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ABSTRACT

We consider laser-driven optimal control landscape of a molecule from a classical mechanical perspective. The goal of optimal control in the present work is to steer
the molecule from an initial state to a target state, denoted by two distinct points in phase space. Thus, a particular control objective is given as the difference
between the final achieved phase space point and the target. The corresponding control landscape is defined as the latter control objective as a functional of the
control field. While previous examination of the landscape critical points (i.e., a suboptimal point on the landscape where there is a zero gradient) has shown that the
landscape topology is generally trap-free, the structure of the landscape away from these critical points is not well understood. We explore the landscape structure by
examining an underlying metric defined as the ratio R of the gradient-based optimization path length of the control field evolution to the Euclidean distance between
a given initial control field and the resultant optimal control field, where the latter field corresponds to a point at the top of the landscape. We analyze the path
length-to-distance ratio R analytically for a linear forced harmonic oscillator and numerically for a nonlinear forced Morse oscillator. For the linear forced harmonic
oscillator, we find that R < +/2 and reaches its minimum value of 1 (i.e., corresponding to “a straight shot” through control space) in the large target time limit, as
well as at special finite target times. The ratio R is similarly small for Morse oscillator simulations when following a steepest-ascent path to the top of the landscape,
implying that the landscape is quite smooth and devoid of gnarled features. This conclusion is exemplified for a path discovered with R ~ 1.0 where simply following
the initial gradient direction takes the climb very close to the top of the landscape. These findings are consistent with a variety of previous like simulations examining

R in quantum control scenarios.

1. Introduction

Molecular optimal control theory generally considers system dy-
namics described by quantum mechanics, where it has provided a basis
to understand the widely observed success of many control experiments
[1,2]. In such studies, an optimally shaped laser field (or other fields
appropriate for the applications) is applied to a particular system so as
to achieve a desired control objective. For many objectives, one can
show that the underlying quantum control landscape, defined as the
physical objective as a function of the control field, is generally free of
“traps” that could hinder common search algorithms (i.e., especially
local gradient-based algorithms) from finding an optimal control field
[3-8]. As molecular dynamics is often described well classically [9-11],
recent work has extended the control landscape analysis to systems
with dynamics described by classical mechanics [12,13]. For appro-
priate systems, classical mechanics can be more computationally
tractable than quantum mechanics, which motivates the further ex-
ploration of classical optimal control landscapes.

Under reasonable system assumptions, a careful choice of objective
function generally ensures the trap-free nature of classical control
landscapes [14]. However, that analysis considered only the landscape
topology specified by so-called “critical points” and did not explore the
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structure of the control landscape lying between the lowest and highest
critical points (i.e., the corresponding bottom and top of the landscape).
Even if the control field does not encounter any landscape traps as it
evolves towards an optimal field, the optimization path length along
the excursion depends sensitively on the structure of the landscape and
the optimization algorithm employed. Control fields in simulations are
frequently optimized with a gradient algorithm, taking a steepest ascent
climb of the landscape accompanied by a corresponding path through
the space of control fields. Gnarled control landscapes, with many dips
and ridges (yet still with no traps), can force the gradient to change
direction many times, resulting in a convoluted path between the initial
field and final optimal control field. Smooth, rather featureless land-
scapes, on the other hand, would take the control field along a near
straight path from the initial to optimal field. If nearly straight control
field trajectories are common, they have computational advantages —
instead of re-computing the gradient of the objective at every step along
the path, the gradient could be computed infrequently on the way to-
wards the optimal control field. Thus, in this work, we explore the
structure of classical optimal control landscapes by examining the
nature of optimization paths taken as we proceed from initially poor
control fields (i.e., producing dynamical outcomes far from the desired
goal) towards optimal fields.
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Previous gradient-based investigations of landscape structures in the
quantum mechanical regime of closed finite-level systems have shown
that control fields follow remarkably straight paths [15-18], indicating
that the landscapes are largely featureless, as well as almost always
expected to be free of traps [19,20]. These results, although developed
under ideal conditions, indicate that optimal control fields may be
readily found, which is consistent with the broad laboratory success of
quantum optimal control experiments [1,2] as well as simulations,
where the gradient or other algorithms are used. Prior to the present
work, it was an open question about whether this structural simplicity
carried over to classical control landscapes, although they have already
been shown to share the common lack of landscape traps under sa-
tisfaction of three fundamental assumptions [9,10]. Previous work on
optimal control further suggests that classical and quantum molecular
dynamical models often give qualitatively similar results [21-24].
However, classical mechanics is fundamentally distinct from quantum
mechanics; for instance, the phase space dynamics for classical systems
can be severely nonlinear and unstable, unlike the linear Schrédinger
equation for quantum state dynamics. These differences further warrant
the present investigation into the structure of classical control land-
scapes.

This paper considers steering the dynamics in the classical phase
space from an initial point to a target point, which is analogous to the
investigation of state-to-state quantum transition probabilities in [15].
The paper starts with consideration of the linear forced harmonic os-
cillator, which is studied as a physically relevant model that permits
analytically identifying bounds on the length of the control field opti-
mization path. We then conduct numerical simulations for a nonlinear
Morse oscillator, showing that even in the presence of nonlinear state
dynamics, the control field optimization paths remain remarkably
straight. Thus, in this work, we show that classical control landscapes,
like their quantum counterparts, are generally devoid of gnarled
structure.

We finally remark that classical systems have the potential for
chaotic behavior, and numerical instability in evolving the control field
can possibly lengthen the path taken towards an optimal field.
However, some systems that are chaotic without a control have even
been shown to exhibit non-chaotic behavior under control [25-28]. In
essence, the potential for chaos could pose a numerical or experimental
issue for optimizing control fields within classical dynamics, rather than
a fundamental one. Consideration of the chaotic regime, however, is
beyond the scope of this paper.

In Section 2, we present the basic formulation for examining the
landscape structure in terms of the ratio R of the observed optimization
path length to the Euclidean distance between an arbitrarily chosen
initial control field and the optimal field discovered by use of a gra-
dient-based landscape climbing algorithm. Section 3, presents analy-
tical bounds on R for a linear forced harmonic oscillator. We then nu-
merically explore the paths taken when controlling a Morse oscillator in
Section 4. Section 5 provides concluding remarks.

2. General formulation of landscape structure

We consider the classical dynamics of a molecule consisting of n
atoms in the presence of a control field €(t), t € [0, T]. The evolution of
the system in phase space is described by the time-dependent state

variable () = [qT(t)

T(t)]’ which is governed by Hamilton’s equations,
p

o \T
o (%) Mp(t)
z(t) = =] _ v@w) , A@®) ,
T —
—(ﬂ) a® T oqm M)
% 1)

where the superscript “T” denotes a vector/matrix transpose, the di-
agonal square matrix M is composed of the individual atomic masses
[10]. The vectors q(t) and p(t) are, respectively, the position and

Chemical Physics 527 (2019) 110504

momentum coordinates of the constituent atoms, and the system Ha-
miltonian H (q(t), p(t)) is written as

H(q(®), p(1), 1) = % "(OM'p(t) + V(q(t) — Aq(D) €(b). @
We assume that the potential and dipole functions, V and A respec-
tively, are twice-differentiable in q(t).

The goal of this paper is to explore the structure of the
classical molecular control landscape defined by a given objective
Jle ()] = 0(z(T)) as a functional of the control field €(t). While in
general O(z(T)) can be any twice-differentiable function, which in itself
does not have traps over z [14], we assume in this work that it has the
quadratic form

Jle ()] = 0(@(T) = —(&(T) — z*VQ2(T) — z*). 3)

where z* is a specified target state and Q is a symmetric, positive-
definite matrix. Thus, O is a concave function of z(T), representing the
weighted, negative squared distance between z(T) and the target z*".

To facilitate the landscape structure analysis, we only deal with
molecules that are considered to satisfy the following three funda-
mental assumptions: (1) they are controllable, (2) the gradient of the
final state with respect to the control field, {6z(T)/6 «(t), t € [0, T]},
comprises a full-rank (surjective) collection of 2n-dimensional vectors
(i.e., linearly independent for any z(T) generated by an arbitrary «(-)),
and (3) the control resources are freely available (i.e., there are no
physically relevant constraints on €). Taken together, satisfaction of
these three assumptions are sufficient to ensure that the landscape J [€]
contains no traps [9], i.e., a gradient algorithm will evolve the control
field so as to successfully maximize J. However, satisfaction of the as-
sumptions does not indicate the paths that the field takes to maximize J
when starting from an arbitrary initial field. In particular, as pointed
out in the introduction, a gnarled landscape with many twists, turns,
and ridges could still allow the gradient algorithm to reach the top of
the landscape, but a long path would likely be needed to traverse the
landscape, instead of the limiting ideal case where the landscape is
appropriately smooth to permit taking a nearly straight line path from
the initial to the optimal field.

2.1. Path length ratio metric R characterizing the landscape structure

To evaluate the landscape structure, we consider a metric R(s),
defined as the ratio of (i) the path length dp;(s) taken by the control
field along the gradient climb to (ii) the straight-line Euclidean distance
dg (s) between the initial and optimized fields, i.e.,

dpy (s) >1
dg(s) = &)

where the parameter s(>0) is introduced to track (i.e., label) the path of
the field traversing the control space and correspondingly its image as a
trajectory climbing the landscape. Starting with the same, albeit arbi-
trary, initial point z(s, 0) = z™' V s > 0 in phase space, the initial field
e(s=0,1),0<t< T, is generally expected to give a poor (i.e., large
negative) value for O(z(s = 0, T)) in Eq. (3), while the final optimal
field e(s = S, t), 0 < t < T, yields the maximal value of O(z(s = S, T))
to an acceptable tolerance at the end of the landscape climb where
s = S. The path length to distance ratio R(s), as a function of s, can be
used to assess the features of the landscape encountered in continuously
optimizing the control field. Furthermore, since R(s) depends on the
initial field, we can evaluate the distribution of R values for a given
molecule and its optimization landscape by following the pathway up
the landscape using an ensemble of chosen initial fields; note that
with the gradient algorithm a specific unique path will be taken,
e(s=0,t) - (s = S, t), connecting the specified initial and final phase
space points.

Other algorithms not based on the gradient may be used to climb
the landscape and explore R, and the nature of the algorithm can

R(s) =
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influence R (e.g., a stochastic algorithm is likely to take a rather erratic
path up the landscape [15]). Here we use the gradient algorithm as it is
(a) most commonly employed in simulations and (b) particularly sen-
sitive to local landscape features. This paper will use the D-MORPH
formulation of the gradient algorithm [29]. A gradient algorithm
guiding a path up an essentially featureless landscape will likely take a
near-straight path, i.e., the gradient will point directly towards the top
of the landscape, evolving the field over s in a nearly straight line
through control space towards an optimal field. Such a path corre-
sponds to a value of R close to 1. More gnarled landscapes, however,
with additional features can force the gradient to repeatedly change
direction and increase the length of the path taken by the control field
(i.e., to its optimal form (S, t), 0 < t < T) relative to the Euclidean
distance between the initial and final fields, thereby producing a larger
value of R.

The gradient-based path length dp; (s) and the associated Euclidean
distance dy (s) can be expediently calculated via the tracking parameter
s, where the control field (s, t), t € [0, T], at the value s on the land-
scape climb corresponds to the yield J(s) = O(s) = O(z(s, T)) in Eq.
(3). The generally expected topological absence of traps implies that
under the gradient algorithm, the control field €(s, ¢) will eventually
evolve over s such that the objective yield corresponds to reaching the
top of the landscape (i.e., the field will maximize J as s — o), which is
in practice stopped at an acceptable value where s = S.

Using simple analysis from calculus, the path length traversed from
s=0—Sis

€ 2
w5

while the Euclidean distance dz(S) between the initial, (0, t), and
optimal, (S, t), control fields is given by

dp(S) = \/% fOT (e(S, 1) — <(0, )%t .

(6)
From Egs. (4)-(6) we obtain
] 2
fé ds fT Be(ss,t) dt
R(S) = — OT i ( ? ) .
v’fo (e(S, t) — €(0, t))%dt %)

Although R can in principle take any value between 1 and o [15], our
simulations (cf., Section 4) in this paper show that it generally remains
small and below ~ 2. This result is qualitatively consistent with R de-
termined in a variety of quantum control applications [15-18].

A simulation that achieves the minimum, R = 1, implies that a
straight-line path was taken, dp;(S) = dg(S), through control space to
reach the optimal field. It has been shown that R = 1, if 0 (s, t)/0s is a
separable function in s and ¢, i.e.,

200~ a(w)p

3 ®

where a(s) and B(t) are real scalar functions of s and t, respectively
[15]. In particular, such linear “straight line” paths can be expressed as
e(s, 1) = v($)(e(S, 1) = €(0, ) + €(0, 1), 25 = 2 (e(S, 1) — €(0, 1)),
where v(s) € [0, 1] is a monotonically increasing function with »(0) = 0
and v(S) = 1; comparing to Eq. (8), we have a(s) = dv(s)/ds and
B(t) = (e(s, t) — €(o0, t)). The separability of s and t dependence in Eq.
(8) ensures that the gradient does not shift direction (i.e., it has the
same dependence on t) as s changes, allowing the control field to evolve
along a straight-line path to its optimal form €(S, t). The finding of such
straight paths would be numerically favorable, as they only require one
gradient computation. Even a prevalence toward R ~ 1 could allow for
infrequent evaluation of the gradient along the landscape climb.
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2.2. Gradient-based D-MORPH algorithm

Within the framework of the D-MORPH gradient algorithm [29], the
evolution of the form of the control field over time t is governed by a
first-order initial-value differential equation in s,

de(s,t) &I 3] 85, T)
ds  bSe(s,t)  9z(s, T) Se(s, 1) 9

which can be integrated from an initial trial choice €(0, t) at s = 0,
following the gradient 8J/6 €(s, t), to produce all intermediate control
fields e(s, t), t € [0, T] for s € [0, S]. It is readily seen that under the D-
MORPH algorithm, the field corresponds to a monotonic climb towards
the top of the landscape as s increases,

2
a7 _ /T 6] de(s, t) di = j-T oJ dt> 0.
ds 0 Se(s,t) Os 0 \de(s,t) (10)

We note that for the numerical simulations in Section 4, Eq. (9) is dis-
cretized over time and the field e(s, t) evolves as €(s, t) — €(s + ds, t),
thereby increasing J. Eq. (9) is integrated with respect to s at each of the
time points using a fourth-order Runge-Kutta method and the process is
stopped at an acceptable convergence criterion, e.g., — J < 0.01.

3. Metric bounds for R(S) with a linear forced harmonic oscillator

The linear forced harmonic oscillator has long served as a physically
relevant reference case for molecular control, and it is natural to con-
sider as a starting model for assessing landscape structure. Furthermore,
we will show that a rigorous upper bound can be found for R(S) in this
case, and the later numerical simulation results in Section 4 with a
Morse oscillator exhibit very similar qualitative R behavior to that
found for the harmonic oscillator.

A one-dimensional linear forced harmonic oscillator is described by
the Hamiltonian

_p@W?* | kq()? .
=om T2 + ag (<), aamn

where aq(¢) is the dipole function. Consider the cost function

H

1 tar tar
J= =20 = 2 (1) - 2, 12)

T
where z(T) = Z((T))] is the 2 X 1 phase space column vector reached at
the terminal time t = T, starting with some arbitrary phase space

= [qo] at the initial time ¢t =0, and

Po

column vector z(0) =
© {p(O)

q(O)]

tar
Zr = ;13"" is the target vector. Here g, and p, denote the initial po-
sition q(t = 0) and momentum p(t = 0), respectively.

For simplicity and without loss of generality, we will
assume m =k =1 in the following R metric bound analysis.
This can be best realized by adopting the new variables:
t - Jk/m t,q > Jk q, p - p/vm, a — a/Jk. It can then be readily
shown that for the linear forced oscillator in the presence of the control
field e(s, t), the terminal time phase point z(s, T) can be written as

z(s, T) = exp([_o1 (l)]T) X {[Z[;] — a/O'Texp(—[_Ol é]t) X [(1)] e(s, t)dt},
13)

where it is understood that the system starts with the same initial phase
qo

Po
Eq. (13) leads to the functional derivative

8z(s, T) _ 0 1 _ 0] _ _ sin(T — t)
Se(s, t) aexP([—l 0](T [))X[l]_ a[COS(T—t)]’ a4

space point for all s > 0, i.e., z(s, 0) = [ ] It is then easily seen that

which is independent of the control field (s, t). By using Egs. (12) and
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(14) in conjunction with the D-MORPH gradient algorithm, Eq. (9), we
obtain the relation

de(s,t)__ &I
6s e (st
__ o]  &z(s,T)
T9z(s, T) S € (5,1)
. T
[sm(T t)] % (2(s, T) — 2}
cos(T — t) (15)

From Egs. (14) and (15), we then derive the D-MORPH equation for the
phase space point z(s, T) at the final time T as follows:

9z(s,T) _ pT 8z(s,T) 3 € (s,t)
s _-/(’) Se(s,t) Os dt

= a?L(z(s, T) — z%), (16)
where

_1f2Tr- sin(2T) 1 — cos(2T)
" 4| 1-cos(2T) 2T + sin(2T) a7

is a positive definite matrix for T > 0. Since the matrix L is independent
of the integration variable s, it follows that the solution of Eq. (16) can
be written as

z(s, T) — z% = exp(—a’Ls) x {z(0, T) — z'*}. (18)
Therefore, Eq. (15) can be further expressed as

. T
de(s, t) - —a [SID(T - [):| % exp(—ast) x {z(0, T) — z1},

ds cos(T — t) (19)
which can be integrated over s to yield the control field
e(s, t)
. T
=€(0,1t) + % X [zz;g: : t[))] X L' x {exp(—a®Ls) — I}
x {z(0, T) — z'}, (20)
where I denotes the 2 X 2 identity matrix and
[ 1 [ 2T + sin(2T) -1+ cos(ZT)]
T2 —sin?T | — 1 + cos(2T) 2T —sin(2T) | 21)

noting that (T2 — sin?T) > 0 for all T > 0. Thus, in the limit of s - oo,
we have from Eq. (18) z(s, T) — z™ as L is positive-definite, showing
that the final state approaches the target as the control field (s, t)
evolves towards an optimal control field, i.e.,

sin(T — t)

1
li , 1) =¢€(0,t) — —
551; =<0 a x [cos(T —t)

T
] X L' x {z(0, T) — 2z},

(22)

which is in agreement with the exact (inverse) solution of the corre-
sponding classical Hamilton equation (i.e., Eq. (1)) for the linear forced
harmonic oscillator [30].

From Egs. (5), (15), and (18), it can be shown that the path length
through the control space is

dpr (S)=a ‘/l;s \/[z(O, T) — 22 |Texp(—a’Ls)Lexp(—a®Ls)[z(0, T) — z®] ds
<§(\/U_1Y1 + %),

(23)

bl
Y2
o, = 2/(T + IsinTl) > 0, and o, = 2/(T — IsinTl) > 0 (for T > 0). Here

o 0
! ] More-
0 (o))

over, we have used the relation /[y, (s)* + [y,($)* < Iy, ()l + ly,(s)! for

¥, %, €R and Ixl = \x? + x} for the magnitude of any real number

where the vector y = ] = UL'(I — exp(—a?LS))Iz(0, T) — 2% > 0,

the unitary matrix U diagonalizes L such that ULU' = [

2 X 1 column vector x = [2] Similarly, using Egs. (6), (15), and (18),
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we find that the Euclidean distance between the initial and final fields,
dp, can be written as

dp(S) = %\/[z(o, T) — 2T (I — exp(—a2LS))L™'(I — exp(—a®LS))[z(0, T) — z']

= %Jalyf + crzyzz.

24

By using Egs. (23) and (24), in conjunction with the chain of inequal-

ities x7 + x7 <X + % < 2(x + x7) for arbitrary numbers x; > 0
and x, > 0, we arrive at an absolute metric upper bound

R(S) = dp(S) < Joy + Vo, <z,

dg (S) \/crlyf + oy} (25)

indicating that R will be relatively small for the linear forced harmonic
oscillator.

Interestingly, at the special times T = nz (for the case of k = m = 1,
or wyT = nr for the more general case, where w, = Jk/m is the char-
acteristic frequency of the harmonic oscillator with a force constant k
and mass m), n = 1, 2, ---, the matrix L, Eq. (17), reduces to the simple
diagonal form

L= g[(l) (1)] (26)

and, as a result, Eq. (19) can be written as

. T
de6 D) = —aexp(—azTTs) X [Sm(T B t):l {z(0, T) — z7},

as cos(T — t) 27)

which is a product of two separate scalar functions of the parameter s
and time t, respectively, cf., Eq. (8). To this end, it can be shown that
the path length dp;(S), Eq. (23), and the corresponding Euclidean dis-
tance dg(S), Eq. (24), can be reduced to the same expression, i.e.,

dpr(S) = dg(S)

= % X V‘g X [1 — exp(—a?TS/2)]
X \/[z(O, T) — z2|"[z(0, T) — z]. (28)

Thus, the metric R(S) shrinks to its lower limit of R = 1, implying that
the underlying control field follows a straight-line path at the special
times T = nz (or more generally wyT = nr), n = 1, 2, .... Though the
harmonic oscillator is a particular classical system, the findings above
suggest that low R values may also arise for other types of systems; this
behavior is confirmed in an anharmonic oscillator example in Section 4.

We will verify the analytical results above by numerically calcu-
lating R for several simulations with the harmonic oscillator and ob-
jective function J = —(q(T)? + p(T)?)/2, corresponding to the target
g™ = 0 and p" = 0 in phase space. The parameters in Eq. (11) are set
tobem =1, k = 2, a = 0.5, with a final time of T = 187 and initial state
(q(0), p(0)) = (1.69, 1). Note that this case corresponds to k = 2 and
Tx Jk/m =18V27 # nm, n an integer; thus, it does not yield
R(S) = 1. We initialize the control field to be a sum of three sine
functions with randomly chosen amplitudes (between 0.0005 and 0.05)
and phases (between 7 and — 7), and frequencies of w, 2w, and 3w,
where w = Jk/m is the natural frequency of the unforced oscillator.
Fig. 1(a) shows the distribution of R over 300 simulation runs; we see
that the maximum R value is ~ 1.22, which is below the theoretical
limit of V2. As another example, Fig. 1(b) shows the distribution
for 100 simulation runs with each of three different final states:
(g%, p) = (1.565, —0.246), (1.982, 1.537), and (1.989, 0.5), utilizing the
same initial condition in Fig. 1(a) for all cases. Again, R remains well
below +/2. Each simulation run was stopped when the objective func-
tion J[e (s, -)] = —0.0001 (i.e., the landscape value J was within four
decimal places of its maximum value of 0).

We finally tested the theoretical upper bound of R < +/2 by using a
stochastic particle swarm optimization directed to maximize R at the
final control field (see Refs. [15,31] for details on the particle swarm
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Fig. 1. Histograms of the final R values with the linear forced harmonic oscillator and different target states: (a) Target (¢, p") = (0, 0) and (b) the combined
distributions for the targets (¢, p*) = (1.565, —0.246), (1.982, 1.537), and (1.989, 0.5). The initial state in all cases is (q(0), p(0)) = (1.69, 1).

algorithm). The target state is chosen as ¢ = 0 and p®" = 0. The initial
control field is taken as a sum of 50 sine functions, and the optimization
variables to maximize R, given the initial state (q(0), p(0)), are the
amplitudes and phases of the 50 sine functions. Thus, we are seeking to
maximizing R by searching over the indicated space of initial fields,
with the gradient algorithm then taking a path to the final field that
optimized J and permitted a calculation of R for each field. We find that
R < 1.34, which is well below the theoretical bound of +/2. All of these
findings for the linear forced harmonic oscillator will serve as a
benchmark reference for the characteristic molecular situation of a non-
linear forced Morse oscillator in Section 4.

4. Simulations for a controlled Morse oscillator

To complement the analytical results for the linear forced harmonic
oscillator above, in this section we numerically explore the landscape
structure for a Morse oscillator by sampling many different initial
control fields. We will see that similar R behavior arises, suggesting that
nearly straight, gradient driven control trajectories are common as
found in quantum control studies [15-18]. The Hamiltonian of the
controlled Morse oscillator is given as

p(t)?

H(q®, p®), 1) ===+ Do(1 — exp(~a(q(t) - )))* — Ag(texp(—£q (1)*) (1),

(29)

where we use the parameter values m = 1732, Dy, = 0.2101, o = 1.22,
f, =175, A = 04541, £ = 0.0064. All quantities are given in atomic
units (a.u.), and these parameter values approximate the behavior of an
HF molecule [32-34] collinear with the applied field. For all the si-
mulations, the final time is T = 3207, and the initial control field is
taken as a sum of three sine functions, with amplitudes randomly drawn
from the uniform distribution between 0.0005 and 0.05, and phases
drawn from a normal distribution between 7 and — 7. The frequencies
of the three sine functions are, respectively, 1, 2, and 3 times the fun-
damental frequency of the unforced oscillator. Each control field
through a gradient landscape climb has an imposed Gaussian envelope,
exp[—(t — T/2)?/20000], to assure that the field is essentially zero at the
beginning and end of the control interval (t = 0 or t = T).

4.1. Distributions of the path length ratio metric R

We consider the initial state (q(0), p(0)) = (1.75, 0), which is the
equilibrium phase space point of the field-free oscillator; varying the
initial state did not yield any significant difference in the resultant
distribution of R values. Each of the distinct target phase states are
taken to have an energy corresponding to either the 4th, 7th, or 11th

quantum energy level. The successive cases correspond to increasing
sampling of the anharmonicity and the nonlinear dipole coupling of the
Morse oscillator, cf. Eq. (29), with the objective function

Jlel = =[(@(T) = ¢™)* + (p(T) — p)*| (30)

corresponding to Eq. (3) with Q = I. Thus, — J represents the squared
Euclidean distance between the final achieved state and the target. The
control field optimization was stopped when J > —0.01, thus ensuring
that q(T) and p(T) are within 0.1 a.u. of the target. To calculate R, we
derive from Eq. (5) the following equation

d(dp,(s)) _ \/fT 1(6 <G, t))2 i
0

ds T ds (31)

which is integrated, together with Eq. (9) using a fourth-order Run-
ge-Kutta method, over s as the optimization proceeded to find the total
path length of the control field dp; (s) during the optimization. The final
value of R at s = S was calculated by dividing dp; (S) by the Euclidean
distance dg (S) between initial and final control fields in Eq. (6).

Fig. 2 shows the combined distribution of the final R values over
100 randomly chosen initial fields for each of the three targets:
(g, p*) is either (1.565, —0.246), (1.982, 1.537), or (1.989, 0.5) having
an energy corresponding to the 4th quantum energy level (delimited by
the inner and outer classical turning points at (g, — 1) # —0.37 and
(g, — 1) = 0.63, respectively, relative to the minimum potential posi-
tion at 7, = 1.75) in the anharmonic region of the Morse oscillator and
sampling the nonlinear nature of the dipole, cf. Eq. (29). Even the
largest R value is quite small, lying below 1.5, which is qualitatively
consistent with the analytical findings for the classical harmonic os-
cillator in Section 3 and qualitatively similar to previous findings for
quantum control simulations [15,17]. Several fields are concentrated
around R ~ 1 in Fig. 2, suggesting that near-straight control fields are
quite prevalent. However, there is little obvious distinguishing features
between fields that yield low and high R values. For example, Fig. 3
shows two illustrative optimal control fields that respectively corre-
spond to low and high R values. It was found that despite the large
differences in the respective R values (a) the fields possess comparable
oscillatory structures with some evident character of an approximate
sign flip starting at e = 0 and persisting at later times, while (b) the
fields are clearly distinct in amplitude with the field at the low
R( < 1.01) value having about twice the amplitude of that at the high
R( > 1.45) value. We further remark that a detailed examination of all
of the collective control fields showed quite varied behavior as well as
some similarity in certain cases. Fig. 3 is presented as an example of
where fields with a degree of similarity can give significantly different R
values.
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Fig. 2. Histogram of the combined final R values over 100
randomly chosen initial fields for each of three target states
(g™, p) = (1.565, —0.246), (1.982, 1.537), (1.989, 0.5) for the anharmonic os-
cillator with phase space targets corresponding to the 4th quantum energy
level. Each simulation was stopped when J > —0.01. The averaged final R value
is (R) ~ 1.21.
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Fig. 3. Two randomly chosen optimal fields that gave either a low (solid curve)
or a high (dashed curve) R value in Fig. 2 for the anharmonic oscillators cor-
responding to target phase space points at the 4th quantum energy level.

Some portion of the simulations in Fig. 2 started near the top of the
landscape, which in the extreme case yielded a very small R, value of
1.001 as a result. In order to eliminate any potential such bias we now
consider starting with initial fields that produce points in phase space
quite far from the top of the landscape. Thus, we first “normalize” the
fields to ensure that the initial value of J is sufficiently far from the final
accepted value of J > —0.01; after choosing a random control field, we
evolve it to an interim control field ; for which J[g;] € [-25, —9]. By
following this procedure, the achieved state under an interim field ¢; is
within a ring (i.e., of inner and outer radii, respectively, 9 and 25)
around the target point (¢, p'). We then use a set of such interim
fields {e;} to initiate the subsequent optimizations. Fig. 4 shows the
histogram of the resultant R values over 120 runs with 40 random
choices of € to respectively reach each of the three target values
(1.565, —0.246), (1.982, 1.537), and (1.989, 0.5) (i.e., the same targets
utilized previously) in Fig. 2. While the R values remain below R = 2,
we see that they have shifted away from R = 1, compared to the R-
values shown in Fig. 2. Thus, starting very far from the target reduced
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Fig. 4. Histogram of the resultant final R values reaching each of three target
states (', p) = (1.565, —0.246), (1.982, 1.537), (1.989, 0.5), with initial con-
trol fields producing J € [—-25, —9] values lying far from the targets at
J> —0.010 for the anharmonic oscillator with the target phase space points
corresponding to the 4th quantum energy level. The average value is (R) ~ 1.36.
A comparison with Fig. 2 shows the evident difference that very small R values
(i.e., R $1.1) are not present above, but the average values of (R) are very
similar and no R value exceeds 2 in either case. Thus, all control paths are not
strongly distorted, regardless of whether the initial field produces a J value
close to, or far from, the target at J = 0.

the number of essentially straight shots across control space. Notwith-
standing this change, Figs. 2 and 4 still share the common characteristic
of dramatically small R values (i.e., the average values are (R) ~ 1.21 in
Fig. 2 and (R) ~ 1.36 in Fig. 4), regardless of the initial field and the
associated J value. Thus, all of the results show that subtle changes in
(R) can arise depending on the imposed circumstances, but there is
remarkable general similarity in the final R distribution.

We also found that similar results shown in the histograms given in
Fig. 5, obtained from simulations for target phase space states having
relatively much higher energies corresponding to the 7th quantum
energy level [i.e., delimited by the inner and outer classical turning
points (g, — 1) & —0.45 and (g, — r.) = 1.05] and the 11th quantum
energy level [i.e., delimited by the inner and outer classical turning
points (g, — .) # —0.5 and (g, — 1) & 1.57] in the very anharmonic
region and the strong nonlinear dipole domain of the Morse oscillator,
Eq. (29). In each case, either corresponding to the 7th or 11th quantum
energy level, 100 simulations was performed starting with random in-
itial fields with the stopping criterion J < 0.01. The simulations sampled
a range of target ¢*** and p™ values (i.e., p* ranged from 0.04 to 4 at
intervals of 0.04 with ¢%' taking whatever values needed to get to the
corresponding energy level.) Fig. 5 shows that in both cases the re-
sultant R values are all below 2 (i.e., between 1.0067 and 1.6125 with an
average value (R) ~ 1.2455 for the 7th level and between 1.0314 and
1.8934 with an average value for the 11th level). These findings de-
monstrate that the ubiquitous small R-value behavior persists also for
the strongly anharmonic region of the Morse oscillator while also
sampling the very nonlinear domain of dipole moment. The latter
characteristics are quite distinct from the linear forced harmonic os-
cillator where the analytical results in Eq. (25) show that
R < /2 ~ 1.4142, but the distribution of R in all the simulations was
found to be over a small range (i.e., less than 2).

4.2. Extrema of the Path Length Ratio Metric R

Although physically the lower bound of R is 1.0, its practically at-
tainable lower limit in any particular physical system calls for
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Fig. 5. Histogram of the combined final R values over 100 randomly chosen
initial fields for target phase states having higher energies corresponding to the
7th quantum energy level (dotted lines) and the 11th quantum energy level (the
dashed lines) in the very anharmonic region and the strong nonlinear dipole
region of the Morse oscillator. Each simulation was stopped when J > —0.01.
The averaged final R values, respectively, are (R) ~ 1.2455 for the 7th level and
(R) =~ 1.3003 for the 11th level. All the collective results in Figs. 1, 2, 4, and 5
under quite varied physical situations show characteristically small R values..

numerical assessment. Furthermore, the highest value of R upon a
gradient climb of the landscape is an important indication of the degree
of confounding structural features that may be encountered.
Specifically, given the generally low R values for all cases found in the
preceding section, we now attempt to maximize and minimize R for the
case of the 4th quantum energy level of the Morse oscillator to assess its
extreme values using a stochastic particle swarm optimization (PSO)
method [15,31]. Since the gradient algorithm is used for evolving the
field, the value of R for a given simulation run is uniquely determined
by the initial control field. To this end, we use the PSO algorithm to
search over initial fields that either minimize or maximize the R value.

To facilitate the PSO algorithm, we take the optimization variables
(i.e., those searched over to seek either a minimum or maximum value
of R) to be the respective amplitude and phase parameters for the initial
field, which were arbitrarily drawn from probability distributions in the
simulations as in the previous section. Since the initial field was the sum
of three sine functions, there are then 6 optimization variables, i.e., 3
amplitudes and 3 phases. Throughout the particle swarm optimizations,
we took the initial point to be (q(0), p(0)) = (1.7, —0.1) and the target
state to be (g%, p®) = (1.8205, 0.5). Moreover, the particle swarm was
taken to have 100 initial members with each member initially chosen so
that its cost satisfied J € [—25, —9]; however, subsequent fields found
by the particle swarm algorithm could take any initial cost, as dictated
by the algorithm. Specifically, the following three steps were im-
plemented to assess the minimum and maximum attainable values of R:
(1) Select random amplitude and phase parameters for the initial field
€(0, -), (2) compute the final R(S) after a gradient optimization to reach
the optimal control field where J > —0.01, and (3) evolve, using the PSO
algorithm, the initial control field’s amplitude and phase parameters so
as to optimize the final R value.

The maximum value of Ry,x = 1.9 was found essentially coinciding
with the value already found in Fig. 4, while the minimum was found to
be Rpin = 1.0001 (despite starting from a relatively large initial cost J,
e.g., the field considered for illustrating the straight line trajectory in
Fig. 6 corresponds to such a case), which is nearly three order of
magnitude smaller than the lowest Ry, values ~ 1.075 shown in Fig. 4.
These findings are particularly important since they indicate that (1)
the control landscape structure is generally smooth and (2) some re-
gions of control landscape, followed by a gradient climb path, are
especially featureless and devoid of gnarled structure. Nonetheless, the
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Fig. 6. Achieved J as we just follow the initial gradient 87/8 (s = 0, t), Eq.
(32), for a field corresponding to the minimal value R = 1.0001 obtained in the
PSO simulations of Section 4.2 for the case corresponding to the quantum
mechanical 4th energy level. The figure shows that marching in the initially
identified gradient direction proceeds, from a relatively large initial cost J,
directly to the top of the landscape at s ~ 0.025 producing J = —1073.

two extreme R generating fields are distinct (not shown), but no dra-
matic features are present to indicate that either one would give an
extreme R value.

4.3. Straight paths through control space

To access the physical nature of a straight line trajectory, cf. Eq. (8),
we consider the converse of considering a small R value found post facto
(i.e., for the case corresponding to the 4th quantum energy level) from a
gradient-based optimization of a control field, as illustrated in the
previous sections. The relatively low values of R found in all of the
simulations presented in both Figs. 2, 4 and 5 indicate that near-straight
controls are prevalent in landscape climbs. The extreme limit of this
behavior is to just follow the initial gradient to assess how far up the
landscape the climb reaches. Thus the field €(s, t), 0 < s < S, is given
by

oJ

<. 1) = (5 cG=010

)S + €(0,1) 32)

Naturally, the success of this procedure is expected to rely on the ap-
propriate R value being sufficiently small for the field trajectory
€(0, t) — (S, t). Fig. 6 shows the evolution of J with Eq. (32) using the
prior determined control field giving the minimal value R = 1.0001,
obtained in our simulations by combining D-MORPH and PSO algo-
rithms, see Section 4.2. The objective (i.e., the value of J) initially rises
to reach a maximum value of J = —0.001 at ~ s = 0.025 as shown in
Fig. 6. This result demonstrates the existence of an initial field whose
cost function gradient points directly to a high value optimal field;
many such cases were found in the analogous quantum mechanical
studies [15-18]. However, no procedure exists at the present time to a
priori identify such ideally behaving fields. Notwithstanding, the dis-
tribution of R values for all of the D-MORPH gradient optimizations in
Figs. 2 and 4 are indicative of nearly straight line trajectories.

5. Conclusion

In this work, we examine the structure of classical optimal control
landscapes. The classical molecular trajectories follow Hamiltonian
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dynamics and the objective is to steer an initial phase space point to
given target point. We assess the structure of the control landscape by
examining the path along which the control field evolves towards an
optimal field, guided by a steepest ascent gradient algorithm. In parti-
cular, we find that the path through control space (i.e., from the initial
to optimal field) in many cases is comparable to a straight-line path. For
a one-dimensional harmonic oscillator, we show that the length of the
control field’s path is at most a factor of +/2 longer than the straight-line
Euclidean distance between the initial and final fields; numerical in-
vestigations were fully consistent with the theoretical upper bound of
V2 by only coming near to that value. Numerical results for a Morse
oscillator further support the near straightness of gradient algorithm
generated control paths for phase space target cases corresponding to
the 4th, 7th and 11th quantum energy levels. This result indicates that
the control landscape is relatively smooth and featureless, and thus
gradient algorithms follow efficient, non-convoluted paths when
searching for optimal control fields. The same qualitative observation
was found prevalent in more extensive quantum mechanical simula-
tions [15-18], leading to the tentative conclusion that the indicated
landscape behavior remarked above is universal for closed quantum or
classical systems under control.

While our results show that control fields evolve along nearly-
straight gradient-based paths for sample classical systems, we do not
have an explanation of why the landscape is surprisingly devoid of
features. However, an explanation was provided in the quantum case
[15-18] involving a multiple of interfering pathways that does not
appear to have an analog in the classical regime. A more encompassing
classical and quantum explanation may exist as a goal of future research
to discover. It is possible that more complex classical systems, in par-
ticular, in a higher-dimensional phase space, could exhibit longer
control paths. For example, it is straightforward to derive the bound
R < +2n for the n-dimensional harmonic oscillator and it may be
possible to generalize these bounds to anharmonic oscillators. However,
despite the upper bound, what actually counts is the statistical dis-
tribution of R values, and especially whether they are biased to lower
values. Finally, an interesting direction for future research would be to
take advantage of the collective results to design more efficient search
algorithms to discover optimal control fields. We plan to explore these
questions in future work.
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