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A B S T R A C T

Successful modeling of degradation data with covariates is essential for accurate reliability assessment of
highly reliable product units. Due to the influences of different types of covariates, such as the external factors
(e.g. accelerated operating conditions) and the internal factors (e.g. material microstructure characteristics),
as well as latent heterogeneity due to the influences of the unobserved or unknown factors shared within
each product unit, the degradation measurements of product units are highly heterogeneous over time. Many
of existing degradation models often failed to simultaneously consider the influences of (i) both external
accelerated conditions and internal material information, (ii) latent heterogeneity, and (iii) multiple material
types. In this work, we propose a generic degradation modeling approach with mixed-type (e.g. both scalar
and functional) covariates and latent heterogeneity to account for both the influences of observed internal
and external factors as well as their interaction, and the influences of unobserved factors. Effective estimation
algorithm is developed under expectation–maximization framework to jointly quantify the influences of mixed-
type covariates and individual latent heterogeneity. The proposed algorithms further enables closed-form
updating of model parameters at each iteration to ensure the estimation convenience. A real case study is
provided to illustrate the proposed modeling approach and to demonstrate its effectiveness from both model
prediction and interpretation perspectives.
with the advancement of sensing technologies and material property
characterization techniques, such as scanning electron microscope and
transmission electron microscope [3]. To extract rich characteristics
1. Introduction

Accurate modeling of degradation data is of great importance for
achieving accurate reliability assessment and failure prediction for
highly reliable product units with few and zero failure observations.
Due to the varied product characteristics and the influences of the
environmental conditions, such as accelerated operating conditions
(e.g. elevated voltage, load, temperature), product units often exhibit
highly heterogeneous performance degradation over time. To account
for such heterogeneity of degradation data and to improve accuracy
of reliability assessment, many of existing degradation models focused
on modeling degradation data with covariates by incorporating various
external influencing factors and quantifying their influences [1,2].
owever, there is limited research about extracting and incorporating
eliability relevant material characteristics of product units as inter-
al factors, and further integrating them with external accelerated
onditions to improve prediction accuracy of performance degradation.
Rich material information of product units, such as microstructure

haracteristics, become readily available or can be easily accessible
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information from material microstructure images, engineers often uti-
lize informative material descriptors [4], such as two-point correla-
tion function, radial distribution function and lineal-path function.
Many of these material descriptors are represented in functional form
rather than scalar form. For instance, the two-point correlation is a
functional feature curve over spatial distance to describe the spatial
heterogeneity of material microstructure at microscopic scale, which
often reflects the reliability-related product properties at macroscopic
level (e.g. strength, hardness). Incorporating such functional covariates
as internal reliability influencing factors and integrating them together
with other external factors has a great opportunity for improving the
accuracy of degradation modeling as compared to existing models
which only consider external factors.

In the existing literature of degradation modeling, different data-
driven models have been developed, such as continuous stochastic
ly 2021
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Nomenclature

𝛼𝑙𝑠(⋅) The coefficient function of the 𝑠th func-
tional covariate contributing to the coeffi-
cient 𝜂𝑙𝑖

𝜷𝑙 The coefficient vector associated with
scalar covariates that contributes to the
coefficient 𝜂𝑙𝑖

𝝐𝑖, 𝜖𝑖𝑗 The vector of error term and its 𝑗th element
for test unit 𝑖

𝜸𝑖, 𝛾𝑙𝑖 The latent vector and its 𝑙th element for test
unit 𝑖

𝒕𝑖, 𝑡𝑖𝑗 The vector of measurement time and its 𝑗th
element for test unit 𝑖

𝒙𝑖, 𝑥𝑖𝑝 The vector of scalar covariates and its 𝑝th
element for test unit 𝑖

𝒚𝑖, 𝑦𝑖𝑗 The vector of degradation measurements
and its 𝑗th element of unit 𝑖

𝜂𝑙𝑖 The 𝑙th basis coefficient of test unit 𝑖 at
response level model

𝜈𝑙 The intercept parameter contributing to the
coefficient 𝜂𝑙𝑖

𝜙𝑙(⋅) The 𝑙th basis function of test unit 𝑖 at
response level model

𝜓𝑘(⋅) The 𝑘th basis function in the approximation
of functional data

𝜌𝑙𝑝𝑠(⋅) The coefficient function of interaction term
between the 𝑠th functional covariate and
the 𝑝th scalar covariate that contributes to
coefficient 𝜂𝑙𝑖

𝜎2𝜖 The variance of error term 𝜖𝑖𝑗 ’s
𝛴𝛾 The variance matrix of latent vector 𝜸𝑖’s
𝜎2𝛾𝑙 The variance of latent variable 𝛾𝑙𝑖’s
𝑐𝑖𝑠𝑘, 𝑏𝑙𝑠𝑘, 𝑏′𝑙𝑝𝑠𝑘 The 𝑘th basis coefficient of 𝑍𝑖𝑠(⋅), 𝛼𝑙𝑠(⋅) and

𝜌𝑙𝑝𝑠(⋅), respectively
𝑅 The range of spatial distance measured in

pixel unit
𝑟 The spatial distance measured in pixel unit
𝑍𝑖𝑠(⋅) The 𝑠th functional covariate for test unit 𝑖

process [5,6], Markov-based models [7,8]. Many of these modeling ap-
proaches mainly focused on characterizing the heterogeneity of degra-
dation data as a whole without explicitly incorporating covariates as
additional inputs to explain part of the heterogeneity. To characterize
the heterogeneity of degradation data with covariates, existing degra-
dation models often considered scalar covariates which represented
the external factors, such as environmental conditions [9,10]. There
are limited studies which account for the influence of material char-
acteristics on performance degradation. Park et al. [11] incorporated a
scalar covariate into degradation modeling to represent the aggregate-
level material information. Si et al. [12] recently considered functional
covariate in their degradation model and incorporated detailed mi-
crostructure information. However, these approaches failed to jointly
consider both the mixed-type (i.e., functional and scalar) covariates and
their potential interaction. Moreover, the latent heterogeneity caused
by the influence of many unobserved or unknown factors shared within
each product unit was not addressed by the above models either.

In recent years, there were several degradation models which con-
sidered latent heterogeneity. The existing stochastic process-based
degradation models with latent heterogeneity [13] mainly used random
drift and/or random diffusion parameters to capture unit-specific het-
erogeneity, such as Wiener process model with random drift rate [14,
2

t

15] and random diffusion parameter [16,17], inverse Gaussian process
model with random parameter [18], and gamma degradation pro-
cess with random parameter [19]. However, most of these stochastic
process-based models with latent heterogeneity either failed to incorpo-
rate individual covariates to explain part of observed heterogeneity [14,
15,20], or only used single type covariate of external accelerated con-
ditions [19] without incorporating material characteristics. Moreover,
the existing linear or nonlinear degradation path models with latent
heterogeneity often used random parameters to capture unit-to-unit
variation [1,21]. These degradation path models with latent hetero-
geneity either failed to consider the influence of covariates, such as
general path models [1,22], or only considered external factors [23,24]
without considering internal material information. Overall, most of ex-
isting approaches failed to simultaneously account for the influences of
both external accelerated conditions and internal material information,
their potential interaction, and individual latent heterogeneity as well.

To address the above research gaps, we propose a generic statistical
degradation modeling framework to account for both the influences
of observed mixed-type covariates and the latent heterogeneity. The
mixed-type covariates consist of (i) the functional covariates which
capture the internal material microstructure characteristics of product
units, and (ii) the scalar covariates which capture the external environ-
mental conditions elevated in the context of accelerated degradation
test. Moreover, a model estimation algorithm is developed to jointly
quantify the influences of mixed-type covariates and the latent het-
erogeneity, and further to examine the potential interaction between
functional and scalar covariates. Functional data analysis and data
augmentation techniques are employed to address a series of estimation
challenges, such as the infinite dimensionality of functional covariates
and joint estimation of the influences of observed factors and latent
variables. To demonstrate the effectiveness of the proposed approach,
we present a real case study using accelerated tribological degradation
data of test units of copper alloys. We also conduct a comprehensive
comparison study to demonstrate the appealing modeling performance
of the proposed approach.

The rest of this paper is organized as follows. Section 2 first provides
he notations, then describes the formulation of proposed degradation
odeling framework and introduces the concepts of functional material
escriptor, followed by a detailed elaboration of the developed esti-
ation algorithm. Section 3 presents a real case study to illustrate the
roposed work and further to demonstrate its effectiveness via compar-
son with several alternative models. Section 4 draws the conclusive
emarks of this paper.

. Methodology

To capture the influences of both accelerated conditions and ma-
erial characteristics as well as the influence of unobserved factors,
e propose a novel degradation modeling framework with mixed-
ype covariates and latent heterogeneity. The proposed framework
onsists of three modules, such as data collection, data processing, and
egradation model development, as shown in Fig. 1. The multi-source
eliability relevant data for a sample of test units, such as their degrada-
ion measurements, accelerated conditions and material microstructure
mages, are first collected, as shown in Module I on the top-left of Fig. 1.
iven such multi-source data, the proposed framework begins with ex-
racting and quantifying rich material characteristics information from
icrostructure images as functional covariates, as shown in Module
I on the top-right of Fig. 1. Then, a generic model formulation is
stablished to integrate multi-source data by comprehensively incorpo-
ating both mixed-type (e.g. scalar and functional) covariates and their
otential interaction as well as unobserved factors shared with each test
nit. Based on the established model, estimation algorithm is further
eveloped to address a series of theoretical difficulties during model
stimation, such as the infinite dimensionality issue of functional data
nd the quantification of latent heterogeneity of individual test unit, as
hown in Module III on the bottom of Fig. 1. The technical details of

he proposed work will be elaborated in the following subsections.
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Fig. 1. Overview of proposed degradation modeling framework.
2.1. Model formulation

Considering a population of 𝑁 test units, the degradation measure-
ment of test unit 𝑖 at time 𝑡𝑖𝑗 is denoted as 𝑦𝑖𝑗 ,∀𝑖 = 1,… , 𝑁, 𝑗 = 1,… , 𝑚𝑖
where 𝑚𝑖 is total number of degradation measurements of test unit
𝑖. The performance degradation of each test unit may be influenced
by both the external factors (e.g. accelerated operating conditions)
and the internal factors (e.g. material characteristics). In this paper,
we use scalar covariates to represent a specific stress level of the
accelerated conditions and further use functional descriptors to quan-
tify the influence of baseline material characteristics due to their rich
representation of microstructure information. Moreover, it is possible
that the individual latent heterogeneity may exist due to the influence
of unobserved or unknown factors shared within each test unit. To
simultaneously quantify the influences of mixed-type (i.e., scalar and
functional) covariates and their potential interaction as well as the
latent heterogeneity, the proposed hierarchical degradation model can
be generically formulated as

Response level:

𝑦𝑖𝑗 = 𝑔𝑖(𝑡𝑖𝑗 ,𝜽𝑖,𝜳 ) + 𝜖𝑖𝑗 ≈
𝐿
∑

𝑙=0
𝜂𝑙𝑖𝜙𝑙(𝑡𝑖𝑗 ) + 𝜖𝑖𝑗 , 𝑖 = 1,… , 𝑁, 𝑗 = 1,… , 𝑚𝑖

(1a)
Coefficient level:

𝜂𝑙𝑖 = 𝜈𝑙 + 𝜷T𝑙 𝒙𝑖 +
𝑆
∑

𝑠=1
∫R𝑠

𝛼𝑙𝑠(𝑟)𝑍𝑖𝑠(𝑟)d𝑟

+
𝑃
∑

𝑝=1
𝑥𝑖𝑝(

𝑆
∑

𝑠=1
∫R𝑠

𝜌𝑙𝑝𝑠(𝑟)𝑍𝑖𝑠(𝑟)d𝑟) + 𝛾𝑙𝑖, 𝑖 = 1,… , 𝑁, 𝑙 = 0,… , 𝐿 (1b)

At response level, the degradation responses over time of test unit 𝑖
can be captured by a unit-specific nonlinear function mapping 𝑔𝑖(⋅) and
an error term 𝜖𝑖𝑗 ∼ 𝑁(0, 𝜎2𝜖 ) where 𝜎2𝜖 is the variance of measurement
error. Among the parameters of 𝑔𝑖(⋅), 𝜳 is a set of fixed unknown
parameters that are common among all test units, and 𝜽𝑖 is a set of
random unknown parameters of test unit 𝑖. To improve the model
interpretation and estimation tractability, the nonlinear function 𝑔𝑖(⋅)
can be further approximated by a set of basis functions {𝜙𝑙(⋅),∀𝑙 =
0,… , 𝐿} and unit-specific basis coefficients {𝜂𝑙𝑖,∀𝑙 = 0,… , 𝐿} [25].
The linear additive form of basis functions and linear basis coefficients
ensures model interpretability. When 𝑙 = 0, 𝜙 (⋅) = 1 and 𝜂 is the
3

0 0𝑖
intercept. When 𝑙 > 0, different basis functions, such as polynomial
basis and spline basis, can be considered for 𝜙𝑙(⋅) to capture the
nonlinear curvature of performance degradation over time [26]. The
unit-specific basis coefficients capture the individual heterogeneity of
degradation data.

At coefficient level, the individual heterogeneity captured by each
basis coefficient 𝜂𝑙𝑖 can then be decomposed into five linear additive
components, namely, (i) population-level component 𝜈𝑙 contributing to
the 𝑙th coefficient, which captures the population average degradation
pattern among all test units; (ii) part of the individual heterogeneity
contributing to the 𝑙th coefficient, which is explained by the marginal
effect of the observed scalar covariates 𝒙𝑖 =

[

𝑥𝑖1,… , 𝑥𝑖𝑃
]T and co-

variates coefficients 𝜷𝑙 = [𝛽𝑙1, 𝛽𝑙2,… , 𝛽𝑙𝑃 ]T; (iii) part of the individual
heterogeneity contributing to the 𝑙th coefficient, which is explained
by the marginal effect of the observed functional covariates 𝑍𝑖𝑠(𝑟)
with support space R𝑠 and covariate coefficient functions 𝛼𝑙𝑠(𝑟),∀𝑠 =
1,… , 𝑆; (iv) part of the individual heterogeneity contributing to the 𝑙th
coefficient, which is explained by the interaction between the observed
scalar and functional covariates and covariate coefficient functions
𝜌𝑙𝑝𝑠(𝑟),∀𝑝 = 1,… , 𝑃 , 𝑠 = 1,… , 𝑆, and (v) the latent heterogeneity
contributing to the 𝑙th coefficient due to the influence of unobserved or
unknown factors shared within each test unit 𝑖, captured by continuous
latent variable, i.e., 𝛾𝑙𝑖 ∼ 𝑁(0, 𝜎2𝛾𝑙) where 𝜎

2
𝛾𝑙 is the variance of latent

variable.
To better explain Eq. (1) (b), we assume that the nonlinear degra-

dation pattern can be approximated by polynomial basis functions
with finite order, i.e., 𝑔𝑖(𝑡𝑖𝑗 ,𝜽𝑖,𝜳 ) ≈

∑𝐿
𝑙=0 𝜂𝑙𝑖𝑡

𝑙
𝑖𝑗 . The basis coeffi-

cient 𝜂1𝑖 essentially captures the slope of degradation path for test
unit 𝑖. Based on Eq. (1) (b), the slope coefficient can be decom-
posed into five parts, i.e., 𝜂1𝑖 = 𝜈1 + 𝜷T𝑙 𝒙𝑖 +

∑𝑆
𝑠=1 ∫R𝑠 𝛼1𝑠(𝑟)𝑍𝑖𝑠(𝑟)d𝑟 +

∑𝑃
𝑝=1 𝑥𝑖𝑝(

∑𝑆
𝑠=1 ∫R𝑠 𝜌1𝑝𝑠(𝑟)𝑍𝑖𝑠(𝑟)d𝑟) + 𝛾1𝑖. 𝜈1 captures average slope of

performance degradation among all test units. The second, third and
fourth additive terms capture the influences of individual observed
covariates on the slope of degradation path of test unit 𝑖, including the
influence of scalar covariates, the influence of functional covariates and
the influence of interaction between scalar and functional covariates,
respectively. 𝛾1𝑖 captures the individual latent heterogeneity on the
slope of degradation path of test unit 𝑖.

The proposed model formulation is generic and several of the
existing degradation models can be treated as the special cases of the
proposed model. For instance, by neglecting the mixed-type covariates

and their potential interaction, i.e., 𝛽𝑙𝑝 = 0, 𝛼𝑙𝑠(⋅) = 0, 𝜌𝑙𝑝𝑠(⋅) = 0,∀𝑙 =
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Fig. 2. The hierarchical structure of proposed degradation model.

,… , 𝐿, 𝑝 = 1,… , 𝑃 , 𝑠 = 1,… , 𝑆, the proposed model is reduced into the
degradation path model in [1]. In addition, by neglecting the functional
covariates and the interaction term as well as latent heterogeneity,
i.e., 𝛼𝑙𝑠(⋅) = 0, 𝜌𝑙𝑝𝑠(⋅) = 0, 𝛾𝑙𝑖 = 0,∀𝑖 = 1,… , 𝑁, 𝑙 = 0,… , 𝐿, 𝑝 =
1,… , 𝑃 , 𝑠 = 1,… , 𝑆, the proposed model becomes the typical accel-
erated degradation model with constant stress factor. Moreover, by
neglecting scalar covariates, potential interaction and latent hetero-
geneity, i.e., 𝛽𝑙𝑝 = 0, 𝜌𝑙𝑝𝑠(⋅) = 0, 𝛾𝑙𝑖 = 0,∀𝑙 = 0,… , 𝐿, 𝑝 = 1,… , 𝑃 , 𝑠 =
1,… , 𝑆, the proposed model becomes the degradation model with
functional covariates introduced in [12]. Fig. 2 further summarizes
the hierarchical structure of the proposed model. As shown in the
graphical representation, the rectangle nodes refer to the observed
data, including degradation responses and various observed individual
characteristics of each test unit (e.g. accelerated conditions, material
characteristics). The circle nodes represent unknown model parameters
to be estimated. The triangle nodes represent deterministic functions.
The solid and dashed arrows indicate the deterministic and stochas-
tic relationships among the connected nodes, respectively, which are
displayed at coefficient layer, response layer and unit layer.

2.2. Material statistical descriptor

Among the mixed-type covariates in the above formulation, the
functional covariates 𝑍𝑖𝑠(𝑟),∀𝑖 = 1,… , 𝑁, 𝑠 = 1,… , 𝑆 represent critical
haracteristics of material microstructure, such as spatial heterogene-
ty patterns, which are known to have indispensable impacts on the
erformance degradation [27]. To evaluate the spatial heterogeneity of
aterial microstructure at microscopic level, advanced sensing devices
r technologies, such as transmission electron microscopy (TEM), are
ften available for the characterization of material microstructure at
iner scale. Fig. 3 (a) gives a motivating example of a TEM image of
test unit in the accelerated wear test considered in the paper. The
ray part and black part represent two different material phases of that
nit, which have different material compositions. As reflected in TEM
mage with two distinct colors, the material of such test unit is two-
hase and often exhibits spatial heterogeneity and non-uniformity. As
ompared to two-phase material, a test unit with single-phase material
as few color contrast or even single color in its TEM image and
ften exhibits homogeneous spatial patterns. To further extract and
uantify spatial heterogeneity patterns of TEM images, the functional
icrostructure descriptors [4], such as radial distribution function
RDF) and two-point correlation (TPC) function, are popular choices of
orrelation-based statistical measures. In contrast to scalar covariates
hich summarize the aggregate-level information, functional covari-
tes can capture spatial heterogeneity patterns more comprehensively.
e will elaborate the details of RDF and TPC as follows.
RDF is a useful statistical measure of describing how particle den-
4

ity varies as a function of distance from a reference particle [28]. d
Fig. 3. TEM image and its functional descriptor, (a) raw TEM image and zoom-in
view, (b) diagram of calculating radial distribution function, (c) diagram of calculating
two-point correlation function.

Considering a test unit consisting of 𝑀 particles in a volume 𝑉 , RDF
an be calculated as 𝑍(𝒓) = 1

𝜅

⟨
∑

𝑚≠0 𝛿(𝒓 − 𝒓𝑚)
⟩

where 𝜅 = 𝑀
𝑉 is the

average number density of particles and ⟨⋅⟩ is the ensemble averaging
operator. 𝒓𝑚,∀𝑚 = 1,… ,𝑀 refers to particle coordinates and 𝛿(⋅) is
he Dirac delta function. Particularly, for a test unit with equivalent
articles 1,… ,𝑀 − 1, RDF calculation can be further simplified as
(𝒓) = 𝑉 𝑀−1

𝑀 ⟨𝛿(𝒓 − 𝒓1)⟩. As shown in Fig. 3(b), RDF is a distance
ependent measure and determines how many particles are within a
istance between 𝑟 and 𝑟+d𝑟 away from the reference particle. If more
particles in a test unit are uniformly distributed, the number of particles
within a specified distance from the reference particle over the entire
support will be similar. This can further be reflected by the RDF values
with less sharp changes involved in the RDF curve. On the other side, if
the particles concentrate on certain area of a test unit, the RDF values
of different radius over the entire support will become significantly
different.

In addition to the RDF measure, TPC is another important functional
measure of describing material microstructure characteristics and typ-
ically useful for two-phase material [29]. Considering a test unit with
two-phase material, we define an indicator function 𝐼 (ℎ)(𝑥), ℎ = 1, 2 as

𝐼 (ℎ)(𝑥) =
{

1, 𝑥 ∈ 𝑉ℎ
0, 𝑥 ∈ 𝑉ℎ

where 𝑉ℎ and 𝑉ℎ refer to the region occupied

by phase ℎ and the other phase, respectively. TPC then represents the
probability of two randomly chosen points 𝑞1 and 𝑞2 being both in
phase ℎ, i.e., 𝑍(ℎ)(𝑞1, 𝑞2) =

⟨

𝐼 (ℎ)(𝑞1)𝐼 (ℎ)(𝑞2)
⟩

, where ⟨⋅⟩ is the ensemble
veraging operator over the entire support of a test unit. Particularly,
hen the material of a test unit is statistically homogeneous, TPC
an be calculated as 𝑍(ℎ)(𝑞1, 𝑞2) =

⟨

𝐼 (ℎ)(𝑞1)𝐼 (ℎ)(𝑞1 + 𝑟)
⟩

, where 𝑟 is a
pecified spatial distance, as depicted in Fig. 3 (c). When the particles
f same phase are uniformly distributed over a test unit, TPC values of
ifferent distances over the entire support tend to be similar.
Both of the RDF and TPC descriptors are distance dependent func-

ions and can be used to describe the spatial heterogeneity patterns
f material microstructure effectively. By explicitly incorporating such
unctional descriptors as functional covariates, as presented in Sec-
ion 2.1, the modeling complexity of the proposed approach increases
s compared to the conventional degradation models. Such increased
odeling complexity also raises several challenges of model estimation,
hich will be elaborated and addressed with details in the subsequent
ection.

.3. Model estimation

Considering a population of 𝑁 deteriorating units are tested and 𝑚𝑖

egradation measurements are collected on each unit 𝑖, 𝑖 = 1,… , 𝑁 ,
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the available data can be expressed as 𝑫 = {𝑦𝑖𝑗 , 𝑡𝑖𝑗 ,𝒙𝑖, 𝑍𝑖𝑠(⋅),∀𝑖 =
1,… , 𝑁, 𝑗 = 1,… , 𝑚𝑖, 𝑠 = 1,… , 𝑆}. Let 𝜸𝑖 be a vector of length 𝐿 + 1
representing the latent variables of test unit 𝑖 with 𝜸𝑖 ∼ 𝑁(0,𝜮𝛾 ), where
𝜮𝛾 =

[

𝜎2𝛾0, 𝜎
2
𝛾1,… , 𝜎2𝛾𝐿

]

𝐈. We further denote a set of unknown model
parameters as 𝜣 = {𝜈𝑙 , 𝜷𝑙 , 𝛼𝑙𝑠(⋅), 𝜌𝑙𝑝𝑠(⋅), 𝜎2𝜖 ,∀𝑙 = 0,… , 𝐿, 𝑝 = 1,… , 𝑃 , 𝑠 =
1,… , 𝑆}. Suppose the support space of the extracted functional covari-
ates from previous section is defined as R𝑠 = [0, 𝑅] where 𝑅 is the range
f spatial distance, the marginal likelihood function of the proposed
odel in Eq. (1) can be expressed as

𝐿
(

𝜣, {𝜸𝑖}𝑁𝑖=1 ∣ 𝑫
)

=
𝑁
∏

𝑖=1
∫

𝑚𝑖
∏

𝑗=1
𝑝
(

𝑦𝑖𝑗 ∣ 𝜣, 𝜸𝑖
)

𝑝(𝜸𝑖)d𝜸𝑖

∝
𝑁
∏

𝑖=1
∫ ⋯∫

|

|

|

𝜎2𝜖 I𝑚𝑖
|

|

|

− 1
2 exp { − 1

2𝜎2𝜖

𝑚𝑖
∑

𝑗=1
(𝑦𝑖𝑗 −

𝐿
∑

𝑙=0
[𝜈𝑙 + 𝜷T𝑙 𝒙𝑖

+
𝑆
∑

𝑠=1
∫

𝑅

0
𝛼𝑙𝑠(𝑟)𝑍𝑖𝑠(𝑟)d𝑟

+
𝑃
∑

𝑝=1
𝑥𝑖𝑝(

𝑆
∑

𝑠=1
∫

𝑅

0
𝜌𝑙𝑝𝑠(𝑟)𝑍𝑖𝑠(𝑟)d𝑟) + 𝛾𝑙𝑖]𝜙𝑙(𝑡𝑖𝑗 ))2} d𝛾0𝑖…d𝛾𝐿𝑖 (2)

where |⋅| refers to the matrix determinant operator and 𝐈𝑚𝑖 is an
𝑚𝑖 × 𝑚𝑖 identity matrix. As shown in the above likelihood function,
the intrinsic infinite dimensionality of functional data [30] makes the
parameters estimation mathematically intractable. Besides, as shown in
Eq. (2), the conventional maximum likelihood estimation method aims
to maximize the marginal likelihood function [31]. The corresponding
latent variables 𝜸𝑖 will be integrated out and cannot be estimated. To
handle the infinite dimensionality of functional data and to achieve the
joint estimation of model parameters and latent variables, we employ a
series of estimation techniques and develop the estimation algorithm.
The technical details are elaborated as follows.

The functional data can be treated as realizations of a stochas-
tic process and intrinsically involve the infinite dimensionality issue.
To address such issue, we employ approximation method to reduce
the dimensionality of functional data and facilitate parameter estima-
tion. Based on Mercer’s theorem, the covariance matrix of functional
data can be expressed by orthogonal eigenfunctions and ordered non-
negative eigenvalues [30]. With these eigenfunctions, we can apply
Karhunen–Loève expansion [32] on the centered functional covariates
as well as the coefficient functions, and express them as linear com-
binations of the complete orthogonal basis functions, i.e., 𝑍𝑖𝑠(𝑟) =
∑∞
𝑘=1 𝑐𝑖𝑠𝑘𝜓𝑘(𝑟), 𝛼𝑙𝑠(𝑟) =

∑∞
𝑘=1 𝑏𝑙𝑠𝑘𝜓𝑘(𝑟) and 𝜌𝑙𝑝𝑠(𝑟) =

∑∞
𝑘=1 𝑏

′
𝑙𝑝𝑠𝑘𝜓𝑘(𝑟),∀𝑖 =

1,… , 𝑁, 𝑙 = 0,… , 𝐿, 𝑝 = 1,… , 𝑃 , 𝑠 = 1,… , 𝑆 where 𝑐𝑖𝑠𝑘, 𝑏𝑙𝑠𝑘 and
𝑏′𝑙𝑝𝑠𝑘 are known as functional principle component scores of functional
data [30]. Since the eigenvalues of covariance operator of functional
data decrease and finally approximate to 0, it is often sufficient to use
a small number of eigenfunctions whose eigenvalues are significantly
nonzero to accurately approximate the functional data. The number
of finite basis functions can be determined efficiently by the fraction
of variance explained (FVE) in practice [33]. With the truncated 𝐾
basis functions, the centered functional covariates and the coefficient
functions can then be approximated by 𝑍𝑖𝑠(𝑟) ≈

∑𝐾
𝑘=1 𝑐𝑖𝑠𝑘𝜓𝑘(𝑟), 𝛼𝑙𝑠(𝑟) ≈

∑𝐾
𝑘=1 𝑏𝑙𝑠𝑘𝜓𝑘(𝑟) and 𝜌𝑙𝑝𝑠(𝑟) ≈

∑𝐾
𝑘=1 𝑏

′
𝑙𝑝𝑠𝑘𝜓𝑘(𝑟). The model parameters

then become 𝜣 = {𝜈𝑙 , 𝜷𝑙 , 𝑏𝑙𝑠𝑘, 𝑏′𝑙𝑝𝑠𝑘, 𝜎
2
𝜖 ,∀𝑙 = 0,… , 𝐿, 𝑝 = 1,… , 𝑃 , 𝑠 =

1,… , 𝑆, 𝑘 = 1,… , 𝐾}. The joint likelihood can be rewritten as

𝐿
(

𝜣, {𝜸𝑖}𝑁𝑖=1 ∣ 𝑫
)

∝
𝑁
∏

𝑖=1
∫ ⋯∫

|

|

|

𝜎2𝜖 I𝑚𝑖
|

|

|

− 1
2 exp{− 1

2𝜎2𝜖

×
𝑚𝑖
∑

𝑗=1
(𝑦𝑖𝑗 −

𝐿
∑

𝑙=0
[𝜈𝑙 + 𝜷T𝑙 𝒙𝑖

+ 𝑅(
𝑆
∑

𝐾
∑

𝑏𝑙𝑠𝑘𝑐𝑖𝑠𝑘) + 𝑅(
𝑃
∑

𝑥𝑖𝑝(
𝑆
∑

𝐾
∑

𝑏′𝑙𝑝𝑠𝑘𝑐𝑖𝑠𝑘))
5

𝑠=1 𝑘=1 𝑝=1 𝑠=1 𝑘=1
+ 𝛾𝑙𝑖]𝜙𝑙(𝑡𝑖𝑗 ))2}d𝛾0𝑖…d𝛾𝐿𝑖 (3)

As shown in Eq. (3), the infinite dimensionality issue of functional
data is resolved and it becomes mathematically tractable to estimate 𝜣.
We denote 𝜦𝑖 as an 𝑚𝑖×(𝐿+1) design matrix of latent heterogeneity. The
detailed derivation of 𝜦𝑖 can be found in Appendix A. We then denote
𝜴𝑖 as an 𝑚𝑖×𝑈 design matrix of observed heterogeneity and denote 𝜻 as
the corresponding coefficient vector of length 𝑈 where 𝑈 = (𝐿+ 1)(1 +
𝑃 + 𝑆𝐾 + 𝑃𝑆𝐾). 𝜴𝑖 can be manifested as 𝜴𝑖 =

(

𝜦𝑖 𝑨2𝑖 𝑨3𝑖 𝑨4𝑖
)

where the detailed derivations of 𝑨2𝑖, 𝑨3𝑖 and 𝑨4𝑖 can be also found in
Appendix A. The coefficient vector of observed heterogeneity is written
as 𝜻 =

[

𝝂T, 𝜷T0 ,… , 𝜷T𝐿, 𝒃
T
01,… , 𝒃T𝐿𝑆 , 𝒃

′T
011,… , 𝒃′T𝐿𝑃𝑆

]T
where the derivation

details are described in Appendix A. The vector form of the proposed
model can then be expressed as 𝒚𝑖 = 𝜴𝑖𝜻 + 𝜦𝑖𝜸𝑖 + 𝝐𝑖, 𝑖 = 1,… , 𝑁 . The
likelihood function can be expressed in a more compact form as

𝐿(𝜣, {𝜸𝑖}𝑁𝑖=1 ∣ 𝑫) ∝
𝑁
∏

𝑖=1
∫ ⋯∫

|

|

|

𝜎2𝜖 𝐈𝑚𝑖
|

|

|

− 1
2

× exp(− 1
2𝜎2𝜖

‖𝒚𝑖 −𝜴𝑖𝜻 −𝜦𝑖𝜸𝑖‖2)d𝛾0𝑖…d𝛾𝐿𝑖 (4)

As shown in Eq. (4), the latent variables 𝜸𝑖,∀𝑖 = 1,… , 𝑁 will
be integrated out and cannot be estimated directly. To address the
estimation issue of latent factors in the marginal approach, we employ
data augmentation technique [34] and introduce the complete data,
i.e., 𝑫∗ = {𝑫, {𝜸𝑖}𝑁𝑖=1}. The model parameters can be specified as
𝜣 = {𝜻 , 𝜎2𝜖 ,𝜮𝛾}. Based on the augmented data 𝑫∗, the complete data
likelihood can be expressed as

𝐿(𝜣 ∣ 𝑫∗) =
𝑁
∏

𝑖=1
𝑝
(

𝒚𝑖 ∣ 𝜣, 𝜸𝑖
)

𝑝(𝜸𝑖 ∣ 𝜣)

∝
𝑁
∏

𝑖=1
(||
|

𝜎2𝜖 I𝑚𝑖
|

|

|

− 1
2 |
|

|

𝜮𝛾
|

|

|

− 1
2 exp(−1

2
𝜸𝑖T𝜮−1

𝛾 𝜸𝑖)) ⋅ exp(−
1

2𝜎2𝜖
‖𝒚 −𝜴𝜻 −𝜦𝜸‖2)

(5)

where ‖⋅‖ is Euclidean norm operator. 𝒚 = [𝒚T1 ,… , 𝒚T𝑁 ]T is a vector of
length ∑𝑁

𝑖=1 𝑚𝑖 representing the degradation measurements for all test
units. 𝜴 =

(

𝜴T
1 ... 𝜴T

𝑁
)T is a matrix of dimension (

∑𝑁
𝑖=1 𝑚𝑖) × 𝑈

representing the design matrix of observed heterogeneity for all test
units. 𝜦 = 𝜦1

⨁

𝜦2...
⨁

𝜦𝑁 is a matrix of dimension (
∑𝑁
𝑖=1 𝑚𝑖)×(𝐿+1)𝑁

representing the design matrix of latent heterogeneity for all test units.
𝜸 = [𝜸T1 , 𝜸

T
2 ,… , 𝜸T𝑁 ]T is a vector of length (𝐿 + 1)𝑁 representing the

latent variables among all units. The log-likelihood of augmented data
can then be written as

𝑙(𝜣 ∣ 𝑫∗) ∝ 𝑙1(𝜻 , 𝜎2𝜖 ∣ 𝑫∗) + 𝑙2(𝜮𝛾 ∣ 𝑫∗)

𝑙1(𝜻 , 𝜎2𝜖 ∣ 𝑫∗) = −
∑𝑁
𝑖=1 𝑚𝑖
2

log(𝜎2𝜖 ) −
1

2𝜎2𝜖
( ‖𝒚 −𝜴𝜻‖2

+
𝑁
∑

𝑖=1
Tr(𝜦T𝑖 𝜦𝑖𝜸𝑖𝜸T𝑖 ) − 2(𝒚 −𝜴𝜻)T𝜦𝜸)

𝑙2(𝜮𝛾 ∣ 𝑫∗) = −𝑁
2

log ||
|

𝜮𝛾
|

|

|

− 1
2

𝑁
∑

𝑖=1
𝜸𝑖T𝜮−1

𝛾 𝜸𝑖 (6)

where Tr(⋅) is the trace operator. Given that 𝜸 is known, 𝜻 and 𝜎2𝜖 can be
btained by maximizing 𝑙1(𝜻 , 𝜎2𝜖 ∣ 𝑫∗) and 𝜮𝛾 can be estimated by max-
mizing 𝑙2(𝜮𝛾 ∣ 𝑫∗). However, since the latent variables are unknown,
e employ EM technique [34,35] to estimate both unknown model pa-
ameters and latent variables iteratively. At iteration 𝜏, the Expectation
tep yields the conditional expectation of 𝑙(𝜣 ∣ 𝑫∗), i.e., 𝑄(𝜣,𝜣(𝜏−1)) =
E𝑆(𝜸)∣𝑫,𝜣(𝜏−1) [𝑙(𝜣 ∣ 𝑫∗)], where 𝑆(𝜸) =

(

𝜸1, 𝜸2,… , 𝜸𝑁 , 𝜸1𝜸T1 ,… , 𝜸𝑁𝜸T𝑁
)

is a set of individual statistics and 𝜣(𝜏−1) is a collection of all obtained

model parameters at iteration 𝜏 − 1. The Q-function can be explicitly
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written as

𝑄(𝜣,𝜣(𝜏−1)) ∝ −
∑𝑁
𝑖=1 𝑚𝑖
2

log(𝜎2𝜖 ) −
1

2𝜎2𝜖
(‖𝒚 −𝜴𝜻‖2

+
𝑁
∑

𝑖=1
Tr(𝜦T𝑖 𝜦𝑖E[𝜸𝑖𝜸T𝑖 ∣ 𝑫,𝜣(𝜏−1)])

− 2(𝒚 −𝜴𝜻)T𝜦E[𝜸 ∣ 𝑫,𝜣(𝜏−1)])

− 𝑁
2

log ||
|

𝜮𝛾
|

|

|

− 1
2

𝑁
∑

𝑖=1
E[𝜸𝑖T𝜮−1

𝛾 𝜸𝑖 ∣ 𝑫,𝜣(𝜏−1)] (7)

where Tr(⋅) is the trace operator. The corresponding conditional expec-
tation E[𝜸𝑖 ∣ 𝑫,𝜣(𝜏−1)] and E[𝜸𝑖𝜸T𝑖 ∣ 𝑫,𝜣(𝜏−1)] can be explicitly obtained
as

E[𝜸𝑖 ∣ 𝑫,𝜣(𝜏−1)] = 𝝁(𝜏−1)
𝑖 = 1

𝜎2(𝜏−1)𝜖

𝑽 (𝜏−1)
𝑖 𝜦T𝑖 (𝒚𝑖 −𝜴𝑖𝜻 (𝜏−1)),∀𝑖 = 1,… , 𝑁

E[𝜸𝑖𝜸T𝑖 ∣ 𝑫,𝜣(𝜏−1)] = 𝑽 (𝜏−1)
𝑖 + 𝝁(𝜏−1)

𝑖 𝝁(𝜏−1)T
𝑖 , 𝑖 = 1,… , 𝑁 (8)

where 𝑽 (𝜏−1)
𝑖 = (𝜮−1(𝜏−1)

𝛾 + 1
𝜎2(𝜏−1)𝜖

𝜦T𝑖 𝜦𝑖)−1. The derivation details of
onditional expectation can be found in Appendix B. We can further
implify the conditional expectation as E[𝜸 ∣ 𝑫,𝜣(𝜏−1)] = 𝝁(𝜏−1) =
𝝁(𝜏−1)T
1 ,𝝁(𝜏−1)T

2 ,… ,𝝁(𝜏−1)T
𝑁 ]T. With the calculated Q-function at cur-

ent iteration, the maximization step achieves the maximization of
(𝜣,𝜣(𝜏−1)). The model parameters at iteration 𝜏 can then be updated
y 𝜣(𝜏) = argmax

𝜣
𝑄(𝜣,𝜣(𝜏−1)). It is mathematically tractable to maxi-

ize 𝑄(𝜣,𝜣(𝜏−1)) and the closed-form of estimated model parameters
t iteration 𝜏 can be expressed as

𝜻̂ (𝜏) =
(

𝜴T𝜴
)−1 𝜴T(𝒚 −𝜦𝝁(𝜏−1)) (9)

𝜮̂(𝜏)
𝛾 = 1

𝑁

𝑁
∑

𝑖=1
((𝜮̂(𝜏−1)−1

𝛾 + 1
𝜎̂2(𝜏−1)𝜖

𝜦T𝑖 𝜦𝑖)−1 + 𝝁(𝜏−1)
𝑖 𝝁(𝜏−1)T

𝑖 ) (10)

𝜎̂2(𝜏)𝜖 = 1
∑𝑁
𝑖=1 𝑚𝑖

(‖‖
‖

𝒚 −𝜴𝜻̂ (𝜏)‖‖
‖

2
− 2

𝑁
∑

𝑖=1
(𝒚𝑖 −𝜴𝑖𝜻̂

(𝜏))T𝜦𝑖𝝁
(𝜏−1)
𝑖

+
𝑁
∑

𝑖=1
Tr(𝜦T𝑖 𝜦𝑖((𝜮̂

(𝜏)−1
𝛾 + 1

𝜎̂2(𝜏−1)𝜖

𝜦T𝑖 𝜦𝑖)−1 + 𝝁(𝜏−1)
𝑖 𝝁(𝜏−1)T

𝑖 ))) (11)

The derivation details of the above estimation procedure can be
ound in Appendix C.

Algorithm 1 Parameters estimation procedure of the proposed model

Initialization: 𝜣(0) = {𝜻 (0), 𝜎2𝜖
(0),𝜮(0)

𝛾 }

procedure UpdateEstim

for 𝜄← 1, ..., 𝜏max do

Compute E[𝜸𝑖 ∣ 𝑫,𝜣(𝜄−1)] and E[𝜸𝑖𝜸T𝑖 ∣ 𝑫,𝜣(𝜄−1)] based on

Eq. (8)

Derive parameter estimates sequentially by maximizing

𝑄(𝜣,𝜣(𝜄−1))

1. Obtain 𝜻̂ (𝜄) based on Eq. (9)

2. Obtain 𝜮̂(𝜄)
𝛾 based on Eq. (10)

3. Obtain 𝜎̂2(𝜄)𝜖 based on Eq. (11)

end for

end procedure

The estimation algorithm of the proposed model is summarized
n Algorithm 1. At each iteration, the conditional expectations are
6

calculated first and the model parameters are then updated iteratively
via maximizing the Q-function. The updating procedure of parame-
ter estimates will continue until the following stopping criterion is
achieved, i.e., 𝜏max = argmin{𝜏 ∶ ‖

‖

‖

𝜣(𝜏+1) −𝜣(𝜏)‖
‖

‖

≤ 𝜖𝑐} where 𝜖𝑐 is a
predefined tolerance level.

Further, we derive the interval estimates of model parameters 𝜻 via
bootstrap method [36]. Based on the estimated parameters, we can
simulate 𝑀 bootstrap samples of performance degradation by Monte
Carlo simulation, where 𝑀 is sufficiently large number. For the 𝑚th
bootstrap sample, ∀𝑚 = 1...𝑀 , we can employ Algorithm 1 to estimate
model parameters, denoted as 𝜻̂𝑚. The 100(1−𝛼)% bootstrap confidence
interval for single parameter 𝜍̂,∀𝜍̂ ∈ 𝜻̂ , can be constructed as

(

𝜍̂ 𝛼
2
, 𝜍̂1− 𝛼

2

)

where 𝜍̂𝑞 is the 𝑞th empirical quantile of
(

𝜍̂1,… , 𝜍̂𝑀
)

and 𝛼 is the
significance level.

Based on the above estimated model parameters, we further calcu-
late important reliability characteristics, such as the remaining useful
life (RUL) and its reliability function. The RUL of test unit 𝑖 in degrada-
tion process is defined as the time duration from the current time point
𝑡𝑐 till the time point when the performance degradation of test unit 𝑖
reaches failure threshold 𝐻 . The RUL of unit 𝑖 can be expressed as

𝑅𝑈𝐿𝑖 = inf{𝑡 ∈ R≥0 ∶ 𝑦𝑖(𝑡 + 𝑡𝑐 ) ≥ 𝐻 ∣ 𝑦𝑖(𝑡𝑐 ) < 𝐻} (12)

where 𝑦𝑖(𝑡 + 𝑡𝑐 ) is the performance degradation of test unit 𝑖 at time
𝑡 + 𝑡𝑐 . The estimated reliability function of RUL of test unit 𝑖 can then
be derived as

𝑆̂𝑖 =
𝑃𝑟(𝑅𝑈𝐿𝑖 > 𝑡)
𝑃𝑟(𝑅𝑈𝐿𝑖 ≥ 0)

=
𝛷(ℎ̂𝑖(𝑡 + 𝑡𝑐 ))
𝛷(ℎ̂𝑖(𝑡𝑐 ))

ℎ̂𝑖(𝑑) =
𝐻 − 𝑢̂𝑖(𝑑)

(𝜎̂2𝜖 +
∑𝐿
𝑙=0 𝜎̂

2
𝛾𝑙𝜙

2
𝑙 (𝑑))

1
2

(13)

where 𝛷(⋅) is cumulative distribution function of standard normal
distribution. 𝜎̂𝜖 is estimated standard deviation of error term 𝜖𝑖𝑗 and
𝜎̂2𝛾𝑙 is estimated variance component of latent variables 𝛾𝑙𝑖. 𝑢̂𝑖(𝑑) is
the estimated mean degradation level of test unit 𝑖 at time 𝑑 in pres-
ence of observed covariates, i.e., 𝑢̂𝑖(𝑑) ∣ 𝜣̂ =

∑𝐿
𝑙=0[𝜈̂𝑙 + 𝜷̂T𝑙 𝒙𝑖 +

𝑅(
∑𝑆
𝑠=1

∑𝐾
𝑘=1 𝑏̂𝑙𝑠𝑘𝑐𝑖𝑠𝑘) + 𝑅(

∑𝑃
𝑝=1 𝑥𝑖𝑝(

∑

𝑠=1
∑

𝑘=1 𝑏′𝑙𝑝𝑠𝑘𝑐𝑖𝑠𝑘))]𝜙𝑙(𝑑).

3. Real case study

3.1. Experimental data description

To illustrate the proposed modeling framework and to further eval-
uate its prediction performance as well as model interpretation capa-
bility, we provide a real case study to analyze the tribological degra-
dation data of copper alloys. We will utilize the proposed degradation
model to quantify the influences of both external and internal observed
factors as well as latent heterogeneity within each individual test
unit. Specifically, accelerated wear tests of Cu-Ni-Sn alloys are carried
out at elevated load conditions using the Koehler K93500 pin-on-disk
tester [27], as shown in Fig. 4. The test units consist of both as-received
and annealed material specimens of Cu-Ni-Sn alloys. As compared to
the as-received test units, the microstructure and physical properties
of annealed test units are often altered considerably through the an-
nealing process, and thus the corresponding tribological performance
degradation may also differ. The as-received unit has greater hard-
ness due to significantly distinct crystal structure while the annealed
test unit has altered mechanical properties (e.g. reduced hardness)
via the annealing process at higher temperature. For each test unit,
multiple tribological degradation measurements, namely the height
loss measurements in micrometer (um), are collected over time (in
seconds) by a linear variable displacement transducer (LVDT) during
an accelerated wear test [27]. Fig. 5 shows an example of hetero-
geneous performance degradation of a subset of test units with two
different material types (e.g. as-received and annealed) under different
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Fig. 4. The testing environment of the investigated accelerated wear test, (a) the testing equipment, (b) the diagram of wear test.
Fig. 5. Performance degradation of a subset of test units with different material types
nder different load conditions.

Fig. 6. TEM micrographs of two different material types: (a) as-received copper alloy,
b) annealed copper alloy.

oad conditions (e.g. from 0.1 kg to 10 kg). As shown in Fig. 5, the
height loss measurements have small values for both as-received and
annealed test units when applied load is 0.1 kg, which implies that the
degradation process is not significant when the stress factor is small.
On the other side, when load becomes significantly larger (e.g. 10 kg),
the degradation processes of both types of test units become significant
and the two test units with different material types exhibit different
degradation patterns. As shown in Fig. 5, both the internal factors
(e.g. material types) and the external factors (e.g. load conditions) play
important roles in the degradation pattern. There is a need to explicitly
quantify the influences of both external load condition and internal
material information and to explore their potential interaction.

To capture material microstructure characteristics, we consider
transmission electron microscopy (TEM) images of the microstructures
of both as-received and annealed test units. The TEM images embrace
useful information about material microstructure at finer scale. Partic-
ularly, we use grayscale TEM images at a nanometer (nm) length scale
(e.g. 20 nm) or less to characterize the microstructure properties of
7

different types of copper alloys. Fig. 6 shows two TEM images of as-
received and annealed test units, respectively, which have significant
visual difference. The texture pattern of the annealed test unit, as illus-
trated in Fig. 6(b), has less spatial heterogeneity than the as-received
test unit. This indicates a more uniformly homogeneous microstructure
of the annealed test units. In the following section, we will show
the analytical procedure of quantifying the spatial heterogeneity of
single test unit at microscopic level and examining the microstructure
difference of test units with different material types.

3.2. Functional covariates extraction

As shown in Fig. 6, the microstructures of the test units with
different material types exhibit different spatial heterogeneity patterns.
To capture the spatial heterogeneity with rich spatial information,
two functional microstructure descriptors, namely TPC and RDF, are
considered. As described in Section 2.2, the functional covariate 𝑍(𝑟)
is used to represent the material microstructure information where 𝑟 is
the distance measured at spatial scale in pixel. The distance measure
for TPC function ranges from 0 to 200 pixels and the distance measure
for RDF is between 0 and 250 pixels. Fig. 7 shows the corresponding
functional covariates extracted based on TPC and RDF descriptors.
The TPC (or RDF) value of an annealed test unit is uniformly larger
than the value of same functional descriptor of an as-received unit at
various spatial scales (measured in pixels). This implies a uniformly
more homogeneous material microstructure of the annealed unit. As the
spatial distance 𝑟 increases, the microstructures of both test units tend
to become less homogeneous (with a smaller TPC or RDF value). When
the spatial distance 𝑟 is larger than 25 pixels, the TPC (or RDF) value of
as-received test unit tends to approach 0, indicating that the cluster size
in its TEM image is typically no larger than 25 pixels. Further, TPC is
more sensitive than RDF in capturing spatial heterogeneity of annealed
unit at finer scale.

3.3. Performance comparison with alternative modeling approaches

We first apply centering to the raw degradation data such that their
baseline degradation measurement (at 𝑡 = 0) has been centered around
0, i.e., 𝜂0𝑖 = 0,∀𝑖 = 1,… , 12. As shown in Fig. 5, the degradation
data exhibits approximately linear degradation path and thus we con-
sider the first order polynomial basis function for real data analysis,
i.e., 𝜙1(𝑡𝑖𝑗 ) = 𝑡𝑖𝑗 ,∀𝑖 = 1,… , 12, 𝑗 = 1,… , 20. We then decompose the
basis coefficient 𝜂1𝑖 into several parts, as described in Section 2.1. We
use the extracted functional covariate 𝑍𝑖1(𝑟),∀𝑖 = 1...12, as described in
previous section, to represent the unit-specific microstructure pattern.
In addition, we consider the scalar covariate 𝑥 to represent the load
𝑖1
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Fig. 7. Functional covariates extracted based on different functional microstructure descriptors: (a) TPC, (b) RDF.
Table 1
Model specification summary of different degradation modeling approaches.
Model Observed factors Latent

heterogeneity
Order of
polynomial basis

Material
microstructure

Load
condition

Interaction first
order

first and
second
orders

Functional Scalar Scalar

Model 1 [9] ✓ ✓

Model 2 [12] ✓ ✓

Model 3 ✓ ✓ ✓

Model 4 ✓ ✓ ✓ ✓

Model 5 ✓ ✓ ✓ ✓ ✓

Model 6 [11] ✓ ✓ ✓ ✓

Model 7 ✓ ✓ ✓ ✓ ✓
condition exerted on test unit 𝑖. By incorporating both 𝑍𝑖1(𝑟) and 𝑥𝑖1
as well as their interaction term into the proposed model, we further
introduce a unit-specific latent variable 𝛾1𝑖 to capture the latent hetero-
geneity within each test unit 𝑖. We then employ the proposed estimation
algorithm to jointly estimate the influences of mixed-type covariates
and latent heterogeneity via setting the tolerance level 𝜖𝑐 as 1e-6 [35].
The estimation algorithm can achieve satisfactory convergence within
the specified maximum number of iterations (e.g. 50 iterations) via
multiple runs with different initial values. For basis function approx-
imation in handling the infinite dimensionality of functional covariates
during estimation, the optimal numbers of orthogonal basis functions
for TPC and RDF are selected as 2 and 3, respectively, based on the
criterion of FVE.

With the selected number of basis functions and the estimated mod-
els, we further evaluate the models with different functional descriptors
(e.g. TPC and RDF) and compare their prediction performances. We
partition the data into training (first 80% of degradation observations
of each test unit) and test data sets. We employ 5-fold cross-validation
(CV) to evaluate and compare the prediction performance of the two
models. The total CV error of all test units using model with TPC
descriptor is smaller than the total CV error of RDF-based model. Thus,
we select TPC as microstructure descriptor to evaluate the performance
of proposed modeling framework and further to compare it with other
alternative models.

To investigate the importance of incorporating mixed-type covari-
ates and their potential interaction, and also the importance of consid-
ering both observed heterogeneity and latent heterogeneity, we com-
pare the proposed model with several models based on simplified model
specifications. Many of existing degradation modeling approaches [9,
2] also explicitly or implicitly consider some of these model spec-
ifications. The alternative model specifications include: (i) Model 1,
which only considers scalar covariate of load condition [9]; (ii) Model
2, which only considers functional covariate of material microstruc-
ture [12]; (iii) Model 3, which considers mixed-type covariates but fails
to consider their interaction, and (iv) Model 4, which considers both
mixed-type covariates and their interaction but fails to consider latent
heterogeneity. Among the first four model specifications, Model 4 is the
most complex one. Based on Model 4, we further adjust its modeling
8

complexity from the following three aspects, namely (i) adding higher
order basis function in Model 5; (ii) replacing functional covariate with
scalar covariate to represent material microstructure in Model 6 [11];
and (iii) incorporating latent variable to represent latent heterogeneity
in Model 7 (i.e., the proposed model). It is noticed that, for Model 6,
we consider the scalar covariate of fractal dimension 𝐷𝛼 to capture
material microstructure, which is a popular choice of feature extraction
method and often considered in microstructure image analysis [37].
Table 1 summarizes the differences between the proposed approach and
six alternative models with different model specifications.

To comprehensively evaluate and compare the modeling perfor-
mance of the above models, we consider the following different evalu-
ation criteria, namely (i) model goodness-of-fit criteria, e.g. R-squared
and data log-likelihood; (ii) model selection criteria, e.g. Akaike In-
formation Criterion (AIC) [38] and Bayesian Information Criterion
(BIC) [39], and (iii) model prediction criteria, e.g. mean squared error
(MSE) of both training and test data, denoted as 𝛥train and 𝛥test. The
model selection criteria of AIC and BIC can be unified as

𝐶(𝜣) = −2 ln𝐿(𝜣̂, {𝛾̂𝑖}𝑁𝑖=1 ∣ 𝑫) + 𝑝𝑘 (14)

where 𝐿(𝜣̂, {𝛾̂𝑖}𝑁𝑖=1 ∣ 𝑫) is the maximized joint likelihood and 𝑝𝑘 is the
penalty term to leverage the model complexity. In particular, 𝑝 is total
number of estimated model parameters, 𝑘 = 2 (for AIC) and 𝑘 = ln𝑁
(for BIC).

Based on the above criteria, Table 2 summarizes the results of per-
formance comparison. As compared to the other models, the proposed
model achieves comparable goodness-of-fit performance, the smallest
AIC (or BIC) value and the smallest MSE values. Several additional
implications and discussions can be obtained as follows. First, the better
goodness-of-fit and prediction performances of Model 4 over Models 1–
3 indicate the importance of incorporating both internal and external
factors (as well as their potential interaction) during the degradation
modeling. Second, the overfitting issue of Model 5 with extra quadratic
term implies that the complex curvilinear model specification will not
provide additional modeling benefits to the degradation data analysis
in this study. Third, the better performance of Model 4 over Model 6
(which only considers single-type covariates) reflects the richer rep-
resentation of microstructure information using functional covariates
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Fig. 8. Prediction performance comparison among different models.
Table 2
Model comparison results.
Model Results Model

specification

𝑅2 Log-likelihood AIC BIC (𝛥train, 𝛥test)

Model 1 0.73 −937.4 1880.8 1890.6 (1019.2, 3779.6) 𝒙
Model 2 0.57 −982.3 1972.6 1985.6 (1626.8, 6646.2) 𝑍(𝑟)
Model 3 0.93 −811.1 1632.1 1648.4 (273.3, 1067.6) 𝒙 +𝑍(𝑟)
Model 4 0.97 −712.1 1438.3 1461.1 (97.5, 248.9) 𝒙 ×𝑍(𝑟)
Model 5 0.97 −712.1 1440.1 1466.2 (97.5, 253.6) 𝜙1(𝑡𝑖𝑗 )+𝜙2(𝑡𝑖𝑗 )
Model 6 0.73 −936.3 1882.7 1898.9 (1007.9, 3748.8) 𝑍
Model 7 0.97 −698.7 1413.3 1439.4 (72.4, 156.3) 𝒙 ×𝑍(𝑟) + 𝜸
a

(

(
l
m
t
∫

than conventional scalar covariates and further demonstrates the ben-
efits of incorporating mixed-type covariates to improve the modeling
accuracy. Last, by comparing the proposed model (which considers
latent heterogeneity) with Model 4 (which fails to consider the influ-
ence of unobserved factors), both model selection results and prediction
results indicate the importance of considering both the influences of
observed factors and latent heterogeneity in developing the degrada-
tion model. The predicted values of performance degradation based
on different models (e.g. Models 1–7) and the observed degradation
data of a single test unit are also displayed in Fig. 8. As compared to
the alternative modeling approaches (e.g. Models 1–6), the predicted
values of performance degradation based on the proposed model are
closer to the actual observations of degradation data over time.

3.4. Model interpretation

Based on the above performance evaluation and comparison, the
satisfactory prediction performance of proposed modeling framework
is demonstrated. We further investigate the model interpretability of
the proposed work. The effects of different types of covariates on
tribological degradation are discussed as below. Based on the proposed
estimation algorithm, the point estimates and 95% confidence intervals
via bootstrap sampling (with𝑀 = 10 000) are obtained and summarized
in Table 3. As shown in Table 3, both parameters 𝜈̂1 and 𝛽11 are
significant at a significant level of 0.05. 𝜈̂1 captures the tribological
degradation rate of studied alloy in absence of the influences of mixed-
type covariates. A positive value of 𝜈̂1 indicates an increasing trend
of performance degradation (i.e., material height loss) of copper al-

̂
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loys over time. 𝛽11 quantifies the marginal effects of scalar covariate,
Table 3
Model parameter estimation results.
Parameter Point estimate 95% Confidence interval

𝜈1 0.0163 (0.0054, 0.0273)
𝛽11 0.0202 (0.0178, 0.0227)
𝑏111 0.000025 (3.455e−6, 0.000047)
𝑏112 −0.00047 (−0.00163, 0.00069)
𝑏′1111 0.00002 (0.000011, 0.000029)
𝑏′1112 0.000326 (−0.000333, 0.000986)

i.e., load condition, on performance degradation of test units. A positive
value of 𝛽11 indicates that load condition is an effective stress factor in
ccelerating the tribological degradation process of copper alloys.
Further, we investigate the marginal effect of functional covariates

i.e., TPC curves) on performance degradation. As shown in Eq. (1),
∫ 𝑅0 𝛼11(𝑟)𝑍𝑖1(𝑟)d𝑟 captures the contributing marginal effects of func-
tional covariate 𝑍𝑖1(𝑟) on the slope of degradation path, which can
be written as 𝑅(𝑏111𝑐𝑖11 + 𝑏112𝑐𝑖12) via basis function approximation
in Section 2.3). A non-zero value of parameter 𝑏111 at a significance
evel of 0.05 indicates that there exists a marginal effect of material
icrostructures (captured by functional covariate) among different ma-
erial types. Fig. 9 shows the estimated contributing marginal effects,
𝑅
0 𝛼11(𝑟)𝑍𝑖1(𝑟)d𝑟, among different test units with two different types
of copper alloys. As shown in Fig. 9, the microstructure effects of
as-received test units are negative while the microstructure effects of
annealed test units are positive. This indicates that a less homoge-
neous microstructure of as-received test units (as compared to annealed
units) yields greater hardness and ultimately reduces the corresponding
tribological degradation rate.
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Fig. 9. Effects of internal material characteristics among all test units.

Fig. 10. Interaction effect of external load condition and internal material
microstructure among all test units.

Fig. 11. Quantification of individual latent heterogeneity.

Moreover, the non-zero value of parameter 𝑏′1111 in Table 3 at a
significance level of 0.05 also indicates that there exists an interac-
tion effect between material microstructure (captured by functional
covariate) and load condition (captured by scalar covariate) on the
slope of degradation path. Specifically, as shown in Eq. (1), such
interaction effect between scalar and functional covariates can be char-
acterized as 𝑥𝑖1 ∫

𝑅
0 𝜌111(𝑟)𝑍𝑖1(𝑟)d𝑟, which can further be approximated

as 𝑅𝑥𝑖1(𝑏′1111𝑐𝑖11 + 𝑏′1112𝑐𝑖12) (as manifested in Section 2.3). Fig. 10
shows the estimated interaction effect, 𝑥𝑖1 ∫

𝑅
0 𝜌111(𝑟)𝑍𝑖1(𝑟)d𝑟, among

different test units. As shown in Fig. 10, the interaction effect of
material microstructure and load condition for as-received test units are
negative while the interaction effect for annealed test units are positive.
This implies that the performance degradation of a test unit with less
homogeneous microstructure is less sensitive to the accelerated load
condition. All of the above rich model interpretations will allow the
reliability engineers at product design and development stage to better
identify the most appropriate material types as well as accelerated
conditions to improve the efficiency of accelerated testing as well as
to improve the reliability performance of test units.

In addition to the quantification of the influences of the observed
10

factors, the proposed work is able to quantify the latent heterogeneity,
Fig. 12. Reliability curves of four test units with different material types under
different load conditions.

Fig. 13. MSE of test data comparison among different models with latent
heterogeneity.

captured by 𝛾1𝑖, within each test unit. As shown in Fig. 11, the positive
value of latent heterogeneity indicates a positive effect on the slope of
degradation path and vice versus. Such latent heterogeneity is essen-
tially caused by unobserved or unknown factors shared within each test
unit (e.g. the potential effect of accumulated wear debris on specimen
contact surface). Such information can allow the reliability engineers to
target specific test units which exhibit large latent heterogeneity and to
investigate the potential contributing factors within each test unit via
further data collection and analysis.

Further, we calculate the estimated reliability function based on
estimated model parameters, as described in Section 2.3. Assuming
a predefined failure threshold of each unit as 𝐻 = 100 micrometer
um) [27], and different load conditions are applied to test units
ith different material types. As shown in Fig. 12, the reliability

curves reflect the reliability characteristics of RULs for test units under
different accelerated load conditions with different material types at
𝑡𝑐 = 0. Among all of the annealed test units, when the external ac-
celerated condition becomes smaller, the test unit has better reliability
performance. Among the test units under the same load condition, the
annealed test unit tends to accelerate the degradation process and has
worse reliability performance. Besides, since the annealed material is
more sensitive to the accelerated conditions, the reliability performance
differences among the annealed test units under different accelerated
load conditions are more significant as compared to the as-received
test units. Overall, when the applied load condition becomes smaller
and the material type is as-received, the test unit has better reliability
performance.

3.5. Performance comparison among degradation models with latent het-
erogeneity

To further demonstrate the performance of the proposed approach,
we compare the proposed model with several existing degradation
models with latent heterogeneity. The benchmark models in compar-
ison study include the stochastic process-based model with random
parameter (SP-based model) [20], the degradation path model without

incorporating any covariates (DPM-NC model) [1] and the degradation
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Fig. 14. Individual latent heterogeneity comparison based on different models with latent heterogeneity, (a) among all units, (b) among three annealed units.
ath model with incorporating scalar covariates of acceleration con-
itions (DPM-WC model) [24]. It is noticed that the proposed model
elongs to the category of degradation path model by incorporating
oth scalar covariates of accelerated conditions and functional covari-
tes of material information. Fig. 13 shows the prediction performance
measured in MSE of test data) among all models. The average MSE
f test data based on the SP model is much larger than those based
n the degradation path models, i.e., DPM-NC model, DPM-WC model
nd the proposed model. One potential reason is that the SP-based
odel considers the random functions to capture the large uncertainty
f the stochastic deterioration process and uses the random parameters
o capture latent heterogeneity. The modeling complexity of the SP-
ased model is higher than the actual degradation data which embraces
imited uncertainty. Thus, the SP-based model results in model overfit-
ing with higher MSE of test data. Among different degradation path
odels, their prediction performances are comparable, as shown in
ig. 13. The degradation path-based models are all parametric and have
smaller number of model parameters as compared to the SP-based
odel, which is essentially a nonparametric approach.
Based on the above results, the proposed model demonstrates sim-

lar prediction performance as the existing degradation path models
ith latent heterogeneity. Further, we compare the estimated individ-
al latent heterogeneity among these models and investigate the mod-
ling benefits of the proposed approach. The DPM-NC model mainly
ntroduces the latent heterogeneity without incorporating any covari-
tes and thus has the largest estimated latent heterogeneity among
he three models, as shown in Fig. 14(a). The DPM-WC model further
ncorporates load condition to explain part of individual heterogeneity
nd thus leads to smaller estimated latent heterogeneity as compared
o DPM-NC model. The proposed model achieves the largest reduction
f estimated individual latent heterogeneity with the incorporation
f mixed-type covariates and their potential interaction, as shown
n Fig. 14(a). A large portion of individual heterogeneity is essen-
ially explained by the observed covariates as individual observed
eterogeneity and thus the individual latent heterogeneity is reduced
onsiderably. For annealed test units, the external accelerated condi-
ions and the interaction effect have significant contribution to explain
he individual observed heterogeneity.
Further, when the load conditions become larger, there is more

ignificantly reduced amount of individual latent heterogeneity of an-
ealed units. To illustrate this finding, we show the estimated individ-
al latent heterogeneity of three annealed test units as an example in
ig. 14(b). The load conditions applied to these annealed units become
significantly large (e.g. ≥ 2 kg) and increase from the selected unit 8 to
unit 12. We then compare the estimated quantities of individual latent
heterogeneity among DPM-NC model (blue lines), DPM-WC model
(purple lines) and proposed model (red lines). With incorporating the
external accelerated conditions, the DPM-WC model yields more reduc-
tion of individual latent heterogeneity as compared to DPM-NC model
when the load conditions become larger. With further incorporating the
interaction effect between load condition and material characteristics,
11
the proposed model achieves larger reduction of latent heterogeneity
as compared to DPM-WC model when the applied load conditions in-
crease and the synergistic effect becomes more significant. Overall, the
proposed model can reduce the latent heterogeneity via incorporating
interpretable mixed-type covariates and their interaction while it still
maintains the satisfactory prediction performance as compared to the
existing degradation path models.

4. Conclusion

In this paper, we propose a degradation modeling approach with
both generic model formulation and effective estimation algorithm to
characterize heterogeneous degradation data with covariates. The pro-
posed model incorporates both mixed-type (i.e., scalar and functional)
covariates and latent heterogeneity to improve the prediction accuracy.
The scalar and functional covariates represent the external accelerated
conditions and the internal material microstructure characteristics of
test units, respectively. The developed estimation algorithm further
allows the joint quantification of influences of mixed-type covariates as
well as latent heterogeneity. In particular, the basis function approx-
imation technique is employed to address the infinite dimensionality
issue of model estimation when functional covariate is involved. Data
augmentation technique is further employed to simultaneously estimate
both the influences of observed mixed-type covariates as well as latent
heterogeneity captured by the unit-specific latent variable. Based on a
real case study of analyzing the degradation data in an accelerated wear
test, the proposed work demonstrates its satisfactory prediction perfor-
mance over several models based on simplified model specifications,
such as models which neglect functional covariates and/or latent het-
erogeneity. The proposed work also demonstrates its appealing model
interpretability as compared to several existing degradation models
with latent heterogeneity. The proposed work allows the reliability
engineers to better identify the most influencing factors for improving
reliability performance of product units and to design more efficient
accelerated tests in response to the varied material characteristics of
product units.

Several assumptions of the proposed work and the future directions
are summarized as follows. In this paper, we utilize baseline material
microstructure information of test units before the reliability testing
is performed. Since the microstructure of test units may change over
time during the reliability testing, it will be important to incorporate in-
situ monitoring data of material microstructure in the future to further
improve the modeling accuracy. In addition, we focus on modeling the
accelerated degradation testing data with covariates in this paper. The
external accelerated conditions are well controlled in the laboratory
setting. Thus, there is no measurement error or randomness involved
in the covariates. In the future, we will extend the proposed modeling
framework for analyzing the degradation data with noisy or stochastic
covariates, such as uncertain environment conditions in field operation

stage.
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Appendix A. Derivations of 𝜦𝒊, 𝑨𝟐𝒊, 𝑨𝟑𝒊 and 𝑨𝟒𝒊

Based on Eq. (3), the degradation measurements can be fully ex-
pressed as

𝑦𝑖𝑗 =
∑𝐿
𝑙=0[𝜈𝑙 + 𝜷T𝑙 𝒙𝑖 + 𝑅(

∑𝑆
𝑠=1

∑𝐾
𝑘=1 𝑏𝑙𝑠𝑘𝑐𝑖𝑠𝑘)

+ 𝑅(
∑𝑃
𝑝=1 𝑥𝑖𝑝(

∑𝑆
𝑠=1

∑𝐾
𝑘=1 𝑏

′
𝑙𝑝𝑠𝑘𝑐𝑖𝑠𝑘)) + 𝛾𝑙𝑖]𝜙𝑙(𝑡𝑖𝑗 ) + 𝜖𝑖𝑗 , 𝑖 = 1,… , 𝑁, 𝑗 =

1,… , 𝑚𝑖
where 𝑦𝑖𝑗 is degradation measurement of test unit 𝑖 measured at

time 𝑡𝑖𝑗 and 𝜖𝑖𝑗 is the error term. We denote the vector form as 𝒚𝑖 =
[𝑦𝑖1,… , 𝑦𝑖𝑚𝑖 ]

T and 𝝐𝑖 = [𝜖𝑖1,… , 𝜖𝑖𝑚𝑖 ]
T. 𝜈𝑙 is the population-level average

performance degradation at 𝑙th decomposition, ∀𝑙 = 0,… , 𝐿. Let 𝝂 =
[𝜈0...𝜈𝐿]T be a vector of population-level average performance degrada-
tion at all decomposition levels. 𝑥𝑖𝑝 is the 𝑝th scalar covariate of unit
𝑖 and 𝒙𝑖 = [𝑥𝑖1,… , 𝑥𝑖𝑃 ] is a vector of all 𝑃 observed scalar covariates.
𝜷𝑙 = [𝛽𝑙1...𝛽𝑙𝑃 ]T is a vector of the coefficients of total 𝑃 scalar covariates
at 𝑙th decomposition, ∀𝑙 = 0,… , 𝐿. 𝑅 is the range of spatial distance
and 𝑐𝑖𝑠𝑘 is the 𝑘th basis coefficient for 𝑠th functional covariate of unit
𝑖. 𝑏𝑙𝑠𝑘 and 𝑏′𝑙𝑝𝑠𝑘 are 𝑘th basis coefficients for coefficient function of 𝑠th
functional covariate and the interaction terms, respectively. We denote
𝒃𝑙𝑠 = [𝑏𝑙𝑠1,… , 𝑏𝑙𝑠𝐾 ]T and 𝒃′𝑙𝑝𝑠 = [𝑏′𝑙𝑝𝑠1,… , 𝑏′𝑙𝑝𝑠𝐾 ]

T,∀𝑙 = 0,… , 𝐿, 𝑝 =
1,… , 𝑃 , 𝑠 = 1,… , 𝑆. 𝛾𝑙𝑖 is the latent factor of unit 𝑖 at 𝑙th decomposition
and let 𝜸𝑖 = [𝛾0𝑖,… , 𝛾𝐿𝑖]T be a vector of latent variables of unit 𝑖 at all
decomposition levels. 𝜙𝑙(⋅) is basis function at 𝑙th decomposition. The
design matrix of latent heterogeneity can be expressed as

𝜦𝑖 =
(

𝑤1𝑖
𝑢𝑣
)

∈ R𝑚𝑖×(𝐿+1)

where 𝑤1𝑖
𝑢𝑣 = 𝜙𝑣(𝑡𝑖𝑢),∀𝑢 = 1,… , 𝑚𝑖, 𝑣 = 0,… , 𝐿 is the element at 𝑢th row

nd 𝑣th column. Further, we let 𝑨2𝑖, 𝑨3𝑖 and 𝑨4𝑖 be the block matrices,
.e.,

2𝑖 =
(

𝑨20𝑖 𝑨21𝑖 ... 𝑨2𝐿𝑖
)

∈ R𝑚𝑖×(𝐿+1)𝑃

here 𝑨2𝑙𝑖 =
(

𝑤2𝑙𝑖
𝑢𝑣
)

∈ R𝑚𝑖×𝑃 ,∀𝑙 = 0,… , 𝐿 is the submatrix and the
element at 𝑢th row and 𝑣th column is expressed as 𝑤2𝑙𝑖

𝑢𝑣 = 𝑥𝑖𝑣𝜙𝑙(𝑡𝑖𝑢),∀𝑢 =
1,… , 𝑚𝑖, 𝑣 = 1,… , 𝑃

𝑨3𝑖 =
(

𝑨30𝑖 𝑨31𝑖 ... 𝑨3𝐿𝑖
)

∈ R𝑚𝑖×(𝐿+1)𝑆𝐾

where each submatrix 𝑨3𝑙𝑖 ∈ R𝑚𝑖×𝑆𝐾 can be expressed as 𝑨3𝑙𝑖 =
(

𝑨3𝑙𝑖1 ... 𝑨3𝑙𝑖𝑆
)

, ∀𝑙 = 0,… , 𝐿. Each submatrix 𝑨3𝑙𝑖𝑠 can further
be written as 𝑨3𝑙𝑖𝑠 =

(

𝑤3𝑙𝑖𝑠
𝑢𝑣

)

∈ R𝑚𝑖×𝐾 ,∀𝑠 = 1,… , 𝑆 where 𝑤3𝑙𝑖𝑠
𝑢𝑣 =

𝑅𝑐𝑖𝑠𝑣𝜙𝑙(𝑡𝑖𝑢),∀𝑢 = 1,… , 𝑚𝑖, 𝑣 = 1,… , 𝐾 is the element at 𝑢th row and
𝑣th column of the submatrix.

𝑨4𝑖 =
(

𝑨40𝑖 𝑨41𝑖 ... 𝑨4𝐿𝑖
)

∈ R𝑚𝑖×(𝐿+1)𝑃𝑆𝐾

where 𝑨4𝑙𝑖 =
(

𝑨4𝑙𝑖1 ... 𝑨4𝑙𝑖𝑃
)

∈ R𝑚𝑖×𝑃𝑆𝐾 ,∀𝑙 = 0,… , 𝐿 is the
submatrix. Each submatrix 𝑨4𝑙𝑖𝑝,∀𝑝 = 1,… , 𝑃 can be further expressed
as 𝑨4𝑙𝑖𝑝 =

(

𝑨4𝑙𝑖𝑝1 ... 𝑨4𝑙𝑖𝑝𝑆
)

∈ R𝑚𝑖×𝑆𝐾 . Finally, the submatrix
𝑨4𝑙𝑖𝑝𝑠,∀𝑠 = 1,… , 𝑆 can be written as 𝑨4𝑙𝑖𝑝𝑠 =

(

𝑤4𝑙𝑖𝑝𝑠
𝑢𝑣

)

∈ R𝑚𝑖×𝐾 where
𝑤4𝑙𝑖𝑝𝑠
𝑢𝑣 = 𝑅𝑥𝑖𝑝𝑐𝑖𝑠𝑣𝜙𝑙(𝑡𝑖𝑢),∀𝑢 = 1,… , 𝑚𝑖, 𝑣 = 1,… , 𝐾 is the element at 𝑢th

row and 𝑣th column.
With the above block matrices, the design matrix of observed het-

erogeneity can then be manifested as

( ) 𝑚𝑖×𝑈
12

𝜴𝑖 = 𝜦𝑖 𝑨2𝑖 𝑨3𝑖 𝑨4𝑖 ∈ R where
𝑈 = (𝐿 + 1)(1 + 𝑃 + 𝑆𝐾 + 𝑃𝑆𝐾)

Further, we denote 𝜻 =
[

𝝂T, 𝜷T1 ,… , 𝜷T𝐿, 𝒃
T
01...𝒃

T
𝐿𝑆 , 𝒃

′T
011...𝒃

′T
𝐿𝑃𝑆

]T
as a

vector of coefficients for the design matrix of observed heterogeneity.
With the above notations, we can simplify the proposed model into the
vector form, i.e., 𝒚𝑖 = 𝜴𝑖𝜻 +𝜦𝑖𝜸𝑖 + 𝝐𝑖, 𝑖 = 1,… , 𝑁 .

Appendix B. Derivation of Eq. (8)

As shown in the proposed model Eq. (1), we have 𝜖𝑖𝑗 ∼ 𝑁(0, 𝜎2𝜖 ). The
marginal density can then be expressed as 𝒚𝑖 ∼ 𝑁(𝜴𝑖𝜻 ,𝜦𝑖𝜮𝛾𝜦T𝑖 +𝜎

2
𝜖 𝐈𝑚𝑖 ).

Given that 𝜸𝑖 is known, the conditional distribution becomes 𝒚𝑖 ∣ 𝜸𝑖 ∼
𝑁(𝜴𝑖𝜻 +𝜦𝑖𝜸𝑖, 𝜎2𝜖 𝐈𝑚𝑖 ). The latent variables 𝜸𝑖 is assumed to be normally
distributed, i.e., 𝜸𝑖 ∼ 𝑁(0,𝜮𝛾 ). Based on Bayes’ rule, the conditional
density 𝑝(𝜸𝑖 ∣ 𝒚𝑖,𝜣) can be calculated as

𝑝(𝜸𝑖 ∣ 𝒚𝑖,𝜣) =
𝑝(𝒚𝑖 ∣ 𝜸𝑖,𝜣)𝑝(𝜸𝑖 ∣ 𝜣)

𝑝(𝒚𝑖 ∣ 𝜣)

=
𝐶11

1
𝜎𝜖

|

|

|

𝛴𝛾
|

|

|

− 1
2 exp

[

− 1
2𝜎2𝜖

‖

‖

𝒚𝑖 −𝜴𝑖𝜻 −𝜦𝑖𝜸𝑖‖‖
2 − 1

2
𝜸T𝑖 𝜮

−1
𝛾 𝜸𝑖

]

𝐶12
|

|

|

𝜦𝑖𝜮𝛾𝜦T
𝑖 + 𝜎2𝜖 I𝑚𝑖

|

|

|

− 1
2 exp

[

− 1
2
(𝒚𝑖 −𝜴𝑖𝜻)T(𝜦𝑖𝜮𝛾𝜦T

𝑖 + 𝜎2𝜖 I𝑚𝑖 )−1(𝒚𝑖 −𝜴𝑖𝜻)
]

here 𝐶11 and 𝐶12 are normalizing constants. With the expansion of
uclidean norm, i.e., ‖

‖

𝒚𝑖 −𝜴𝑖𝜻 −𝜦𝑖𝜸𝑖‖‖
2 = ‖

‖

𝒚𝑖 −𝜴𝑖𝜻‖‖
2+‖

‖

𝜦𝑖𝜸𝑖‖‖
2−2(𝒚𝑖−

𝜴𝑖𝜻)T𝜦𝑖𝜸𝑖, the conditional density can be further represented as

𝑝(𝜸𝑖 ∣ 𝒚𝑖,𝜣) ∝
|

|

|

𝜎2𝜖𝜮𝛾
|

|

|

− 1
2

|

|

|

𝜦𝑖𝜮𝛾𝜦T
𝑖 + 𝜎2𝜖 I𝑚𝑖

|

|

|

− 1
2

exp[− 1
2𝜎2𝜖

((𝒚𝑖 −𝜴𝑖𝜻)T(𝒚𝑖 −𝜴𝑖𝜻) + 𝜸T𝑖 𝜦
T
𝑖 𝜦𝑖𝜸𝑖

− 2(𝒚𝑖 −𝜴𝑖𝜻)T𝜦𝑖𝜸𝑖) −
1
2
𝜸T𝑖 𝜮

−1
𝛾 𝜸𝑖 +

1
2
(𝒚𝑖 −𝜴𝑖𝜻)T(𝜦𝑖𝜮𝛾𝜦T

𝑖 + 𝜎
2
𝜖 I𝑚𝑖 )

−1(𝒚𝑖 −𝜴𝑖𝜻)]

∝
|

|

|

|

|

(𝜮−1
𝛾 +

𝜦T
𝑖 𝜦𝑖

𝜎2𝜖
)−1

|

|

|

|

|

− 1
2

exp[− 1
2
(𝒚𝑖 −𝜴𝑖𝜻)T(𝜦𝑖𝜮𝛾𝜦T

𝑖 + 𝜎
2
𝜖 I𝑚𝑖 )

−1(
𝜦𝑖𝜮𝛾𝜦T

𝑖

𝜎2𝜖
+ I𝑚𝑖 )

⋅ (𝒚𝑖 −𝜴𝑖𝜻) +
1
2
(𝒚𝑖 −𝜴𝑖𝜻)T(𝜦𝑖𝜮𝛾𝜦T

𝑖 + 𝜎
2
𝜖 I𝑚𝑖 )

−1(𝒚𝑖 −𝜴𝑖𝜻)

− 1
2
𝜸T𝑖

𝜦T
𝑖 𝜦𝑖

𝜎2𝜖
𝜸𝑖

+ 1
𝜎2𝜖

(𝒚𝑖 −𝜴𝑖𝜻)T𝜦𝑖𝜸𝑖 −
1
2
𝜸T𝑖 𝜮

−1
𝛾 𝜸𝑖]

∝
|

|

|

|

|

(𝜮−1
𝛾 +

𝜦T
𝑖 𝜦𝑖

𝜎2𝜖
)−1

|

|

|

|

|

− 1
2

exp[− 1
2
(𝒚𝑖 −𝜴𝑖𝜻)T(𝜦𝑖𝜮𝛾𝜦T

𝑖 + 𝜎
2
𝜖 I𝑚𝑖 )

−1 𝜦𝑖𝜮𝛾𝜦T
𝑖

𝜎2𝜖
× (𝒚𝑖 −𝜴𝑖𝜻)

− 1
2
𝜸T𝑖 (𝜮

−1
𝛾 +

𝜦T
𝑖 𝜦𝑖

𝜎2𝜖
)𝜸𝑖 +

(𝒚𝑖 −𝜴𝑖𝜻)T𝜦𝑖

𝜎2𝜖
𝜸𝑖]

∝ |

|

𝑽 𝑖
|

|

− 1
2 exp

[

−1
2
(𝜸𝑖 − 𝝁𝑖)T𝑽 −1

𝑖 (𝜸𝑖 − 𝝁𝑖)
]

where 𝝁𝑖 =
1
𝜎2𝜖
𝑽 𝑖𝜦T𝑖 (𝒚𝑖 −𝜴𝑖𝜻) and 𝑽 𝑖 = (𝜮−1

𝛾 +
𝜦T𝑖 𝜦𝑖
𝜎2𝜖

)−1. Thus, 𝜸𝑖 ∣ 𝒚𝑖,𝜣
as gaussian density with mean 𝝁𝑖 and variance 𝑽 𝑖. In the E-step of EM
stimation framework, we want to compute the expectation of 𝜸𝑖 given
the observed data and current parameter estimates. With the above
derived conditional density, the conditional expectation quantities can
then be obtained as

E[𝜸𝑖 ∣ 𝑫,𝜣] = 𝝁𝑖 =
1
𝜎2𝜖

𝑽 𝑖𝜦T𝑖 (𝒚𝑖 −𝜴𝑖𝜻)

[𝜸𝑖𝜸T𝑖 ∣ 𝑫,𝜣] = V(𝜸𝑖 ∣ 𝑫,𝜣) + E[𝜸𝑖 ∣ 𝑫,𝜣]
(

E[𝜸𝑖 ∣ 𝑫,𝜣]
)T

= 𝑽 𝑖 + 𝝁𝑖𝝁T𝑖 ,∀𝑖 = 1,… , 𝑁

Further, the conditional expectation for all test units can be simplified
as

E[𝜸 ∣ 𝑫,𝜣] = 𝝁 =

⎛

⎜

⎜

⎜

⎜

E[𝜸1 ∣ 𝑫,𝜣]
E[𝜸2 ∣ 𝑫,𝜣]

...

⎞

⎟

⎟

⎟

⎟

=
(

𝝁T1𝝁
T
2 ...𝝁

T
𝑁
)T
⎝

E[𝜸𝑁 ∣ 𝑫,𝜣]
⎠
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Appendix C. Derivations of Eqs. (9), (10) and (11)

In the M step of EM estimation framework, the parameter estimates
𝜣̂ can be obtained by maximizing Q function 𝑄(𝜣,𝜣(𝜏−1)), as demon-
strated in Eq. (7). Specifically, the parameter estimate 𝜻̂ at iteration
𝜏 can be obtained by 𝜻̂ (𝜏) = argmax

𝜻
𝑄(𝜣,𝜣(𝜏−1)). This can be further

explicitly derived as

𝜕𝑄
𝜕𝜻

= − 1
2𝜎2𝜖

(
𝜕𝜻T𝜴T𝜴𝜻

𝜕𝜻
−
𝜕𝜻T𝜴T𝒚
𝜕𝜻

−
𝜕𝒚T𝜴𝜻
𝜕𝜻

+
𝜕E[𝜸T ∣ 𝑫,𝜣(𝜏−1)]𝜦T𝜴𝜻

𝜕𝜻

+
𝜕𝜻T𝜴T𝜦E[𝜸T ∣ 𝑫,𝜣(𝜏−1)]

𝜕𝜻
) = 0

he above equation can be simplified as

𝜴T𝜴𝜻 + 2𝜴T𝜦E[𝜸 ∣ 𝑫,𝜣(𝜏−1)] − 2𝜴T𝒚 = 0

By solving the above equation, the closed-form of parameter estimate
for 𝜻̂ can be obtained as

𝜻̂ (𝜏) = (𝜴T𝜴)−1𝜴T(𝒚 −𝜦E[𝜸 ∣ 𝑫,𝜣(𝜏−1)]) = (𝜴T𝜴)−1𝜴T(𝒚 −𝜦𝝁(𝜏−1))

Similarly, the parameter 𝜮̂𝛾 at iteration 𝜏 can be obtained by maximiz-
ng Q function, i.e., 𝜮̂(𝜏)

𝛾 = argmax
𝜮𝛾

𝑄(𝜣,𝜣(𝜏−1)). This can be achieved

by solving the following equation

𝜕𝑄
𝜕𝜮𝛾

= −𝑁
2

𝜕 log ||
|

𝜮𝛾
|

|

|

𝜕𝜮𝛾
− 1

2

𝑁
∑

𝑖=1

𝜕E[𝜸𝑖T𝜮−1
𝛾 𝜸𝑖 ∣ 𝑫,𝜣(𝜏−1)]

𝜕𝜮𝛾
= 0

By solving the above equation, we can obtain the closed-form of
parameter estimate for 𝜮̂𝛾 as

𝜮̂(𝜏)
𝛾 = 1

𝑁

𝑁
∑

𝑖=1
E[𝜸𝑖𝜸T𝑖 ∣ 𝑫,𝜣(𝜏−1)] = 1

𝑁

𝑁
∑

𝑖=1
(𝑽 (𝜏−1)

𝑖 + 𝝁(𝜏−1)
𝑖 𝝁(𝜏−1)T

𝑖 )

= 1
𝑁

𝑁
∑

𝑖=1
((𝜮̂(𝜏−1)−1

𝛾 + 1
𝜎̂2(𝜏−1)𝜖

𝜦T𝑖 𝜦𝑖)−1 + 𝝁(𝜏−1)
𝑖 𝝁(𝜏−1)T

𝑖 )

ased on the updated estimates of 𝜻̂ (𝜏) and 𝜮̂(𝜏)
𝛾 from above equations,

he parameter estimate 𝜎̂2𝜖 at iteration 𝜏 can then be obtained by
𝜎̂2(𝜏)𝜖 = argmax

𝜎2𝜖

𝑄(𝜣,𝜣(𝜏−1)). Further, this can be achieved by solving

the following equation

𝜕𝑄
𝜕𝜎2𝜖

= −
∑𝑁
𝑖=1 𝑚𝑖
2

𝜕 log(𝜎2𝜖 )
𝜕𝜎2𝜖

−
𝜕 1
2𝜎2𝜖

𝜕𝜎2𝜖
(‖‖
‖

𝒚 −𝜴𝜻̂ (𝜏)‖‖
‖

2

+
𝑁
∑

𝑖=1
Tr(𝜦T𝑖 𝜦𝑖E[𝜸𝑖𝜸T𝑖 ∣ 𝑫,𝜣(𝜏−1)])

− 2(𝒚 −𝜴𝜻̂ (𝜏))T𝜦E[𝜸 ∣ 𝑫,𝜣(𝜏−1)]) = 0

By solving the above equation, the closed-form of parameter estimate
for 𝜎̂2𝜖 becomes

𝜎̂2(𝜏)𝜖 = 1
∑𝑁
𝑖=1 𝑚𝑖

( ‖‖
‖

𝒚 −𝜴𝜻̂ (𝜏)‖‖
‖

2
− 2

𝑁
∑

𝑖=1
(𝒚𝑖 −𝜴𝑖𝜻̂

(𝜏))T𝜦𝑖E[𝜸𝑖 ∣ 𝑫,𝜣(𝜏−1)]

+
𝑁
∑

𝑖=1
Tr(𝜦T𝑖 𝜦𝑖E[𝜸𝑖𝜸T𝑖 ∣ 𝑫,𝜣(𝜏−1)]))

= 1
∑𝑁
𝑖=1 𝑚𝑖

(‖‖
‖

𝒚 −𝜴𝜻̂ (𝜏)‖‖
‖

2
− 2

𝑁
∑

𝑖=1
(𝒚𝑖 −𝜴𝑖𝜻̂

(𝜏))T𝜦𝑖𝝁
(𝜏−1)
𝑖

+
𝑁
∑

𝑖=1
Tr(𝜦T𝑖 𝜦𝑖((𝜮̂

(𝜏)−1
𝛾 + 1

𝜎̂2(𝜏−1)𝜖

𝜦T𝑖 𝜦𝑖)−1 + 𝝁(𝜏−1)
𝑖 𝝁(𝜏−1)T

𝑖 )))

ased on the above derivations, the expectation step and the maximiza-
ion step of the estimation procedure will be repeated alternately as the
verall algorithm iterates.
13
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