

Electrocatalytic Nitrate Reduction for Denitrifying Wastewater

Wenzhen Li, Hengzhou Liu, Jaeryl Park, Yifu Chen, Luke Roling, Shuang Gu
Chemical & Biological Engineering, Iowa State University, Ames, IA, USA 50011
Email: wzli@iastate.edu

Removing excessive nitrate (NO_3^-) from wastewater has increasingly become an important research topic in light of the growing concerns over the related environmental problems and health issues. In particular, catalytic/electrocatalytic approaches are attractive for NO_3^- removal, because NO_3^- from wastewater can be converted to N_2 and released back to the atmosphere using renewable H_2 or electricity, closing the loop of the global N cycle. However, achieving high product selectivity towards the desirable N_2 has proven challenging in the direct NO_3^- -to- N_2 reaction. In this presentation, we will report our finding on unique and ultra-high electrochemical NO_3^- -to- NO_2^- activity on an oxide-derived silver electrode (OD-Ag). Up to 98% selectivity and 95% faradaic efficiency of NO_2^- were observed and maintained under a wide potential window. Benefiting from overcoming the rate-determining barrier of NO_3^- -to- NO_2^- during nitrate reduction, further reduction of accumulated NO_2^- to NH_4^+ can be well regulated by the cathodic potential on OD-Ag to achieve a faradaic efficiency of 89%. These indicated the potential controllable pathway to the key nitrate reduction products (NO_2^- or NH_4^+) on OD-Ag. DFT computations provided insights into the unique NO_2^- selectivity on Ag electrodes compared with Cu, showing the critical role of a proton-assisted mechanism. Based on the ultra-high NO_3^- -to- NO_2^- activity on OD-Ag, we designed a novel electrocatalytic-catalytic combined process for denitrifying real-world NO_3^- -containing agricultural wastewater, leading to 95% of NO_3^- conversion to N_2 with minimal NO_x gases. In addition to the wastewater treatment process to N_2 and electrochemical synthesis of NH_3 , NO_2^- derived from electrocatalytic NO_3^- conversion can serve as a reactive platform for distributed production of various nitrogen products. Our new research progress along this direction will be briefly presented.