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ABSTRACT

For many planar bipedal models, each step is divided into a finite time single support period and an instan-

taneous double support period. During single support, the biped is typically underactuated and thus has limited

ability to reject disturbances. The instantaneous nature of the double support period prevents nonimpulsive control

during this period. However, if the double support period is expanded to finite time, it becomes overactuated. While

it has been hypothesized that this overactuation during a finite-time double support period may improve distur-

bance rejection capabilities, this has not yet been tested. This paper presents a refined biped model by developing

a finite-time, adaptive double support controller capable of handling the overactuation and limiting slip. Using

simulations, we quantify the disturbance rejection capabilities of this controller and directly compare them to a typ-

ical, instantaneous double support model for a range of gait speeds and perturbations. We find that the finite-time

double support controller increased the walking stability of the biped in approximately half of the cases, indicating

that a finite-time double support period does not automatically increase disturbance rejection capabilities. We also

find that the timing and magnitude of the perturbation can affect if a finite-time double support period enhances

stability. Finally, we demonstrate that the adaptive controller reduces slipping.
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1 Introduction

An open challenge for bipedal gait is how to best increase robustness of gait to disturbances and how to best prevent

falls. For robots, this can improve performance and allow for more extensive applications of bipedal robots. For humans,

understanding how to achieve this can improve the quality of life for elderly adults by reducing injuries due to falls [1–3].

The easiest and safest method to answer this question is to study gait through simulations and robotics. In this work, we

compare how an instantaneous vs. finite-time double support period affects the ability of planar bipedal simulations to avoid

falls due to external disturbances. While a biped can (and will) fall due to internal perturbations, such as sensor or actuator

noise, or due to improper control, this work focuses on how including a finite-time double support period can handle the

introduction of external disturbances.

While there are several different ways to model bipedal walking, one energetically-efficient approach that can mimic

human walking utilizes the passive dynamics of the biped [4]. These models typically divide the step into a finite-time single

support period, when only one leg is in contact with the ground, and an instantaneous double support period, when both

legs are in contact with the ground (e.g. [5–9]). These models typically have N rigid links connected by (N− 1) revolute

joints with actuators at each joint and may include a torso. They typically have point [5, 8, 9] or curved [10, 11] feet, so the

foot cannot apply a moment to the ground. Therefore, the model has N degrees of freedom (DOF) and (N− 1) actuators

during single support and is thus underactuated. Because of this underactuation, these biped models cannot easily control

their global orientation during single support, which limits their ability to quickly reject disturbances. Hybrid zero dynamic

(HZD) control is a control method developed for such planar bipeds, and combines hybrid models with the use of zero

dynamics through feedback linearization [5, 6, 11]. With standard HZD-based control, if the biped is perturbed forward or

backward, the coordination between limbs is kept consistent with an unperturbed step [12]. However, this joint coordination

does not ensure that the velocity of the biped is consistent with an unperturbed step, and incorrect velocity often causes falls.

Because the double support period is instantaneous, it is uncontrollable with non-impulsive actuators and cannot be used to

reject disturbances.

There are several approaches to correct these velocity disturbances and prevent falls. One is to adjust the single support

controller based on error in the unactuated velocity [11, 13, 14]. Another is to alter the step length through foot placement

[15, 16]. The approach investigated here is to use a finite-time double support period to take advantage of the overactuation

during double support. This overactuation occurs due to the additional foot contact, causing the biped to have (N−2) DOF

and (N−1) actuators. Overactuation may be useful because it provides an infinite number of ways to accomplish a task, so

a secondary goal, such as rejecting disturbances, can be specified in addition to maintaining joint coordination. While there

has been limited work comparing the disturbance rejection capabilities of bipeds with instantaneous vs. finite-time double

support periods, it is typically assumed to be advantageous in all cases. There is some support for this. Lengthening the

double support period in human gait (typically by walking more slowly) may improve stability [17]. Further, increasing step

length has been shown to increase the stability of the double support period [18]. Recent work has also shown that humans

struggle to voluntarily lengthen double support duration when forced to maintain a constant walking speed, suggesting that

they use the longest possible double support duration for a given speed [19]. This may suggest that a long double support
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duration increases stability. Further, for very simple models with variability, a flat-foot model with finite-time double support

periods [20] was able to walk with much higher levels of variability than a passive point-foot model [21]. Therefore, we

formally evaluate if a finite-time double support period increases disturbance rejection capabilities in planar biped models.

To evaluate this, a finite-time double support controller is needed. A finite-time double support period can be included

for any biped model with at least 4 links, regardless of the foot model, by modeling the period as a closed-loop kinematic

chain. Because the system is overactuated during the double support period, not all coordinates can be defined independently.

Instead, additional conditions are required to uniquely define the joint torques. One common approach is to track a ground

reaction force (GRF) to reduce the chance of slipping [22–24]. However, it may be unnecessary to directly control the GRF

as long as the resulting GRF keep the feet firmly planted on the ground. Alternatively, the norm of the joint torques can be

minimized to reduce energy expenditure [25–33]. Minimizing the joint torques is not trivial because they are derived as a

function of the GRF, which are in turn dependent on the joint torques. Unfortunately, preliminary work using this method

indicated that the biped often slipped during double support following perturbations [34]. This could be addressed by solving

a quadratic programming problem [35], but this can be computationally expensive. In this work, an HZD-based adaptive

controller that modifies the joint torques to prevent slipping was developed to reduce slipping while still minimizing joint

torques.

To quantify disturbance rejection capabilities, the system can be evaluated through brute force by applying random per-

turbations until the biped falls or through more sophisticated techniques. One such technique is local perturbation analysis,

which applies small perturbations and quantifies how quickly the biped returns to the nominal gait [36, 37]. However, this

focuses on local stability, which may not correlate with falling [38, 39]. A second popular technique is to ensure the center

of pressure remains within the base of support [40, 41], which is a very conservative stability metric. Human gait, which is

usually quite robust, is typically unstable with respect to this stability criteria [42]. Another popular technique is to look at

N-step capturability, or the ability of a biped to come to a stop without falling while taking N-steps or fewer [43, 44]. How-

ever, this considers the ability of the biped to come to a complete stop, rather than the ability to keep walking in the presence

of disturbances. Finally, another technique that has been used is to treat the biped as a metastable system and estimate the

number of steps before failure using a Markov chain [45]. A metastable system is one that exhibits locally stable behavior in

the presence of small perturbation, but is guaranteed to eventually fail [47]. As such, it possesses qualities of both a stable

and unstable system. This technique is best suited to discrete perturbations [34] instead of continuous perturbations [46]. By

treating the system as metastable, we were able to test the robustness of the system to random perturbations in a computa-

tionally feasible manner even when the biped was able to walk for millions of steps before failing. By comparing the number

of steps to fail, we can ascertain if a finite-time double support period is useful.

To evaluate the effect of a finite-time double support period on disturbance rejection capabilities, two double support

controllers were developed and tested in simulation. The first “controller” was simply an instantaneous, unactuated impact

mapping, as is common for HZD-based controllers. The second controller was a finite-time double support controller. We

chose to deal with the overactuation by minimizing the norm of the joint torques rather than controlling one of the GRF. For

both double support scenarios, HZD control was used for the single support period. This paper expands on our preliminary
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Fig. 1: A diagram of the six link biped model. The unactuated angle was q1 and the actuated angles were q2...q6.

work in [34] by refining the model and controller and performing substantially more testing to determine if a finite-time

double support period enhances stability. The refined model introduced a compliant ground which improved the ability

to find valid finite-time double support controllers. An additional adaptive controller was developed to prevent excessive

slipping during double support. Finally, a broader range of gait speeds and perturbations were used to quantify how stability

changes with a finite-time vs instantaneous double support period. Section II provides an overview of the bipedal model with

the added compliant ground model. Section III provides a derivation of the controllers. Section IV describes how the gaits

were chosen and compared. Finally, Section V compares the different double support controllers and discusses the results.

2 Model

The planar model used herein was a typical 6-link kneed biped model with curved feet (Fig. 1, Table 1) [5, 6]. The

dynamic motion of the model is described with the 8 dimensional equation of motion (EOM), written as a first order system

with 16 dimensions

ẋ =

q̇

q̈

=

 q̇

D−1 (AT λ−Cq̇−G
)
+

 0

D−1B

u

= f(x)+g(x)u,

(1)

where x =

[
qT q̇T

]T

, q =

[
q1 . . . q6 xh yh

]T

is the extended generalized coordinates, q1 is the absolute, unactuated angle,

q2 . . .q6 are the relative joint angles, and xh and yh are the horizontal and vertical position of the hip, respectively. D is the

inertia matrix, C is the matrix containing Coriolis force and centripetal force terms, G is the gravity matrix, B maps the 5

control inputs to joint torques, u =

[
u2 . . .u6

]T

is the set of joint torques, which were modeled as ideal actuators with no

losses, A is the Jacobian constraint matrix, and λ is the set of Lagrangian constraints representing GRF acting on the feet.

These last two terms in the EOM were dependent on whether the biped was in single or double support. This was because

during single support, the biped only had one foot on the ground, so there was one GRF with two components. During double
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Table 1: Biped model parameters. The values were the same for both legs. Here, COM indicates the center of mass.

Parameter Value Description

Mh 53.8 Hip Mass (kg)

Lt 0.431 Thigh Length (m)

Lc,t 0.185 Thigh COM Distance (m)

Mt 10.4 Thigh Mass (kg)

Jt 0.106 Thigh Moment of Inertia (kg·m2)

Ls 0.433 Shank Length (m)

Lc,s 0.177 Shank COM Distance (m)

Ms 4.07 Shank Mass (kg)

Js 0.175 Shank Moment of Inertia (kg·m2)

R 0.300 Foot Radius (m)

fy 0.075 Vertical Foot COM Distance (m)

fx 0.075 Horizontal Foot COM Distance (m)

fc,x 0.075 Foot Rotation Distance (m)

M f 2.00 Foot Mass (kg)

J f 0.100 Foot Moment of Inertia (kg·m2)

kp 100 Proportional Control Gain

kd 10.0 Derivative Control Gain

Table 2: Compliant ground parameters. The values were constant for all simulations.

Parameter Value Description

kn 1×103 Vertical Spring Stiffness (N/m)

kt 1×102 Horizontal Spring Stiffness (N/m)

cn 1×104 Vertical Damping (Ns/m)

ct 1×104 Horizontal Damping (Ns/m)

Nk 1.5 Nonlinear Stiffness Coefficient

Nc 0 Nonlinear Damping Coefficient

support, the biped had both feet on the ground, so there were two GRF with a total of four components. When simulating

the gait, the foot (or feet) in contact with the ground was assumed to not slip or lift up except for the trailing foot at the end

of the double support period. The matrix A was found by mathematically ensuring that the foot (or feet) in contact with the

ground did not slip or lift up. The constraint equation Aq̇ = 0 ensured that the biped was correctly attached to the ground

in the extended coordinate system. The validity of this constraint was later verified by checking that the vertical GRF was

positive and that the horizontal GRF was within the cone of friction; otherwise, the step was considered to have failed.

To allow the same biped to walk with both an instantaneous and a finite-time double support period, a compliant ground
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model was used. Rigid ground is desirable for models with an instantaneous double support period because a rigid ground

will often lead to an instantaneous double support period. To more easily implement a finite-time double support period in

which both feet remain in contact with the ground, it is generally helpful to either include compliance in the biped-ground

interaction or slow the contacting foot so it is essentially stationary just before impact [22]. Compliance is also necessary in

robotic walkers to prevent damage due to the high impact forces [48]. Further, all real ground has some compliance. This

compliance can be introduced into the actuated joints or the ground itself can be compliant—both of which exist in real

systems. Here the ground was modeled as a compliant, nonlinear spring damper system [49]. The GRF for each foot was

modeled as

λ =

Fn

Ft

=

−knsign(zn)|zn|Nk − cn|zn|Nc żn

−ktsign(zn)|zt |Nk − ct |zt |Nc żt

, (2)

where Fn and Ft are the normal and tangential components of the GRF on one foot, zn is the vertical distance of the bottom

of the foot below the ground, zt is the horizontal distance between the foot and where the foot made contact with the ground

(accounting for any foot roll), kn and kt are the vertical and horizontal spring stiffnesses, cn and ct are the vertical and

horizontal damping coefficients, and Nk and Nc are the coefficients characterizing the form of the nonlinear spring damper

system. Note that zn and zt are functions of q. The parameters for the compliant ground were chosen such that it behaved

similarly to rigid ground most of the time (Table 2).

A full step consisted of four parts—a single support period, an instantaneous smooth transition to double support, a

double support period, and an instantaneous smooth transition to single support. Both the single and double support periods

were modeled with (1). The double support period can either be instantaneous [7] or finite time. The transition to double

support always occurred when the swing foot contacted the ground. During this transition, the coordinates were relabeled so

that the same set of angles always referred to the stance and swing legs. The transition to single support always began at the

end of the double support period. For the instantaneous double support model, this occurred immediately after the double

support period. For the finite-time double support model, the transition occurred when the vertical GRF for the trailing leg

equaled 0. Both the transition to single support and the transition to double support were smooth and instantaneous. They

were modeled as algebraic mappings—either the identity matrix I for the transition to single support, or a relabeling matrix,

R, where RR = I for the transition to double support.

3 Control

Both an instantaneous impact with no double support controller and a finite-time double support controller were exam-

ined, and the following sections will derive each controller and outline the differences between them.
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3.1 Single Support

For all double support scenarios, the same single support controller was used. This controller used input-output lin-

earization and was identical to the controller given by [5, 6, 34]. A brief derivation is included for completeness and to aid

in comparisons with the double support controller. The desired angles were parameterized as a function of a phase variable,

θ [5]:

θ(q) = cq, (3)

where c ∈ R1×8. For this work, θ is the linearized progression of the hip. θ was then normalized to lie between 0 and 1 for a

nominal single support period.

s =
(θ(q)−θ+)

(θ−−θ+)
, (4)

where θ+ and θ− are the values of θ at the beginning and end of the nominal single support period, respectively.

The following assumptions must hold during the single support period to ensure that the gait was valid:

S1. The swing leg began behind the hip and ended in front of the hip;

S2. the single support phase ended when the swing foot made contact with the ground; and

S3. the phase variable was strictly monotonic and uncontrolled.

The control input of the system was solved via input-output linearization [50]. The output function described the desired

position of the actuated joints. This output function was zero when the motion of the biped followed the desired trajectories,

leading to the following error equation for the system’s output.

y = h(q) = H0q−hd(s(q)), (5)

where H0 ∈ R5×8 maps the generalized coordinates to the controlled DOF and hd is the desired joint trajectories, given as a

function of step progression. To drive the output to zero, the output function was differentiated twice, and the EOM (1) was

substituted into the equation, resulting in

ÿ = L2
f h+LgL f h ·u, (6)
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where L2
f h , ∂

∂x

(
∂h
∂x f
)

f and LgL f h , ∂

∂x

(
∂h
∂x f
)

g are Lie derivatives [50]. To zero any errors, set ÿ = v, where v is a

stabilizing controller such as v = kpy+ kvẏ (a PD controller) and solve (6) for u. This gave

u = LgL f h−1(v−L2
f h) (7)

=

(
∂h
∂q D−B

)−(
v− ∂2hd

∂θ2 (cq̇)2− ∂h
∂q D−

(
AT

λ
∗−G−Cq̇

))
,

where λ∗ is the GRF assuming a rigid ground. This assumption was made to reduce the numerical stiffness of the system for

simulation. The assumption that the ground was rigid was done with the constraint equation Aq̇ = 0, which ensured that the

biped was correctly attached to a rigid ground in the extended coordinate system. To use this constraint equation, it was first

differentiated once, giving

Aq̈ =−Ȧq̇. (8)

This was then solved simultaneously with (1) and (7) to find the joint torques, u. These joint torques were then used along

with the compliant GRF, λ from (2), to find the joint acceleration using (1).

3.2 Instantaneous Double Support Model

For the instantaneous double support model, the double support period was given as an impulsive impact event. This was

done because the large damping coefficients for the compliant ground (Table 2) and extremely short double support period

approximated an impulse on rigid ground. The EOM of the impact event was still given by (1), governed by the constraint

equation Aq̇. The velocity after impact and the impulsive forces on the foot were found by integrating the EOM over the

duration of the impact [5, 7]. This gave

D(q)q̇+−D(q)q̇− = AT fI
λ
, (9)

where fI
λ

is the integrated impulsive GRF, and q̇− and q̇+ are the joint velocities just before and just after impact, respectively.

The assumption of no slip or rebound led to the following constraint equation

Aq̇+ = 0, (10)
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where A is given in Section 2 assuming GRF on only the front foot. The velocity after impact q̇+ and the impulse on the

foot fλ were found by solving (9) and (10) to obtain

q̇+ = Eq̇− (11)

where E ∈ R8×8 maps the pre-impact velocities to the post-impact velocities.

3.3 Finite-Time Double Support Controller

For the next scenario, the double support period was finite time and was an extension of the controller given in [34].

As with the single support controller, the finite-time double support controller assumed that the compliant ground was

rigid for the purpose of finding joint torque. With this fixed-ground assumption, the controller behaved as if the biped was

overactuated because the feet cannot move independently. Thus, the biped effectively only has 4 DOF during double support,

so attempting to track five independent joint trajectories generally results in incompatible prescribed motion. Because of

this, the output function could only define the trajectory of 4 DOF independently. The remaining 2 DOF were defined by

the assumption that the feet neither slid or lifted up, other than to end the double support period. Given that there were

5 actuators and only 4 independent coordinates, the equations could be manipulated to minimize the norm of u, thereby

reducing energy expenditure. This section derives the time-based double support controller.

Instead of the time-invariant phase variable used in the single support controller, the time-based double support controller

simply used normalized time to measure the progression of the biped through double support.

s =
t
t f
, (12)

where t is the current time and t f is the planned duration of the double support period, defined a priori. The time t was always

set to 0 at the beginning of double support.

The controller was found via input-output linearization. The output function defined the desired motion of 4 joint angles.

The process to determine the control input was analogous to that of the single support control model, but the output function

was different.

y = h(q, t) = H0,DSq−hd(s(t)), (13)

where H0,DS ∈R4×8 is the mapping between the extended coordinate system and the controlled joint trajectories. The output

(13) was differentiated twice, the EOM (1) was substituted into the equation, and the acceleration of the output was replaced

JMR-20-1225 Williams 10



with the feedback controller. The result had the same form as (7), but because the output (13) was different, the final result

became

u =
(
H0,DSD−B

)−(v− d2hd
dt2 +H0,DSD−

(
Cq̇+G−AT

λ
∗)), (14)

where v = kpy+ kd ẏ is the PD controller and (H0,DSD−B) ∈ R4×5. While (14) gave an equation for u, it could not be used

directly because λ∗ was unknown. Finding the solution would have been straightforward if we wanted to minimize the norm

of all of the unknowns. However, we wished to minimize only the norm of u, so an equation for u without any unknowns

was found. To do so, we substituted (1) into (8) and solved for λ∗

λ
∗ =

(
AD−AT )− (AD− (Cq̇+G)− Ȧq̇

)︸ ︷︷ ︸
λ∗1(q,q̇)

−
(
AD−AT )− AD−B︸ ︷︷ ︸

λ∗2(q)

·u. (15)

This was then substituted into (1) to give

q̈ = D−
(
AT

λ
∗
1−Cq̇−G

)︸ ︷︷ ︸
f∗(q,q̇)

+D−
(
B+AT

λ
∗
2
)︸ ︷︷ ︸

g∗(q)

u. (16)

Finally, (16) was used in the input-output linearization to calculate an alternate form of (14).

u = (H0,DSg∗)−
(

v+ d2hd
dt2 −H0,Tf∗

)
, (17)

where (H0,DSg∗) ∈ R4×5, so a pseudoinverse was used to solve for u. The set of joint torques u were not constrained to be

continuous across phase transitions. To simulate the system, λ was found using (2) and both λ and u were then substituted

back into (1).

Phase-based Finite-time Double Support Controller An alternative option was a phase-based double support controller

[34]. In contrast to the time-based finite-time double support controller, this controller parameterizes the progression of the

biped through the double support period independently from time. Parameterizing the gait this way improves the robustness

of gait when implemented during the single support period [12]. As discussed in [34], using a phase variable during double

support necessitates the control of joint velocities instead of joint positions, as was done with the other controllers in this

work.

While it was theoretically possible to implement this type of controller, finding a set of desired joint velocity trajectories
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Fig. 2: A figure showing a valid and invalid future GRF λ f and the respective desired GRF λd . The red circle indicates that
the future GRF is invalid for that foot. In this case, it will slip. The green triangles indicate a valid future GRF. The dashed
line indicates the cone of slipping and the shaded area shows regions of invalid GRF.

was prohibitively difficult. After adding compliant ground, we were unable to find a successful gait via either hand-tuning or

optimization without also changing the ground parameters. Any gaits we found had invalid GRF which forced the feet to lift

up at the beginning of double support or to slip. Because of these challenges with the phase-based controller, the following

results only compare a time-based finite-time double support controller with an instantaneous double support model.

3.4 Adaptive Controller

During double support, the biped became prone to slipping [34]. This was due to the fact that both feet were in contact

with the ground and any actuation could easily cause the feet to move antagonistically. Additionally, any tracking error at the

beginning of double support would cause the controller to force the feet to slip to correct the error. Therefore, an additional

controller was used to detect when the feet were about to slip and adjust the torques in order to obtain valid GRF and prevent

slipping. However, by using a compliant ground model (2), the GRF were a function of the joint positions and velocities–

which the controller was unable to directly affect. Thus, the controller was unable to correct slipping instantaneously and

needed to look ahead to prevent slipping before it occurred.

To determine when slipping was about to happen, the motion was linearized, and several simplifying assumptions were

made. Both the velocity and acceleration were assumed to be constant and the biped was progressed forward a given time

step. Although this assumption was not physically realizable, it simplified the analysis and the time step used was small

enough to make the difference negligible. Using this assumption, the future position and velocity were given by

q f = q̇0∆t +q0

q̇ f = q̈0∆t + q̇0

(18)

where ∆t is the look-ahead time step, the subscript 0 indicates the current value, and the subscript f indicates the future

value given the current joint torque u0. Here, ∆t = 0.0001s, and was chosen through hand tuning to find a balance between

simulation speed and ability to prevent slipping. The future GRF λ f were then calculated using q f and q̇ f in equation (2)
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and checked to make sure that they were valid, i.e. neither foot was about to slip nor lift up. If λ f was valid for both feet, the

current value of u0 as calculated via (17) was used. If λ f was not valid, the desired future GRF λd were calculated for both

feet, as shown in Figure 2. This was done by finding the closest vertical and horizontal force pair that were valid in order to

minimize the change necessary to prevent slipping. In cases where only one foot had invalid λ f , λd = λ f for the foot with

valid λ f . To find the new torques ud , (2) was first rewritten to emphasize the dependence on foot velocity.

λd = F1(q f )+F2(q f )·żd , (19)

where F1 and F2 are

F1 =



−kn|zn,L|Nk

−kt |zt,L|Nk

−kn|zn,T |Nk

−kt |zt,T |Nk


, F2 = diag



−cn|zn,L|Nc

−ct |zt,L|Nc

−cn|zn,T |Nc

−ct |zt,T |Nc



The unknown żd =

[
żn,L żt,L żn,T żt,T

]T

is the new desired foot velocity that prevents slipping, where the subscript L refers

to the leading foot and T refers to the trailing foot. (19) was solved for żd , yielding żd = F2
−1(q f )

(
λd−F1(q f )

)
. The foot

velocity was linearly related to the joint velocity via

żd = Fv(q f ) · q̇d

ż f = Fv(q f ) · q̇ f

(20)

where q̇d is the desired joint velocity that prevents slipping, q̇ f is the joint velocity from the original joint torques, and the

mapping Fv ∈ R4×8 was obtained from the kinematic model of the biped. Because changing the desired GRF changes the

motion from the desired trajectory, we wanted to choose new joint torques ud that minimized the difference from the old joint

torques. This minimized the deviation from the desired motion and was equivalent to minimizing the difference between the

foot velocities in (20) to get

żd− ż f = Fv · (q̇d− q̇ f ), (21)
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where q̇d and q̇ f can be written using (18) and (1) as

q̇d = q̇0 +∆tq̈d(q f ) (22)

q̇ f = q̇0 +∆tq̈0(q f ),

where

q̈d = D−1 (AT
λ
∗−Cq̇0−G

)
+D−1Bud

q̈0 = D−1 (AT
λ
∗−Cq̇0−G

)
+D−1Bu0,

and ud and u0 are the desired joint torque and the current joint torque, respectively. Substituting these into (21) leads to the

following equation which can then be simplified.

żd− ż f = Fv

(
��̇q0 +

((((
(((

((((
(

∆t
[
D−1 (AT

λ
∗−Cq̇0−G

)]
+∆t

[
D−1Bud

]
−��̇q0−

((((
((((

((((
∆t
[
D−1 (AT

λ
∗−Cq̇0−G

)]
−∆t

[
D−1Bu f

])
= Fv

(
∆tD−1B(ud−u f )

)
(23)

This was then solved for ud to get

ud =
(FvD−1B)−1(żd− ż f )

∆t
+u f , (24)

where (FvD−1B) ∈R4×5, so a pseudoinverse was used. This new set of joint torques were then used to actuate the biped and

continue the simulation.

4 Simulation Generation

Once the controllers for the single and double support periods were developed, simulations were created to evaluate if a

finite-time double support period enhanced stability. To do so, gaits were found via optimization, then perturbation testing

was performed.
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Table 3: Spatio-temporal parameters and objective function value fob j for each gait. Here, fob j is approximately the non-
dimensional energy consumption of the gait.

Parameter Instantaneous Finite-time
Gait 1 (v≈ 0.8m/s)
Gait Speed (m/s) 0.800 0.807
Step Length (m) 1.053 0.973

Step Time (s) 1.316 1.205
f 0.208 0.377

Gait 2 (v≈ 0.8m/s)
Gait Speed (m/s) 0.783 0.789
Step Length (m) 1.052 0.985

Step Time (s) 1.344 1.249
f 0.197 0.406

Gait 3 (v≈ 0.9m/s)
Gait Speed (m/s) 0.905 0.876
Step Length (m) 1.041 0.969

Step Time (s) 1.151 1.106
f 0.204 0.469

Gait 4 (v≈ 1.0m/s)
Gait Speed (m/s) 1.001 0.979
Step Length (m) 1.039 0.974

Step Time (s) 1.038 0.995
f 0.222 0.478

Gait 5 (v≈ 1.1m/s)
Gait Speed (m/s) 1.099 1.100
Step Length (m) 1.038 0.979

Step Time (s) 0.945 0.890
f 0.197 0.519

Gait 6 (v≈ 1.2m/s)
Gait Speed (m/s) 1.200 1.132
Step Length (m) 1.024 0.949

Step Time (s) 0.853 0.838
f 0.246 0.766

4.1 Optimizing Gait

For all simulations, the joint angle trajectories were parameterized by Bézier polynomials with order 5 for single support

and order 4 for double support. When a finite-time double support controller is used, the gait is defined by two Bézier

polynomials—one for the double support period and one for the single support period—defined such that the desired positions

and velocities were continuous between phases. When the instantaneous double support model is used, only one Bézier

polynomial is required to define the gait. For the single support period, all actuated joints, q2...q6 were tracked using (5).

For the finite-time double support period, the knee and ankle joints q3...q6 were tracked and controlled using (13). Six gaits

were found for each double support condition spanning a range of speeds from 0.8m/s to 1.2m/s (Table 3, Figure 3). In some

cases, multiple gaits were found for a given speed to evaluate the fall risk sensitivity on the Bézier polynomial choice.

To find the gaits, the Bézier polynomials were found using both stochastic and gradient-based nonlinear optimization

methods in Matlab. Given an initial guess for the Bézier polynomial, these techniques searched for a set of polynomial

coefficients and initial conditions that minimized the objective function and satisfied all of the constraints. The optimization

methods evaluated each iterative guess for the Bézier polynomial, and based on how well it satisfied the constraints and the
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Fig. 3: Spatio-temporal parameters and objective function value fob j for each controller as gait speed changes. Here, fob j is
approximately the non-dimensional energy consumption of the gait. In general, step time decreased as gait speed increased,
while the objective function cost generally increased as gait speed increased.

objective function value, adjusted the next guess. The objective function was the specific energetic cost of transport [7]

fob j =
6

∑
k=2

∫ T
0 |ukq̇k|dt

Mgl
, (25)

where M is the mass of the biped, g is the gravitational constant, l is the step length, and T is the total step time, and k is the

joint number as defined in Section 2. To implement the constraints, exponential barrier functions were used [51]

fbarr =Wkexp
(
e2

k/Wk
)
−Wk (26)

where Wk is the weight and ek is the constraint violation for the for the kth barrier function. These functions were added to

the objective function to penalize constraint violations. Adding the constraints as barrier functions allowed the initial guess

for the optimization to not fully satisfy the constraints but still be driven towards a valid, optimal gait. Multiple optimizations

were run with increasing barrier function weights in order to find a valid gait while decreasing the objective function. At the

end of the optimization, the barrier functions were approximately zero, indicating that there were no constrain violations. The

primary constraints were that the GRF were valid (no slipping and no flying) and that the gait was periodic (the positions and

velocities at the beginning of the step were equal to those at the beginning of the following step) [5]. To allow comparisons

between gaits, the speed and step length were constrained. Additional constraints, such as limiting joint angles to normal

human motion prevented the optimization from exploiting the objective function. This optimization was performed without

the use of the adaptive controller (24).

To find the Bézier polynomials for the finite-time double support model, simulated annealing was used to find gaits at

approximately 0.8m/s (gait 1), 1.0m/s (gait 4), and 1.2m/s (gait 6). An initial, hand-tuned Bézier polynomial was used as the

starting point for the gait at approximately 1.0m/s. This optimized Bézier polynomial was then used as the starting point for
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the optimizations to find gaits 1 and 6. To compare the controllers, the gaits should be as similar as possible. To help ensure

this, the optimal gaits for the finite-time double support model were used as the initial point for the instantaneous double

support model optimization. The finite-time double support gait was simulated for one step to determine the joint angle

trajectories over the entire step. These trajectories were then parameterized in the phase domain using the single support

phase variable (3). This resulted in usable gaits for the instantaneous double support controller, which were then optimized

using simulated annealing in order to minimize the objective function (25) and meet the step constraints. To determine how

sensitive the stability of each controller was to the specific gait, three additional gaits were generated using a gradient descent

algorithm. These were found by starting with an average speed gait of 1.0m/s (gait 4) for each controller and optimizing

the gait while slowly reducing or increasing the constrained walking speed. By doing this, we found gaits at approximately

0.9m/s (gait 3), 0.8m/s (gait 2), and 1.1m/s (gait 5).

In total, six valid gaits were found for each controller. The structure of a step was fundamentally different for the

instantaneous double support model compared to the finite-time double support model (Fig. 4). Primarily, during a finite-

time double support period, the joints are coordinated in order to reach the desired hip velocity at the beginning of single

support. In contrast, the instantaneous double support period requires using the end of the single support period to modulate

hip velocity in preparation for the next single support period. As a result, we could not match both the kinematic and spatio-

temporal characteristics of the gaits. To allow the most direct comparison between different controllers, the spatio-temporal

characteristics were matched while the kinematics were different. Despite the differences in the joint angles, step length and

walking speed were very similar for all speed-matched scenarios (Table 3).

4.2 Perturbation Testing

In order to determine the robustness of these controllers to disturbances, perturbations were applied to the biped during

simulation. The system was metastable, meaning it will eventually, but not quickly, fail when experiencing small, random

perturbations. Because of this, it was analyzed as a discrete-time Markov chain [45]. This technique, as outlined below,

created a deterministic state-transition mesh using known perturbations. This mesh was then used to find the Markov chain

from the nominal gait to the failure state (slipping or falling) when the distribution of random perturbations was known.

In order to create the discrete Markov chains, the simulation was divided into individual steps. For this section, biped
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Fig. 4: Joint angles for the two double support controllers for a typical gait (gait 4). The vertical line indicates the end of
double support and beginning of single support for the finite-time double support model. Even though the two gaits have
very similar spatio-temporal characteristics as shown in Table 3, the joint trajectories are clearly different.

JMR-20-1225 Williams 17



state refers to the position and velocity of the biped just before the double support period. To generate each deterministic

state-transition mesh, the biped was first simulated from the nominal periodic state with no perturbations. This state was the

initial point in the mesh. The biped was started at this state and each discrete perturbation s ∈ Sd , where Sd is a discrete set

of perturbations, was applied at a specified point in the gait cycle. The applied perturbation and resulting state were then

recorded and the new state was added to the state-transition mesh. From each new point in the state-transition mesh, the

biped was simulated with each perturbation s ∈ Sd . Again, the applied perturbation and resulting state were recorded and the

new state was added to the state-transition mesh if it was not already in the mesh. To determine if a given state was already

in the mesh, the normalized Euclidean distance from the new state, p, to each state in the mesh, m ∈M was calculated using

d(p,M) := min
m∈M

[√
∑

i

(
pi−mi

ri

)2
]
, (27)

where ri was the standard deviation of all mi elements. If this distance was greater than the threshold value 1, then the

new state was added to the mesh. Once each state in the state-transition mesh had been simulated with the perturbation set

and no new states were found, the state-transition mesh was complete. This state-transition mesh can be thought of as a

deterministic Markov chain (T d), which includes every state the biped may experience, including the failure state, as a result

of any perturbation s ∈ S and any starting state.

Once T d was determined, Ss was defined as a stochastic distribution of perturbations based on the discrete perturbation

set Sd . Then the (stochastic) Markov chain (T s) was determined by assigning a probability for each perturbation s ∈ Sd

to T d . Given the initial state, this Markov chain T s now gives the probability of ending up at any state due to a random

perturbation. The eigenvalues of T s were used to approximate the mean first passage time (MFPT), which was the expected

number of steps the biped will take given random perturbations before failing. This was a measure of the robustness of the

biped and controller. The largest eigenvalue, λ1 = 1, was associated with the failure state. The second largest eigenvalue, λ2,

was associated with the metastable state, and its association with MFPT was

MFPT≈ −1
log(λ2)

. (28)

These results were validated by simulating a small number of gaits with the given random perturbations until they slipped or

fell. The number of successful steps were then averaged and compared to the MFPT.

In this work, a comprehensive set of perturbations were tested. The perturbations simulated a horizontal push and were

implemented in simulation using a horizontal impulse applied to the hip at a given time point during the gait. The three

perturbation points were 1) just before the double support period, 2) just before the single support period, and 3) halfway

through the single support period. For the instantaneous double support period, perturbations 1) and 2) occurred immediately

JMR-20-1225 Williams 18



100 104 108 1012 1016

Finite-Time Double Support Gait MFPT

100

104

108

1012

1016

In
st

an
ta

ne
ou

s
D

ou
bl

e
Su

pp
or

tG
ai

tM
FP

T

Low Variance
Med Variance
High Variance

Fig. 5: MFPT for finite-time double support gaits compared to MFPT for instantaneous double support gaits. Each marker
indicates a single testing condition for both double support models. A line of slope 1 is given as reference. Markers below this
line indicate that a finite-time double support period increased gait stability. A finite-time double support period increased
gait stability in some, but not all cases. Marker types indicate the perturbation distribution used. Increasing the variance of
the perturbation distribution resulted in a decreased MFPT.

before and after the impact mapping (11), respectively. The discrete set of perturbations over which the biped was tested

was Sd = [−0.2,0.2]m/s with a 0.002m/s spacing. Three different normal stochastic distributions were used for testing—low

variance with Ss ∼N
(

0,
( 0.01

6

)2
)

, medium variance with Ss ∼N
(

0,
( 0.01

3

)2
)

, and high variance with Ss ∼N
(

0,
( 0.02

3

)2
)

.

All gaits and both double support models were tested. The adaptive controller was used with the finite-time double support

controller during perturbation testing. A separate T s and therefore MFPT was found for each perturbation point, walking

speed, stochastic distribution, and double support model combination.

5 Results and Discussion

In general, the objective function cost increased with increasing speed and with a finite-time double support period

(Table 3). However, for a given walking speed and double support model, there seems to be a tradeoff between gait stability

and objective function cost (Tables 3, 4). This is apparent when comparing gaits 1 and 2. For both the finite-time and

instantaneous double support models walking at v≈ 0.8m/s, the more stable gait (gait 1 for the instantaneous double support

model and gait 2 for the finite-time double support model) had a higher objective function cost than the less stable gait.

Further supporting the trade-off, both objective function cost and stability generally increased with increasing speed. The

increase in stability may be due to the fact that as the walking speed increases, a given velocity perturbation magnitude

shrinks in relation to the velocity of the biped. However, this tradeoff between objective function cost and gait stability was

not explored in depth.

In three out of the six gaits tested, the finite-time double support model generally had greater MFPT than the instan-

taneous double support model (gaits 2-4), while the converse was true for the other gaits (gaits 1, 5 and 6, Table 4, Figure

5). When counting individual conditions, a finite-time double support period had a greater MFPT in 29 out of the 54 cases.

There was considerable variance and overlap in the MFPT between controller types. The instantaneous double support gaits
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Table 4: Mean First Passage Time (MFPT) for all testing conditions. The finite-time double support controller used the
adaptive controller. DS0, SS0, and SS0.5 indicate that the perturbation is applied at the beginning of double support, beginning
of single support, or halfway through the single support period, respectively.

Low Variance Medium Variance High Variance

Perturbation Time Instantaneous Finite-time Instantaneous Finite-time Instantaneous Finite-time

Gait 1 (v≈ 0.8m/s)

DS0 5.888×106 1.131×104 185.1 43.35 24.95 6.526

SS0 5.888×106 1.048×1011 185.1 2.571×103 24.95 20.24

SS0.5 4.174×107 3.217×1014 2.840×107 1.298×106 1.687×107 157.8

Gait 2 (v≈ 0.8m/s)

DS0 292.4 3.336×1014 43.99 2.545×104 21.53 40.93

SS0 295.5 1.321×108 44.01 449.0 21.54 13.55

SS0.5 6.719×109 9.007×1014 1.137×108 8.188×1014 1.903×103 8.188×1014

Gait 3 (v≈ 0.9m/s)

DS0 2.613×104 3.872×1011 154.3 3.655×103 34.21 21.56

SS0 1.637×106 3.853×1010 153.0 2.015×103 34.45 20.30

SS0.5 4.201×107 3.217×1014 9.037×1010 1.126×1015 1.180×104 2.002×1014

Gait 4 (v≈ 1.0m/s)

DS0 3.383×108 1.935×1012 472.7 5.275×103 54.74 25.74

SS0 1.586×108 2.002×1014 462.5 2.859×106 54.44 166.5

SS0.5 5.759×104 6.434×1014 4.403×1011 6.434×1014 2.503×104 3.002×1014

Gait 5 (v≈ 1.1m/s)

DS0 1.580×1014 2.824×1013 6.587×106 1.083×104 370.3 27.54

SS0 1.580×1014 6.344×106 6.587×106 194.1 370.3 7.604

SS0.5 3.464×1014 3.753×1014 3.753×1014 6.397×104 2.502×1014 55.31

Gait 6 (v≈ 1.2m/s)

DS0 2.537×1013 1.287×1015 6.367×104 6.770×104 208.6 54.12

SS0 3.264×1013 10.79 6.525×104 3.847 209.2 2.458

SS0.5 4.094×1014 46.68 5.630×1014 6.499 3.753×1014 3.122

had a MFPT range from ∼ 10 to ∼ 1014 with a median of 6.063×104 steps, while the finite-time double support gaits had

an almost identical MFPT range of ∼ 1 to ∼ 1015 and a median of 1.107×104 steps. Thus, different gaits can have different

stability, and a finite-time double support controller does not always help. Unfortunately, there were no obvious kinematic

or kinetic features that could identify which controller was more stable which could make it difficult to optimize a gait for

stability. Instead, it appears that there is some non-obvious aspect(s) of gait that largely govern the inherent stability of a
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gait, rather than obvious features such as the presence of a finite-time double support period.

Nevertheless, as expected, increasing the variance of the perturbations decreased the MFPT, and more stable gaits

generally remained more stable as the distribution changed (Figure 5). For low variance perturbations, the median MFPT

was 7.167×1010 steps, for medium variance perturbations, the median MFPT was 1.814×104 steps, and for high variance

perturbations, the median MFPT was 54.28 steps. Similar to the MFPT ranges for controller types, there was considerable

overlap in the MFPT ranges for each perturbation distribution, with all three perturbation conditions yielding MFPT ranges

from ∼ 1 to ∼ 1015. This appears to be partly driven by differences in the inherent stability of each gait and partly driven by

the effect of perturbation timing. The point in the gait at which the perturbation was applied affected the likelihood that the

biped would slip or fall, in some cases by many orders of magnitude. In general, gait stability increased as the perturbation

time became later (true for 76% of comparisons). For perturbations at the beginning of double support (DS0), the median

MFPT was 2.064×103 steps. This decreased for perturbations at the beginning of single support (SS0) to a median MFPT

of 409.7 steps. Gaits had a substantially higher MFPT when the perturbation was applied in the middle of the single support

period (SS0.5), with the median MFPT rising to 2.653× 1011 steps. Thus, the biped was generally the most stable when

perturbations were introduced in the middle of the single support period regardless of the controller type.

The timing also affected if the biped was more likely to fail due to forward or backward perturbations. When applied

at the beginning of the single support period (SS0), backward perturbations caused the most gait failures in all cases. This

was because a backward perturbation at this point in the gait cycle robbed the biped of the necessary forward momentum

to complete a step, causing the biped to fall over backward. This was also the case for perturbations at the beginning of the

double support period (DS0) with an instantaneous double support period. Because the perturbation and the instantaneous

double support period (Sec. 3.2) are both impacts, there was little difference between perturbations just before and after the

double support period. Thus, stability between these two perturbation points was very similar. On the other hand, when

perturbations were applied at the beginning of the double support period with a finite time double support period, forward

perturbations contributed to most to gait failures at all speeds. This may be because forward perturbations sped the biped up

just before it needed to decelerate and redirect the center of mass (COM) [52]. This increased the required horizontal GRF,

which in turn increased slipping. When the perturbation was applied in the middle of the single support period (SS0.5), the

direction of the perturbation had little effect on when the biped failed.

Table 5: Mean First Passage Time (MFPT) for the slow speed and medium variance perturbation comparing the finite-time
double support controller with and without the adaptive controller. These results are typical and show the benefit of including
an adaptive controller.

Perturbation Time With Adaptive Without Adaptive

Gait 1 (v≈ 0.8m/s)

DS0 43.35 18.46

SS0 2.571×103 2.136

SS0.5 1.298×106 2.425×103
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In general, when the instantaneous double support model was used, the gait failed due to the biped falling over. However,

when the finite-time double support controller was used, the gaits failed due to the biped slipping, usually during double

support. Although we considered both of these conditions to be failures causing the gait to end, it may be possible to recover

from slipping. This was done to a limited extent with the adaptive controller. The adaptive controller was able to limit

slipping and greatly increase the MFPT in all perturbation conditions (Table 5). However, this adaptive controller is limited.

As derived in Section 3.4, the adaptive controller attempts to predict and prevent future slipping, meaning it cannot correct

for any slipping that occurs at the very beginning of the double support period. Because of this, if the initial conditions of the

double support period cause slipping, the adaptive controller is not able to prevent it. It may be possible to further augment

the double support controller to correct for slip and return the biped to a non-slipping state once slip starts [53]. This would

allow the finite-time double support controller to walk for longer than the MFPT in Table 4 suggests.

In summary, a finite-time double support period does not always increase disturbance rejection capabilities as previously

assumed. Nevertheless, it appears that a finite-time double support period may be useful for bipedal gait because it changes

how a bipedal gait fails—from falling over to slipping—and because it can sometimes increase the stability of the gait. It is

not clear however, how to fully take advantage of the finite-time double support period to increase the stability in all gaits.

6 Supplemental Material

An example bipedal gait using the time-based finite-time double support controller is provided as supplemental material

at https://youtu.be/dOfmu82KWwM.

7 Acknowledgements

This work was supported by the NSF under award 1727540.

References

[1] M. E. Tinetti and C. S. Williams, “The effect of falls and fall injuries on functioning in community-dwelling older

persons,” J. Gerontol. A-Biol., vol. 53, no. 2, pp. M112–M119, 1998.

[2] A. Ejupi, S. R. Lord, and K. Delbaere, “New methods for fall risk prediction,” Curr. Opin. Clin. Nutr., vol. 17, no. 5,

pp. 407–411, 2014.

[3] P. Di, J. Huang, S. Nakagawa, K. Sekiyama, and T. Fukuda, “Fall detection and prevention in the elderly based on the

ZMP stability control,” in IEEE Work. Adv. Robot, 2013, pp. 82–87.

[4] S. Collins, A. Ruina, R. Tedrake, and M. Wisse, “Efficient bipedal robots based on passive-dynamic walkers,” Science,

vol. 307, no. 5712, pp. 1082–1085, 2005.

[5] E. R. Westervelt, J. W. Grizzle, C. Chevallereau, J. H. Choi, and B. Morris, Feedback Control of Dynamic Bipedal

Robot Locomotion. CRC Press, 2007.

JMR-20-1225 Williams 22

https://youtu.be/dOfmu82KWwM


[6] A. E. Martin and J. P. Schmiedeler, “Predicting human walking gaits with a simple planar model,” J. Biomech., vol. 47,

no. 6, pp. 1416–1421, 2014.

[7] A. E. Martin, D. C. Post, and J. P. Schmiedeler, “Design and experimental implementation of a hybrid zero dynamics-

based controller for planar bipeds with curved feet,” Int. J. Robot. Res., vol. 33, no. 7, pp. 988–1005, 2014.

[8] J. Wu, Y.-a. Yao, Y. Li, S. Wang, and Q. Ruan, “Design and analysis of a sixteen-legged vehicle with reconfigurable

close-chain leg mechanisms,” J. Mech. Robot., vol. 11, no. 5, 2019.

[9] P. A. Bhounsule and A. Zamani, “A discrete control lyapunov function for exponential orbital stabilization of the

simplest walker,” J. Mech. Robot., vol. 9, no. 5, 2017.

[10] A. E. Martin, D. C. Post, and J. P. Schmiedeler, “The effects of foot geometric properties on the gait of planar bipeds

walking under HZD-based control,” Int. J. Robot Res., vol. 33, no. 12, pp. 1530–1543, 2014.

[11] M. Fevre, B. Goodwine, and J. P. Schmiedeler, “Velocity decomposition-enhanced control for point and curved-foot

planar bipeds experiencing velocity disturbances,” J. Mech. Robot., vol. 11, no. 2, 2019.

[12] D. J. Villarreal, H. A. Poonawala, and R. D. Gregg, “A robust parameterization of human gait patterns across phase-

shifting perturbations,” IEEE T. Neur. Sys. Reh., vol. 25, no. 3, pp. 265–278, 2016.

[13] D. C. Post and J. P. Schmiedeler, “Velocity disturbance rejection for planar bipeds walking with HZD-based control,”

in IEEE Int. C. Int. Robot., 2014, pp. 4882–4887.

[14] I. R. Manchester, U. Mettin, F. Iida, and R. Tedrake, “Stable dynamic walking over uneven terrain,” Int. J. Robot. Res.,

vol. 30, no. 3, pp. 265–279, 2011.
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