Electrocatalytic Reduction of Nitrate to Nitrite and Ammonia over Oxide-Derived Silver Electrodes

Hengzhou Liu, Jaeryl Park, Yifu Chen, Shuang Gu, Luke Roling, Wenzhen Li*, Chemical & Biological Engineering, Iowa State University, Ames, IA, USA 50011 Email: wzli@iastate.edu

The nitrogen cycle plays a key role biological, energy, environment, and industrial processes. Breaking natural nitrogen cycle is leading to accumulation of reactive nitrogen chemicals in water and atmosphere, therefore, better management of N-cycle has emerged as an urgent research need in energy and environmental science. Removing excessive nitrate (NO₃⁻) from wastewater has increasingly become an important research topic in light of the growing concerns over the related environmental problems and health issues. In particular, catalytic/electrocatalytic approaches are attractive for NO₃⁻ removal, because NO₃⁻ from wastewater can be converted to N₂ and released back to the atmosphere using renewable H₂ or electricity, closing the loop of the global N cycle. However, achieving high product selectivity towards the desirable N₂ has proven challenging in the direct NO₃⁻-to-N₂ reaction. In this presentation, we will report our finding on unique and ultra-high electrochemical NO₃-to-NO₂-activity on an oxidederived silver electrode (OD-Ag). Up to 98% selectivity and 95% faradaic efficiency of NO₂ were observed and maintained under a wide potential window. Benefiting from overcoming the rate-determining barrier of NO₃⁻-to-NO₂⁻during nitrate reduction, further reduction of accumulated NO₂⁻ to NH₄⁺ can be well regulated by the cathodic potential on OD-Ag to achieve a faradaic efficiency of 89%. These indicated the potential controllable pathway to the key nitrate reduction products (NO₂ or NH₄) on OD-Ag. DFT computations provided insights into the unique NO₂-selectivity on Ag electrodes compared with Cu, showing the critical role of a proton-assisted mechanism. Based on the ultra-high NO₃⁻-to-NO₂⁻activity on OD-Ag, we designed a novel electrocatalyticcatalytic combined process for denitrifying real-world NO₃-containing agricultural wastewater, leading to 95+% of NO₃⁻ conversion to N₂ with minimal NO_x gases. Importantly, NO₂⁻ derived from nitrate may serve as a crucial reactive platform for distributed production of various nitrogen products, such as NO, NH2OH, NH3, and urea.