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Learning Control of Quantum Systems Using Frequency-Domain
Optimization Algorithms
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Abstract— We investigate two classes of quantum control
problems by using frequency-domain optimization algorithms
in the context of ultrafast laser control of quantum systems.
In the first class of problems, the system model is known
and a frequency-domain gradient-based optimization algorithm
is applied for searching an optimal control field to selectively
and robustly manipulate the population transfer in atomic
rubidium. The other class of quantum control problems involves
an experimental system with an unknown model. In this case,
we introduce a differential evolution algorithm with a mixed
strategy to search for optimal control fields and demonstrate
the capability in an ultrafast laser control experiment for the
fragmentation of Pr(hfac); molecules.

Index Terms—Femtosecond laser, frequency-domain opti-
mization, learning control, quantum control, quantum control
experiment.

I. INTRODUCTION

ONTROLLING quantum systems has become an impor-
tant goal in various emerging areas including photo-
physics, photochemistry, quantum information, and quantum
computing [1]-[5]. A number of control methods including
Lyapunov control methodology [6], optimal control theory
[1], robust control techniques [7]-[9], and learning control
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algorithms [2], [10] have been proposed to achieve various
quantum control goals. Here, we focus on quantum optimal
control problems where the goal is to design an optimal control
field for a quantum system to achieve a given target. Optimal
control theory can be developed to solve this class of quantum
control problems. A limitation is that analytical optimal fields
can usually be obtained only for low-dimensional quantum
systems or simple control tasks. Hence, numerical optimiza-
tion algorithms find wide applications to search for an optimal
(usually suboptimal) field for many quantum control problems
[11]. In the simulations, the commonly used optimization
algorithms are usually performed in the time domain. The
application of these algorithms in experiments may become
challenging for the use of ultrafast laser pulses with the dura-
tion in femtosecond (fs) (1 fs = 10715 §) [12] and attosecond
(as) (1 as = 10718 §) [13], [14] regimes, which cannot
be directly modulated in the time domain. Experimentally,
the current pulse shaping technique allows us to shape the
temporal field of an ultrafast pulse [15] by modulaling its
spectral phase and/or amplitude in the frequency domain. This
work will demonstrate how frequency-domain optimization
algorithms can be employed in the numerical simulations and
real experiments to search a temporally shaped ultrafast laser
pulse for achieving given quantum control tasks.

For the simulations, we introduce a frequency-domain opti-
mal control method developed recently in [16]-[18], which
is able to directly calculate the optimized spectral amplitude
or phase of an ultrafast laser pulse in the frequency domain
while taking into account multiple constraints on the control
fields. As compared with previous works [16]-[18], here we
focus more on introducing the systematic frequency-domain
optimal control method and present more technical details
of how to develop this method. We employ the method to
perform the spectral-phase-only optimization for a three-level
rubidium (Rb) atom and show how the optimal spectral phase
of an ultrafast laser pulse can selectively and robustly control
quantum state transfer to a desired electronic level, which was
not discussed previously.

For the experiments, we consider another class of quantum
control problems with unknown Hamiltonians (e.g., either
for complex systems or when the systems are subject to
uncertainties). Due to the lack of system model informa-
tion, it is usually difficult to calculate the gradient of the
objective with respect to the control fields, which is crucial
in the gradient-based optimization algorithm. To that end,
we introduce a frequency-domain differential evolution (DE)
algorithm [19] for fragmentation control of Pr(hfac); mole-
cules. DE [20] has shown outstanding capability to search
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for optimal solutions of various complex quantum control
problems [21]-[23]. Recently, Dong et al. [19] developed a
mixed-strategy-based DE algorithm (referred to as MS_DE)
to search for robust control fields in both the time domain
and the frequency domain [19], [25]. In this brief, we exper-
imentally demonstrate the MS_DE algorithm for controlling
the branching ratio of PrO*/PrFt in the photodissociation
of Pr(hfac); molecules. Although this brief uses a similar
algorithm to [19], here we aim to demonstrate optimal control
of PrO*/PrF* arising from Pr(hfac); using trained intense and
ultrashort femtosecond laser pulses via an MS_DE algorithm,
while the experimental results in [19] focused on achieving
robust control of CHyBrt/CHIT from CH;BrI molecules via
a multiple-sample-based MS_DE algorithm.

The brief is organized as follows. Section II provides
a detailed introduction to the gradient-based optimization
algorithm in the frequency domain. The application of the
gradient-based optimization algorithm to selective control of
quantum state transfer in a three-level Rb atom is demonstrated
in Section III. In Section 1V, we demonstrate the experimental
results on fragmentation control of Pr(hfac); molecules using
trained femtosecond laser pulses via an MS_DE algorithm.
Concluding remarks are given in Section V.

II. GRADIENT ALGORITHM FOR LEARNING CONTROL
OF QUANTUM SYSTEMS

In this section, we assume that the model of a quantum
system under consideration is known. Consider an N-level
quantum system and the dynamical evolution of its state |y (¢))
can be described by the Schrodinger equation

d - :
iﬁEW/(f)) = H®Oly @) (M

where i = +/—1, # is the reduced Planck constant, |y (r)) is
a complex-valued vector (expressed in Dirac notation) in an
underlying Hilbert space, and H (1) is the system Hamiltonian.
In the dipole approximation, the system Hamiltonian aq 3]
with the control field u(s) can be written as

H@) = Ho— i -u(t) 2)

where Hy is the free Hamiltonian and 2 is the dipole
operator. We assume that the eigenvalues of I:lo are E,
(n = 1,2,...,N) and the corresponding eigenvectors
are |n)

N
Ho= )" Eyln){nl 3)
n=1

where {(n| is the complex conjugate and transpose of |n),
ie., (n = (|n))T. The time-dependent evolution of the
quantum system from the initial state |yp) to |w(#)) can be
described by a unitary operator U{f) with |y (1)) = 0(t)| o),
where U0 = U0 = I with identity matrix / and U (0) =
I. The unitary evolution operator U@) is governed by the
Schrodinger equation

ih%f](z) =HOU Q). 4)
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In the quantum control problem using ultrafast laser fields,
the temporal laser field &(¢) can be written as

&(t) =Re [ / - E(w)e“i“"dw] (5)
0

where Re(x) returns the real part of x, and the complex
spectral field E(w) can be defined in terms of the real-valued
spectral amplitude A(w) > 0 and real-valued spectral phase

¢ (w) as
E() = A(w)e @, (6)

The state-of-the-art ultrafast pulse shaping technology has
made it possible to manipulate the spectral amplitude A(w)
and the spectral phase ¢(w) of femtosecond laser pulses.
Hence, the temporal control field &(¢) can be designed by
shaping the spectral field E(w) in the frequency domain.

To formulate our method, the control objective J associated
with the expectation value of an arbitrary observable O at the
end of the control with 0 <¢ < T can be expressed as

J(0) = Te[U(T) | wo) (wol U1 (T) 01 o)

where O is a Hermitian operator and Tr(A) denotes the trace
of A. Now we introduce a dummy variable s > 0 to track
the trajectory for optimizing the spectral field E(w). Then,
the gradient of J with respect to s can be expressed as

dJ © 4§ GE(s,w)
=-— = ————dw. 8
g0(s) ds /0 JE(s, @) Oy @ ®)
We aim to develop an iterative algorithm to optimize the
objective function J. To maximize J, we expect (dJ/ds) > 0
during the iterative process. The condition can be satisfied in
the absence of constraints by choosing

JE(s, w) B oJ ]*
o r)'E{.s‘. w}
where a* denotes the conjugalte of a.
In practical applications, (9) may be generalized to include

a set of equality constraints fy (E(s,®)) =Cy, k=1,..., K.
During the optimization process, these constraints can be

written as
dfx ® dfi  OE(s,w)
= = k —_—d
81(s) ds /0 JE(s, w)  as

The combined requirements in (8) and (10) can be fulfilled at
the same time [18]

®

as

w=0.

(10

AE(s, m)
as

© K
- go(s)/o S — w) Z[F_I]Oka(s, w)do'
k=0
(1

where S(w’ — w) is the filter function for smoothing the
distribution of the spectral phase [16], and ck(s, ©) is defined
by

I,
S = (smg;;{w) (12)
./ S
OE(s, »)’ ) ’ N
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Fig. 1. Spectral phase-only control scheme in a three-level V-type Rb atom.
The laser pulse with a fixed spectral amplitude A(w) is used to excite the
Rb atoms from the ground electronic state 55)/7 to the excited electronic
states 5P1/2 and 5P3/3, whose branching ratio is controlled by optimizing
the spectral phase ¢(w) of the laser pulse. In our simulations, 581,2, 5P 2,
and 5P3/; are denoted by three states |1), |2}, and |3) with energies Ej, Ej,
and E3, respectively.

and the elements of the (K + 1) x (K + 1) symmelric matrix
I' are given by

oo o
| :/ ck(s,a))/ S — w)c (s, 0)do'do.  (13)
0 0

In practical implementation, we can separately calculate
the gradients of J with respect to A(s, ) and ¢ (s, w). This
in turn leads to two commonly used control experimental
schemes, i.e., the spectral amplitude control and the spectral
phase-only control. For the numerical simulations, the two
control schemes can be described by

aé'(s, 1)

57 Y
bAG, 0) /_m 36 G, 1) oA, @) 14
o7 51 2E(s,1)
S, @) _/_m T O (13
The gradients (88 (s, 1)/ (PA(s, W) and

((8&(s5,1))/ (0 (s, w))) in our situation are analytically
given by

08 (s, 1) _ .
PAG W) cos[¢ (s, w) — iwt] (16)
08 (s, 1) . .

0G0 —A(w)sin[¢ (s, w) —iwr] a”n

and the gradient (6J/(6&°(s, t))) can be expressed as [16]
oJ
A& (s, 1)

where Im(x) returns the imaginary part of x, and [A, B] =
AB — BA.

= —2Im(Tr{[wo){wo, UTOU (MU AU (T))) (18)

III. NUMERICAL RESULTS ON SELECTIVE
CONTROL OF ATOMIC RB

To illustrate the frequency-domain optimization algorithm in
Section II, we consider a three-level V-type system in Fig. 1,
which consists of the ground electronic state 5512 and the two
lowest excited electronic states 5P| /2 and 5P/ of a rubidium
atom, denoted by |1), |2), and |3) with energies E; = 0,
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Algorithm 1 Algorithmic Description of Gradient Algorithm

1: Solve (4) using an initial field & (so,t) with a guess of
the spectral phase ¢ (s, ®);

. ate O .

2: Calculate S0 . . .

3: Solve the first-order differential equation (11) to obtain
the first updated spectral phase ¢(s; = sp + 6s,0) =
¢ (s0, @) + 5522600,

4: Repeat Step 1 through Step 3 with the updated spectral
phase as the initial guess until the “best” spectral phase

is found.

E; = 12578.95 cm™!, and E3 = 12816.55 cm™!, respec-
tively. The free Hamiltonian Hy is given by

Ho = diag{E1, B2, Es}. (19)

We fix the spectral amplitude of the ultrafast laser pulse
unchanged with a Gaussian distribution

Alw) = & B exp(—(w — wp)?/2A%w)

1
V2T A
with & = 3.6 x 10° Vicm, wy = (E3 + E3)/2h = 12698
em™! and Aw = 177 cm™' to excite this three-level system.
The dipole moment operator £ is given by

0 pi2 wn
p={wu2 0 0 20)
iz 0 0

with z12 =2.9931 a.u. and w13 = 4.2275 a.u. [27], in which
the zero matrix elements imply that the transitions between
|2} and |3) are forbidden.

We consider two endpoint equality constraints

&0) = «/% [00 A(w) cos[¢p(@)]dw =0 2D
and
&(T) = ; /oo A(w)cos[p(w) —wTldo =0 (22)
V2r Jooo

on the control field &(¢), which enforce that the optimized
field is turned on at + = 0 and off at r = T. From (12),
we derive the coefficients ¢| (s, w) and ca(s, w) as

cr1(s, w) = —J%_”A(w) sin[p (s, w)]

1 )

(s, ) m/{(w) sin[¢ (s, w) + wT].
Furthermore, we perform an optimization procedure by shap-
ing the spectral phase of the laser pulse while fixing the
spectral amplitude. The optimization algorithm is listed in
Algorithm 1.

We first consider a zero-flat spectral phase of ¢(w) while
leaving the spectral amplitude A(w) unchanged, which corre-
sponds (o a transform-limited pulse

&(s0,t) = Epexp ( - t2/2rg) cos wot

with a duration of 1p = 1/Aw = 30 fs. Fig. 2 shows
the time-dependent evolution of the quantum state transfer
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Fig. 2. Time-dependent population transfer among three states |1}, |2}, and
|3) with a transform-limited pulse in green.
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Fig. 3. Conirol objectives (a) J = 121y ()2 and (b) J3 = |3y (T)?

versus iterations with ¢ = 507",

among the three levels. Some oscillations between levels in
the population transfer take place. After the pulse is off at
T = 200 fs, all three levels are populated. In the following
simulations, we selectively maximize quantum state transfer
to either state |2) or state |3) by optimizing the spectral phase
¢ (w) of the laser pulse under two endpoint equality constraints
by (21) and (22) while keeping its spectral amplitude A (w)
unchanged.

To achieve the goal, we define the observable O = |j){j|
with j = 2 or 3 to maximize the quantum state transfer to |2)
or |3), respectively. We start with & (sg, ¢) as the initial guess
and take a normalized Gaussian function of the form

(0 — w) = exp(—4102(0 — ')2/0?)

with a filter parameter o. Since the speed of convergence
and the shape of the optimized spectral phase are highly
dependent on the choice of stepsize ds and the parameter of
o in the filter function §, we examine two different cases
with a small value of ¢ = 50 cm™! and a large value of
6 = 5000 cm~' and ds is varied adaptively during the
iterations. Fig. 3 shows the control objectives J, = [(2|w (T)[?
and J3 = |(3|51/(T)|2 as a function of iterations with a small
value of o = 50 cm™!. After a few hundred iterations, both
objectives can monotonically increase to a very high fidelity
of >0.9999 by only optimizing the spectral phase. As a result,
it is possible to selectively control the population transfer to
the excited electronic states |2) and |3). Fig. 4 shows the
time-dependent populations with the optimized control fields
and the corresponding optimized spectral phases. We can
sece that the populations are successfully transferred from
the initial state to the target state, whereas another state is
significantly populated during the transfer process, as shown

1.0 ===
(a)

c
K]
5]
5 05
Q
o
o

0 0 A

-3000 -1500 0 1500 3000 -3000 -1500 0 1500 3000

Time (fs) Time (fs)
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= @ ()
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©
o 0.25 0.4
i
3
= 01 0,05
3
-6--0,45 -0.5

0.85 1.0 1.15 0.85 1.0 1.15
Frequency (units of w) Frequency (units of wg)
Fig. 4. Optimal population evolutions and spectral phases with o = 50

cm~ L. The population evolutions of quantum state transfer to the target state
(2) 12) and (b) |3) with laser pulses in green. The comesponding optimized
spectral phases for (a) and (b) are shown in (c) and (d).

10— 1.0
(b)
= 05 <05
0 0
1 2 3 4 5 6 1 2 3

Iteration Iteration

Fig. 5. Control objectives (a) Jp = |(2||,1/(T)|2 and (b) J3 = |(3|u/(T)|2
versus iterations with ¢ = 5000 em™-,

in Fig. 4(a) and (b). The optimized spectral phases in Fig. 4(c)
and (d) are complex and exhibit strong oscillations in the
frequency domain. The solutions for obtaining high-fidelity
quantum state transfer in such a simple quantum system are
not unique. If we further decrease the value of ¢ in the filter
S, the optimized spectral phases will become more complex
than that in Fig. 4(c) and (d).

We now examine the optimization algorithm with a large
value of ¢ = 5000 cm~! and demonstrate the corresponding
results in Fig. 5. It is surprising that the control objectives
can rapidly and monotonically increase to a high fidelity of
>0.999 after a few iterations. Fig. 6 shows the time-dependent
population dynamics with the optimized fields and the corre-
sponding optimized spectral phases. The population dynamics
significantly change with the optimized fields as compared
with that in Fig. 4. It is also interesting to note that the
populations are successfully transferred from the initial state
|1) to the target state |2) in Fig. 6(a) and |3) in Fig. 6(b),
while the population transfer to another excited electronic
state beyond the target state is clearly suppressed during the
quantum state transfer process.

To gain an insight into why the population transfer to
another excited electronic state beyond the target state is
clearly suppressed during the quantum state transfer process in
the case of ¢ = 5000 cm™!, we first fit the optimized spectral
phases in Fig. 6(c) and (d) by using a quadratic function of

Authorized licensed use limited to: Princeton University. Downloaded on November 23,2021 at 13:40:10 UTC from |IEEE Xplore. Restrictions apply.
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Fig. 6. Optimal population evolutions and spectral phases with o = 50007,
The population evolutions of quantum state transfer to the target state (a) |2)
and (b) |3). The corresponding optimized spectral phases for (a) and (b) are
shown in (c) and (d), respectively.

folw — we)* with a chirp rate fp and a modulated frequency
.. The optimized spectral phases can be fitted very well with
fo = 7191 fs? and w. = 1.28423 x 10* cm™! in Fig. 6(c),
and with fg = —3018 fs? and w, = 1.27329 x 10* cm™!
in Fig. 6(d). These large chirp rates significantly prolong
the optimized fields in the time domain while reducing their
amplitudes as compared with the initial transform-limited
pulse. The results indicate that the system is slowly guided
from the initial state to the desired target state. A positively
chirped pulse in Fig. 6(a) maximizes the population transfer
to state |2) by suppressing the transfer to state |3), whereas a
negatively chirped pulse in Fig. 6(b) leads to high efficiency
of the population transfer to state |3) by reducing the transfer
to state |2). It implies that an adiabatic passage is constructed
between the initial and target states. Therefore, robust quantum
state transfer is obtained against the variations of the system
and control field. As a result, our method can provide a new
approach to search for a robust control field by shaping the
spectral phase of the laser pulse in the frequency domain.
Remark 1: The algorithm is also applicable for other
finite-level quantum systems using phase-oaly control or
amplitude-only control as long as we know the system model
so that the gradient of a given objective function J with respect
to relevant control variables can be derived in an analytical
way. For many practical applications, reliable quantum system
models may be unknown. In such a situation, it is not
convenient to directly calculate the gradient required for the
optimization algorithms. A possible strategy is that we may
first identify the system model and then employ a gradient iter-
ative algorithm to find an optimal control field. A number of
identification methods has been developed to identify the reac-
tion mechanism, system dimension, or system Hamiltonian for
various quantum systems [12], [28]-[31]. However, for more
complex quantum system or quantum process, it is usually
difficult to identify the dynamic model before controlling it.
Instead, we may employ closed-loop quantum control scheme
to learn optimal ultrafast laser pulses in the frequency domain
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Fig. 7. Structure of a Pr(hfac); molecule.

for controlling quantum systems. In the following, we will
employ a DE algorithm to experimentally investigate ultrafast
laser control of complex molecules Pr(hfac)s.

IV. EXPERIMENTAL RESULTS ON FRAGMENTATION
CONTROL OF PR(HFAC)3 USING FEMTOSECOND
LASER PULSE

A. Pr(hfac); Molecule

Fluorinated praseodymium complex Pr(hfac); (hfac
hexafluoroacetylacetonate) molecules are common precur-
sors for making thin films of praseodymium materials with
metal-organic chemical vapor deposition, because of their
high thermal stability and volatility [32], [33] and supe-
rior transport properties [34], [35]. The molecular structure
of Pr(hfac); is shown in Fig. 7. Even though Pr(hfac)s is
an oxygen-coordinated complex, the praseodymium oxides
are not easy to observe using Pr(hfac); as a precursor in
prior laser-dissociation experiments. Very small amounts of
oxide fragments from Pr(hfac)s were previously reported
with continuous-wave and nanosecond lasers [36]. However,
Pr(hfac); is still an excellent candidate for deposition of
praseodymium fluorides [35], [37]. The formation of fluorides
was explained by Talaga er al. [38], where they proposed a
unimolecular reaction that was initiated by rotation of the
Cys — C(0) bond bringing the CF3 group into proximity to
the metal.

Using intense and ultrashort femtosecond laser pulses, it is
possible to observe a strong PrO* peak with the precursor
Pr(hfac)s [39]. The shaped laser pulses on the fs timescale
greatly restrict the C; — C(0Q) bond rotation and enhance
PrO* generation. The results explain why PrO" was rarely
observed under continuous-wave and nanosecond laser beams
in previous studies. The purity of the thin praseodymium
oxides film and the efficiency to generate oxides are two
interesting and valuable problems. Finding the best shaped
pulses to optimize the PrO™/PrF+ ratio is a challenging task.
Since we do not know the system model to describe the
chemical reaction of Pr(hfac)s molecules with fs laser pulses,
we employ an MS_DE algorithm (which will be discussed in
Section I'V-B) to find an optimal field to control the PrO*/PrF+
fragmentation ratio in Pr(hfac); molecules.
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B. DE With Mixed Strategies

DE is a simple but powerful stochastic search technique
with wide applications [20], [40]. In DE, a population is
composed of a group of individual trial solutions or parameter
vectors, usually represented as a real-valued vector X =
[x1,%2,...,xpl’. In the process of searching, an objective
function regarding a target vector X is defined as J(X). Then,
the learning process works by generating variations of the
individuals within the given parameter space and selecting the
better member to be carried into the next generation, until the
“best” individual is obtained. A DE algorithm mainly includes
four steps of initialization, mutation, crossover, and selection.

We denote the population (i.e., target vector) at the current
generation as X; g = [x,-l‘G, e ,xif)G]T, i =1,...,NP. In this
brief, we use the following four diverse candidates as our
mutation strategies [25], [41].

Strategy 1: DE/rand/1

Vi=Xy+F (X, — Xp3). (23)
Strategy 2: DE/rand to best/2
Vi=Xi+F Xoes — X))+ F - (Xr, — Xpy)
+F- (X —Xn). 24
Strategy 3: DE/rand/2
Vi=Xp+F - (Xp, = Xp)+F - (Xry — X)) (25)
Strategy 4: DE/current-to-rand/1
Vi=Xi+K-Xpy —X)+ F-(Xs; — X)) (26)

The indices r|, r2, 3, ra, and rs are mutually exclusive integers
randomly chosen from the range [1,NP] and all of them
are different from the index i. Xpest is the best individual
vector with the best fitness in the population and F is
a control parameter. We set K = 0.5 in this brief. The
DE algorithm with mixed strategy (i.e., MS_DE algorithm)
is outlined in Algorithm 2 (see [41] for more detailed
discussions).

C. Experimental Setup

The experiments were implemented on the femtosecond
laser control system in the Department of Chemistry at Prince-
ton University. The experimental system consists of three
key components: 1) a femtosecond laser system; 2) a pulse
shaper; and 3) a time-of-flight mass spectrometry (TOF-MS).
The femtosecond laser system (KMlab, Dragon) consists of a
Ti:sapphire oscillator and an amplifier, which produces 1 mJ
and 25-fs pulses centered at 790 nm. The laser pulses from the
femtosecond laser system are introduced into a pulse shaper
that is equipped a programmable dual-mask liquid crystal
spatial light modulator. The interaction between the spatial
light modulator and the learning algorithm is accomplished by
LabVIEW software. The spatial light modulator has 640 pixels
with 0.2 nm/pixel resolution and can modulate amplitude and
phase independently [42], [43]. Every eight adjacent pixels are
bundled together to form an array of 80 “grouped pixels.” Each
array of 80 “grouped pixels” corresponds to a control variable,
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Algorithm 2 Algorithmic Description of MS_DE

1: Set the generation number G =0

2: for i=1to NP do

3: initialize X; ¢ and obtain fitness function J(X;)

4: end for

5: Set the vector with the maximum fitness as Xpes:,0

6: repeat (for each generation G =0,1,...,Gmax)

7 repeat (for each vector X;, i =1,2,...,NP)

8 Set parameter F; ¢ = Normrnd(0.5,0.3)

9 Set parameter CR; ¢ = Normrnd(0.5,0.1)
10: while CR; g <0 or CR; g > 1 do
11 CR; ¢ = Normrnd(0.5,0.1)
12: end while
13: randomly choose a strategy from candidate pool
14 obtain mutant vectors V; ¢ according to (23)-(26)
15: if stragegy € {1,2,3} then _
16: obtain U; g = ["il,ca e ,uEG]T by letting u,{G =

v/ . if rand j) < CR or j=rand(1,D), and otherwise
LG . ;
letting u/; = x/

17: end if

18 if strategy € {4} then U;c =Vi¢

19: end if

20: if .’(U,',G) > J(X,'1(;) then

21: X1 < Uig, J(Xig+1) < J(Uig).
22: end if

23: Update the best vector Xpey,¢ and i i+1

24: until {=NP
25: G+—G+1
26: until G = Gpax

which can be used to adjust the amplitude and phase values.
In these experiments, we consider two constraints: one is on
the amplitude valves and the othér is on the phase values.
We fix all the amplitude values at 1 (i.e., fixed energy) for
the first constraint, that is, we employ a phase-only control
strategy. For the second constraint, we consider the different
range of phase values, which may correspond to a situation
with magnitude constraint on the control inputs. The solid
Pr(hfac); molecule samples are heated and vaporized into the
gas phase in a vacuum chamber with the pressure 1.3 x 1077
Torr. The shaped laser pulses out of the shaper are focused into
the vacuum chamber, where photoionization and photofrag-
mentation occur for the gas-phase Pr(hfac); molecules. The
fragment ions from these gas-phase Pr(hfac); molecules are
separated with a set of ion lenses and pass through a TOF
tube before being collected with a microchannel plate detec-
tor. The mass spectrometry signals are recorded with a fast
oscilloscope, which accumulates 3000 laser shots in 1 s before
the average signal is sent to a personal computer for further
analysis. A small fraction of the beam (<5%) is separated
from the main beam and focused into a DET25K Thorlab
photodiode. The photodiode collects signals arising from two
photon absorption for optimizing a given photofragment ratio
of Pr(hfac); molecules.
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Fig. 8. Experimental result on the femtosecond laser control for optimizing
the ratio between the products PrOT and PrFt using MS_DE when no
constraint on the phase. (a) Ratio PrO*/PrEt versus iterations, where “Best”
reptesents the maximum fitness and “Average” represents the average fitness
of all individuals during each iteration. (b) Optimized phases of 80 control
variables for the optimal result that corresponds to the maximum fitness.

D. Fragmentation Control

Before implementing the experiments, we need to optimize
the two-photon absorption signal to identify the shortest pulse.
The process can be used to remove the residual high-order
dispersion in the amplifier output. The MS_DE algorithm is
employed to optimize the two photon absorption signal. Then,
we consider the fragmentation control of Pr(hfac); molecules,
where the fitness is defined as the photofragment ratio of
PrO*/PrFt, ie., J = PrOT/PrFT. We aim to maximize the
objective function J. The control variables are the phases
of femtosecond laser pulses and the MS_DE algorithm is
employed to optimize the phases of 80 control variables. In the
learning algorithm, the parameter setting is set as follows:
D = 80 and NP = 30.

In the first experiment, we assume that there are no con-
straints on the phase values, that is, the phase values may
take on arbitrary values between O and 2z . An experimentally
acceptable termination condition of 1000 generations (iter-
ations) is used. For 1000 iterations, it approximately takes
12 hours to run the experiment. For each generation, a total
of 30000 signal measurements are made. Fig. 8 shows the
experimental results using the MS_DE algorithm, where the
ratio PrO*/PrF* as the fitness function is shown in Fig. 8(a)
and the 80 optimized phases for the final optimal result are
presented in Fig. 8(b). In Fig. 8(a), “Best” represents the
maximum fitness and “Average” represents the average fitness
of all individuals during each iteration. With 553 iterations,
MS_DE can find an optimized pulse to make PrO*/PrF+
achieve 3.07. After 553 iterations, the maximum ratio remains
unchanged.

In the other two experiments, we assume that the phase
values can only vary between O and =, and between O and
(m/2). A termination condition of 200 generations (iterations)
has been used to save the experiment time. Fig. 9 shows the
results for the phase in [0, 7] from the MS_DE algorithm,
where the average ratio PrOT/PrFt as the fitness function
is shown in Fig. 9(a) and the 80 optimized phases for the
final optimal result are presented in Fig. 9(b). MS_DE can
find an optimized pulse to make PrO*/PrFt achieve 3.04.
Even though the constraint of phase values lying only between
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Fig. 9. Experimental result on the ratio between the products PrO* and
PrEY using MS_DE when the phase is constrained in [0, x]. (a) Ratio
PrOT/PrET versus iterations, where “Best” represents the maximum fitness
and “Average” represents the average fitness of all individuals during each
iteration. (b) Optimized phases of 80 control variables for the optimal result
that corresponds to the maximum fitness.
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Fig. 10. Experimental result on the ratio between the products PrO" and
PrEt usin_E MS_DE when the phase is constrained in [0, (z/2}]. (a) Ratio
PrOT/PrFT versus iterations, where “Best” represents the maximum ftness
and “Average” represents the average fitness of all individuals during each
iteration. (b) Optimized phases of 80 control variables for the optimal result
that corresponds to the maximum fitness.

0 and =z, the ratio PrO*/PrFt can still reach 99% of the
ratio in the case without phase constraint at 186 iterations.
The results for the phase in [0, (x/2)] are shown in Fig. 10.
From Fig. 10(a), the MS_DE algorithm can find an optimized
pulse to make PrOT/PrFT achieve 2.90. From these results,
it is clear that the MS_DE algorithm can assist in finding
good femtosecond laser pulses to optimize the product ratio
PrO*/PrF* even when different constraints are placed on the
amplitude and phase values of the femtosecond laser pulses.

V. CONCLUSION

We investigated learning control for two classes of ultrafast
quantum control problems in the frequency domain where
there are constraints on the control fields. When the system
model is known, a frequency-domain gradient algorithm can
be employed to find optimal control fields. The algorithm
has been applied to atomic Rb for selective control of the
population transfer. When the system model is unknown,
a machine learning algorithm can be employed for searching
optimal ultrafast pulses. We have experimentally implemented
an MS_DE algorithm in the laboratory to control fragmen-
tation of Pr(hfac)s molecules with different constraints on
ultrafast pulses.
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