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Abstract
Accelerated life testing (ALT) is typically used to assess the reliability of mate-

rial’s lifetime under desired stress levels. Recent advances in material engineering

have made a variety of material settings readily available. A critical question is how

to efficiently conduct ALT to optimize reliability performance over different mate-

rial settings. We propose a sequential selection approach to solve this problem. The

proposed approach contains (1) a model updating mechanism to incorporate new

experimental data in each step, and (2) a design criterion to guide new experiments

that maximizes the potential to find the optimal material setting. To guarantee a

tractable statistical mechanism for information collection, we develop explicit model

parameter update formulas via approximate Bayesian inference. Theories show that

our explicit update formulas give consistent parameter estimates. To guarantee that

the design criterion in each step can make improvement on the identification of

optimal material setting, this paper adopts an expected improvement-based design

criterion for optimizing the material setting under target stress factor levels. We

also give a heuristic on this design criterion to justify the statistical consistency of

approximate Bayesian estimates. Simulation studies and a case study show that the

proposed sequential selection approach can significantly improve the probability of

identifying the material alternative with best reliability performance compared to

other design approaches.
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1 INTRODUCTION

1.1 Motivation

Product reliability is often referred to as its ability of perform-

ing intended function under specific operating conditions.

However, it might take months or years to observe a product

failure under the desired operating conditions. Accelerated

life test (ALT) is used to collect reliability information in a

timely manner under accelerated operating conditions in the

lab environment. Then the reliability information collected

can be used to predict the lifetime under the normal operating

conditions in field environment. Typically, ALT tests contain

a given number of experimental units due to the availability of

experimental resource. The classical problem of experimental

design for ALT is to allocate the stress levels representing

accelerated operating conditions to each test unit.

Recent advances in material engineering have made a vari-

ety of material settings readily available in lab testing. Among

those different settings, the proportions of different elements

in the material and mechanical procedures would greatly

influence their reliability performance. For example, copper

alloys are widely applied in various safety-/mission-critical

industries, for example, aircraft bearings and bushings in

aerospace industry, drilling and mining equipment in mining

industry. Alloys can be formed under different mechanical

procedures, which may alter their physical/chemical prop-

erties and further lead to different reliability performances.

Thus, in addition to various environmental conditions of
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“load,” “temperature,” and “humidity” (Singh et al., 2007),

the experimenter is also interested in finding the material with

better reliability performance. This suggests that the selection

of material settings (particularly, different mechanical pro-

cedure of copper alloys in this example; may also including

material proportion, mechanical procedure, etc. in other situ-

ations) is quite critical to the product reliability. In this paper,

we aim to select the material setting with the best reliabil-

ity performance for ALT. To fulfill this aim, the experimenter

of ALT needs to determine the stress levels and the material

setting of each test unit.

As demonstrated in Lee et al. (2018), sequential design is

often preferable compared to one-shot designs (i.e., allocat-

ing design points for all test units at the beginning stage of

the experiments) in terms of improving the efficiency of test

planning. The reasons are given as follows. First, testing labs

are typically equipped with only a limited number of testing

machines (e.g., one or two). Therefore, it is physically impos-

sible to conduct all N experiments simultaneously. Second,

efficient one-shot design relies on prior estimates of model

parameter, and an accurate prior of model parameters is often

difficult to obtain before conducting ALT. Particularly, this

paper focuses on selecting the optimal material setting, and

the advantage of the sequential test planning is to improve

the efficiency in optimal decision-making. We propose a

sequential selection approach to allocate experimental design

settings to the test units. In each step of this sequential pro-

cedure, the experimental design setting for the new test unit

is selected to maximize the expected gain on optimizing the

reliability performance under a Bayesian log-normal model.

For the computational convenience of sequential selection, we

develop explicit model parameter update formulas via approx-

imate Bayesian inference. Theories show that our explicit

update formulas give consistent parameter estimates. In the

next subsection, we point out the connection of our work to

literature studies.

1.2 Related literature

Our paper is closely related to the literature of experimen-

tal design for ALTs, as well as the literature on sequential

experimental design and learning in simulation optimization.

We review state-of-the-art approaches and recent advances

from both communities and point out their connections to our

paper.

The typical problem in designs for ALT is to allocate accel-

erated stress levels to experimental test units. The ASTM stan-

dard (Standard 2010) suggests balanced and equally spaced

designs for ALT. Given a lower bound and an upper bound

of a stress factor, equally spaced levels are chosen as design

points. Each design point is applied to an equal number of

experimental units. When multiple stress factors are incor-

porated, this standard design can be extended to factorial

designs (Wu & Hamada, 2011) with all level combinations

of the factors available. This standard design is developed to

reduce the variance of parameter estimates or prediction. To

further improve ALT, the optimal design is often carried out

through minimizing or maximizing a function that involves

the Fisher information derived under different model settings,

see for examples, Meeker and Hahn (1977), Meeker and Esco-

bar (2014), Pan and Yang (2014), and King et al. (2016). A

recent review of this topic can be found in Nelson (2015). For

example, Zhu and Elsayed (2013) propose an approach for

the design of ALT plans for the model under the Weibull dis-

tribution assumption. Those optimal design approaches work

well if the substituted parameter guesses in the model are

accurate. This requirement is often impractical at the early

stage of the experimentation. Bayesian methods with prior

information can be developed to plan ALT under parameter

uncertainty, see for examples, Zhang and Meeker (2006), Sha

and Pan (2014), and Zhao et al. (2019). Along with more test

results collected, it is also desired to update the prior infor-

mation, and design ALT test in a sequential manner. Recently,

Lee et al. (2018) developed a sequential Bayesian design

approach for ALT to mitigate this drawback, and improve the

efficiency in test planning. However, as noted earlier, most of

existing experimental design approaches for ALT are devel-

oped to assess the reliability performance of a given product

or material. In this paper, we focus on selecting the opti-

mal material setting with the best reliability performance.

The experimental design issue for this particular problem

has not been discussed in the literature to the best of our

knowledge.

Selecting the optimal design among different alternatives

has been well known as the ranking and selection (R&S)

problem in the simulation community, which can date back to

Bechhofer (1954). In such problems, the experiment is usually

under the limit of a fixed budget (e.g., time, materials), and

the decision-maker wants to identify the optimal design cor-

rectly as much as possible. See Hong and Nelson (2009) and

Chau et al. (2014) for more description. For the R&S problem,

we say “correct selection” occurs if the selected alternative is

truly the best design after the simulation budget is exhausted.

The optimal budget allocation with respect to maximizing

the probability of the correct selection is studied rigorously

in Glynn and Juneja (2004). However, this optimal budget

allocation requires certain knowledge of the designs and thus

cannot be applied directly in practice; for more details, see the

discussion in Chen and Ryzhov (2019). Therefore, modern

researchers prefer to allocate their budget in a sequential man-

ner, which is more practical and computationally tractable.

In such sequential allocation algorithms, the decision-maker

first spends part of the budget, observes the results, then

determines how to allocate the remaining budget accord-

ingly. There are many sequential allocation algorithms that

have been proposed, including expected improvement (or EI;

see Jones et al., 1998), optimal computing budget allocation

(or OCBA; see Chen et al., 2000), indifference-zone method

(Kim & Nelson, 2001), and top-two methods (Russo, 2017).

The EI-type methods also include Chick et al. (2010), Powell
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and Ryzhov (2012), Qin et al. (2017), and Salemi et al. (2019).

Other approaches include the reverse-engineering method

with brutal force (Peng & Fu, 2017). Though various sequen-

tial allocation algorithms have been proposed, there is no

previous work that applies them to material selection in

ALT, where usually we encounter censored observations from

experiments, as discussed later in Section 2. To overcome

the inconvenience brought by the incomplete information,

our work builds an approximate Bayesian model to learn the

reliability performance of the materials, which allows us to

apply the sequential allocation algorithms more efficiently

in ALT.

1.3 Overview of our paper

Our paper proposes a sequential selection approach to find

the optimal material setting. Beyond assessing the reliabil-

ity performance of a single type of material, the proposed

approach incorporates the material setting as a decision vari-

able, and is able to find the material with the best reliability

performance efficiently. The proposed approach contains a

model updating mechanism to incorporate new experimental

data in each step, and a design criterion to guide new experi-

ments that maximize the potential to find the optimal material

setting.

For the model updating mechanism, this paper develops an

approximate Bayesian inference approach for the log-normal

model. This approach can be used to update the parame-

ters of the log-normal model for sequential-ALT with cen-

sored observations. Our development makes it possible to

efficiently implement the model parameter update with cen-

sored observation for sequential experimentation. We also

provide theoretical results to show the statistical consistency

of parameter estimation via the proposed sequential selection

approach. Our update algorithms and corresponding consis-

tency theory are not available in existing literature.

For the design criterion, this paper adopts an EI-based

design criterion to select design points for both material set-

ting and the target stress factor, and the goal of this design

criterion is to maximize the material reliability performance.

Under the log-normal model with a linear interaction term

between material setting and the target stress, we simplify

the expression of the design criterion, and give a heuristic on

the proposed design to guarantee the statistical consistency of

approximate Bayesian estimates.

The rest of the article is organized as follows. Section 2

provides detail description of our problem. Section 3 inves-

tigates the approximate Bayesian inference approach for the

log-normal model and its corresponding theoretical proper-

ties. Section 4 introduces the design criterion for sequential

selection. Section 5 compares the proposed approach with

other test planning approaches using numerical examples.

Section 6 concludes the paper with discussions and future

directions.

2 PROBLEM DESCRIPTION

ALT mostly considers different levels of the stress factors in

testing and validating the reliability performance of a given

product or material, which is often characterized by a lifetime

model. In our problem, both stress factors and material fea-

tures of the product are included in the test planning stage.

The stress factors are denoted by a d dimensional vector v,

whereas the material features are denoted by a p dimensional

vector z. The stress factors are usually numerical variables

providing the accelerated stress levels, such as temperature

and humidity. The entries of the material feature vector z can

be continuous variables indicating the key metrics of mate-

rial characteristics, and they can also be categorical variables

referring to different material types. For example, the material

features may include the composition percentage of different

elements in an alloy, as well as different types of metallur-

gical procedures (e.g., annealing, tempering, electroplating,

etc.) used to process materials.

We assume that the mean performance of material reliabil-

ity can be expressed by 𝜇(z, v; 𝜷) as a function of stress factors

v and material features z with an unknown parameter vector

𝜷. A higher value of 𝜇(z, v; 𝜷) indicates that the correspond-

ing material setting z leads longer material lifetime in average

under the stress level combination v. Therefore, the goal of

our problem is to find the material alternative z which leads

the best mean reliability performance under the target stress

levels v∗:

z∗(v∗) ∈ argmax
z∈

𝜇(z, v∗; 𝜷), (1)

where  is a set of candidate material settings in our experi-

ments.

Since the testing process (e.g., the material wear process

as in Section 5.2) can be extremely complex, it is almost

impossible to develop an accurate mathematical model for

the mean material lifetime under multiple stress factors and

material features. To solve this problem, a log-normal model

is often used to surrogate the material lifetime (Meeker &

Escobar, 2014):

log(T) = x(z, v)⊤𝜷 + 𝜀, (2)

where T is a random variable representing the lifetime of a test

unit with experimental setting x(z, v), 𝜀 is the error term fol-

lowing a normal distribution with mean zero and variance 𝜎2,

and x(z, v) collects the intercept, the stress factors v, the mate-

rial features z, and the interactions between material features

and stress factors. In particular,

x(z, v) = (1, v⊤, z⊤, (z ⊗ v)⊤)⊤, (3)

where z ⊗ v denotes the Kronecker product of z and v, which

is a d × p dimensional vector representing the interaction

between material features and stress factors. To simplify the

notation, we reduce x(z, v) to x when there is no confusion.

The linear coefficient 𝜷 is a (p+1)×(d+1) dimension vector.

After collecting life times Ti’s from test units i = 1, … ,N,
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the model parameters can be estimated via the maximum

likelihood method.

In reliability studies, the lifetime Ti’s are often given as the

censored observations. Even under accelerated stress levels,

the lifetime of a test unit can be as long as weeks or months.

Thus, in the experimental stage, the tests will be terminated

after a given observation time 𝜏i, even if the failure has not

been observed. In additional to Ti, the failure of the i-th test

is often recorded by a binary variable 𝛿i. If 𝛿i = 1, failure is

observed, and Ti is the lifetime of the i-th test unit. If 𝛿i = 0,

we only know that the lifetime Ti is greater than 𝜏i. Under

the assumption of the log-normal model in (2), the likelihood

function of 𝜷 and 𝜎2 is

L
(
𝜷, 𝜎2 ∣ {Ti, 𝜏i, 𝛿i, xi}N

i=1

)
=

N∏
i=1

{
1

𝜎Ti
𝜙

(
log Ti − x⊤i 𝜷

𝜎

)}𝛿i

⋅

{
1 − Φ

(
log 𝜏i − x⊤

i 𝜷

𝜎

)}1−𝛿i

, (4)

where 𝜙 and Φ are the probability density function and

the cumulative distribution function of the standard normal

random variable, respectively.

Under the linear model setting, it is critically important to

develop efficient experimental design approach to solve the

optimization problem in (1). Since our goal is to find the opti-

mal material setting more efficiently, we develop a sequential

selection approach for ALT. Without loss of generality, we

assume that the test lab is only equipped with one set of test

machine. Thus, in each step of this sequential procedure, we

only select one design point and allocate it to one test unit. The

collected reliability information is used to update our belief

regarding to the mean lifetime, and our belief regarding to the

mean reliability performance of different material settings is

used to determine the design for the next test unit. There are

two main tasks under this development: (1) how to update the

beliefs regarding the mean reliability performance of different

material settings under the linear model setting with censored

observations; (2) how to develop experimental design crite-

rion to select new design points at each step. In this paper, we

first develop the updating formula for our belief of the mean

lifetime in Section 3, and then develop a policy to allocate

experimental setting based on the updated belief in Section 4.

3 APPROXIMATE BAYESIAN INFERENCE
FOR LOG-NORMAL MODEL WITH
INCOMPLETE OBSERVATIONS

In this section, we develop Bayesian update formulas for the

log-normal model in (2). Under the linear model setting in (2),

we assume that the prior of the linear coefficients 𝜷 is a multi-

variate normal distribution with mean 𝜽0 and variance matrix

𝛴0. If the lifetime Ti is not censored, the conjugacy property

of the multivariate normal distribution also leads to a multi-

variate normal posterior distribution of 𝜷. For n = 1, … ,N,

we denote 𝜽n and Σn as the mean vector and variance matrix

of the posterior distribution of 𝜷 after including observations

from the first n test units. It is straightforward to derive that

𝜽n+1 = 𝜽n +
yn+1 − x⊤

n+1
𝜽n

𝜎2 + x⊤n+1
Σnxn+1

Σnxn+1 (5)

and

Σn+1 = Σn −
Σnxn+1x⊤

n+1
Σn

𝜎2 + x⊤n+1
Σnxn+1

. (6)

where xn+1 is the design point of the (n + 1)-st test unit,

yn+1 = log Tn+1 is the logarithm lifetime observation, and 𝜎2

is the variance of the error term in (2). In our development,

we assume that 𝜎2 is known for notational convenience.

Notice that, the conjugacy property gives closed-form

parameter update formulas, which further enables conve-

nience in the development of sequential experimental poli-

cies. See for examples in Frazier et al. (2008) and Frazier

et al. (2009). However, the conjugacy property does not hold

if we have censored responses. An alternative method of

constructing closed-form parameter update formulas under

this situation is the moment-matching based approximate

Bayesian inference. The technique of moment-matching has

a long history in Bayesian statistics (Carlin & Louis, 2008).

This technique has recently been used to develop closed-form

Bayesian update equations for different problems, see, for

examples, Dangauthier et al. (2008) and Chhabra and

Das (2011). Particularly, based on this moment-matching

technique, Zhang and Song (2017) investigate the Bayesian

R&S approaches under a multivariate normal setting with

unknown variance, and its statistical consistency has recently

been demonstrated by Chen and Ryzhov (2020). Note that

it is the log-normal model for which we use approximate

Bayesian inference to derive closed-form parameter update in

this paper, which is essentially different from the multivari-

ate normal model in Zhang and Song (2017). Moreover, the

purpose of using approximate Bayesian inference in Zhang

and Song (2017) is to solve the challenge of unknown covari-

ance in multivariate normal model, while the purpose of using

approximate Bayesian inference in this paper is to tackle the

incomplete observations. Due to these major differences, the

theory developed in Zhang and Song (2017) is not applicable

to this paper.

In this paper, the idea of approximate Bayesian inference

is to approximate the posterior distribution of 𝜷 as a mul-

tivariate normal distribution with mean 𝜽n+1 and variance

Σn+1, which are the first and second moments of the poste-

rior distribution of 𝜷 given that 𝛿n+1 = 0, that is, yn+1 >

log 𝜏n+1. The approximate Bayesian update formula is given

in Proposition 1.

Proposition 1 Assume that, at the (n + 1)-st
step, we observe 𝛿n+1 = 0 and yn+1 > log 𝜏n+1.
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Under the log-normal model, and the multi-
variate normal prior 𝜷 ∼ MVN(𝜽n,Σn), the
approximation Bayesian inference gives closed-
form update formulas:

𝜽n+1 = 𝜽n +
𝜙(𝜂n)

(1 − Φ(𝜂n))
√

𝜎2 + x⊤n+1
Σnxn+1

Σnxn+1, (7)

and

Σn+1 = Σn −
Σnxn+1x⊤n+1

Σn

𝜎2 + x⊤
n+1

Σnxn+1

+
Σnxn+1x⊤n+1

Σn

𝜎2 + x⊤
n+1

Σnxn+1

×
(

1 − 𝜂
𝜙(𝜂n)
Φ(𝜂n)

− 𝜙(𝜂n)2

Φ(𝜂n)2

)2

, (8)

where

𝜂n =
log 𝜏n+1 − x⊤

n+1
𝜽n√

𝜎2 + x⊤n+1
Σnxn+1

, (9)

and 𝜽n+1 and Σn+1 are the first and second
moments of the posterior distribution of 𝜷 given
that 𝛿n+1 = 0.

If material failure is observed, (6) indicates that the vari-

ance reduction is
Σnxn+1x⊤n+1

Σn

𝜎2+x⊤n+1
Σnxn+1

. Also, if there is a censored

response, the amount of variance reduction will be reduced

by
Σnxn+1x⊤n+1

Σn

𝜎2+x⊤n+1
Σnxn+1

(
1 − 𝜂n

𝜙(𝜂n)
Φ(𝜂n)

− 𝜙(𝜂n)2

Φ(𝜂n)2
)

2 as in (8). However, in

sequential update, the effects of this additional term to the

variance reduction are usually negligible. This is because that

the variance Σn is small when n is large enough. Our numeri-

cal results often show that the variance update formulas in (6)

and (8) lead to approximately equal variances. Therefore, in

terms of the variance update, we adopt (6) for both complete

and censored responses. As a result, the update formulation

at step n can be summarized by

𝜽n+1 = 𝜽n + 𝛿n+1

yn+1 − x⊤
n+1

𝜽n

𝜎2 + x⊤n+1
Σnxn+1

Σnxn+1

+ (1 − 𝛿n+1)
𝜙(𝜂n)

(1 − Φ(𝜂n))
√

𝜎2 + x⊤n+1
Σnxn+1

Σnxn+1, ,

Σn+1 = Σn −
Σnxn+1x⊤n+1

Σn

𝜎2 + x⊤
n+1

Σnxn+1

, (10)

with 𝜂n given in (9).

We now discuss the consistency property of the proposed

approximate Bayesian inference under incomplete observa-

tions. In the following context, we demonstrate the conver-

gence of the sequence (𝜽n)∞n=0
based on the generic frame-

work established in Chen and Ryzhov (2020). We make the

following assumptions on the design vectors (xn)∞n=0
from

two different perspectives. Assumptions 1 and 2 ensure that

(xn)∞n=0
come from a nondegenerate distribution when they

are considered as i.i.d. samples; Assumption 3 guarantees

that each component of the regression coefficient 𝜷 is learnt

for a nonzero proportion of the total time in the long run,

when (xn)∞n=0
are considered as fixed vectors chosen from

a finite deterministic set. In short, Assumptions 1–2 and

Assumption 3 specify two completely different scenarios

depending on the experimenter’s view of the design vectors.

Nevertheless, we can show the convergence of (𝜽n)∞n=0
in both

scenarios.

Assumption 1 The design vectors (xn)∞n=0
are

drawn i.i.d. from a common distribution satisfy-

ing E(xnx⊤n ) = A, where A is a positive-definite

symmetric matrix.

Assumption 2 The sequence (xn)∞n=0
satisfies

0 < infn ||xn||1 ≤ supn ||xn||1 < ∞ almost

surely.

Assumption 3 All the design vectors (xn)∞n=0

are chosen from a finite deterministic set  =
{𝝀1, … ,𝝀K}, where K ≥ (p + 1)(d + 1) is

a fixed positive integer and 𝝀j ≠ 0 for all

1 ≤ j ≤ K. The optimal design is unique.

The matrix (𝝀1, … ,𝝀K) is full rank. For all j,
there exists some fixed constant 𝛼j ∈ (0,1) such

that |N𝝀j,n∕n − 𝛼j| = O
(

n−
1

8
−𝜖

)
, where 𝜖 is

a fixed positive constant and N𝝀j,n is the num-

ber of times that design 𝝀j has been sampled by

time n.

Theorem 1 Suppose Assumptions 1–2 or
Assumption 3 holds and the sequence (log 𝜏n)∞n=0

is bounded, and suppose that 𝜽n and Σn are
updated using (10). Then, 𝜽n → 𝜷 almost
surely.

The proof of Theorem 1 is deferred to the Appendix. This

theorem indicates that although we approximate the posterior

distribution to a multivariate normal under censored obser-

vations, the approximation can be asymptotically accurate,

since the updated parameter sequence (𝜽n)∞n=0
converges to

the true model parameters. Note that Theorem 1 proves the

convergence of (𝜽n)∞n=0
under two different sets of assump-

tions (i.e., Assumptions 1–2 or Assumption 3). Assumptions 1

and 2 state the requirement for the situation that the design

points are selected from a continuous space. Assumption 3

requires that the design points are chosen from a finite space.

In the field of ALTs, although the variables (e.g., temperature,

humidity) are often continuous, practitioners usually consider

that the design points take values at a finite number of levels,

as it is easier to control in physical experiments.

We would like to remark the connection and differ-

ence between our theory and the theory in Chen and

Ryzhov (2020). Theorem 1 is obtained under the framework

of Chen and Ryzhov (2020), which considers approximate
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Bayesian algorithms as a general stochastic approximation

algorithm (Robbins & Monro, 1951). That being said, show-

ing the consistency of approximate Bayesian algorithms that

are built with different distribution families and approxi-

mation criteria still requires substantial effort, which can

be seen from the demonstration examples of Chen and

Ryzhov (2020). As (7)–(8) are derived from an approxi-

mate Bayesian model that has never been specifically studied

before, the demonstration of its consistency is quite a substan-

tive work.

4 SEQUENTIAL SELECTION FOR
RELIABILITY IMPROVEMENT

This section discusses how to select design points in a sequen-

tial manner. As mentioned earlier, we investigate a fully

sequential procedure, and assume that only one experimental

unit will be allocated in each step of the sequential procedure.

Recall that our goal is to determine the material feature com-

bination z∗(v∗) such that it has the best reliability performance

under the target stress factor levels v∗. At the n-th step of the

sequential procedure, the optimal material setting based on

the collected information can be expressed by

zn(v∗) ∈ argmax
z∈

En𝜇(z, v∗; 𝜷), (11)

where En represents that the expectation is taken with respect

to the prior distribution of 𝜷 at the n-th step. Under the

log-normal model setting in (2), the objective in (11) can be

simplified to

En𝜇(z, v∗; 𝜷) = En [
x(z, v∗)⊤𝜷

]
= x(z, v∗)⊤𝜽n

with x(z, v∗) given in (3). To meet the requirement of our goal

in (1), new design points in each step should be determined to

maximize the improvement the target optimization problem.

The improvement of the objective in (1) by adding new design

points in the (n + 1)-st step can be quantified by

max
z∈

En+1𝜇(z, v∗; 𝜷) − max
z∈

En𝜇(z, v∗; 𝜷)

= max
z∈

[
x(z, v∗)⊤𝜽n+1

]
− max

z∈

[
x(z, v∗)⊤𝜽n

]
. (12)

Since 𝜽n+1 is a random vector that depends on the selected

design points xn+1 = x(zn+1, vn+1), the (n + 1)-st design point

should be chosen to maximize the expectation of the value of

improvement given that (z, v) is the design point at the (n +
1)-st step. Therefore, the acquisition function to select the new

design point can be expressed by

EIn(z, v; v∗) = E

{
max
z′∈

[
x(z′, v∗)⊤𝜽n+1

] |zn+1 = z, vn+1 = v
}

− max
z′∈

[
x(z′, v∗)⊤𝜽n

]
, (13)

where the expectation is taken with respect to the poste-

rior predictive distribution of yn+1 given that zn+1 = z and

vn+1 = v are the (n + 1)-st design point. This EI-type acqui-

sition function is typically used in selecting design points for

optimization problem in a sequential manner, see Powell and

Ryzhov (2012) for examples of the EI-type design criterion

under different developments.

For our problem, (13) can be further reduced to

EIn(z, v; v∗)

= EG

{
max
z′∈

[
(z′⊗ ṽ∗)⊤𝜽n,1+

x(z′, v∗)⊤Σnx(z, v)√
𝜎2 + x⊤(z, v)Σnx(z, v)

G

]}
− max

z′∈

[
(z′ ⊗ ṽ∗)⊤𝜽n,1

]
, (14)

where the expectation EG is taken with respect to the stan-

dard normal random variable G, ṽ∗ = (1, (v∗)⊤)⊤, and 𝜽n =
(𝜽⊤

n,0,𝜽
⊤
n,1)⊤ with 𝜽n,0 and 𝜽n,1 being vectors of size d + 1

and p(d + 1), respectively. The new design point xn+1 =
x(zn+1, vn+1) is selected to maximize this design criterion.

Some details on how to obtain (14) are given in Appendix D.

For our problem, the number of candidate material settings

in  is often finite, say,  = {z1, … , zK}. Under this situ-

ation, EIn(z, v; v∗) has a closed-form expression according to

Frazier et al. (2009). Let

bk
n(z, v; v∗) = x(zk, v∗)⊤Σnx(z, v)√

𝜎2 + x⊤(z, v)Σnx(z, v)

for k = 1, … ,K. For notational convenience, we assume that

bk
n(z, v; v∗) < bk+1

n (z, v; v∗) for k = 1, … ,K − 1. Following

Frazier et al. (2009), we have that

EIn(z, v; v∗) =
K∑

k=1

[
bk+1

n (z, v; v∗) − bk
n(z, v; v∗)

]
⋅ g

{
−

|(zk+1 ⊗ ṽ∗)⊤𝜽n,1 − (zk ⊗ ṽ∗)⊤𝜽n,1|
bk+1

n (z, v; v∗) − bk
n(z, v; v∗)

}
, (15)

where g(u) = uΦ(u) + 𝜙(u). To maximize EIn(z, v; v∗), we

can compute its gradient with regard to v according to Zhang

and Hwang (2019), and use gradient based optimization

approaches to find the maximum of EIn(z, v; v∗) for each given

z ∈ .

Note that the EI-type design criterion in (13) may not lead to

a closed-form expression as in (15) if the posterior of the coef-

ficient 𝜷 is not a multivariate normal distribution in each step.

The proposed approximation Bayesian update in Section 3

guarantees that the multivariate normal posterior distribution

holds. Besides convenient and efficient model update, the pro-

posed Bayesian approximation also plays an important role in

simplifying the computation of sequential design selection.

In the field of accelerated tests, the design vectors (xn)∞n=0

are usually considered fixed and chosen from a finite deter-

ministic set  = {𝝀1, … ,𝝀K}. In this scenario, one needs

to make sure that the sequential selection algorithm satisfies

Assumption 3 to ensure the consistency of (𝜽n)∞n=0
. How-

ever, the asymptotic behavior of EI-type criteria as well as

other sequential selection strategies under linear model is not

fully addressed in the literature. That being said, recent work

(Ryzhov, 2016) has shown that under independent beliefs,

classic EI-type criteria tend to allocate almost all the resource
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to the optimal design asymptotically, even though they can

sample each design infinitely often. Consequently, they fail to

satisfy the requirements of Assumption 3. Nonetheless, Chen

and Ryzhov (2019) shows that under independent beliefs, the

conditions in Assumption 3 can be easily satisfied by intro-

ducing a preselection step to balance the resource allocated

to the optimal design and suboptimal designs. Therefore, we

adopt this technique to modify the proposed EI approach (15)

as a heuristic to address Assumption 3. In particular, if x∗n
is the selected design at the n-th step, the preselection step

checks

N2
x∗n ,n

<
∑

𝝀≠x∗n ,𝝀∈
N2
𝝀,n, (16)

where N𝝀,n is the number of replication allocated to design

points 𝝀 ∈  . If (16) holds, assign xn+1 = x∗
n. If (16)

does not hold, assign xn+1 = arg maxx≠x∗n EIn(x; v∗), where

EIn(x; v∗) = EIn(z, v; v∗) is given by (15). Rigorous study

of the asymptotic behavior of this heuristic under correlated

beliefs would be a substantial contribution, but it is clearly

out of scope of the current paper, which focuses on devel-

oping performance-guaranteed sequential selection algorithm

for ALT.

5 NUMERICAL STUDY

This section provides some synthetic examples and a case

study on accelerated wear testing to compare the numerical

performances of different model updates and experimental

design approaches. In terms of model updates, we compare

the proposed approximation Bayesian update formulas in (10)

with the exact update, that is, refitting the log-normal model

using all the data points, which does not possess tractable

parameter updating formulas. This is the standard approach

used in the literature, for example, Lee et al. (2018). Those two

alternative approaches are denoted by “approx” and “exact,”

respectively. In terms of experimental design, the proposed

EI-based design procedure described in Section 4 (specifi-

cally, (15) with modification (16)) is denoted by SeqEI in the

comparison. We also compare our approach with two existing

design methods in the literature:

1. (Design:) Full factorial design, see for

example, Wu and Hamada (2011). For each

stress factor, we choose equally spaced

design points within a lower bound and

an upper bound. As noted in the literature

review section, this is the standard design

following ASTM standard (Standard 2010).

2. (SeqD:) Sequential Bayesian D-optimal

design in Lee et al. (2018). Numerical results

in Lee et al. (2018) have demonstrated the

advantage of sequential design over a num-

ber of alternative design approaches in the

literature.

We consider all possible combinations of the two model

update approaches and the three experimental design

approaches. The six alternatives involved in our numerical

comparison are denoted by “Design approx,” “Design exact,”

“SeqD approx,” “SeqD exact,” “SeqEI approx,” and “SeqEI

exact,” respectively.

Notice that, the EI-type sequential design criterion in (13)

may not lead to a closed-form expression as in (15) if the

posterior of the coefficients 𝜷 is not a multivariate normal

distribution. For “SeqEI approx,” our model (the posterior

distribution of 𝜷) can be represented by a multivariate normal

distribution completely, based on the proposed approximation

Bayesian update in Section 3. Thus, the proposed Bayesian

approximation also plays an important role in simplifying the

computation of sequential design selection. However, under

the exact model update, the implementation of this EI-type

sequential design criterion is impractical, since it may require

Markov chain Monte Carlo (MCMC) to approximate the

value of (13) for each candidate v and z at each step. In our

implementation of “SeqEI exact,” we process the model and

the experimental design selection under two separate tracks:

the design criterion in (15) is obtained under the proposed

approximate model update (the same as in “SeqEI approx”),

whereas the collected data points are used to refit the exact

model and determine the optimal material setting according

to (11) at each step. In this way, we can evaluate the effects of

model update and sequential design separately.

The full factorial designs are one-shot designs, which are

not originally developed for a sequential experimentation. To

compare the full factorial design under a sequential manner,

we make it adaptable for a sequential procedure. First, we

generate a full factorial design with respect to the number of

levels of the material feature factors and the stress factors.

Since the total number of steps N is usually greater than the

run size of this full factorial design, we replicate the runs in

the full factorial design one by one to make total run size equal

to N (i.e., the runs in original full factorial design may not

have exact equal number of replications). Finally, we random-

ize the order of the design within the N runs, and let them

enter the sequential procedure one by one.

The goal of our problem is to choose the material setting

with the best reliability performance. In practice, we often

consider a finite number of material settings. Thus, we con-

sider discrete levels of the material factors, and use probability

of correct selection at the target stress level v∗ to evaluate

different approaches. According to (1) and (11), the proba-

bility of correct selection can be expressed by P(zn(v∗) =
z∗(v∗)), where the probability is taken with respect to zn(v∗),
which is a random variable due to the randomness of collected

responses. In our numerical study, the probability of correct

selection is estimated empirically by

P̂(zn(v∗) = z∗(v∗)) = 1

R

R∑
r=1

I(zn
r (v∗) = z∗(v∗)), (17)
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FIGURE 1 The estimated probability of correct selection for different settings with K = 3

where R is the total number of replications, I(⋅) is an indicator

function, and zn
r (v∗) is the selected optimal material setting at

the n-th step from the r-th replication. In the synthetic exam-

ples and the case study, we use R = 100 to compute the

estimated probability of correct selection. In all of our numer-

ical examples, we set the observation time 𝜏i in (4) to be a

constant.

5.1 Synthetic examples

In this study, we directly generate data from the log-normal

model in (2). The stress factor v contains three dimensions.

For each dimension, the design points of the accelerated lab

experiments are taken value from {0.5,1}, whereas the tar-

geted environmental condition is specified to be 0.1. For the

material factors, we generate one factor with K levels. The

first level of this material factor is specified to be optimal with

the best reliability performance in average. We generate four

random variables from uniform distribution U(−1∕30,0) to be

the linear coefficients corresponding to the intercept and each

of three stress factors. The generated four-dimensional linear

coefficients are denoted by a vector 𝜷1. The linear coefficients

of each remaining material level are generated by 𝜷1 + 𝜷k for

k = 2, … ,K, where each component of 𝜷k is a uniform ran-

dom variable from −1/30 to 0. This setting guarantees that

the first level of the material factor has the best reliability per-

formance in average, and the average lifetime decreases as

stress factor levels increase. A total number of 100 replica-

tions is used to estimate the probability of correct selection as

in (17). For each replication, we generate 15 data points for

each material setting to obtain the prior distributions for the

linear coefficients.

In Figure 1, we consider a case with three material settings,

that is, K = 3. We generate the responses under different

signal to noise ratios. The signal level (i.e., the value of coef-

ficients) is fixed as described earlier. The value of standard

deviation 𝜎 in (2) is set to be 0.2 or 0.1, and resulted value

of “Signal/Std” is 0.15 as in the top panel of Figure 1 or 0.3

as in the bottom panel of Figure 1. The value of the constant

observational time 𝜏i in (4) is set to be 1.1 or 1.2 to generate

different levels of response censor rates. As shown in Figure 1,

the censoring rate varies from 10% to 26% if 𝜏i = 1.2 (left

panel), whereas the censoring rate is above 30% if 𝜏i = 1

(right panel). Under a similar setting, we show the results of

a scenario with four and six material settings (i.e., K = 4 and

6) in Figures 2 and 3.

The results in Figures 1–3 show that “SeqEI” based

approaches give the highest probability of correct selection.

Since the design criterion of “SeqEI” is developed to improve

the optimization problem in (1), it outperforms “Design” and

“SeqD,” both of which aim for reducing the variances of

model coefficients. We also see that, “approx” approach does

not perform well if the censoring rate is high (say, above

30%). It demonstrates that the efficiency of the proposed

approximate model updating approach can deteriorate if there

is a significant large portion of censored observations. How-

ever, as shown in the literature of ALT, the censor rate in

practice is often below 15%, for example, Han and Balakr-

ishnan (2010), Elsayed et al. (2006), and Lee et al. (2018).

Therefore, the numerical results show that “approx” approach
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FIGURE 2 The estimated probability of correct selection for different settings with K = 4

FIGURE 3 The estimated probability of correct selection for different settings with K = 6

is powerful under the censor rate for most common ALT cases

in practice. Overall, in the three examples, “SeqEI exact”

gives the best performance, and the performance of “SeqEI

approx” is competitive to the best when the censoring rate

is below 30%. For challenging scenarios, for example, lower

signal to noise ratio, higher censor rate, and larger number of

alternative materials, “SeqEI” based approaches demonstrate

obvious advantages compared to other design approaches in

identifying the optimal material setting.

5.2 A case study on accelerated wear tests

We consider a material wear test of copper alloys as an

example to demonstrate the performance of the proposed
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FIGURE 4 The estimated probability of correct selection for the case study

sequential selection approach. Because of high strength and

exceptional bearing properties of copper alloys, they are

widely considered in various safety-/mission-critical indus-

tries, for example, aircraft bearings and bushings in aerospace

industry, drilling and mining equipment in mining indus-

try. This case study considers the reliability performance

of Cu–Ni–Sn alloys in the accelerated wear tests. This

study investigates two types of material specimens, namely

as-received Cu–Ni–Sn and annealed Cu–Ni–Sn specimens.

Due to the annealing process, the microstructures as well as

physical/chemical properties of annealed Cu–Ni–Sn speci-

mens will be altered as compared to the as-received ones.

Thus, their reliability performances may differ accordingly.

The experimenter is interested in finding the material with

better reliability performance. Wear tests were carried out

using a Koehler K93500 pin-on-disc tester under various

environmental conditions of “load,” “temperature,” and “hu-

midity” (Singh et al., 2007). For each testing unit of Cu alloy

specimens, in-situ monitoring outputs of wear performance

(e.g., wear depth in μm) are measured over time by a lin-

ear variable displacement transducer. A material failure is

recorded if the material weight loss is above a given threshold

value. Historical data contains the information of the wearing

processes of 18 experimental units.

The experimental observations of all 18 experimental units

are provided for our study. Unfortunately, follow-up exper-

iments are not available to further validate the proposed

approach. Therefore, to implement the sequential selection

procedure, we develop a pseudo simulator to model the histor-

ical data. This pseudo simulator is built on a Gaussian process

model, which enables generating replications of data under

each design approach. Under this pseudo simulator, the log

response is not a linear function of the material factor and

stress factors. We are able to investigate the robustness of the

proposed approach under this nonlinear setting. The goal of

this case study is to choose the materiel option that maxi-

mizes the reliability performance. According to the evidence

shown from the data and domain knowledge, we identify that

as-received Cu–Ni–Sn alloy is more reliable than annealed

Cu–Ni–Sn alloy. With this information, we are able to esti-

mate the probability of correct selection as in (17). In this

study, we consider that the observation times 𝜏i equal to

200, 300, and 500 to generate different censoring rate of the

responses.

The results of different approaches are shown in Figure 4.

The censoring rates corresponding to observational times

200, 300, and 500 are 44.8%, 34.5%, and 29.6%, respectively.

Similar to the results from Section 5.1, “SeqEI exact” gives

the best performance in general, and the performance of “Se-

qEI approx” is competitive to the best when the censoring rate

is low.

6 CONCLUSION

In this paper, we consider the problem of determining the

optimal material setting in accelerated lab experiments. First,

the major challenge of this problem is that the observations

of the lifetime of the materials in accelerated lab experi-

ment are censored and sequential. To assess the reliabil-

ity of different material settings, we model the lifetime of

materials by log-normal distributions and build a sequen-

tial learning model via approximate Bayesian inference to

estimate the regression coefficient. Under this model, we

derive closed-form updating equations for the estimates of

the unknown parameters under the log-normal distribution

family, which greatly improves the efficiency of the learn-

ing process of the unknown parameter. Second, we consider

selecting the optimal material design as an R&S problem and

adopt an EI-type criterion to select design points for both

material settings and environmental factors in a sequential

manner at each stage of the experiment. Based on the sequen-

tial estimator obtained from our approximate Bayesian model

for the regression coefficient, we derive a closed-form expres-

sion for our EI-type acquisition function, which makes our

sequential selection strategy of design points computationally

tractable. Third, we prove the consistency of our approximate

Bayesian model by considering it as a generalized stochastic

approximation algorithm. This consistency analysis not only

provides the theoretical foundation of our proposed approach

for determining the optimal material design in accelerated

life experiments, but also demonstrates its general applicabil-

ity to other sequential learning and selection schemes where

the uncertainty can be modeled by log-normal distributions.
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Our convergence proof is established under mild and prac-

tical conditions, which can help other researchers develop

theoretical analysis for future approximate Bayesian models.

Finally, we show the empirical performance of our approach

by conducting two numerical studies, one of which is a syn-

thetic example and the other is a case study on accelerated

wear test. For both examples, our approach has consistently

achieved a high probability of successfully identifying the

optimal material design.

We would like to point out the limitations of our current

work and future directions to overcome them. First, our case

study considers a simple situation with only two material set-

tings, and the benefit of using our procedure for this situation

is limited. As demonstrated in the numerical study section,

the proposed approach can be used to optimize the material

setting with multiple level combinations. Therefore, it will

be interesting to further investigate the real performance of

the proposed approach under the situation of choosing the

optimal material setting with multiple material design fac-

tors. Second, our case study is developed based on simulation

experiments generated by real data. It is interesting to apply

our approach to guide real experiments. Third, the observa-

tion time for each experimental unit is assumed to be given

in this paper. However, it would be more beneficial to adap-

tively control the observational times for the test units based

on the results of past experiments, as an optimized time allo-

cation strategy should be able to reduce the censor rate of

experimental units and improve the learning efficiency conse-

quently. This should be especially critical for ALT with high

censor rate.
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APPENDIX A

PROOF OF PROPOSITION 1

First of all, according to the assumption of the log-normal

model, we have that

yn+1 ∼ N(x⊤n+1
𝜽n, 𝜎

2 + x⊤
n+1

Σnxn+1).

Then yn+1 ∣ yn+1 > log 𝜏n+1 follows a truncated normal dis-

tribution (see e.g., Johnson et al., 1970), and its mean and

variance are given by

E(yn+1 ∣ yn+1 > log 𝜏n+1)

= x⊤
n+1

𝜽n +
𝜙(𝜂n)

1 − Φ(𝜂n)

√
𝜎2 + x⊤n+1

Σnxn+1

and

Var(yn+1 ∣ yn+1 > log 𝜏n+1)

= (𝜎2 + x⊤
n+1

Σnxn+1)
(

1 − 𝜂
𝜙(𝜂n)
Φ(𝜂n)

− 𝜙(𝜂n)2

Φ(𝜂n)2

)2

.

According to (5) and (6), we have that

𝜷 ∣ yn+1 ∼ MVN

(
𝜽n +

yn+1 − x⊤n+1
𝜽n

𝜎2 + x⊤
n+1

Σnxn+1

Σnxn+1,

× Σn −
Σnxn+1x⊤

n+1
Σn

𝜎2 + x⊤n+1
Σnxn+1

)
,

Therefore, the posterior mean and variance of 𝜷 given yn+1 >

log 𝜏n+1 can be derived by

E(𝜷 ∣ yn+1 > log 𝜏n+1) = E
[
E(𝜷|yn+1) ∣ yn+1 > log 𝜏n+1

]
= 𝜽n +

E(yn+1 ∣ yn+1 > log 𝜏n+1) − x⊤
n+1

𝜽n

𝜎2 + x⊤
n+1

Σnxn+1

Σnxn+1

= 𝜽n +
𝜙(𝜂n)

(1 − Φ(𝜂n))
√

𝜎2 + x⊤n+1
Σnxn+1

Σnxn+1

and

Var(𝜷 ∣ yn+1 > log 𝜏n+1)
= E(Var(𝜷 ∣ yn+1) ∣ yn+1 > log 𝜏n+1)

+ Var(E(𝜷 ∣ yn+1) ∣ yn+1 > log 𝜏n+1)

http://papers.nips.cc/paper/7122-improving-the-expected-improvement-algorithm.pdf
http://papers.nips.cc/paper/7122-improving-the-expected-improvement-algorithm.pdf
http://papers.nips.cc/paper/7122-improving-the-expected-improvement-algorithm.pdf
https://doi.org/10.1287/opre.2018.1778
http://dx.doi.org/10.1080/00401706.2019.1665589
https://doi.org/10.1002/nav.22009
https://doi.org/10.1002/nav.22009
https://doi.org/10.1002/nav.22009
https://doi.org/10.1002/nav.22009
https://doi.org/10.1002/nav.22009
https://doi.org/10.1002/nav.22009
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= Σn −
Σnxn+1x⊤n+1

Σn

𝜎2 + x⊤
n+1

Σnxn+1

+
Σnxn+1x⊤

n+1
Σn

(𝜎2 + x⊤
n+1

Σnxn+1)2

× Var(yn+1 ∣ yn+1 > log 𝜏n+1)

= Σn −
Σnxn+1x⊤n+1

Σn

𝜎2 + x⊤
n+1

Σnxn+1

+
Σnxn+1x⊤

n+1
Σn

𝜎2 + x⊤
n+1

Σnxn+1

×
(

1 − 𝜂n
𝜙(𝜂n)
Φ(𝜂n)

− 𝜙(𝜂n)2

Φ(𝜂n)2

)2

.

APPENDIX B

PROOF OF THEOREM 1

B.1 Proof of Theorem 1 under Assumptions 1 and 2

From law of large number, Assumptions 1 and 2 lead to

limn→∞
1

n

∑∞
k=0xkx⊤k = A almost surely. Furthermore, denote

B = 1

𝜎2
A, then by Lemma EC.2 in Chen and Ryzhov (2020),

we have the following result on the convergence rate of Σn.

Lemma 1 Suppose Assumptions 1 and 2

hold, then, with probability 1,

∞∑
n=1

1

(n + 1)
3

4

‖‖‖‖ 1

n + 1
Σ−1

n+1
− B

‖‖‖‖2

2

< ∞.

This lemma will be used in the proof of Theorem 1.

In the remaining of this proof, we assume that a suitable

set of measure 0 is discarded, so we do not have to repeat

the qualification “almost surely.” Notice that, according to the

Woodbury matrix identity (Woodbury, 1950), the updating

formulas in (10) can be expressed by

𝜽n+1 = 𝜽n + 𝛿n+1

yn+1 − x⊤n+1
𝜽n

𝜎2
Σn+1xn+1

+ (1 − 𝛿n+1)
𝜙(𝜂n)

√
𝜎2 + x⊤

n+1
Σnxn+1

(1 − Φ(𝜂n))𝜎2
Σn+1xn+1, (B.1)

Σ−1
n+1

= Σ−1
n + 1

𝜎2
xn+1x⊤n+1

, (B.2)

where 𝜂n is expressed in (9). The development of the proof

will be based on the expressions above.

Without loss of generality, let 𝜷 = 0. Denote

𝜉n =
log 𝜏n+1 − x⊤

n+1
𝜽n

𝜎
,

Qn = −𝛿n+1

yn+1 − x⊤
n+1

𝜽n

𝜎2
B− 1

2 xn+1

− (1 − 𝛿n+1)
𝜙(𝜉n)

(1 − Φ(𝜉n))𝜎
B− 1

2 xn+1,

bn = −𝛿n+1B
1

2

(
yn+1 − x⊤n+1

𝜽n

𝜎2
(n + 1)Σn+1xn+1

−
yn+1 − x⊤n+1

𝜽n

𝜎2
B−1xn+1

)

− (1 − 𝛿n+1)B
1

2

⎛⎜⎜⎜⎝
𝜙(𝜂n)

√
𝜎2 + x⊤

n+1
Σnxn+1

(1 − Φ(𝜂n))𝜎2
(n + 1)Σn+1

xn+1 −
𝜙(𝜉n)

(1 − Φ(𝜉n))𝜎
B−1xn+1

⎞⎟⎟⎠
= −𝛿n+1B

1

2

yn+1 − x⊤
n+1

𝜽n

𝜎2
(n + 1)Σn+1xn+1

− (1 − 𝛿n+1)B
1

2

𝜙(𝜂n)
√

𝜎2 + x⊤n+1
Σnxn+1

(1 − Φ(𝜂n))𝜎2

× (n + 1)Σn+1xn+1

− Qn.

Then, (B.1) is equivalent to

B
1

2 𝜽n+1 = B
1

2 𝜽n −
1

n + 1
(Qn + bn).

Taking the 𝓁2-norm, we have‖‖‖B
1

2 𝜽n+1
‖‖‖2

2
= 𝜽⊤

n+1B𝜽n+1

= ‖‖‖B
1

2 𝜽n
‖‖‖2

2
+ 1

(n + 1)2
‖Qn‖2

2 +
1

(n + 1)2
‖bn‖2

2

− 2

n + 1
Q⊤

n B
1

2 𝜽n −
2

n + 1
b⊤

n B
1

2 𝜽n +
2

(n + 1)2
Q⊤

n bn.

(B.3)

From (B.2), we have

lim
n→∞

(n + 1)Σn+1 = B−1. (B.4)

Define the Borel sigma-algebra

n ≜ (x1, … , xn+1,𝜽1, . … ,𝜽n, 𝜏1, … , 𝜏n+1,

y1, … , yn, 𝛿1, … , 𝛿n,Σ1, … ,Σn).

Since yn+1 is normally distributed and supx
||| d

dx
𝜙(x)

1−Φ(x)
||| ≤ 1,

by (B.4) and Assumptions 1 and 2, there must exist a positive

constant C1 such that for all n,

E
(‖Qn‖2

2|n
)
≤ C1

(
1 + ‖‖‖B

1

2 𝜽n
‖‖‖2

2

)
. (B.5)

Similarly, with triangular inequality, there must also be a

constant C2 such that

E
(‖bn‖2

2|n
)
≤ C2

(
1 + ‖‖‖B

1

2 𝜽n
‖‖‖2

2

)
. (B.6)

By Cauchy–Schwarz inequality, from (B.5) and (B.6), we

have

E
(|||2Q⊤

n bn
||| |n

)
≤ E (2 ‖Qn‖2 ‖bn‖2 |n)

≤ E
(‖Qn‖2

2 + ‖bn‖2
2|n

)
≤ (C1 + C2)

(
1 + ‖‖‖B

1

2 𝜽n
‖‖‖2

2

)
. (B.7)

We can also find that

E

(|||| 2

n + 1
b⊤

n B
1

2 𝜽n
|||| |n

)
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≤ E

(
2

‖‖‖‖ 1

(n + 1)3∕8
bn

‖‖‖‖2

‖‖‖‖ 1

(n + 1)5∕8
B

1

2 𝜽n
‖‖‖‖2

|n

)
≤ E

(‖‖‖‖ 1

(n + 1)3∕8
bn

‖‖‖‖2

2

+
‖‖‖‖ 1

(n + 1)5∕8
B

1

2 𝜽n
‖‖‖‖2

2

|n

)
≤

1

(n + 1)3∕4
E

(‖bn‖2
2|n

)
+ 1

(n + 1)5∕4

‖‖‖B
1

2 𝜽n
‖‖‖2

2
,

where the first inequality holds by Cauchy-Schwarz inequal-

ity. Since yn+1 is normally distributed and supx
||| d

dx
𝜙(x)

1−Φ(x)
||| ≤

1, by (B.4) and Assumptions 1 and 2, there must exist two

positive constants C3 and C4 such that

E
(‖bn‖2

2|n
)
≤ C3

‖‖‖(n + 1)Σn+1 − B−1‖‖‖2

2

×
(

1 + ‖‖‖B
1

2 𝜽n
‖‖‖2

2

)
= C3

‖‖‖‖(n + 1)Σn+1

(
1

n + 1
Σ−1

n+1
− B

)
B−1

‖‖‖‖2

2

×
(

1 + ‖‖‖B
1

2 𝜽n
‖‖‖2

2

)
≤ C4

‖‖‖‖ 1

n + 1
Σ−1

n+1
− B

‖‖‖‖2

2

(
1 + ‖‖‖B

1

2 𝜽n
‖‖‖2

2

)
,

where the last inequality holds due to (B.4) and the submulti-

plicativity of the norm ‖⋅‖2. Thus, we have

E

(|||| 2

n + 1
b⊤

n B
1

2 𝜽n
|||| |n

)
≤

(
C4

(n + 1)3∕4

‖‖‖‖ 1

n + 1
Σ−1

n+1
− B

‖‖‖‖2

2

+ 1

(n + 1)5∕4

)
× ‖‖‖B

1

2 𝜽n
‖‖‖2

2

+ C4

(n + 1)3∕4

‖‖‖‖ 1

n + 1
Σ−1

n+1
− B

‖‖‖‖2

2

. (B.8)

Finally, for any 𝜻 , we have

E
(

Q⊤
n B

1

2 𝜻|n

)
= x⊤

n+1
𝜻

⎛⎜⎜⎜⎝
x⊤

n+1
𝜻

𝜎2
Φ

(
log 𝜏n+1

𝜎

)
+ 1

𝜎
𝜙

(
log 𝜏n+1

𝜎

)

−
1 − Φ

(
log 𝜏n+1

𝜎

)
𝜎

𝜙
(

log 𝜏n+1−x⊤n+1
𝜻

𝜎

)
1 − Φ

(
log 𝜏n+1−x⊤n+1

𝜻

𝜎

)⎞⎟⎟⎟⎠ .
Denote

Rn(x⊤n+1
𝜻) ≜

x⊤n+1
𝜻

𝜎2
Φ

(
log 𝜏n+1

𝜎

)
+ 1

𝜎
𝜙

(
log 𝜏n+1

𝜎

)

−
1 − Φ

(
log 𝜏n+1

𝜎

)
𝜎

𝜙
(

log 𝜏n+1−x⊤n+1
𝜻

𝜎

)
1 − Φ

(
log 𝜏n+1−x⊤n+1

𝜻

𝜎

) ,

then we have

E
(

Q⊤
n B

1

2 𝜻|n

)
= x⊤

n+1
𝜻Rn(x⊤

n+1
𝜻). (B.9)

Since (log 𝜏n)∞n=0
is bounded and

d
du

Rn(u) > 0, we can see that

Rn(u) = 0 if and only if u = 0, and for all 𝜖 > 0,

inf
(x⊤n 𝜻)2>𝜖,n∈N

x⊤n+1
𝜻Rn(x⊤n+1

𝜻) > 0.

Now, combining (B.3) with (B.5)–(B.9), we have

E

(‖‖‖B
1

2 𝜽n+1
‖‖‖2

2
|n

)
≤

‖‖‖B
1

2 𝜽n
‖‖‖2

2

(
1 + 2(C1 + C2)

(n + 1)2

+ C4

(n + 1)3∕4

‖‖‖‖ 1

n + 1
Σ−1

n+1
− B

‖‖‖‖2

2

+ 1

(n + 1)5∕4

)
+ 2(C1 + C2)

(n + 1)2
+ C4

(n + 1)3∕4

‖‖‖‖ 1

n + 1
Σ−1

n+1
− B

‖‖‖‖2

2

− 2

n + 1
x⊤n+1

𝜽nRn(x⊤n+1
𝜽n).

From Lemma 1, we have

∞∑
n=0

2(C1 + C2)
(n + 1)2

+ C4

(n + 1)3∕4

‖‖‖‖ 1

n + 1
Σ−1

n+1
− B

‖‖‖‖2

2

+ 1

(n + 1)5∕4
< ∞,

∞∑
n=0

2(C1 + C2)
(n + 1)2

+ C4

(n + 1)3∕4

‖‖‖‖ 1

n + 1
Σ−1

n+1
− B

‖‖‖‖2

2

< ∞.

Then, by Theorem 1 in Robbins and Siegmund (1985),

limn→∞
‖‖‖B

1

2 𝜽n
‖‖‖2

2
exists and

∞∑
n=0

1

n + 1
x⊤

n+1
𝜽nRn(x⊤n+1

𝜽n) < ∞

almost surely. Therefore, for every sample path, there must

exist a subsequence (x⊤
nk+1

𝜽nk ) of (x⊤n+1
𝜽n) such that as k → ∞,

x⊤nk+1
𝜽nk → 0.

On the other hand, since limn→∞
‖‖‖B

1

2 𝜽n
‖‖‖2

2
exists, then for one

sample path, the sequence (𝜽n) is bounded. Therefore, there

must exist a subsequence (𝜽nkj
) of (𝜽nk ) such that as j → ∞,

𝜽nkj
→ 𝜈,

where 𝜈 is a fixed vector. Then by Assumption 2, we have

lim
j→∞

||||x⊤nkj+1
𝜈
|||| = lim

j→∞

||||x⊤
nkj+1

(𝜈 − 𝜽nkj
+ 𝜽nkj

)
||||

≤ lim
j→∞

||||x⊤nkj+1
(𝜈 − 𝜽nkj

)
|||| + lim

j→∞

||||x⊤nkj+1
𝜽nkj

||||
= 0.

Thus, for any arbitrary 𝜖 > 0, there exists an integer J such

that for all j ≥ J, ||||x⊤nkj+1
𝜈
|||| < 𝜖. (B.10)

However, since (xnkj+1)∞j=J is also an infinite sequence of i.i.d.

samples from a common distribution, there must exist M lin-

early independent vectors xnkj1
+1, … , xnkjM

+1 from (xnkj+1)∞j=J
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that can be a basis of RM , where M = (p + 1)(d + 1); other-

wise, suppose all (xnkj+1)∞j=J come from a subspace v ⊊ RM ,

then there must be a nonzero vector 𝜸 ∈ v⟂ such that

𝜸⊤A𝜸 = 𝜸⊤

(
lim

J′→∞

1

J′

J′∑
j=J

xnkj+1x⊤
nkj+1

)
𝜸

= lim
J′→∞

1

J′

J′∑
j=J

(x⊤
nkj+1

𝜸)2

= 0,

where the first equality holds by Assumptions 1 and 2, but

this contradicts that A is positive-definite.

Then, to satisfy (B.10), since 𝜖 can be arbitrarily small, by

Assumption 2, 𝜈 has to be the zero vector. Thus, 𝜽nkj
→ 0, so

limj→∞
‖‖‖B

1

2 𝜽nkj

‖‖‖2

2
= 0, but (𝜽nkj

) is a subsequence of (𝜽n) and

limn→∞
‖‖‖B

1

2 𝜽n
‖‖‖2

2
exists; therefore, limn→∞

‖‖‖B
1

2 𝜽n
‖‖‖2

2
= 0, so

we have 𝜽n → 0 for every sample path, thus 𝜽n → 0 almost

surely.

B.2 Proof of Theorem 1 under Assumption 3

First, we introduce the following lemma, which gives a similar

result as Lemma 1 but does not require Assumption 1. The

proof can be found in Appendix C.

Lemma 2 Suppose Assumption 3 holds.

Then, with probability 1,

∞∑
n=1

1

(n + 1)
3

4

‖‖‖‖ 1

n + 1
Σ−1

n+1
− B

‖‖‖‖2

2

< ∞,

where B = 1

𝜎2

∑K
j=1𝛼j𝝀j𝝀

⊤
j is a positive definite

symmetric matrix.

Denote A = 𝜎2B. Note that by Assumption 3, in the long

run, design 𝝀j is sampled a nonzero proportion 𝛼j of the total

time. Thus, for any infinite sequence of selected designs,

with probability 1, each design 𝝀j should be selected at least

once. Together with Assumption 3, this allows us to find a

finite number of design vectors from this sequence that can

form a basis for RM , without assuming the design vectors are

i.i.d. samples. Then, as Assumption 3 leads to Assumption 2

and Lemma 2 provides the same convergence rate result as

Lemma 1, we can simply repeat the proof in Appendix B

(Proof of Theorem 1 under Assumptions 1 and 2) to obtain

the desired convergence of (𝜽n)∞n=0
.

APPENDIX C

PROOF OF LEMMA 2

Note that Assumption 3 leads to Assumption 2. From the

structure of B, it is obvious that B is positive-definite

and symmetric under Assumption 3. From (B.2), by

Assumption 3, we can see that‖‖‖‖ 1

n + 1
Σ−1

n+1
− B

‖‖‖‖2

2

=
‖‖‖‖‖‖ 1

n + 1
Σ−1

0
+ 1

𝜎2

K∑
j=1

(N𝜷𝝀j,n+1

n + 1
− 𝛼j

)
𝝀j𝝀

⊤
j

‖‖‖‖‖‖
2

2

= O
(

1

n
1

4
+𝜖

)
,

where 𝜖 is a fixed positive constant. This leads to the desired

convergence result.

APPENDIX D

SOME DETAILS ON DERIVING THE EI CRITERION

We provide some details on deriving the EI criterion in

Section 4. Since 𝜽n+1 with non-censored response is given by

(5), we have that

x(z, v∗)⊤𝜽n+1 = x(z, v∗)⊤𝜽n

+
yn+1 − x⊤

n+1
𝜽n

𝜎2 + x⊤n+1
Σnxn+1

x(z, v∗)⊤Σnxn+1.

Under the log-normal model and the prior distribution of 𝜷 ∼
MVN(𝜽n,Σn), it is straightforward to derive that the posterior

predictive distribution of yn+1 is a normal distribution with

mean x⊤n+1
𝜽n and variance 𝜎2+x⊤

n+1
𝛴nxn+1. Therefore, we can

express

x(z, v∗)⊤𝜽n+1 = x(z, v∗)⊤𝜽n +
x(z, v∗)⊤Σnxn+1√
𝜎2 + x⊤n+1

Σnxn+1

G, (B.11)

where G is a standard normal random variable.

Note that the log-normal model in (2) contains the inter-

action between material settings z and stress factors v,

which makes the EI-type acquisition functions in Powell and

Ryzhov (2012) not directly applicable to this situation. There-

fore, we derive the EI criterion for our model as follows. Let

ṽ∗ = (1,(v∗)⊤)⊤. Then, x(z, v∗)⊤𝜽n = (̃v∗)⊤𝜽n,0+(z⊗ ṽ∗)⊤𝜽n,1,

where 𝜽n = (𝜽⊤
n,0,𝜽

⊤
n,1)⊤ with 𝜽n,0 and 𝜽n,1 being vectors of

size d + 1 and p(d + 1), respectively. Accordingly,

max
z∈

[
x(z, v∗)⊤𝜽n

]
= (̃v∗)⊤𝜽n,0 + max

z∈

[
(z ⊗ ṽ∗)⊤𝜽n,1

]
,

(B.12)

and

max
z∈

[
x(z, v∗)⊤𝜽n+1

]
= max

z∈

⎧⎪⎨⎪⎩x(z, v∗)⊤𝜽n +
x(z, v∗)⊤Σnxn+1√
𝜎2 + x⊤n+1

Σnxn+1

G

⎫⎪⎬⎪⎭
= (̃v∗)⊤𝜽n,0

+ max
z∈

⎧⎪⎨⎪⎩(z ⊗ ṽ∗)⊤𝜽n,1 +
x(z, v∗)⊤Σnxn+1√
𝜎2 + x⊤

n+1
Σnxn+1

G

⎫⎪⎬⎪⎭ . (B.13)
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Plugging (B.12) and (B.13) into (13), we obtain that

EIn(z, v; v∗) = EG

{
max
z′∈

[
(z′ ⊗ ṽ∗)⊤𝜽n,1

]}
+ x(z′, v∗)⊤Σnx(z, v)√

𝜎2 + x⊤(z, v)Σnx(z, v)
G

}
− max

z′∈

[
(z′ ⊗ ṽ∗)⊤𝜽n,1

]
, (B.14)

where the expectation EG is taken with respect to the ran-

dom variable G. The new design point xn+1 = x(zn+1, vn+1) is

selected to maximize this acquisition function.


