibrated to above fluorescence data, as described in Methods*®. Semi-quantitative measurements like
fluorescence, like non-quantitative measurements lack a definitive estimation of the measurand because
their interpretation requires mathematical manipulation, typically through scaling (Eq. 3), which can also
add uncertainty and bias. Quantitative measurements can be used directly in a model without further
modifications (Figure 1, fourth row) thus minimizing the uncertainty and bias introduced in the model
from measurement interpretation. Therefore, the specific type of measurement and its interpretation could
add significant uncertainty and bias to the mechanistic explanation of a given process.

To study the bias and uncertainty originating from different types of measurements, we introduce a
concept from statistics, and social sciences: the measurement model (Box 1)*. Briefly, a measurement
model is a function (Eq. 6) that describes the relationship between the measurement and its measurand.
This function maps variables from the mechanistic model x to the values expressed in the data y. This
function is often assumed or implied, particularly for semi-quantitative data that can more readily be
applied to the model calibration. However, the application of nominal and ordinal datatypes to
mechanistic models is not straightforward, because their interpretation (as we show in the following
sections) can significantly bias model-derived insights. Consequently, modeling efforts have relied almost
exclusively on quantitative and semi-quantitative data. By contrast, the much more abundant non-
quantitative datatypes are often ignored or used inappropriately.

Early modeling efforts interpreted nonquantitative data as a series of arbitrary surrogate quantities for the
ordinal or nominal values in a corresponding dataset'*. More recently, discrete boundaries on the values
of the measurand were imposed along with a distance metric to describe how well the mechanistic model
satisfies nominal or ordinal constraints in the non-quantitative data'®'?. These approaches reveal the value
of nonquantitative data for mechanistic model calibration, but the often-ad hoc nature of these constraint-
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based measurement models has been an overlooked source of model bias. To minimize biases from the
interpretation of non-quantitative datatypes and apply Bayesian inference methods for model calibration,
we developed a data-driven probabilistic measurement model (Box 2). Our measurement model is data-
driven in that it possesses free parameters that are calibrated to match data; this lets us replace a priori
assumptions about the measurement with a data-driven parametrization, and thereby calibrate mechanistic
models whose accuracy and precision better reflect the information contained in the data. Our
measurement model is probabilistic as it replaces discrete boundary-based measurement models and
distance metrics with a probability (Box 2, Eq. 9) of the ordinal or nominal value, which enables easy
formulation of a likelihood function and application of Bayesian optimization methods that utilize
MCMC sampling. In our approach, the measurement model is a mathematical construct that represents
the measurand through a Machine-Learning probabilistic classifier whose free parameters are
simultaneously estimated with the free parameters of the mathematical model during calibration (Box 2).
As a probabilistic classifier, the measurement model effectively describes the probability of the categories
encoded in the non-quantitative data given values of the measurand (Eq. 9). The measurand, in our case,
is encoded in the mechanistic model. For example, the measurement model (Eq. 9, Box 2) can use ordinal
logistic classifiers to model the probability of a categorical value as a function of variable(s) encoded by
the mechanistic model. Also, the probability that a cell death or survival observations represents a specific
state of the mechanistic model. In the calibration process, the measurement model is an explicit
intermediate step between simulation of the mechanistic model dynamics and calculation of the likelihood
(Box 2). As described in the Methods section, this approach uses the Python based PySB models-as-
programs framework and PyYDREAM, a Python implementation of the DREAM|zs) algorithm to sample
posterior values of models’ free parameters. However, other model building and parameter sampling (or
optimization) algorithms could be employed by the user. In what follows, we examine the impact of
different measurement modalities and interpretations on mechanistic model constraints in apoptosis
execution. This work motivates an approach that could be generalized to any mathematical model to
rigorously integrate quantitative and nonquantitative data types.

Uncertainty associated with different data types in model calibration

To date, molecular biology investigations of intracellular signaling processes and their mechanisms
predominantly report nonquantitative measurements. However, it is unclear exactly how well these
measurements support the development of mechanistic models. We therefore asked how various
measurement datatypes impact the certainty and accuracy of model calibrations. Specifically, we explored
how to adjust the size and make-up of nonquantitative datasets to better support mechanistic inferences.
The resulting posterior predictive region for tBID dynamics of aEARM calibrated to (semi-quantitative)
fluorescence data is shown in Figure 2 (B, top row). As expected, the data can effectively constrain the
model and the 95% credible region of posterior predictions for tBid dynamics falls within the data
uncertainty region. We then extracted a parameter vector from the fluorescence optimized data and used it
as a baseline (reference) to generate ordinal datasets for tBID and other aEARM variables as described in
Methods and shown Figures 2 (B, bottom four rows). These synthetic datasets could be considered as
numerical representations of a time-course western blot dataset. We then calibrated aEARM kinetic rate
and measurement model parameters to the ordinal and nominal datasets.

As shown in Figure 2B, ordinal datasets accurately predicted quantitative predictions of “ground truth”
dynamics for tBID. The 95% credible region of posterior predictions of tBID dynamics of aEARM
trained to these ordinal datasets each contained “ground truth” dynamics for tBID. We also use the area
bounded by the 95% credible region of posterior predictions of tBID as a measure of model certainty;
with a smaller area indicating higher certainty. The ordinal dataset containing measurements at every 25-
minute interval (i.e. typical of time-dependent western blot datasets), however, did not significantly
constrain the posterior predictive regions of these dynamics (Figure 2D). Increasing the number of
measurements, however, increases the certainty of the posterior predictions of tBID dynamics; this
certainty approaches that of the typical semi-quantitative (fluorescence) dataset, which has an area of 2.7,
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205  when then the number of ordinal measurements is increased threefold, which had an area of 6.2. The areas
206  bounded by the 95% credible region for each ordinal time-course dataset is described in the Figure 2B
207  (Bottom two rows).

208

209  To explore the impact of nominal data on model optimization, we again extracted a parameter vector from
210  the fluorescence optimized data and used it as a baseline (reference) to generate nominal datasets akin to
211 an apoptosis execution observation as described in Methods. Previous work has described how features of
212 apoptosis signaling dynamics can predict cell death vs survival'®. The generated nominal dataset describes
213 binary cell-fate outcomes that emerge as a consequence of extrinsic apoptosis signaling dynamics. We
214 encode this information in a nominal measurement model as described in Methods. Parameters of

215  aEARM and the free-parameters encoded in the measurement model were jointly calibrated to a

216  synthetically generated dataset of 400 survival vs death outcomes as shown in Figure 3A (left). As shown
217  in Figure 3A (right), the binary cell-fate data minimally constrain the posterior predictive region of tBID
218  dynamics relative to the prior constraints on the model. This is expected as the binary cell-fate data-type
219  essentially condenses complex apoptotic signaling dynamics to a single categorical value.

220

221  Inlieu of its limited ability to constrain mechanistic models, modeling efforts understandably disregard
222 nominal data. However, we hypothesized that combining nonquantitative datatypes and covering multiple
223 variables in the model could improve model certainty. To explore the effect of multiple data type

224 combinations on model calibration, we again optimized the aEARM model parameters, but this time to a
225  dataset containing nominal and ordinal measurements. As described in Methods, we added a synthetic
226  dataset containing 61 ordinal time-course measurements for the DISC complex to the nominal dataset
227  described above (Figure 3B (left)). We modeled the likelihood of this combined dataset as the product of
228  the likelihoods of the individual constituent datasets (see Methods for details). In Figure 3A and 3B

229  (right), we see the nominal and ordinal datasets yields larger 95% credible regions for the posterior

230  predictions of tBID dynamics. However, (in Figure 3C) the combined dataset better constrained the

231  posterior predictions of normalized tBID dynamics than either dataset alone, with a 95% credible region
232 area of 26.5 (compared to 55.0 and 56.4 for the ordinal and nominal datasets alone). Therefore, the model
233 uncertainty stemming from only using tBID nominal data was decreased by including more detailed

234 upstream measurements. However, the contribution of DISC ordinal data alone was comparable to that of
235  the tBID nominal data in isolation (Figure 3B (right)). This data suggests that distributed measurements
236  across multiple variables in a pathway yield synergistic effects on calibrated model accuracy and

237  certainty.

238

239  Data-driven measurement model as an indicator of model bias

240  Traditionally, applying quantitative or semi-quantitative data to a mechanistic model has been relatively
241  straightforward as they typically follow a well-establish and simple relationship between the measurement
242 and the measurand. However, for non-quantitative data, measurement uncertainty can prompt researchers
243 to make assumptions about the relationship between measurement and measurand, which may negatively
244 impact in the resulting mechanistic model. We therefore asked how the encoding of assumptions into our
245 models of non-quantitative measurements could impact mechanistic model calibrations. To attain this

246  goal, we calibrated aEARM Kkinetic rate parameters to the ordinal dataset, but this time we replaced the
247  free parameters in the measurement model fixed a priori parameterizations or we encoded our

248  assumptions as priors on the measurement model’s free-parameters. We tested four situations: (i) fixed
249  parameters, a case where the measurement model is pre-parameterized by the user, presumably reflecting
250  full confidence in their assumptions about the measurement; (if) strong prior knowledge, a case where
251  there is strong belief in the assumed values of the measurement model parameters; (iii) weak prior

252 knowledge, a case where there is only weak belief in the assumed values of the measurement model

253  parameters; and (iv) no prior knowledge, that is no constraints on the measurement model parameters.

254
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Figures 4A and 4B show the ordinal class probabilities for tBID as modeled by (i) two distinct pre-
parameterized measurement models. In case 1, lowest and highest categories correspond to a narrow
range of tBID values, while the three internal categories each account for roughly 1/3™ of the tBID range.
This parameterization might aim to account for effects of sensitivity and saturation on the measurement.
In case 2, all five ordinal categories each account for 1/5™ of the range of tBID values. The right panels in
Figures 4A and 4B show the assumed relationship between tBID concentration and probability of each
ordinal category. Figures 4A and 4B (left plots) also show posterior predictions of tBID dynamics by
aEARM calibrated to the ordinal dataset using these fixed pre-parameterized measurement models. The
different measurement model pre-parameterization produced markedly different posterior predictions of
tBID dynamics by the resulting aEARM calibrations. This raises potential concerns that assumptions in
our interpretation of the measurement can artificially influence our interpretation of the mechanism.

In Figure 4B, the 50% probability boundary between adjacent categories occurs at every 0.2 interval;
essentially dividing the [0,1] range of tBID values into five equally spaced ordinal categories. Shown in
Figure 4C-E, we represent this as a flexible assumption by encoding it in our priors (ii — iv) i.e., Cauchy
distributions centered at every 0.2 interval (as detailed in Methods). The smaller the scale — more
narrowly focused — prior distributions reflect less flexibility in the free-parameter and a stronger belief in
our prior assumptions. Figure 4C-E shows the posterior predictions of tBID dynamics of aEARM
calibrated to the ordinal dataset using increasingly more constrained priors on the measurement model
parameters. The resulting posterior predictions of tBID dynamics were all less constrained than that of
aEARM calibrated using fixed pre-parameterized measurement models (Figure 4A and 4B) but, they were
more accurate as they contained the “ground-truth” tBID dynamics. Strongly constrained priors on the
measurement model parameters (ii) produced a less certain mechanistic model; as indicated by its wider
95% credible region of posterior predictions of tBID dynamics (Figure 4E). The posterior distributions of
measurement model parameters were spread out enough to give significant support of both the “ground
truth” and the a priori assumed parameter values. This uncertainty in the measurement model parameter
distributions translated into a less certain measurement model and less certain predictions of tBID
dynamics. Weaker constraints on the measurement model parameters were encoded via larger scale prior
distribution (Figure 4D). In Figure 4D we see these prior distributions, while centered on our a priori
assumptions, includes the “ground truth” parameters. The posterior distributions of the measurement
model parameters were therefore more constrained; likewise, the measurement model and posterior
predictions of tBID dynamics had more certainty. This is also observed, in Figure 4C, the case where no
prior assumptions were applied to the measurement model parameters (iv). The accuracy of the
predictions of tBID dynamics comes from the flexibility of the data-driven measurement models’
parameters. This flexibility enables optimization (or prediction) of key properties of the measurement
given the data. Figure 4 (right panels) shows the predicted probabilities of the ordinal categories (as a
function predicted cellular tBID content); these predictions are accurate in that they contain “ground
truth” probabilities. Using this approach, we calibrated more accurate models of mechanism by
simultaneously learning a more accurate model of the measurement. This motivates us to further explore
the data-driven measurement model as a potential new avenue for insights.

Mechanistic insights from data-driven measurement models

We have shown thus far how a machine-learning measurement model can reduce uncertainty and increase
accuracy in model calibration. Through mechanistic model calibration to categorical data, we effectively
employ machine-learning classifiers to constrain mechanistic model dynamics to a corresponding
categorical phenotype. We can then employ the measurement model in reverse, to better understand how
properties of a biological mechanism predict, drive and define a particular phenotype. This kind of
knowledge would be essential for model-driven experimental data acquisition and model-guided
validation.
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305  To demonstrate this concept, we calibrated aEARM to nominal cell survival vs death data using a

306  measurement model that estimated the contribution of variables in aEARM to the cell survival vs. death
307  predition. The survival vs death dataset was synthesized based on maximum log-rate of change of tBID
308  and the time at which the rate of change maximized; these features were encoded into the measurement
309  model, but their contribution was represented as a free parameter. In addition, the measurement model
310  also considered the potential contribution of an unrelated variable (i.e. concentration of a reactants in

311  reactions that occurred independently of the cell death ligand). Jointly calibrating aEARM and this

312  measurement model to cell survival vs death data allowed data-driven predictions of how variables

313  encoded in aEARM relate to cell survival vs death. Figure 5 shows posterior predictions of the values of
314  potential predictors of cell survival vs death. The shade region marks the 95% credible interval for the
315  line marking 50% cell survival probability. Figure 5 (bottom row) provides the posterior distribution of
316  weight coefficients for each the features encoded in the measurement model. (Larger absolute values of
317  the weight coefficient indicate greater importance of the feature.) The calibrated measurement model

318  correctly identified time at maximum Bid truncation as the most important predictor of cell survival; and
319  the unrelated variable as the least important predictor. Calibration of aEARM to the mixed dataset,

320  described in the previous section, yielded a measurement model that equivalently predicted identified
321  time at maximum Bid truncation as the most important predictor of cell survival; and the unrelated

322 variable as the least important predictor. Calibration of a mechanistic model to categorical phenotype
323 data, using data-driven measurement models, enabled correct identification of predictors (and potentially
324 drivers or markers) of categorical phenotypes. The data-driven probabilistic measurement model we

325  propose in this research was essential to this finding.

326

327  Discussion

328  We used data-driven probabilistic measurement models to calibrate, using Bayesian methods, a dynamical
329  model of biological mechanism to quantitative and nonquantitative data. Our approach allowed us to

330  estimate posterior predictive regions for the calibrated models and to observe how the size of a dataset, its
331  different measurement types, and our assumptions about the measurements affect model accuracy and
332 certainty. Our findings support results from previous studies that suggest nonquantitative data are

333 valuable for mechanistic modeling efforts'®". For instance, a sufficiently large ordinal dataset can

334  constrain the posterior predictions of a mechanistic model as much as quantitative dataset. However, we
335  far more nonquantitative data than is typically generated would be necessary for nonquantitative assays to
336  match the information content of quantitative assays. In Figure 2B (second row), fourteen ordinal

337  measurements of tBID — typical of common immunoblot measurements of intracellular biology — did not
338  constrain the model around an accurate prediction of tBID dynamics. Instead, it took 24x as many ordinal
339  measurements of tBID (336 measurements) to constrain the mechanistic model of apoptosis as well as the
340  fluorescence dataset (112 measurements). We also found that datasets that combined categorical

341  measurements of multiple variables in aEARM out-perform the datasets with measurements of an

342  individual variable. These findings suggest one could overcome challenges posed by a dearth of

343  quantitative data by devising experiments that, while nonquantitative, produce a larger number of diverse
344  measurements that can cover multiple variables.

345

346  We also found the posterior predictions of our mechanistic model were sensitive to the assumptions, we
347 encode in the measurement model, about the relationship between measurement and measurand. All

348  measurements possess uncertain (or unknown) properties, but this uncertainty has a pronounced presence
349  in nonquantitative measurements. The limitations of nonquantitative data exist because they impose less
350 informative constraints on models, and this leaves room for biasing assumptions and/or uncertainty.

351  Uncertainty in nonquantitative measurements drives the, often unacknowledged and implicit, assumptions
352  about the relationship between measurement and measurand (i.e. between data and model). With the

353  proposed Bayesian calibration framework, we are able to observe how assumptions about measurement
354  affected the uncertainty and accuracy of the posterior predictions, in essence providing a measurable

355  quality of how well the model can make mechanistic predictions. We found that inaccurate ad hoc
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assumptions about the measurement could produce models that suggested, with a higher degree certainty,
an inaccurate prediction (Figure 4B). This finding suggests that ad hoc assumptions about measurements
can lull practitioners into a false sense of confidence about the model and the data. This concern also
motivated Schmiester and co-workers to avoid certain ad hoc assumption in their model calibration
approach'’.

Having a measurement model whose attributes are determined by data creates an opportunity to learn new
details about the relationship between a measurement and its measurand(s). For instance, could a model
of biological mechanism plus cell phenotype observations data enable identification of cell phenotype
predictors? To explored this, we encoded a small number of suspected cell-fate predictors into our
measurement model and let the data (and the mechanistic model) determine, through model calibration,
their respective contribution to phenotype. In doing so, model calibration using our data-driven
measurement model performed feature selection to correctly identify the most important predictor of cell
death. In general, this kind of measurement model, which relates mechanism to cellular phenotype, can be
used to predict phenotype outcomes and identify potentially informative experimental conditions from in
silico perturbation experiments.

The present work presents an analysis and a proof-of-concept that can be improved upon in future work.
We chose linear logistic classifiers, as they enable easy formulation of a likelihood function and
application of Bayesian calibration methods, but other probabilistic classifiers could be used. We
constrained our measurement representation to small number of potential features to avoid complications
of high dimensionality to our machine learned measurement model. However, dimensionality reduction
and feature learning (e.g. PCA) can, in theory, be integrated into the measurement model’s preprocessing
and/or model calibration workflow. Possibilities for integrating more complex machine learning into
models of measurement will depend on dataset size, computational power, and modeling goals.

Our work introduces the concept of measurement models to the mechanistic modeling paradigm.
Measurement models have their origin in social sciences and statistics®. They also appear in more
quantitative applications; some recent examples include management, manufacturing, and computer
vision’**?, These measurement models can take on more complexity than the examples we provided,
depending on the unique needs of the problems in these areas. The use of measurement models in these
areas is motivated by a desire to define and quantify observations of nuanced and/or subjective
phenomena; and connect those observations to an underlying theory. Biology, being “harder” than social
sciences, but arguably “softer” than physics will straddle the technical domains of both. As a field, we
face the same challenge as these social sciences given that our mechanistic models are situated within a
larger context of explaining nuanced and subjective biological phenomena (e.g. cell-fate, morphology,
physiology and overall health vs. pathology). As practitioners, we never encode everything into our
mechanistic models; instead there is always some aspect of the model (or its interpretation) that aims to
connect back to these relevant biological phenomena. This fact ultimately motivates our application of
data-driven probabilistic measurement models in our mechanistic models of intracellular biology.

Methods

Extrinsic Apoptosis Reaction Model

We built an abridged extrinsic apoptosis reaction model (aEARM) and trained it using PyDREAM to
normalized fluorescence time-course data®®. We built this abridged version of EARM to simplify
convergence of Bayesian calibration algorithms and thus make feasible probability-based predictions on
the model-data relationship®®. The aEARM abstracts detailed mitochondrial reactions from the original
model as two sequential mitochondrial outer membrane pore (MOMP) “signal” activation steps. In
addition, apoptosome formation and effector caspase activation reactions take place in a single activation
step. The aEARM does capture key dynamic characteristics, such as the snap-action delay dynamics of
apoptotic effector molecules that is observed empirically®®. For this work, three additional non-apoptotic
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species were encoded and linked via feedback activation and inactivation loops to test whether our data-
driven measurement model could discriminate between drivers and non-drivers of apoptosis.
(Supplemental Table 2). These additional species and reactions do not interact with any species or
reactig}n in the aEARM model. The aEARM was encoded using rule-based modeling python package
PySB™.

The aEARM parameters — initial conditions and rate coefficients — were adapted from the previously
developed EARM and/or calibrated to fit available fluorescence data. Initial conditions parameters were
lifted from the previously developed EARM (Supplemental Table 1). Previous work characterized
extrinsic heterogeneity in the expression of proteins and its effect on apoptosis. To model extrinsic
heterogeneity in apoptosis signaling, initial values of certain species (marked in table 1) were sampled
from a log-normal distribution such that its mean equaled that in Supplemental Table 1 and coefficient of
variation was 0.20. Rate coefficients were calibrated (described below) to fit normalized fluorescence
time-course measurements of initiator and effector caspase reporter proteins (IC-RP and EC-RP
respectively).

Integrating aEARM Dynamics

Snap-action delay dynamics present challenges for Ordinary Differential Equation (ODE)-based models,
as they feature rapid non-stiff to stiff transitions during integration. For this work we employed the
LSODA integrator (from scipy, via the PySB solver suite), suitable for non-stiff/stiff systems**. However,
we found that particularly poorly behaved parameter vectors could prolong integration evaluations in
LSODA. Integrator settings were adjusted for efficiency and accuracy of integration as follows: mxstep
(2720), atol (1e-6 default), rtol (1e-3 default). The aEARM was integrated over a linear space of 100
time-points spanning 0 to 20160 seconds, in direct correspondence with the fluorescence time-course
data®®. Additional time-points in the data were obtained via linear interpolation.

Measurement Models and Likelihood Functions

Likelihood formulations incorporated a measurement model and resulting distance metric for each
datatype in the study: fluorescence time-course data, synthetic ordinal time-course data, and synthetic
survival vs death binary data for a sample of 400 initial conditions. These likelihood functions were used
to calibrate the models to each dataset. In addition to their use in the likelihood formulation, the
measurement models, were also used to generate synthetic non-quantitative datasets.

We first trained the aEARM to normalized fluorescence time-course data for IC-RP and EC-RP, i.e.
fluorescent proxies for substrates of initiator and effector caspase, respectively (i.e. Bid and PARP,
respectively). Consistent with previous work, we defined a likelihood that assume an i.i.d. Gaussian-noise
component e~N (0, 52) on normalized tBID and cPARP predictions of the aEARM; where g2assumedly
equals the variance of the data®®*. This yields a log-likelihood function (Eq. 11) where data the, , and
normalized aEARM predictions, y, are compared for each time-point, t, and observable, i (i.e. tBID/IC-
RP and cPARP/EC-RP). The aEARM trained to these fluorescence data served as the starting point in the
synthesis of ordinal, nominal, mixed, etc. datasets, below.

log L(310) = XV ST —1/20,(£) x (9:(t) — y:(t,0)) (11)

To train the aEARM to synthetic ordinal time-course data, a measurement model (i.e. that models the
probability of each ordinal category as a function of an aEARM variable) was defined and applied in the
formulation of a likelihood function®®. The ordinal logistic regression python package, MORD, applies
empirical ordering constraints to Scikit-Learn’s logistic regression class; this class then calculates a
probability for each ordinal category>®. The ordinal logistic model, encoded in MORD, defines ordinal
constraints as a linear function of predicted values of an aEARM variable (e.g. p(th,D 2 ¢ |xtB ) =
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457 qo(a'xtB,D + ﬁj) for aEARM variable, x;5;p) where each ordinal constraint, j, is a logistic function ¢ (z)
458  with a different offset coefficient, Bj, but shared slope coefficient, a, for each of the ordinal categories.
459  Each ordinal constraint function is combined, using the sequential model (i.e. the product of the logistic
460  functions), to give a probability of each ordinal category, P(y;(t) = ¢j |x; (¢, 0), a, B; 1)’ These offset
461  and slope coefficients are additional free parameters to be inferred in the model calibration. For example,
462  a measurement model with K categories can be defined using K — 1 ordinal constraints and will therefore
463  add a total of K free parameters (i.e. K — 1 offset coefficients and 1 shared slope coefficient) to the

464  model. We also encoded error in our synthetic ordinal data by defining a 5% misclassification probability;
465  i.e. we assume 95% probability the reported ordinal category, ¢; = ¥, and 2.5% probability of adjacent
466  categories,c; = ¥ £ 1, (5% for adjacent terminal categories). We model this by the marginal probability
467  that the observation classified into the category predicted by the model: Zf P(H:®|y:(®) = cj)38.

468  Together, this yields a log-likelihood function (Eq. 12) where the probability of each category ¢; is

469 calculated for each time-point, t, and observable, i; and applied toward a likelihood of the data § given
470  the model. Where noted, we also trained the aEARM using measurement models with preset fixed

471  parameters (Supplemental Table 3).
472

473 logL(316,a,B) = X} XT IOgZ§P(}A’i(t)|}’i(t) = Cj)P(yi(t) = Cj|xi(t: 0),a;, Bi;) (12)

474

475  We trained aEARM to synthetic binary (survival vs death) data by incorporating a measurement model
476  (i.e. logistic model of the probability of each categorical outcome) similar to that used for the ordinal data.
477  We used the Scikit-Learn logistic regression class to model the probability of a cell-death outcome, y =
478 ¢4, as a linear function of features, x;, derived from the aEARM simulation: p(y = ¢;|x) =

479 ¢ (a(ﬁ + Xk ﬁlxl)), where « is a slope term, £ is an intercept and [5; are weight coefficients for each of

480  the L features™. Previous studies used a priori knowledge and assumptions about which features of a cell-
481  fate marker’s dynamics to associate with the binary outcome. For instance, recent work delineates

482  necrotic and survival cell fate outcomes using a threshold in the concentration of a known necroptosis
483  marker (this assumption enabled models of necroptosis in the absence of an established relationship

484  between the dynamics of the marker and commitment to necroptosis). Roux et al, investigated an

485  empirical relationship between initiator caspase reporter protein (IC-RP), a fluorescent indicator of

486  caspase activity or proxy for caspase substrate cleavage, and apoptosis in TRAIL stimulated HeLa cells'®.
487  They found, instead of concentration, the maximum rate of change in IC-RP and the time when that rate
488  of change maximized better predicted the apoptosis-survival decision'®. The features we use in our study
489  are based on findings by Roux et al'®. The features are derived from aEARM simulated tBID dynamics,
490  x.p;p(t, @): time at maximum rate of change, and log-maximum rate of change. To test the measurement
491  model’s ability to discriminate between predictors and non-predictors of cell death, we encoded an

492  additional feature: the concentration of an unrelated non-apoptotic species (USM2 in Table 2) when bid
493  truncation maximizes. Together this totals three features. We interpret each observation in the dataset as
494 an independent Bernoulli random variable. Each cell death vs survival observation is compared with these
495 three features, x; ,,, extracted from an aEARM trajectory that was simulated from a unique vector of

496 initial conditions. There were 400 observations; 2 sets of 200 observations corresponding to 10 and

497  50ng/mL initial ligand concentration. Together, this yields a log-likelihood function (Eq. 13) where each,
498  m, of the M aEARM simulated trajectories corresponds to an observation ¥,,. Given the definitiveness of
499  observed surviving vs dead outcomes, we considered the chance of misclassification to be zero (i.e.

500  P@n|ym = ¢1) = 0 when 3, # ¢;).

501

502 10gL(710,,B) = TH PGmlym = c)log o (a(B + I fixim) )
503 + ZM(1 = PGimlym = e1))og [1 = ¢ (a(B + 2 frxim) )| (13)
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Generating Synthetic Datasets

The calibration of aEARM to IC-RP and EC-RP fluorescence time-course data provided an optimally fit
vector of rate coefficient parameters, which served as the “ground truth” parameter vector in the synthesis
of the nonquantitative datasets (Supplemental Table 5). These parameters were applied to aEARM, and
the resulting aEARM was used simulate time-courses for variables to be indicated in the nonquantitative
data: truncated BID (tBID), initiator caspase localization to the death inducing signaling complex (IC-
DISC), and cleaved PARP (cPARP).

These time-courses were converted to ordinal time-course datasets. The effective bit resolution of a
measurement technology dictates how many unique values it can distinguish*’. The total number of
ordinal categories, K, was set such that resulting dataset had less than 70% of the effective bit resolution,
EBR, (Eq. 14) of the IC-RP of EC-RP data. The signal to noise ratio, SNR, (Eq. 15) assumes the data, d,
were subject to Gaussian noise and a 0.10 misclassification rate between adjacent values; modeled as the
0.95 quantile of a unit normal distribution*’. Therefore, the number of ordinal categories were 5 and 4 for
tBID and cPARP, respectively. The number of ordinal categories for IC-DISC were arbitrarily set to 4.
Arbitrary values of slope and offset coefficients (Supplemental Table 3) were designated “ground truth”
and applied to ordinal measurement models (described above). The resulting measurement models map
the values in the aEARM simulated time-courses to probabilities of each ordinal category. These
probabilities were used to simulate random class assignments for synthetic ordinal datasets (see Fig 2).
The aEARM was trained to time-course ordinal values of tBID and cPARP or time-course ordinal values
of IC-DISC and nominal data described below.

K < 0.7 x 2EBR EBR = —(SNR + 1.76)/6.02 (14)
SNR = 201og( qo.9srms(d)/(maxd — min d) (15)

To generate synthetic nominal (binary cell survival vs death) data, two heterogeneous populations of 200
aEARM tBID (and an unrelated non-apoptotic species, USM2) trajectories were simulated from ground
truth parameters. The populations had distinct initial ligand concentrations (10 or 50 ng/mL).
Heterogeneity was modeled by a log-normal random sample of certain initial conditions (described
above). These time-courses were preprocessed to yield values of the features encoded in nominal
measurement model, above. This measurement model (which was encoded with preset “ground truth”
values of slope, intercept and weight coefficients — See Supplemental Table 4) maps these features to
probabilities of the binary outcomes. These probabilities were used to simulate random class assignments
for synthetic nominal datasets (Fig 3b).

To generate a synthetic distribution of times at which Bid truncation was half-maximal, two heterogenous
populations of 200 aEARM tBID time-courses, corresponding to 10 and 50ng/mL initial ligand
concentrations, were simulated from ground truth parameters (as above). Time at half-maximal tBID was
calculated via linear interpolation and rounded to the nearest 3-minute time-point (i.e. to reflect temporal
resolution of common time-series intracellular experiments) (Fig 3a).

Model Calibration via Bayesian Inference

The aEARM was calibrated using DREAM(ZS) algorithm for all datasets*'. Rate parameters in aEARM
were given independent log-normal distribution prior probability functions with a location equal to the
ground-truth parameter vector and a scale term of 1.5. The nominal (cell death vs survival) dataset
features a heterogeneous population of values. We modeled this heterogeneity with a random sample of
initial conditions (described above). This random sample was shifted and scaled according to inferred
values of the model mean and variance. The mean (if estimated) was given a log-normal distribution prior
probability function with a location equal to ground-truth and a scale term of 1.5. The extrinsic noise (or
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554  variance) was given inverse gamma distribution with a and b terms such that the resulting coefficient of
555  variation had a prior mean and standard deviation of 0.20 and 0.015 respectively.

556

557  Prior probability functions were also applied to the measurement models’ free-parameters. To in encode
558 empirical ordering constraints on the ordinal measurement model, the slope terms, «, were greater than
559  zero; they were given independent exponential distribution prior probability functions (with location of
560 0.0 and scale of 100.0). To insure monotonically increasing offset terms, each offset, f;, was defined by
561  the distance, 6;, from its preceding offset term; 8; = f;_; + 6;. The first offset, B = 6, and

562  subsequent distance, 6;, terms were given independent exponential distribution prior probability functions
563  (with location of 0.0 and scale of 0.25). We explored the effect of increasingly biased priors on the

564  ordinal measurement model parameters. Where noted, the slope terms, a, were given increasingly

565  constrained independent prior probability functions: uniform (0.0 - 100.0 bounds), Cauchy (50.0 location
566 and 10.0 scale) and Cauchy (50.0 location and 1.0 scale). The offset, By, and distance, 6;, terms were

567  similarly given independent uniform (0.0 - 1.0 bounds), Cauchy (0.2 location and 0.05 scale) and Cauchy
568 (0.2 location and 0.005 scale) distribution prior probability functions. Parameters for the measurement
569  model were given independent Laplace distribution prior probability functions with a location of 0.0 and
570  scale of 1.0 for the slope, @, and 0.10 for the intercept and weighting coefficients, fand £;.

571

572 The likelihood functions were described above. Additional settings applied to the DREAM(ZS) algorithm
573  were: number of chains (4) number of crossover points (nCR=25), adaptive gamma (TRUE), probability
574  of gamma=1 (p_gamma unity=0.10), gamma term resolution (gamma levels=8). A burn-in period

575  wherein crossover weights are adapted was set to 50,000-step burn-in for ordinal datasets and 100,000+
576  step burn-in. The calibration algorithm continued until it reached the stopping criterion: when the

577  Gelman-Rubin metric (calculated on the latter 50% of the traces) was less than or equal to 1.2 for all free-
578  parameters in the model; at which point the parameter traces were considered converged*. Gelman-Rubin
579  metrics for each calibration are listed in Supplemental Table 6. Model calibrations were run on a x64 Intel
580  with 32 total CPU threads (256GB RAM) and x64 AMD with 256 threads (1024GB RAM). Run times
581  varied widely given the stochastic nature of the optimization algorithm but were typically one to seven
582 days for simple model calibrations. Random samples of 1000 parameter were taken from the latter 50% of
583  the resulting parameter-traces were used in subsequent analyses. Source code for the model calibrations
584  as well as code for downloading the resulting parameter-traces is found at https://github.com/LoLab-

585  VU/Opt20Q.

586

587  Model Predictions

588  We simulated the equal-tailed 95% credible region of the posterior predictions of aEARM via samples of
589  the model parameters posterior distribution. This was done by randomly generating 1000 parameter sets
590  sub-sampled from the posterior sample of parameters generated via PyYDREAM. For each parameter set,
591 tBID time-courses (and/or cPARP, IC-DISC) were simulated from aEARM. The 95% credible region of
592  the predictions was then determined via 0.025 and 0.975 quantile bounds on the tBID (or other variables)
593  values for each time-point in the simulated time-course. The area bounded in the 95% posterior credible
594  interval was determined by summing the difference between the 0.025 and 0.975 quantile bounds across
595 100 equally spaced time points on the trajectory. The 95% posterior credible intervals on the

596  measurement model predictions were similarly the described by calculating 0.025 and 0.975 quantile

597  boundaries on the predictions of the measurement model parameterized via 1000 parameter set samples
598  from a posterior. This includes the posterior probability distributions of the feature coefficients encoded
599  in the nominal measurement model. To model predictions of the nominal dataset, however, we randomly
600  generated 100 parameter sets via sub-sampling of the posterior parameter distribution. For each parameter
601  set, we simulate tBID dynamics from the set of 400 initial conditions as described above; from that we
602  compute maximum BID truncation rate and time at maximum BID truncation rate for each of the 400
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trajectories. The 0.05 contour of the KDE of the resulting 400 values of maximum BID truncation rate
and time at maximum BID truncation rate was plotted for each of the 100 parameter sets.

Figure Legends:

Figure 1: Measurements encountered in cell biology. Nominal measurements (top) can help
understand intracellular signaling activity as it relates to broader cellular and physiological
behaviors. With cellular phenotype markers or drivers, we can attribute different nominal
observations to distinct (intra)cellular states. This is often modeled as in Eq. 1, where each
observable measurement (y,;s) corresponds to a given state. Ordinal measurements (second
row) can be graded cellular phenotype observations (e.g., cell state transitions in cellular
differentiation) or measurements of intracellular contents where noise can obscure intervals
between values (e.g. Western Blots). Ordinal measurements imply a relative ordering of
quantities along an axis but not their relative distance; i.e. we may know y; < y; without
knowing y; — y; (Eq. 2). Semi-quantitative measurements (third row) typically arise when an
investigation has progress toward a more quantitative understanding of the intracellular
signaling. Semi-quantitative measurements (e.g. fluorescent intracellular markers) imply a
quantitative relationship but a scaling function is necessary for true quantitation (Eq. 3). True
quantitative measurements (bottom row) do not imply assumptions and the quantity measured
can be used directly in the model (Eq. 4), such as mass-spectrometry protein concentration
measurements. As shown schematically on the left triangle schematic, ordinal and nominal
measurements are more abundant in biology due to their ease of production but are more difficult
to interpret, whereas semiquantitative and quantitative measurements are less common but have
a more straightforward interpretation.

Figure 2. Predicted Bid truncation dynamics of aEARM trained to different sized ordinal
datasets. Multiple Bayesian optimizations were run on the A.) abridged Extrinsic Apoptosis
Reaction Model (aEARM) using different sized ordinal dataset to probe how dataset size
influenced certainty of aEARM predictions. B.) Initiator caspase reporter (IC-RP) fluorescence
time-course measurements (at 180s intervals) were measured (top left) as a proxy for truncated
tBid (data from Albeck et al?®). The plot shows the mean (dotted line) +/- 1 standard deviation
(shaded region) for each time point. The 95% credible region (top right) of posterior predictions
(shaded region) for tBID concentration in aEARM, calibrated to fluorescence measurements of
IC-RP and EC-RP (See also supplemental figure 3). The median prediction (solid-line) and true
(dotted line) tBID concentration trajectories are shown. In the next four rows (from top to
bottom), Ordinal measurements of tBID (left) at every 1500, 300, 180 and 60s interval,
respectively. The 95% credible region of predictions (shaded region), median prediction (solid
line) and true (dotted line) tBID dynamics for aEARM calibrated to ordinal measurements of
tBID and cPARP occurring at every 1500, 300, 180 and 60s timepoint are plotted in plots on the
right. The plots for cPARP ordinal measurements and predictions are found in Supplemental
Figure 3.

Figure 3. Predicted Bid truncation dynamics of aEARM trained to nominal and ordinal
datasets. A.) Nominal cell death (x) vs survival (o) outcomes data for cells treated with 10ng/mL
(orange) and 50ng/mL (grey) of TRAIL and with known relative values of DISC formation (x-
axis). The 95% credible region (shaded region) of posterior predictions of tBID dynamics of
aEARM calibrated to nominal data (right plot). The median prediction (solid-line) and true
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(dotted line) are also plotted. B.) Ordinal measurements for initiator caspase-DISC colocalization
(IC-DISC) at 300s intervals (left plot). The 95% credible region (shaded region) of posterior
predictions of tBID dynamics of aEARM calibrated to ordinal IC-DISC data (right plot), and C.)
of aEARM calibrated to nominal and ordinal IC-DISC data. The median prediction (solid-line)
and true (dotted line) were also plotted. The fit to IC-DISC data are shown in Supplemental
Figure 9.

Figure 4: Predicted Bid truncation dynamics of aEARM trained to ordinal data using
different measurement model parameterizations. A.) and B.) The 95% credible region of
posterior predictions (shaded region) of tBID dynamics for aEARM calibrated to ordinal
measurements two fixed parameterizations for the measurement model (see Supplemental Table
3). The adjacent panels plot the measurement models predicted probability of class membership
(x-axis) as a function of normalized tBID concentration (y-axis). C.) D.) and E.) The 95%
credible region of posterior predictions (shaded region) of tBID dynamics of aEARM calibrated
to ordinal measurements uniform, Cauchy (scale=0.05) and Cauchy (scale=0.005) prior
distributions for the parameterizations for the measurement model, respectively. In each, the
median prediction (solid line) and true (dotted line) tBID dynamics are also shown. The adjacent
panels give the 95% credible region of posterior predictions of the probability of class
membership (x-axis) as a function of normalized tBID concentration (y-axis). Four
accompanying plots show the prior (blue), posterior (orange) and true (dashed line) values of
measurement model parameters.

Figure 5: Measurement model predicts features of cell death vs. survival using aEARM
calibrated to cell death datasets.

Normalized predicted values of the features used in the cell death vs. survival measurement
model — the x-axis is the maximum Bid truncation rate, and the y-axis is the time at maximum
Bid truncation rate (top row) or an unrelated non-apoptotic signal (middle row) — for
corresponding to observed cell death (x) and survival (o) outcomes. These feature values are
modeled by aEARM parameterized by 100 parameter vectors randomly drawn from the
posterior; for each parameterization, 5 out of the total simulated population of 400 cells were
plotted. The grey and orange curves, in these plots, are 0.05 contours for the estimated density of
simulated cell populations produced for each of the 100 parameter vectors — grey and orange
correspond to 50 and 10ng/ml TRAIL treatments, respectively. The measurement model predicts
a probability of cell death vs survival based on simulated values of the above features. The lower
right region of the plots in the top row. (i.e., early maximization of Bid truncation and higher
maximal Bid truncation rates) is associated with higher probability of cell death. The shaded
region is the 95% credible region of the posterior prediction of the line marking 50% probability
of cell death or survival. The black and blue lines are the median predicted and true 50%
probability lines, respectively. The bottom row plots the posterior distributions of the weight for
each feature (i.e. the product of the slope term and feature coefficient encoded in the
measurement model): maximum Bid truncation rate (green), time at maximum Bid truncation
(orange) and unrelated non-apoptotic signal (blue). Plots in the left column are predictions of
aEARM calibrated to the cell death vs. survival dataset. Plots right column were those of
aEARM calibrated to the cell death vs survival + ordinal IC-DISC combined dataset.
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Box 1: Objective functions and the role of a measurement model. Mechanistic models of
biological processes are typically encoded as systems of (ordinary) differential equations (Eq. 5).
Model calibration relies on an objective function (Eq. 7) -- or in a Bayesian setting, a likelihood
function (Eq. 8) -- quantifies the degree of dissimilarity or similarity between model variables
and corresponding measurements. Note, the objective or likelihood function uses measurement
model (Eq. 6) which converts modeled variables x(t) to a quantity y(t;, @) that can be
compared to data y(t;). In physics and engineering, where measurements are typically
quantitative, the measurement model can be neglected. For nonquantitative measurements and
observations, the measurement model takes more consideration.

Box 2: Model calibration with the data-driven probabilistic measurement model. A.) The
measurement model is an intermediate step between the mechanistic model and likelihood
function of the measurement/observations. It receives variables from the mechanistic model and
transforms for use in the likelihood function. This probabilistic machine-learning measurement
model estimates probabilities of class membership as a function of the mechanistic model
variables (Eq. 9). This measurement model is data-driven in that it contains free-parameters that
are evaluated via the likelihood function (Eq. 10). B.) The measurement model uses values of
e.g. tBID (grey curve) to estimate the probability of membership in an ordinal category (dotted
data). C.) Plots a posterior ensemble of estimates of the probability of membership into 5 ordinal
categories (x-axis) as a function of normalized tBID concentration (y-axis). The plot shows the
median (solid line) and 95% credible region (shaded region) of the predictions (Category colors
match data plotted in B). Algorithm) The mechanistic model and measurement model are
calibrated simultaneously using Bayesian sampling methods through stepwise operations as
described in each numeral.
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Box 1

. . 4 . . )\
4 Implicit measurement model ) Explicit measurement model
Useful for quantitative and semiquantitative Enable use of a wider range of measurements
measurements. Can be an overlooked source across multiple data types. Can be formulated
of bias for non-quantitative measurements. to avoid measurement interpretation bias.
Mechanistic _| Calibration Mechanistic Calibration
Model (Eq. 5) | (Eq. 7 or8) Model (Eq. 5) (Eq. 7 or 8)
A \
! Implied :
| Measurement 1 Measurement Model
: Model ; (Eq. 6) Interprets
----------- measurements in
terms of existing
Measurements knowledge. Measurements
+ Observations + Observations
(Mechanistic Models of dynamic cellular processes are often )
encoded as systems of ordinary differential equations (eq. 5). x(t) = f(t,0). (5)
Models are typically calibrated to one or many observables.

The Measurement Model translates measurements and

observations into mechanistic model variables. The

measurement model encodes understanding of the

measurement as it rel.ates to mecha.mlst!c knowledge. Tht.e y(t,0) = fy (x(t)) (6)
measurement model is most often implied (left box), which

can introduce significant biases for non-quantitative

measurements. An explicit, adaptive measurement model

(right box) can significantly alleviate this potential bias.

Calibration minimizes the distance(d) between observed

data () and related model predictions. Bayesian d = Z?zl w; (y(tl) — y(t;, 9))2 (7)
methods maximize likelihood functions log L(¥|0) to

optimize this distance. Calibration can include a 1 2
measurement model to minimize bias between log L(3160) = c + Y-, 5oz (37(t1) —y(t, 9)) (8)
measurements/observations and the model measurands. !
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Box 2

Algorithm
Bmaiisl Probabilistic
Measurement o
Model oda) 1. Draw dynamical and measurement model

parameters, 8 and @, from their respective priors.
2. Simulate the dynamics x(t) = f(t, @) using a
Ck numerical solver.
3. Predict the probability of each of the measurement
categories using the measurement model.

P = c1lx (), P(y; = 1% (8)), ... P(y;

Bayesian MCMC Sampler

©)
B C = cxlx;(0)} = fM(eM'xi(t))
: : 4. Evaluate the Likelihood.
101 P(316,8,)
0.8 N X (10)
= nz P@ily: = ¢)P(y; = ¢|x:(6))
0.6 i=1 j=1
0.4 5. Use MCMC-MH sampling to draw new 6 and 8,
from their respective priors.

0.2 6. Repeat 2-5 until convergence criteria are met.
0.04 = Simulated Normed tBID

0 10000 20000 0 1
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