o Taylor & Francis
Taylor & Francis Group

IISE Transactions

Quality & Reliability
Engineering

wn
g
4=
Q9
]
172}
-
s
=
=
¥ p)
o
[

ISSN: (Print) (Online) Journal homepage: https://www.tandfonline.com/loi/uiie21

NP-ODE: Neural process aided ordinary differential
equations for uncertainty quantification of finite
element analysis

Yinan Wang, Kaiwen Wang, Wenjun Cai & Xiaowei Yue

To cite this article: Yinan Wang, Kaiwen Wang, Wenjun Cai & Xiaowei Yue (2021): NP-ODE:
Neural process aided ordinary differential equations for uncertainty quantification of finite element
analysis, IISE Transactions, DOI: 10.1080/24725854.2021.1891485

To link to this article: https://doi.org/10.1080/24725854.2021.1891485

A
h View supplementary material &

ﬂ Published online: 02 Apr 2021.

(&
Submit your article to this journal &

A
& View related articles &'

View Crossmark data &'

Full Terms & Conditions of access and use can be found at
https://www.tandfonline.com/action/journalinformation?journalCode=uiie21

https://www.tandfonline.com/action/journalInformation?journalCode=uiie21
https://www.tandfonline.com/loi/uiie21
https://www.tandfonline.com/action/showCitFormats?doi=10.1080/24725854.2021.1891485
https://doi.org/10.1080/24725854.2021.1891485
https://www.tandfonline.com/doi/suppl/10.1080/24725854.2021.1891485
https://www.tandfonline.com/doi/suppl/10.1080/24725854.2021.1891485
https://www.tandfonline.com/action/authorSubmission?journalCode=uiie21&show=instructions
https://www.tandfonline.com/action/authorSubmission?journalCode=uiie21&show=instructions
https://www.tandfonline.com/doi/mlt/10.1080/24725854.2021.1891485
https://www.tandfonline.com/doi/mlt/10.1080/24725854.2021.1891485
http://crossmark.crossref.org/dialog/?doi=10.1080/24725854.2021.1891485&domain=pdf&date_stamp=2021-04-02
http://crossmark.crossref.org/dialog/?doi=10.1080/24725854.2021.1891485&domain=pdf&date_stamp=2021-04-02

IISE TRANSACTIONS
https://doi.org/10.1080/24725854.2021.1891485

Taylor & Francis
Taylor &Francis Group

‘ W) Check for updates‘

NP-ODE: Neural process aided ordinary differential equations for
uncertainty quantification of finite element analysis

Yinan Wang® @, Kaiwen Wang® @, Wenjun Cai® @, and Xiaowei Yue®
Grado Department of Industrial and Systems Engineering, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA;

PMaterials Science and Engineering, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA

ARTICLE HISTORY
Received 3 September 2020
Accepted 26 January 2021

ABSTRACT

Finite Element Analysis (FEA) has been widely used to generate simulations of complex nonlinear
systems. Despite its strength and accuracy, FEA usually has two limitations: (i) running high-fidelity
FEA often requires high computational cost and consumes a large amount of time; (ii) FEA is a
deterministic method that is insufficient for uncertainty quantification when modeling complex
systems with various types of uncertainties. In this article, a physics-informed data-driven surrogate
model, named Neural Process Aided Ordinary Differential Equation (NP-ODE), is proposed to
model the FEA simulations and capture both input and output uncertainties. To validate the
advantages of the proposed NP-ODE, we conduct experiments on both the simulation data gener-
ated from a given ordinary differential equation and the data collected from a real FEA platform
for tribocorrosion. The results show that the proposed NP-ODE outperforms benchmark methods.
The NP-ODE method realizes the smallest predictive error as well as generating the most reason-
able confidence intervals with the best coverage on testing data points. Appendices, code, and

KEYWORDS

Finite element analysis;
neural network; neural
processes; ordinary
differential equation;
surrogate model;
uncertainty quantification

data are available in the supplementary files.

1. Introduction
1.1. Motivation

Finite Element Analysis (FEA) is a powerful tool to simulate
physical phenomena or operations; it is a numerical method
that can be used to solve differential equations. Typically, to
analyze a large and complex system, the FEA method first
divides the entire system into small pieces called finite ele-
ments, which is achieved by constructing a mesh of the
object. The equations that describe each finite element are
then assembled to model the entire system. The approxi-
mated solution of the entire system can be finally generated
by solving differential equations of all finite elements under
environments with a combination of loads and constraints.
As FEA provides outstanding accuracy when modeling com-
plex nonlinear systems, it has been applied to many fields,
including advanced manufacturing, new material design,
heat transfer, solid/fluid mechanics, and multiphysics sys-
tems (Zienkiewicz et al., 2013).

Despite the strength of the FEA method in accurately ana-
lyzing complex systems, the application of FEA is hindered by
several limitations, which can be summarized into two main
areas. On the one hand, a high-fidelity FEA simulation usually
incurs a high computational cost (Su et al, 2017; Wang,
Chen, Kang, Deng, and Jin, 2020). This issue can be critical in
some scenarios, such as using ultra-fine elements in FEA,
repeating simulations for the function validation, etc. On the

other hand, FEA is a deterministic simulation that does not
explicitly consider system uncertainties. For example, intrinsic
uncertainty can come from input measurement errors or par-
ameter setting deviations, and extrinsic uncertainty may be
caused by computational and measurement errors for
responses. In most systems with complicated nonlinear behav-
iors, it is a challenge to obtain deterministic and accurate
measurements of the parameters when building the FEA, thus
uncertainty quantification is in high demand in FEA studies
(Mahadevan and Liang, 2011; Wang et al., 2021).

1.2. Literature review

Recent literature has proposed many methods to tackle the afore-
mentioned limitations of FEA, which can be divided into two
branches. One branch of research deals with high computational
costs by using surrogate models to approximate and replace the
FEA in the system modeling. The other branch takes the system
uncertainties into modeling efforts by either directly designing
stochastic simulation methods or building stochastic surrogate
models to replace the FEA method. A detailed review of these
two branches of work is introduced as follows.

1.2.1. Review on deterministic surrogates

Data-driven deterministic surrogates are commonly used to
approximate and replace FEA. The basic idea is to train and
validate the data-driven surrogate model based on the inputs

CONTACT Xiaowei Yue € xwy@vt.edu; Wenjun Cai €) caiw@vt.edu

@ Supplemental data for this article is available online at https://doi.org/10.1080/24725854.2021.1891485

Copyright © 2021 “lISE”

http://crossmark.crossref.org/dialog/?doi=10.1080/24725854.2021.1891485&domain=pdf&date_stamp=2021-04-01
http://orcid.org/0000-0002-4079-1658
http://orcid.org/0000-0003-4765-8726
http://orcid.org/0000-0002-9457-8705
http://orcid.org/0000-0001-6019-0940
https://doi.org/10.1080/24725854.2021.1891485
https://doi.org/10.1080/24725854.2021.1891485
http://www.tandfonline.com

2 . Y. WANG ET AL.

and outputs of the FEA, where uncertainties in the simula-
tion output given the same input are ignored. As long as the
trained surrogate is accurate, it can bypass the FEA calcula-
tion process and replace the FEA in further applications.
Kriging or Gaussian Process (GP) regressions are widely
used as surrogates. Yue and Shi (2018) proposed a surrogate
model-based optimal feed-forward control strategy using a
universal kriging model for dimensional variation reduction
and defect prevention in the assembly process of composite
structures. Wang, Chen, Kang, Deng, and Jin (2020) pro-
posed a GP-constrained general path model to approximate
the high-fidelity FEA for efficient product and process
design in additive manufacturing. The Deep Neural Network
(DNN) is another type of surrogate. Dong et al. (2020) pro-
posed a systematic implementation of the Artificial Neural
Network to replace FEA in the structural optimization of
elastic metamaterials. Liang et al. (2018) developed a deep
learning model to replace structural FEA in estimating the
stress distributions of the aorta. Although the proposed
data-driven surrogates provide an efficient alternative to
FEA, a common limitation among these pure data-driven
models is the lack of physical insight.

To overcome the limitation of pure data-driven surro-
gates, physics-informed data-driven surrogates have been
proposed in the machine learning domain; these do incorp-
orate physical insights into surrogate design. Loose et al.
(2009) derived one physical-analysis-driven surrogate model
based on first principles. Considering that most physical
phenomena can be modeled by differential equations, apply-
ing a Neural Network (NN) to solve differential equations
has been researched. Chen et al. (2018) proposed the Neural
Ordinary Differential Equation (Neural-ODE) approach,
which applied neural networks to parameterize the deriva-
tives of the underlying function between the input and the
output, rather than directly modeling their mapping. Yildiz
et al. (2019) proposed a latent second-order ODE model for
high-dimensional sequential data, which explicitly decom-
posed the latent space into momentum and position compo-
nents. The Neural-ODE approach has shown its strength in
analyzing systems that are governed by differential equa-
tions, which may have a great potential to be a suitable sur-
rogate model of FEA.

1.2.2. Review on uncertainty quantification and stochastic
surrogates

Researchers have proposed stochastic surrogates by incorpo-
rating system uncertainties into computer simulations.
Uncertainties inevitably exist in engineering systems, and
may be caused by sensing errors, actuating errors, computa-
tional errors, etc. FEA simulation is a deterministic method
that cannot capture the full effects of system uncertainties.
To tackle this issue, Monte Carlo simulation is widely used
to capture the uncertainties in the simulation (Rubinstein
and Kroese, 2017). Intuitively, this method repeats simula-
tions multiple times and assumes different values of the
unknown parameters. Thus, the computational cost grows
significantly when the system has a large number of
unknown parameters.

Similarly, stochastic surrogates have been proposed to
consider the system uncertainties as well as reduce the com-
putational cost (Wang and Shan, 2006). One category of sto-
chastic surrogates is GP-based models. Ankenman et al.
(2010) extended the kriging to a stochastic simulation set-
ting and proposed stochastic kriging for simulation meta-
modeling, which characterized both the intrinsic uncertainty
inherent in stochastic simulation and the extrinsic uncer-
tainty about the unknown response surface. A surrogate
model considering diverse uncertainty sources has been pro-
posed to achieve a better predictive assembly of composite
aircraft (Yue et al., 2018). Corresponding active learning has
also been developed for maximizing information acquisition
with limited samples (Yue et al., 2020). There are some GP-
based methods that specifically consider intrinsic (input)
uncertainty. Wang et al. (2019) refined GP-based optimiza-
tion algorithms to solve the stochastic simulation optimiza-
tion problems considering input uncertainty. Wang, Yue,
Haaland, and Wu (2020) investigated GP regression consid-
ering the input location error within FEA simulations. GP-
based methods have shown their advantages as the stochas-
tic surrogate, but they have two limitations: (i) the choice of
covariance kernel significantly influences the model per-
formance; and (ii) they are computationally prohibitive for
large and high-dimensional datasets (Snelson and
Ghahramani, 2006). Hoang et al. (2015) proposed the sto-
chastic variational GP to train a sparse GP with a small sub-
set of training data. This method can improve the scalability
of GP-based methods in dealing with “Big Data.” However,
approximated representation in sparse GP has a non-negli-
gible influence on model accuracy, and the parameters intro-
duced by variational inference require extra training time
(Liu et al., 2020).

Another category of stochastic surrogates is the extension
of DNNs. Blundell et al. (2015) proposed a Bayesian Neural
Network (BNN) to model uncertainty by learning a distribu-
tion of model weights instead of specific values. Gal and
Ghahramani (2016) proposed a NN with dropout to capture
the variations in training data and evaluate the uncertainties
in new simulations. The NN-based stochastic surrogates
have shown their strength in modeling large datasets.
However, the model performance is highly related to the
choice of hyperparameters, such as the prior distribution of
model weights and the dropout ratio. Furthermore, learning
posterior distributions in a BNN can be difficult considering
the high dimensionality and complexity.

Inspired by the idea of GP, Garnelo, Rosenbaum, et al
(2018) proposed Conditional Neural Processes (CNPs) to com-
bine NNs with the features of a GP. This method is to define
conditional distributions over possible functions given a set of
observations. The CNPs can generate predictive results and
evaluate the output uncertainties. More general models, Neural
Processes (NPs), were proposed to add a latent encoding branch
to project the input uncertainties into global latent representa-
tions and then incorporate these representations into the gener-
ation process of output distributions (Garnelo, Schwarz et al.,
2018). Kim et al. (2019) integrated the attention module
(Bahdanau et al, 2015) into NPs and proposed Attentive

Neural Processes. The attention module can be regarded as a
measure of similarity among context inputs (observed) and tar-
get inputs (unobserved) to find which context is most relevant
to a given target. Overall, the NPs can characterize the input
and output uncertainties. However, these methods cannot cap-
ture the differential equations structure of FEA, which limits
their interpretability.

1.3. Proposed method and contributions

Based on the literature review, there is a need to develop a
stochastic surrogate with physical insights so as to reduce
the computation cost of the FEA method and capture sys-
tem uncertainties. To close this research gap, we propose a
novel method, Neural Process Aided Ordinary Differential
Equations (NP-ODE), to build a physics-informed data-
driven surrogate for FEA simulations with uncertainty
quantification. The structure of NP-ODE follows the
encoder—decoder format, in which the encoder part proj-
ects the observed simulations into feature space, and the
decoder part takes the features and unobserved query as
the input to learn distributions over the output. Compared
with a pure data-driven decoder, the NP-ODE method
incorporates the Neural-ODE as the decoder to strengthen
the model in solving complex systems governed by differ-
ential equations. To this extent, both the FEA method and
our proposed NP-ODE are built to approximate solutions
for systems with underlying differential equations. Thus,
incorporating Neural-ODE as the decoder makes the model
a convincing surrogate for FEA. What is more, a similar
structure to the NPs can enable uncertainty quantification
in our proposed NP-ODE. The pipeline of our proposed
method is shown in Figure 1. First, an FEA simulation
platform is built based on the system’s properties and
parameters. The FEA platform is further validated by real
experimental data. Given the generated simulations from
FEA, our proposed method NP-ODE is trained and tested
on the datasets to generate the predictive output and con-
duct uncertainty quantification. Finally, the NP-ODE is
ready to be used as a stochastic surrogate of FEA for
new inputs.

The contributions of this article can be summarized
as follows:

1. The NP-ODE evaluates both the input and output
uncertainties and generates distributions over the output
to enable uncertainty quantification.

2. Compared with the pure data-driven surrogate, the NP-
ODE solves differential equations in its decoders, so it
is more physically close to the original FEA, and has
better interpretability.

3. Compared with the original decoder in NPs, NP-ODE
can reduce the number of parameters by incorporating
Neural-ODE to mitigate the risk of overfitting with
scarce training samples.

4. The NP-ODE can improve the robustness in dealing
with noisy data points governed by the differen-
tial equation.

IISE TRANSACTIONS 3

Properties — FEA Validate
Experiments
Parameters —>| Platform

)

--| Training Data ‘ Test Data |--

| Prediction

Figure 1. Overview of building Neural-ODE from FEA simulations.

The remainder of this article is organized as follows:
Section 2 introduces the mathematical foundations of
Neural-ODE and NPs; Section 3 proposes the NP-ODE,
investigates the uncertainty quantification and its properties,
and develops a computational algorithm for the proposed
NP-ODE; Section 4 presents a simulation study as a proof-
of-concept; Section 5 presents the case study of FEA simula-
tion for tribocorrosion, and compares the proposed method
with benchmark methods; Section 6 gives a brief conclusion
on our proposed method and its advantages.

2. Neural ODE and NPs

In this section, we first introduce the Neural-ODE and NPs.
The notations that appear in this article are summarized in
the supplementary Appendix L.

2.1. Neural-ODE

The Neural-ODE was proposed to parameterize the derivative
of a hidden state using a NN (Chen et al., 2018). The Neural-
ODE has shown particular strengths in image classification,
modeling continuous flows, and modeling time-series data.
We take FEA simulation as one example. For simplicity,
suppose both the input and output of FEA are scalars,
and FEA simulations generate N data points
{(*1> y1)>--» (%n>yn)} with the underlying functional rela-
tionship y = f(x), x € R, y € R. The classic NN is built to
approximate the functional relationship by minimizing a

loss function £ (fNN(x), y), in which fNN(x) is the
approximated mapping given by the NN. As shown in
Figure 2, considering the multi-layer structure of NN,

f an (%) can be regarded as a series of discrete transforma-
tions with input x as the initial value, and the steps of trans-
formations are denoted as the model depth. In this case, the
frn(x) is equivalent to fyopp(D)s frope(Do) =% in which
j‘ ~ope(D) represents the discrete transformation with respect
to (w.r.t) model depth D, and Dy represents the initial layer.

Instead of directly modeling the functional relationship as
discrete transformations, the Neural-ODE is built to

approximate the first-order derivative of f y,p(D), with the
assumption that f (D) is continuous and differentiable.

https://doi.org/10.1080/24725854.2021.1891485

4 . Y. WANG ET AL.

y= fNN(x) y= fNoDE(D)
x fNODE(DO) =X
I A : RN e !
o)l) e,
1 Layfrz] —% _i___ff_vgl_w@?z_)__
; i : ! e | __ fwope@y-1)
(o)l o)
[—— *______' e *______'
y y :fNODE(DN)

Figure 2. Equivalence between fNN(x) and fxope(D).

The model depth D is optimized during the training phase:

df D
gnope(D) = JCN(;#DE()) (D

in which, the gnope(D) denotes the first-order derivative
given by Neural-ODE. Based on the approximated first-
order derivative of f NODE(D), the output can be calculated
by the ODE solver and is shown in Equation (2):

fNODE(DN) = ODESolve (jNODE(DO)’ gNODE(D)’ Dy, DN)~
(2)

2.2. NPs

The NPs are inspired by the ideas of the GP and designed
for modeling the regression function, such as y = f(x)
between input x € R” and output y € R? (Kim et al., 2019).
NPs can output distributions over unobserved target FEA
data points (Xnt1Vps1)> o (XntT> Vi) conditioned on
the observed FEA simulations (XLY1)s o (XnYy)- The
model structure of NPs is shown in Figure 3, in which the
output of NPs, y, ., ~ N(¥,,;, Gus1), is expressed as the
posterior distribution given observed data points as shown
in Equation (3) (Kim et al., 2019):

p(i’n+1 |Xﬂ+1’ (Xliﬂ’YI:n)) = Jp(?n+1 |xﬂ+1’ dc, Z)q(Z|Sc)dZ.

©)

In Equation (3), the g(z|sc, z€ RY, sc€ RY) is the prior
distribution on z given by the stochastic encoder, dc€ RY is
given by the deterministic encoder, and the likelihood func-
tion p(ffn 111Xnr1-des z) is represented by the decoder. In
FEA simulation, data points (Xn+1>Ynt1)> - (XntT>Yoi1)
are from different replications and do not have temporal
dependencies or a specific order. Equation (3) shows how to
predict one unobserved data point (X,;1, ¥,,;)-

In the encoder part of NPs, the basic building block is
the Multi-Layer Perceptron (MLP). First, the deterministic
encoder captures the interactions among observed FEA data
and outputs the finite-dimensional representation d¢. The
attention module is an important part to aggregate the rep-
resentations (di, ...,d,) from each observed data point corre-
sponding to a specific unobserved target simulation point

Xp11. Intuitively, the attention module is to compute the
weights of each observed keys (X1, - Xp) W.LL the unob-
served query X,.;, and apply these weights to compute the
weighted sum of representations (dy,...,d,) to generate the
output d¢ (Bahdanau et al., 2015). Second, the stochastic
encoder will capture the uncertainties in the predictive value
¥,.1 and output the prior distribution g(z|sc) on the latent
representation z. As the stochastic representation sc of the
context data points are generated by the mean aggregation
of (sy,..., sy), the prior distribution g(z|sc) is invariant to
permutations of context data points. The latent representa-
tion z can account for the uncertainties in predicting y, .
The decoder will take the unobserved query x,;, determin-
istic representation d¢ of observed data w.r.t. x,.;, and sto-
chastic representation s¢ of observed data as the input, and
calculate the mean y,_, and standard deviation o, for the
predictive distribution over the target value y, ;.

To learn the parameters of NPs, the loss function is
defined by maximizing the evidence lower bound based on
the historical FEA simulation data (x1,y;), ... (XsY,) and

unobserved target simulation (Xnt1Ys1)> - (Xn+T>Ynir)s

as shown in Equation (4) (Kim et al., 2019):

10gp(Yn+l:n+T|x"+1in+T’ (X1 Y1.0))

T
2 Eqlsy) [Z 10g P (¥,,i%n1 oo 2) | — Dxe(q(zlst)llq(zlsc)).

i=1
(4)

In Equation (4), q(z|st) represents the posterior distribu-
tion on latent representation z whereas q(z|sc) represents
the prior on z; logp(y,,|Xu i»dc,z) represents the log
probability of true target value on the predictive likelihood;
st represents the stochastic representation with observed
and unobserved data points as the input (in the training
phase). The detailed derivation of Equation (4) is in the
supplementary Appendix II.

3. NP-ODE

In this section, first, the limitations of Neural-ODE and NPs
will be clarified. Then, a novel method, NP-ODE, is pro-
posed for predictive analytics and uncertainty quantification
of FEA simulations. The properties of the proposed NP-
ODE will be discussed. Furthermore, the algorithm of the
proposed NP-ODE is developed.

3.1. Limitations of Neural-ODE and NPs

Neural-ODE focuses on using the NN to parameterize the
derivative of the hidden state. In this way, the output of the
Neural-ODE can be regarded as the integration of inputs
over the latent space. Although Neural-ODE is a promising
surrogate model of systems governed by differential equa-
tions, it is a deterministic model without the capacity for
uncertainty quantification. Since uncertainties usually exist
in engineering systems, the deterministic property of

Keys
(Observed)

IISE TRANSACTIONS (&) 5

iQuery
' (Unobserved)

1
| Xl' Xz, ...,Xn: Xn+1 |

Deterministic
Encoder

(X1, ¥1)
(X2,¥2)

X V)

Attention

i1 11" 1 =1 "1
(:Yn+1|'|6n+1:)_’@ 'Pn+1l
1 u [}

1 [1

Observed Stochastic s z | il | L
Data Point Encoder @_’ C—’@_’ p ::ap :)—» 1~p :
s rems qyllilx‘l_"_+l PWny,

Vn+1 Ont1 Vn+1

Figure 3. Model structure of NPs.

Neural-ODE hinders its ability to model FEA simulations
and capturing the system uncertainties.

NPs have many advantages, such as fitting observed data
efficiently, learning predictive distributions instead of a
deterministic function, and generating the mean y,,, and
standard deviation 6,4, to enable uncertainty quantification
of predicted y, ,. However, NPs use MLPs as the basic
building blocks of its encoder and decoder, which are not
the ideal choice, especially in modeling FEA simulations.
The reasons can be summarized into three aspects:

1. The model complexity tends to be significant if we have
an extensive feature vector. Suppose MLP stacks D Fully
Connected (FC) layers, and the feature dimension of each
layer is N. Thus, the parameter size for this MLP is DN?.
The number of parameters in the NPs will increase sig-
nificantly with the higher dimension feature vector.

2. The FEA simulation dataset is usually scarce, because
FEA is time-consuming and requires high computa-
tional cost. In this situation, applying the model with a
large number of parameters to model a scarce dataset
may have overfitting issues.

3. The FEA is a numerical method to solve PDEs/ODE:s.
The MLP is a pure data-driven method that may lack
the physical insights concerning differential equations.

To tackle these limitations, we proposed a novel method,
NP-ODE, to build an FEA-informed data-driven stochastic sur-
rogate model. Compared with Neural-ODE, our proposed NP-
ODE follows the prototype of NPs to capture the uncertainties
of predictive results. Compared with NPs, the NP-ODE incor-
porates Neural-ODE as the decoder, which can reduce the num-
ber of parameters and provide physical insights concerning
differential equations to the surrogates of FEA simulations.

3.2. General setup of the NP-ODE to model FEA
simulations

In this section, we first formulate the Neural-ODE to model
FEA simulations. The basic structure of the encoder and
decoder in NP-ODE is then illustrated and discussed.

3.2.1. Formulate Neural-ODE to model FEA simulations
FEA is a numerical technique to approximate Partial
Differential Equations or Ordinary Differential Equations
(PDEs/ODEs), which are often used to describe a complex
system. As mentioned above, Neural-ODE is a powerful tool
in solving systems governed by differential equations, so it
has the potential to be an accurate surrogate for FEA meth-
ods. The FEA simulations can be formulated as a multivari-
ate regression in which the input x € R™ and the output
y € R? variables of FEA are the input and the output of the
regression, respectively. Instead of directly modeling the
mapping between x and vy, the Neural-ODE generates
the predicted output by modeling and solving the ODE of
the underlying function between x and y. Suppose the
underlying function is y=1£(x), x€R",yeRP, the
Neural-ODE will act as a feature extractor, in which the
input x € R™ are firstly mapped into the feature space w €
RY, then the continuous transformation is taken over the
feature space, and the output y is given from an extra layer.
We select Euler’s method as the ODE solver (Griffiths and
Higham, 2011). The feature transformation is given in
Equations (5):

D; =D +AD
df nope(D)
8vope(Di-1) = ————
)) NODE dD b, |
fNODE(Di) =~ fNODE(l)Ai—l) + ADgNODE(Di—l)’ i= 1, ey N
fnope(Do) = w
(5)

where fyope(D) represents the approximated discrete feature
transformation given by Neural-ODE, D is equivalent to the
depth of NN, AD is the step size. Assume fyopp(D) is con-
tinuous and differentiable, gy, (D) denotes the first-order
derivative of f ~ope(D). In this case, D is similar to the num-
ber of the intermediate layers in the original NN. As shown
in Figure 2, given the input £ ~opi(Do), the output at model
depth D; is denoted as £ ~ope(D;), which can be regarded as

a series of discrete transformations. The value of D, can be
optimized in the training process, which means the Neural-

6 . Y. WANG ET AL.

Encoder

Keys
(Observed)

iQuery

)

d;

. |
! |
! |
! |
! |
! |
! |
|t 1
Lo ! |
o] = | d [
RS g I 2 !
i | . | ®|—
VAN = 1 |
/iR 2| d !
! n :
\ 7
! |
|
|
|
|
|
|
|
|
|

(X1, y1)
(%2,¥2)

(N

|
|
P
& yn) |\ ! h s
N[e L 1
I\ | & gl s
Observed I \ g |3) 2 —>@->sc—>@—o—> z
Data Points | || & 2 !
'
: \ ,: Sn |
| M-) l

Figure 4. Structure of the encoder in the NP-ODE.

ODE finds the most informative feature in the continuous
feature transformation.

In summary, the basic steps of building the Neural-ODE
as a surrogate include: (i) formulate FEA simulations as a
regression with input x € R™ and output y € R?; (ii) map
the input x € R™ into feature space wp, € RN: (iii) extract
the most informative features from the continuous trans-
formation modeled by Neural-ODE; and (iv) map the
extracted features into the output space y € R?.

3.2.2. Structure of the encoder in NP-ODE

As shown in Figure 4, the basic structure of NP-ODE
mainly consists of an encoder and a decoder. The role of
the encoder is to extract the deterministic and stochastic
representations of observed data points. The main compo-
nents are the deterministic encoder, the stochastic encoder,
and the attention module.

The deterministic and stochastic encoders share a similar
structure, consisting of a MLP (stacked FC layers). The
expressions of the deterministic and stochastic encoders are
given in Equations (6):

d; =< Wpg, (X,’, Yi) > + bpg ©)
si =< Weg, (Xi ¥;) > + bsg,

In Equations (6), Wpg, bpr denote the weight matrix
and bias in the FC layer of the deterministic encoder,
Wse, bge denote the weight matrix and bias in the FC layer
of the stochastic encoder, d;, s; are the deterministic and
stochastic representations of observed data point (x;, y;).

The role of the attention module is to take the weighted
aggregation of the deterministic representations (di,...,d,)
based on the similarity of observed inputs (xi,...,x,) and
the queried (unobserved) input x,.;. A multi-head attention
module is applied in the NP-ODE (Vaswani et al. 2017). It
is worth noting that the output of the attention module has
the permutation invariant property so that the order of
deterministic representations (dj, ...,d,) and observed inputs
(x1,...,x,) does not influence the output d.. Similarly, the s,
is generated by the mean aggregation of stochastic represen-
tations (s, ...,s,), which also has the permutation invari-

ant property.

3.2.3. Structure of the decoder in NP-ODE

The NP-ODE is built to incorporate the Neural-ODE as the
decoder in NPs, which not only strengthens its ability in
modeling FEA simulations but also gains the capacity to
capture system uncertainties.

As shown in Figure 5, in Neural-ODE, the ODE network
along with the ODE solver (e.g., Euler method) can approxi-
mate the continuous transformation fyopz(D) of the input
representations, and a smaller step size AD can give a better
approximation accuracy of FEA simulations. In contrast, the
MLP decoder in the NPs stacks multiple FC layers, which
can be regarded as the discretization of the continuous
transformations. Increasing the number of intermediate
layers in the MLP may give a better approximation.
However, this will increase the number of parameters sig-
nificantly. Similar to original NNs, the Neural-ODE has the
equivalence property associated with the model depth (num-
ber of intermediate layers), which is determined by the step
size AD. As long as the step size AD is small enough and
the predicted derivative at each step given by the ODE net-
work is accurate enough, the Neural-ODE is equivalent to
an infinite-layer NN. The advantage of Neural-ODE is that
it uses the same ODE network to generate the derivative of
the underlying function at each step, which reduces the
number of parameters compared with MLP.

In general, the expressions of the decoder in NP-ODE
are summarized as Equations (7).

Vuer ~ NFper Oni1)
Vo1 =M (fNODE(Dn))
Gui1 =hy (ENODE(Dn))
%NODE(?i) ~ fnope(Di-1) + ADgyopp(Di-1)s (7)
fyope(Do) = w = (dc, 2, X 41)

~
(Di 1) diODE(E)
D=D;_,;

D;=D; 1+AD, i=1,..,n

In Equations (7), hl(.) and hz(.) represent two FC layers
used to map the output features from Neural-ODE to pre-
dicted mean y, , and standard deviation o, fNODE(D,-)
represents the dynamic feature transformations modeled by
Neural-ODE, dc and z remain the same as NPs which are
the deterministic and stochastic representations of observed
data, respectively. The NP-ODE is designed to model sys-
tems governed by the differential equations.

Combine the introductions of the encoder and decoder
in Sections 3.2.2 and 3.2.3 and the proposed NP-ODE is
ready to use. Before demonstrating the performance of NP-
ODE, uncertainty quantification and its properties will be
further analyzed.

3.3. Uncertainty quantification

Uncertainty Quantification (UQ) conducted by our pro-
posed NP-ODE is to quantitatively measure the uncertainties
of predicted results given new FEA inputs. We take the
uncertainties in the FEA for tribocorrosion (introduced in

ODE Network

Query
(Unobserved)

Xn+1

dec>w = (d¢, 2, Xp41)>

IISE TRANSACTIONS (&) 7

Neural-ODE (Decoder)

dfyope (D))
dD

- fNODE D)
fyope(D)

|
|

|

|

|

|

|

|

|

|

|

|

|

I

:

Encoder / :
z |
|

|

|

|

|

|

|

|

|

|

|

! ODE Solver

Figure 5. Structure of the decoder in the NP-ODE.

Section 5.1) as an example. There are six parameters repre-
senting material properties used as the inputs of FEA. The
FEA method for tribocorrosion is built to deterministically
simulate the corrosion rate under various combinations of
parameters. However, in reality, these parameters are not
deterministic in tribocorrosion FEA simulation because: (i)
the corrosion process changes the properties of the material;
(ii) given the same set of parameters, the corrosion rate
(FEA output) may have slight changes in different runs of
real experiments. Since the FEA method can only consider a
limited number of critical parameters, other environmental
parameters may inevitably influence the corrosion rate. The
idea of UQ in our proposed NP-ODE lies in capturing the
variations of FEA simulations under various combinations
of parameters. The output of NP-ODE is a distribution of
the predicted result. We select the confidence interval to
numerically measure the uncertainties of each output, which
means considering the system uncertainties, the corrosion
rate is likely to locate within the predicted interval.

3.4. Properties of NP-ODE

The properties of our proposed NP-ODE can be summar-
ized as follows.

First, compared with the MLP decoder, incorporating
Neural-ODE as the decoder can reduce the parameter size,
since it can eliminate the multi-layer structure. The number of
parameters in a D-layer MLP is DN?, in which N is the feature
dimension, D is equivalent to the number of steps in discrete
transformations. The number of parameters in the Neural-
ODE is not influenced by the number of steps, because the
same ODE network will be applied at each step to estimate the
derivatives. If the ODE network consists of FC layers, the
number of parameters in the Neural-ODE can be expressed as
N?. More importantly, other types of layers (e.g., convolu-
tional (Conv) layer) can also be used as the building block in
the ODE network. Compared with the FC layer, the number of
parameters in the Conv layer will not be determined by the

feature dimension N, which enables the Neural-ODE to fur-
ther reduce the number of parameters. In our experiments, the
Conv layer is selected as the basic building block in the ODE
network. A detailed comparison of the number of parameters
will be introduced in Section 5.3.

Second, the NP-ODE and the FEA method share the similar
idea in emulating complex systems, which is modeling and
solving the PDEs/ODEs that represent the complex system,
rather than directly modeling the functional relationship
between input and output by pure data-driven models.

Third, the proposed NP-ODE captures the output uncer-
tainties and generates the distribution over outputs for FEA
simulations. Given the output distribution, we can further
conduct UQ on outputs by generating confidence intervals
at each data point.

3.5. Pseudo-code of the algorithm for NP-ODE

The pseudo-code of NP-ODE to model FEA simulations and
implement uncertainty quantification is summarized
Algorithm 1. D¢ represents the dataset containing inputs and
outputs of historical FEA simulations, Dt represents the dataset
containing target data points (unobserved FEA simulation), X't
represents the dataset containing target FEA inputs.

in

Algorithm 1: NP-ODE in modeling FEA simulations and
conducting UQ

Inputs:

I: xeR" yeR’ b data from FEA simulations

2: Diin = (X1,¥1)> - (¥n,Y,) P training data

Diest = (Xn+1Vps1)> - (Xn+T>Yupp) D testing data

Training:

while i < number of iterations do
randomly select D¢ C Dypin, Dr = Diyain — Dc
prior q(z|sc) < feed D¢ into stochastic encoder
posterior g(z|sy) <« feed Dy, into stochastic encoder
deterministic representation dc <« feed (D¢, X7)
into the deterministic encoder

8 . Y. WANG ET AL.

8: for (x;, y,) in Dr do

9: sample z from g(z|sr)

10: ¥, 6, < feed (z, d¢, x;) into decoder

11: Yy, ~ N(¥,01)

12: calculate likelihood p(y, |x;, dc, z)

13: end for

14: L =Eyups) [ZL 10gP(Yt|Xr’dc:Z)] — Dxr(q(zls7)llq(zlsc))
15: update parameters to maximize £

16: i= i+1

17: end while

Testing:

18: D¢ = Duains D1 = Drest

19: prior q(z|sc) < feed D¢ into stochastic encoder

20: deterministic representation dc «— feed (D¢, x1)
into the deterministic encoder

21: for (x4, y,) in Dy do

22: sample z from g(z|sc)

23: ¥, 00 < feed (z, d¢, x;) into decoder

24: Y. ~ NF,o00)

25: generate confidence interval using predicted distribution

In this section, we introduced the general set up of our
proposed method NP-ODE along with its expressions, ana-
lyzed its properties, and summarized the pseudo-code to
illustrate its training and testing procedures. In summary,
the advantages of the NP-ODE include (i) compared with
NPs, it improves the parameter efficiency to reduce the
number of parameters in the decoder; (ii) compared with
Neural-ODE, it generates the distribution over the predicted
output to enable UQ; (iii) it shares a similar differential
equations structure with the FEA method in emulating com-
plex systems. Thus, it is more promising to be a surrogate
model of FEA simulations.

4. Simulation study

To validate the effectiveness of our proposed NP-ODE, a
simulation study is conducted by restoring dynamic functions
using sampled data from a given ODE. Also, to demonstrate
the robustness of NP-ODE, the experiment is repetitively con-
ducted on sampled data with different levels of Gaussian ran-
dom noise. In this section, the simulation setup is first
introduced to illustrate how the sampled data is collected. The
evaluation metrics are then discussed. Finally, the benchmark
method is introduced, and performance comparisons between
the NP-ODE and the benchmark are discussed.

4.1. Simulation setup

Two-dimensional spirals are selected to generate simulated
data points, which can be modeled by a linear ODE as
shown in Equation (8):

dy -0.1 -1

dx{ 1 —0.1}"’ (8)
in which, x € R is the input and can be regarded as the
order of data points, y € R? is the two-dimensional output
and can be regarded as the position of data points.

As we discussed in Section 2.1, data points following
Equation (8) can be generated by Equation (9), in which € € R?
is the Gaussian random noise controlling the variations of
generated data points;

dy,xo,xN> + €. 9)
dx

Our proposed NP-ODE is robust in modeling data points
with various levels of variations. To demonstrate its robust-
ness, the mean of € is set to zero and the standard deviation
of € is set to 0.01, 0.02, and 0.1. For each noise level, 200
data points are generated for training and validating the
method. The generated data points are visualized in
Figure 6, in which the first subplot from the left shows the
spiral without noise, the scatters in the other three subplots
are data points sampled from this spiral with various noise
levels. We can find out that when the standard deviation of

noise equals 0.1, the pattern of the sampled data points is
hard to identify.

Yy = 4 X ODESolve (yo,

4.2. Evaluation metrics

The Root Mean Square Error (RMSE) is selected to evaluate
the predictive accuracy. The Confidence Interval (CI) within
one standard deviation is chosen to conduct uncertainty
quantification.

The expression of RMSE is given in Equation (10), in
which y; is the real position of the ith data point, y, is the
predicted position of the ith data point, and ||.| is the
square of the I, norm. A smaller value of RMSE on test
points indicates that the model can predict more accurately:

1 & s
RMSE = , | — E —¥. 10
2N - HY1 Y1||2 ()

The CI within one standard deviation is selected for
uncertainty quantification, which is denoted as (¥, —
6;, ¥, +6;), and ¢6; € R? is the predicted standard devi-
ation in two dimensions. To show the robustness of the pro-
posed NP-ODE, it should recover the underlying patterns
(spiral without noise) from noisy data points. If the gener-
ated CI can cover the spiral curve, it indicates the corre-
sponding method is robust to the noise.

4.3. Comparison with benchmark methods

To show the robustness of the proposed NP-ODE in model-
ing data points with different noise levels, we compare its
performance on the simulated data points to the original
NPs. In this section, we introduce the details of the experi-
ment and discuss the results from the perspectives of mean
prediction performance and UQ, respectively.

4.3.1. Experiment design

As shown in Figure 6, there are three noise levels of the
simulated data with the standard deviation of noise equal-
ling 0.01, 0.02, 0.1, respectively. For each noise level, 200

Data points without noise

Figure 6. Visualization of generated data points.

Table 1. Results comparison (RMSE).

Standard deviation of noise

0.01 0.02 0.1
NPs 0.0146 0.0268 0.2778
NP-ODE 0.0136 0.0256 0.1171

data points are generated, in which 150 data points are ran-
domly selected to train the model, and the residual 50 data
points test the model. To obtain a fair comparison, the
details of experiments using NP-ODE and NPs remain the
same. During the training phase, part of the training data
are randomly selected as the context (observed) data points
with both the input x; and response y,; feeding into the
model, and the rest of the training data are target (unob-
served) data points with only input x; feeding into the
model. During the testing phase, all the training data serves
as the context data points, and the testing data are target
data points.

4.3.2. Mean prediction comparison

The mean prediction comparison on test data points
between the proposed NP-ODE and the NPs are shown in
Table 1. We can conclude that under different noise levels,
the proposed NP-ODE can consistently generate more
accurate predictions than the original NPs. Furthermore,
when the standard deviation of noise increases, the predic-
tion improvement is more significant.

4.3.3. UQ comparison

In Figure 7, we plot the generated curves on both training
and testing data points along with the CI within one stand-
ard deviation. In Figure 7, the rectangles denote testing
points and the stars denote training points; the curves are
spiral without noise, which is the underlying pattern of
noisy data points; the curves are generated by the NP-ODE
or NPs on both training and testing data points; the cyan
shadow represents the CI within one standard deviation in
the dimension of y;, and the yellow shadow represents the
CI within one standard deviation in the dimension of y,.
The left and right columns of Figure 7 contain the results
from the NP-ODE and the NPs, respectively. The first row
indicates the training and testing data points (with noise)
and the underlying spiral without noise. The middle two
rows compare the NP-ODE and the NPs from the perspec-
tive of UQ in each dimension y; and y,, respectively. The
last row can be regarded as the combination of the middle

Data points with noise std. = 0.01 Data points with noise std. = 0.02

IISE TRANSACTIONS (&) 9

Data points with noise std. = 0.1

.~y

5
1 7/ T .
e
ot Q)
1 \\\4/ e
—2 T
-2 0

two rows. Compared with the NPs, the proposed NP-ODE
successfully captures the patterns of noisy data points, and
the generated CI covers the underlying spiral curve. Note
that Figure 7 only shows the modeling results on noisy data
points with the noise standard deviation as 0.1. The results
on other noise levels are listed in the supplementary
Appendix III. Figure 7 shows that the generated trajectory
from the proposed NP-ODE is consistent with the actual
spiral curve. Via Table 1 and Figure 7, we can conclude that
the proposed NP-ODE shows its strength in modeling data
points governed by differential equations and demonstrates
the robustness in revealing underlying patterns with noisy
data points.

5. Case study

To further evaluate the strength and effectiveness of the pro-
posed NP-ODE, a case study is conducted to build a surro-
gate model of FEA simulations and perform UQ. In this
section, we introduced FEA simulations on material corro-
sion analysis for new materials design. The implementation
details of NP-ODE are discussed, including the model struc-
ture and parameters analysis. Additionally, evaluation met-
rics are selected to measure model performance. Finally, the
comparisons among our proposed model and benchmark
models are discussed.

5.1. Introduction to FEA for tribocorrosion

Tribocorrosion is a material degradation process involving
both mechanical wear and corrosion of the material, which
jeopardizes a material’s long-term sustainability and struc-
tural integrity. Tribocorrosion analysis is very important for
design and manufacturing systems. The synergetic effects of
mechanical damage and corrosion can cause more severe
material degradation than the sum of pure wear and corro-
sion. To investigate the effects of a material’s mechanical
and electrochemical properties on their tribocorrosion
behavior, an FEA model is developed to simulate both the
dynamic process of wear and the time-dependent evolution
of a corroding surface during tribocorrosion. We conduct
an experimental study of two aluminum alloys (with 5wt%
Mn and 20wt% Mn, respectively). The scheme of FEA and
the meshed geometry are shown in Figure 8. The model first
simulates a scratching wear process and produces results
including the wear volume loss, and surface and subsurface
stress and strain caused by the process. A phenomenological

https://doi.org/10.1080/24725854.2021.1891485
https://doi.org/10.1080/24725854.2021.1891485

10 Y. WANG ET AL.

2
*
*
1
N
> *]
5 0
™ -
-1
training data training data
- = testing data -2 = = testingdata
-2 -1 0 il 2
-2 -1 1 2
Oyl vl
Generated spiral with UQ in y2 Generated spiral with UQ in y2
2
1
o
>
0
—1:
—— spiral —— spiral
—— generation -2 —— generation
-2 -1 0 1 2 -2 -1 0 1 2
yl yl
Generated spiral with UQ in y1 Generated spiral with UQ in y1
2
1
N
>
0
-1
—— spiral —— spiral
—— generation - —— generation
-2 1 0 i 2 -2 -1 0 1 2
yl yl
Generated spiral with UQ in y1 and y2 Generated spiral with UQ in y1 and y2
2
1
o
>
0
-1
—— spiral — spiral
—— generation —2 —— generation
-2 -1 0 1 2 -2 -1 0 1 2
yl yl

Figure 7. UQ comparison with noise ¢ = 0.1; Left: result from NP-ODE; Right: result from NPs.

(a)

Electrolyte ye

IISE TRANSACTIONS 1

(b) NAVAY
NANNNININININININININININNININNININER
)YAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAN 2)

<]

A
AV

NININININININININ.

N\

NNININININININININT.

7AN

NSO NINININININI/ NN/ NN/
S N O VAVAVAVAVAVAVAVAVAV A

Figure 8. (a) Schematic diagram of FEA for tribocorrosion test; and (b) meshing setup of tribocorrosion test.

model reflecting the change in anodic potential caused by
plastic strain is used to incorporate the wear-corrosion syn-
ergy. The corrosion process simulation considers the impact
on the electrochemical state of the system caused by mech-
anical deformation.

5.2. Dataset introduction and preprocessing

To investigate the influence of a material’s properties on tri-
bocorrosion rate, six individual parameters were taken into
consideration, including mechanical (Young’s modulus and
yield strength) and corrosion (anodic and cathodic Tafel
slope and exchange current densities) parameters. The final
output of the model is the material loss rate caused by tribo-
corrosion. In this case, the material loss caused by corrosion
and wear—corrosion synergy is of interest. It can also be
expressed as total material loss due to tribocorrosion minus
that due to pure wear.

The effects of mechanical, anodic corrosion, and cathodic
corrosion parameters were investigated separately. For the
variation of mechanical parameters, Young’s modulus was
swept from 55MPa to 95MPa with a 5MPa step size, the
yield strength from 1.0 MPa to 5.0 MPa with a 0.5 MPa step
size, while the corrosion parameters remained constant. For
the variation of corrosion parameters, the cathodic Tafel
slope was varied from -280 to -210 mV/decade, the cathodic
exchange current density from 2.0 x 1078 to 2.0 x 1077 A/
cm’, the anode Tafel slope from 250 to 290 mV/decade, and
the anodic exchange current density from 1.0 x 107" to
5.0 x 107 A/cm®. Each combination of mechanical param-
eters and corrosion parameters will render a different output
of material loss rate.

After obtaining the FEA dataset, data preprocessing is
conducted to make it ready for surrogate modeling. In the
dataset, there are 106 simulations. Each simulation contains
six input variables representing the mechanical and corro-
sion properties and one output variable representing the
corrosion rate. Since the input and output variables have
different physical meanings and various significant scales,
normalization is applied to the raw data to transform all the

variables into [—2,2]. The expression of normalization is
X — Xmin

shown in Equation (11):
Xporm = | —— X 4| — 2.
Xmax — Xmin

In Equation (11), x represents a single variable, xy.x and
Xmin are the maximum and minimum value of x, respect-
ively. After normalization, 20 simulations are randomly
selected as the testing data and the rest 86 simulations are
training data.

(11)

5.3. Parameter analysis and selection

The implementation details of the proposed NP-ODE will be
introduced in this section. The number of parameters will be
further analyzed and compared with original NPs given the
specific model structure; the selection of parameters in the
Euler’s method for solving NP-ODE is also discussed.
Compared with the original NPs, the NP-ODE uses fewer
parameters, due to the incorporation of the Neural-ODE as
the decoder. In our experiment, the convolutional layer
(Conv layer) is selected as the basic building block of the
Neural-ODE to capture the derivative of continuous feature
transformation. The reasons for this observation can be
summarized into three aspects. First, the original NPs use
the MLP as the decoder, in which the number of parameters
is determined by the dimensions of the input and output
feature vectors. In contrast, the number of parameters in the
Conv layer is influenced by the size and the number of con-
volutional filters, which is not determined by the input and
output. To this extent, especially for those high-dimensional
features, the choice of the Conv layer can reduce the num-
ber of parameters. Second, the Neural-ODE uses a limited
number of layers to model the derivative and mimic the
continuous transformation, whereas the MLP in NPs discre-
tizes the continuous transformation by the multi-layer struc-
ture. Thus, the number of parameters in NPs is determined
by the model depth, whereas the depth in the Neural-ODE
will not influence parameters. Third, when comparing the
single Conv layer and FC layer (the building block of the

12 . Y. WANG ET AL.

Table 2. Comparison of decoder parameters between NPs and NP-ODE.

Model Decoder Layer Weight Matrix # Parameters
(384,384) 147 456
NPs FC layer x 3 (384,384) 147 456
(384,384) 147 456
Conv layer 1 (1,128,3,1) 384
NP-ODE Conv layer 2 (129,128,3,1) 49 536
Conv layer 3 (129, 128,3,1) 49 536

MLP), the choice of the Conv layer may be hindered, as it
only captures local features limited by the size of the convo-
lutional filter. However, since the Neural-ODE can be
regarded as the infinite-layer NN, the global features can be
captured hierarchically, given the infinite number of
Conv layer.

For example, in the decoder of NP-ODE, we use three
Conv layers to build the ODE network to estimate the deriv-
atives of feature transformation. By combining the ODE net-
work with the ODE solver, the Neural-ODE can mimic the
continuous feature transformation, whereas in the decoder
of NPs, we use three FC layers to discretize the continuous
feature transformation. Suppose the input feature of the
decoder is of shape (1,384,1), the detailed model structure,
shape of the weight matrix of each layer, and the number of
parameters of each layer are summarized in Table 2. From
the comparison, we find that the number of parameters in
the decoder of NPs is 147 456 x 3 = 442 368, whereas the
number of parameters in the decoder of NP-ODE is 384 +
49 536 x 2 =99 456. Moreover, the number of parameters
in the decoder of NPs will further increase with the increase
of model depth. In contrast, the model depth will not influ-
ence the number of parameters in the decoder of NP-ODE.
Since the dataset generated from FEA simulations are often
scarce, fewer parameters in the proposed NP-ODE can
reduce the possibility of overfitting.

Euler’s method is selected as the ODE solver in our
experiment as shown in Equation (7). The Dy, Dy, AD are
important parameters influencing the performance of Euler’s
method, they represent the input model depth, output
model depth, and step size, respectively. Theoretically, the
difference between the input and output depth (Dy — Dy)
along with the step size AD determine the accuracy of
Euler’s method. Given a specific value of (Dy— Dy), a
smaller step size will improve the accuracy and increase the
training time. Considering the trade-off between accuracy
and efficiency, we select the (Dy — Dy) as 1 and AD as 0.05,
which is a good combination based on the model’s perform-
ances in prediction accuracy (sections 5.5.3, 5.5.4) and com-
putational cost (section 5.5.5).

5.4. Evaluation metrics

Two evaluation metrics are selected and applied to the test-
ing data. They are Mean Absolute Percentage Error (MAPE)
for predictive accuracy and 95% CI for UQ.

The expression of MAPE is given as Equation (12). The
MAPE is a relative error evaluating the relative difference
between the predicted error and real value. It can be regarded as
eliminating the differences among data scales and treating each

data point equally. In Equation (12), N represents the number of
testing data points, ¥; is the predicted mean value of the ith data
point:

yi*?i.
Yi

1 N
MAPE = NZ (12)

i=1

The output of NP-ODE is the distribution of predicted
values which consists of predicted mean y and predicted
standard deviation 6. The CI can be generated for UQ. We
select the 95% CI, which is calculated by
(y —1.966, y +1.96G) for each testing data point. There
are three criteria to evaluate the quality of the CI: (i) the
real value of the testing data point lies in the CI of the pre-
dicted value; (ii) the real value is close to the center of the
CI (predicted mean ¥); and (iii) a smaller ¢ ensuring the
coverage of the real value of FEA simulations.

5.5. Comparison with benchmark methods

We apply the proposed NP-ODE and other benchmark
methods to build surrogates of the FEA simulations and
compare their performance. The original NPs, GP with
Matern kernel, and GP with Polynomial kernel are selected
as benchmark methods. In this section, we will give a brief
introduction of these benchmark methods, illustrate the
design of the experiment, and compare their performances.

5.5.1. Introduction to benchmark methods

The first benchmark method is the original NPs and it is
selected to show the advantages of incorporating Neural-
ODE as the decoder. The other two benchmark methods
belong to the family of the GP. In the GP, instead of finding
a deterministic function, it derives the probability distribu-
tion over all possible functions that fit the data. The basic
steps are: (i) to specify a prior distribution on the function
space; (ii) based on the Bayesian rule, calculate the posterior
distribution using training data; (iii) use the posterior distri-
bution to make an inference on testing data. The choice of
covariance function is a significant factor influencing the
performance of the GP. We selected GPs with Matern and
Polynomial kernels as the second and third benchmark
methods. These two kernel functions are commonly used to
capture nonlinear relationships.

5.5.2. Experiment design

In the experiment, each FEA simulation can be formulated
as a data point (X, y), X € R®, y € R. Among all the 106
simulations, 20 simulations are randomly selected as the
testing data, and the remaining 86 simulations are training
data. To test the model’s ability to explore limited data
points, we repeat the experiment, change the number of
training points available to models, and evaluate the per-
formance on the same testing data to check the robustness
of models. The number of training samples is iteratively
increased. Thirty samples out of 86 training data are ran-
domly selected at first, and then the sample size is increased

to 50, 60, 70, and 80 by successively randomly adding new
data points from the training data. The comparison of
results among all the methods is introduced next.

5.5.3. Mean predictions comparison
The outputs of our proposed NP-ODE and benchmark
methods are all distributions over a predicted value. To

Table 3. Results comparison (MAPE %).

Train NP-ODE NPs GP (Matern) GP (Poly)
30 5.5229 9.2862 11.8461 19.3152
50 2.7286 4.9690 7.1928 10.3434
60 2.5886 4.8660 6.6770 14.1264
70 22121 3.2018 5.1234 2.3593
80 2.1235 3.2364 4.4351 24418
Train: |
30 1 GP(Matern) 400 GP (Poly)
0 fé‘i 200
HA]
> |y o ey 0 ﬁnﬁ%-{-ﬁ-}.
= by Ty 'l' - -200
—2 % % —-400
0 5 15 20 0 5 10 15 20
index of data point index of data point
#Train: 150
50 1
- 100
L
o & 50
i |
> _ - L * ~ 0
1 g T s w
f ! -100
=2 * % -150
0 5 10 15 20 0 5 10 15 20
index of data point index of data point
Train: 100
60 1
o3 50
0 i [[
> * > 0
1] e
-1 2 + *
oy Ee FEa
.f. Hel,
=< * * -100
0 5 10 15 20 15 20
index of data point index of data point
Train:
70 1
—— 100
[N]
° .] H |
e e ® TS | s Lu}l
I il
.f. :.i..h -100
-2 * *
0 10 20 0 5 15 20
index of data point index of data point
#Train
80 200
; @
> — - > 0
[N e
& ‘7#':» Fa T TEE%- _ig0
-2 * k3 -200
0 20 0 20

5 15 5 15
index of data point index of data point

Figure 9. Visualization of UQ.

IISE TRANSACTIONS 13

numerically evaluate the prediction results, we calculate
the MAPE between the predicted mean y and real value
y on testing data. The results are summarized in
Table 3.

In Table 3, the first column represents the number of
training samples available to models, and each row is the
testing MAPE for the proposed NP-ODE and benchmarks.
We can conclude that: (i) given the same training samples,
our proposed NP-ODE outperforms the benchmark methods
consistently; (ii) with more training samples, all the methods
tend to have a better performance. In addition, the perform-
ance of NP-ODE has the smallest variation and the best
accuracy with the different number of training samples. Our
proposed model can explore the features in training samples
better and has a more robust performance with the different

1 NP 1 NP-ODE
0 ¥ 0 {‘ I
+
Ao g B a4
Fpwr Hig H-}AH‘}'LH{H
=2 % * =2 i
0 insdex of data po%r?t 20 0 insdex of data po}r?t 20
0 1 0 1
> % >
g R HEy g T R *-H-
4 5 g . os by
0 insdex ofld%ta po:iLr?t 20 0 ir‘?dex of]aoata po}r?t 20
0 ‘} 0 {.

t
-1#&;{. ‘P;}HH —lﬁﬁﬁ : ’I'H%H
-2 ¥ ¥ =2 ¥ ¥

o inSdex of}joata po:iLr?t 20 0 ir?dex of]aoata po}r?t 20
0 1 0 1
TP S = 3 B 3
o # : T ¥ {'{a} fu g ¥ {:H_
2 % $ I %
4 insdex of data po%r?t =4 ¢ insdex of data po}r?t <
1 1 = Prediction
* Ground Truth
4 _} . I Confidence Interval

- 3
Hp i Hy ﬂﬁﬁ
1 3

5 15
index of data point

e 1§
Hy#H -}'}‘H-H‘
- !

5 10 15
index of data point

-2 -2

20 20

14 Y. WANG ET AL.

number of training samples. Given the predicted mean and
standard deviation on each testing data point, the 95% CI is
generated for uncertainty quantification. The visualization of
UQ is shown in Figure 9, in which the star represents the
ground-truth value, the line in the middle represents the
predicted mean, and the capped line represents the 95% CI
(£1.966). From Figure 9, we can find that: (i) with more
training data, the predicted mean value (line in the middle)
tends to get closer to the real value (star); (ii) the GP with
the Matern kernel tends to underestimate the standard devi-
ation, and some of the real values lie out of the boundary of
the 95% CI (highlighted in dashed boxes); (iii) the GP with
the Polynomial kernel tends to overestimate the standard devi-
ation, which makes the CIs make no sense in applications;
(iv) the NPs and NP-ODE generally generate a reasonable
standard deviation and predicted mean at each data point,
which makes the real value close to the predicted mean and
the CI gives a reasonable estimation of the uncertainty.

5.5.4. UQ comparison

In summary, the NP-ODE keeps the real value close to the
center of the CI and generates a reasonable estimation of
uncertainty. The NP-ODE gives the most accurate predic-
tion on testing data points. When feeding 80 training sam-
ples into the model, the predicted 95% CI has the best
coverage on testing data points.

5.5.5. Computational cost

The training time of the proposed NP-ODE is mainly deter-
mined by the number of training iterations. Iteration here
denotes a complete forward and backward propagation to
update the model parameters. The experiments are con-
ducted on a single NVIDIA TITAN V GPU, and it takes
around 0.1 seconds to run a single iteration in training NP-
ODE. The training process commonly has 10 000 iterations,
so that it takes around 17 minutes to train the NP-ODE. For
comparison, the training process of the original NPs takes
around 5 minutes for 10 000 iterations, and the training pro-
cess of the GP takes around 0.05 seconds.

It should be noted that the training process for surrogate
models is the most time-consuming step and is often taken
offline. As long as the model is ready to use, there is no
need to repeat the training process. The computational cost
of the NP-ODE in predicting 20 testing data points is
0.2 seconds, which is comparable to the original NPs and
the GP. More importantly, comparing the time efficiency of
surrogate models to the FEA method is more practically
meaningful. Compared with the FEA method, the trained
NP-ODE significantly reduces the computational cost of
predicting results on new inputs from hours to seconds.

6. Conclusion

Despite the strength and accuracy of the FEA method, its
applications are hindered by the high computational cost
and lack of ability in UQ. Since uncertainties inevitably exist
in engineering systems, UQ is essential in system modeling.

The Monte Carlo method is a standard approach to conduct
UQ. However, the Monte Carlo method suffers from signifi-
cantly growing computational time when repeating simula-
tions. The existing surrogates built for UQ of FEA are
mainly based on the GP and its variants. Although it
reduces computational cost compared with the FEA method,
it suffers from a lack of interpretability and is unable to
handle large volume and high-dimensional data.

This article proposes a physics-informed stochastic surro-
gate NP-ODE to model the FEA simulations as well as eval-
uating the uncertainties of the output. In the NP-ODE, the
basic structure enables the model to generate distributions
of the output for UQ, and the Neural-ODE is incorporated
as the decoder. It improves the model’s ability to solve sys-
tems governed by differential equations. In the case study,
we select MAPE and 95% CI to evaluate the predictive
accuracy and UQ. Based on the case study, the advantages
of our proposed NP-ODE can be summarized into several
aspects: (i) compared with the GP and its variants, our pro-
posed NP-ODE shows a better ability in exploring limited
training samples and has a robust performance in both pre-
dictive error and UQ when decreasing the training samples;
(ii) compared with the original NPs, the incorporation of
Neural-ODE reduces the number of model parameters and
enables our proposed NP-ODE to better model FEA simula-
tions; (iii) the proposed NP-ODE solves differential equa-
tions in its decoders, so it is more physically close to the
mechanism of the original FEA.

There are several limitations of the proposed NP-ODE.
First, incorporating Neural-ODE might introduce extra com-
putational cost if we select a small value of step size AD. In
our experiment, the influence is mitigated by tuning the
value of AD to find a balance between accuracy and effi-
ciency. Second, given the accurate results of the simulation
study and case study, the assumption of Euler’s method is to
fix the value of AD in solving NP-ODE. Other numerical
methods with an adaptive step size can be the alternatives to
solve NP-ODE. For future extensions, the proposed NP-
ODE may provide a prototype about incorporating UQ and
stochastic surrogates for FEA simulations. Following this
prototype, it will be interesting to design stochastic surro-
gates for systems governed by PDEs.

Data and code availability

The dataset and codes for this paper are available in the
supplementary files (doi.org/10.6084/m9.figshare.13828514).
They are also available in Github https://doi.org/10.6084/m9.
figshare.13828514.

Funding

This research was supported by the US National Science Foundation
under Grant CMMI-1855651. This research was also partially sup-
ported by the US National Science Foundation under CMMI-2035038.
The computational resource used in this work is provided by the
advanced research computing at Virginia Polytechnic Institute and
State University.

https://doi.org/10.6084/m9.figshare.13828514
https://doi.org/10.6084/m9.figshare.13828514

Notes on contributors

Yinan Wang received a BS degree in electrical engineering and auto-
mation from Xi’an Jiaotong University, Xi’an, China, in 2017, an MS
in electrical engineering from Columbia University, New York, NY,
USA, in 2019. Currently, he is a PhD student at the Grado Department
of Industrial and Systems Engineering, Virginia Tech, Blacksburg, VA,
USA. His research interests include data analytics, system pattern rec-
ognition, machine learning techniques in material/system design, and
advanced manufacturing. Mr Wang is a member of INFORMS, IISE,
and ASA.

Kaiwen Wang received a BS degree in applied physics from the
University of Science and Technology of China, in 2017. Currently, he
is a PhD student at the Material Science and Engineering Department
of Virginia Tech, Blacksburg, VA. His research interests include multi-
scale and multiphysics simulations on tribocorrosion behavior of met-
als, alloys, and structural materials, specifically using finite element
method and molecular dynamics.

Dr. Wenjun Cai is an assistant professor in the Department of
Materials Science and Engineering at Virginia Tech, USA. She received
her BS in materials science from Fudan University in 2005 and her
PhD in materials science engineering from the University of Illinois at
Urbana-Champaign in 2010. Her research interests are in physical
metallurgy; corrosion and tribocorrosion; materials deformation and
degradation under extreme conditions; materials characterization;
mechanical testing and fracture mechanics; and thin films and coatings.
She is the recipient of the 2017 TMS Young Leaders Professional
Development Award, 2016 Outstanding Faculty Award of the
University of South Florida, and 2015 CAREER Award of National
Science Foundation.

Dr. Xiaowei Yue received a BS degree in mechanical engineering from
the Beijing Institute of Technology, Beijing, China, in 2011, an MS in
power engineering and thermophysics from the Tsinghua University,
Beijing, China, in 2013, an MS in statistics, PhD in industrial engineer-
ing with a minor machine learning from the Georgia Institute of
Technology, Atlanta, USA, in 2016 and 2018. Currently, he is an assist-
ant professor at the Grado Department of Industrial and Systems
Engineering, Virginia Tech, Blacksburg, USA. His research interests are
focused on engineering-driven data analytics for advanced manufactur-
ing. He is a recipient of IEEE Transactions on Automation Science and
Engineering Best Paper Award and several other best paper awards. He
is also a recipient of Mary G. and Joseph Natrella Scholarship from
ASA, and FTC Early Career Award from ASQ. He serves as an associ-
ate editor for the Journal of Intelligent Manufacturing and the IISE
Transactions.

ORCID

Yinan Wang (5) http://orcid.org/0000-0002-4079-1658
Kaiwen Wang ([s) http://orcid.org/0000-0003-4765-8726
Wenjun Cai (#) http://orcid.org/0000-0002-9457-8705

Xiaowei Yue (5) http://orcid.org/0000-0001-6019-0940

References

Ankenman, B., Nelson, B.L. and Staum, J. (2010) Stochastic kriging for
simulation metamodeling. Operations Research, 58(2), 371-382.
Bahdanau, D., Cho, K.H. and Bengio, Y. (2015) Neural machine trans-
lation by jointly learning to align and translate, in Proceedings of the
3rd International Conference on Learning Representations (ICLR).
Blundell, C., Cornebise, J., Kavukcuoglu, K. and Wierstra, D. (2015)
Weight uncertainty in neural network, in Proceedings of the 32nd
International Conference on Machine Learning (ICML), pp.
1613-1622, PMLR. http://proceedings.mlr.press/v37/blundell15.html.
Chen, R.T.Q., Rubanova, Y., Bettencourt, J. and Duvenaud, D. (2018)
Neural ordinary differential equations, in Proceedings of the 32nd

IISE TRANSACTIONS 15

International Conference on Neural Information Processing Systems
(NeurIPS), pp. 6572-6583, Curran Associates Inc., Red Hook, NY.
Dong, J., Qin, Q.H. and Xiao, Y. (2020) Nelder-Mead optimization of
elastic metamaterials via machine-learning-aided surrogate model-

ling. International Journal of Applied Mechanics, 12(1), 2050011.

Gal, Y. and Ghahramani, Z. (2016) Dropout as a Bayesian approxima-
tion: Representing model uncertainty in deep learning, in
Proceedings of the 33rd International Conference on Machine
Learning (ICML), pp. 1050-1059, PMLR. http://proceedings.mlr.
press/v48/gal16.html

Garnelo, M., Rosenbaum, D., Maddison, C., Ramalho, T., Saxton, D.,
Shanahan, M., Teh, Y.W., Rezende, D. and Eslami S.M.A. (2018)
Conditional neural processes, in Proceedings of the 35th
International ~Conference on Machine Learning (ICML), pp.
1704-1713, PMLR. http://proceedings.mlr.press/v80/garnelo18a.html

Garnelo, M., Schwarz, J., Rosenbaum, D., Viola, F., Rezende, D.J.,
Eslami, S.M.A. and Teh, Y.W. (2018) Neural processes. arXiv pre-
print arXiv:1807.01622.

Griffiths, D.F. and Higham, D.J. (2010) Numerical Methods for
Ordinary Differential Equations: Initial Value Problems, Springer,
London, UK.

Hoang, T.N., Hoang, Q.M. and Low, B.K.H. (2015) A unifying frame-
work of anytime sparse Gaussian process regression models with
stochastic variational inference for big data, in Proceedings of the
32nd International Conference on Machine Learning (ICML), pp.
569-578, PMLR. http://proceedings.mlr.press/v37/hoang15.html

Kim, H., Mnih, A., Schwarz, J., Garnelo, M., Eslami, A., Rosenbaum,
D., Vinyals, O. and Teh, Y.W. (2019) Attentive neural processes.
arXiv preprint arXiv:1901.05761.

Liang, L., Liu, M., Martin, C. and Sun, W. (2018) A deep learning
approach to estimate stress distribution: A fast and accurate surro-
gate of finite-element analysis. Journal of the Royal Society Interface,
15(138), 20170844.

Liu, H., Ong, Y.S., Shen, X. and Cai, J. (2020) When Gaussian process
meets big data: A review of scalable GPs. IEEE Transactions on
Neural Networks and Learning Systems, 31(11), 4405-4423.

Loose, J.P., Chen, N. and Zhou, S. (2009) Surrogate modeling of
dimensional variation propagation in multistage assembly processes.
1IE Transactions, 41(10), 893-904.

Mahadevan, S. and Liang, B. (2011) Error and uncertainty quantifica-
tion and sensitivity analysis in mechanics computational models.
International Journal for Uncertainty Quantification, 1(2), 147-161.

Rubinstein, R.Y. and Kroese, D.P. (2017) Simulation and the Monte
Carlo Method, Wiley, Hoboken, NJ.

Snelson, E. and Ghahramani, Z. (2006) Sparse Gaussian processes using
pseudo-inputs, in Proceedings of the 18th International Conference
on Neural Information Processing Systems, pp. 1257-1264, Curran
Associates Inc., Red Hook, NY.

Su, G., Peng, L. and Hu, L. (2017) A Gaussian process-based dynamic
surrogate model for complex engineering structural reliability ana-
lysis. Structural Safety, 68, 97-109.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez,
AN, Kaiser, L. and Polosukhin, I. (2017) Attention is all you need,
in Proceedings of the 3Ist International Conference on Neural
Information Processing Systems (NeurIPS), pp. 6000-6010, Curran
Associates Inc., Red Hook, NY.

Wang, G.G. and Shan, S. (2006) Review of metamodeling techniques in
support of engineering design optimization. Journal of Mechanical
Design, 129(4), 370-380.

Wang, H., Yuan, J. and Ng, S.H. (2019) Gaussian process based opti-
mization algorithms with input uncertainty. IISE Transactions,
52(4), 377-393.

Wang, K., Wang, Y., Yue, X. and Cai, W. (2021) Multiphysics model-
ing and uncertainty quantification of tribocorrosion in aluminum
alloys. Corrosion Science, 178, 109095.

Wang, L., Chen, X,, Kang, S., Deng, X. and Jin, R. (2020) Meta-model-
ing of high-fidelity FEA simulation for efficient product and process
design in additive manufacturing. Additive Manufacturing, 35,
101211.

http://proceedings.mlr.press/v37/blundell15.html
http://proceedings.mlr.press/v48/gal16.html
http://proceedings.mlr.press/v48/gal16.html
http://proceedings.mlr.press/v80/garnelo18a.html
http://proceedings.mlr.press/v37/hoang15.html

16 Y. WANG ET AL.

Wang, W., Yue, X., Haaland, B. and Wu, C.J. (2020) Gaussian process
with input location error and applications to composite fuselage
shape control. arXiv preprint arXiv:2002.01526.

Yildiz, C., Heinonen, M. and Lahdesmaki, H. (2019) ODE2VAE: Deep
generative second order ODEs with Bayesian neural networks, in
Proceedings of the 33rd International Conference on Neural
Information Processing Systems (NeurIPS), Curran Associates Inc.,
Red Hook, NY.

Yue, X. and Shi, J. (2018) Surrogate model-based optimal feed-forward
control for dimensional-variation reduction in composite parts
assembly processes. Journal of Quality Technology, 50(3), 279-289.

Yue, X., Wen, Y., Hunt, J.H. and Shi, J. (2018) Surrogate model-
based control considering uncertainties for composite fuselage
assembly. Journal of Manufacturing Science and Engineering,
140(4), 041017.

Yue, X,, Wen, Y., Hunt, J.H. and Shi, J. (2020) Active learning for
Gaussian process considering uncertainties with application to shape
control of composite fuselage. IEEE Transactions on Automation
Science and Engineering, 18(1), 36-46.

Zienkiewicz, O.C., Taylor, RL. and Zhu, J. (2013) The Finite Element
Method: Its Basis and Fundamentals, seventh edition, Elsevier
Butterworth-Heinemann, Burlington, MA.

	Abstract
	Introduction
	Motivation
	Literature review
	Review on deterministic surrogates
	Review on uncertainty quantification and stochastic surrogates

	Proposed method and contributions

	Neural ODE and NPs
	Neural-ODE
	NPs

	NP-ODE
	Limitations of Neural-ODE and NPs
	General setup of the NP-ODE to model FEA simulations
	Formulate Neural-ODE to model FEA simulations
	Structure of the encoder in NP-ODE
	Structure of the decoder in NP-ODE

	Uncertainty quantification
	Properties of NP-ODE
	Pseudo-code of the algorithm for NP-ODE

	Simulation study
	Simulation setup
	Evaluation metrics
	Comparison with benchmark methods
	Experiment design
	Mean prediction comparison
	UQ comparison

	Case study
	Introduction to FEA for tribocorrosion
	Dataset introduction and preprocessing
	Parameter analysis and selection
	Evaluation metrics
	Comparison with benchmark methods
	Introduction to benchmark methods
	Experiment design
	Mean predictions comparison
	UQ comparison
	Computational cost

	Conclusion
	Data and code availability
	Funding
	Orcid
	References

