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Abstract

As the signal-to-noise of Sunyaev–Zeldovich (SZ) cross-correlation measurements of galaxies improves our ability to
infer properties about the circumgalactic medium (CGM), we will transition from being limited by statistical
uncertainties to systematic uncertainties. Using thermodynamic profiles of the CGM created from the IllustrisTNG (The
Next Generation) simulations we investigate the importance of specific choices in modeling the galaxy sample. These
choices include different sample selections in the simulation (stellar versus halo mass, color selections) and different
fitting models (matching by the shape of the mass distribution, inclusion of a two-halo term). We forward model a mock
galaxy sample into projected SZ observable profiles and fit these profiles to a generalized Navarro–Frenk–White profile
using forecasted errors of the upcoming Simons Observatory experiment. We test the number of free parameters in the
fits and show that this is another modeling choice that yields different results. Finally, we show how different fitting
models can reproduce parameters of a fiducial profile, and show that the addition of a two-halo term and matching by
the mass distribution of the sample are extremely important modeling choices to consider.

Unified Astronomy Thesaurus concepts: Circumgalactic medium (1879); Sunyaev-Zeldovich effect (1654)

1. Introduction

The circumgalactic medium (CGM) consists of a large
reservoir of gas surrounding the outermost regions of galaxies.
It is an important component of the galactic structure, and is
believed to govern the cyclical flow of material in and out of
galaxies. This cycle includes material falling onto the disks of
galaxies from the CGM and intergalactic medium (IGM) and
being recycled back out through various feedback mechanisms.

The CGM is known to be complex and multiphase in
temperature, ionization state, and kinematics (Tumlinson et al.
2011; Werk et al. 2013; Nielsen et al. 2015; Tumlinson et al.
2017; Oppenheimer et al. 2018) and has been studied through
observations (e.g., Lanzetta et al. 1995; Chen et al. 1998; Steidel
et al. 2010; Tumlinson et al. 2011; Rudie et al. 2012; Tumlinson
et al. 2013; Werk et al. 2014) and hydrodynamic simulations
(e.g., Oppenheimer & Davé 2008; Ford et al. 2013; Hummels
et al. 2017; Suresh et al. 2017; Oppenheimer et al. 2018;
Hummels et al. 2019; Peeples et al. 2019). Several questions
regarding the physical processes that govern the different states
of the CGM remain unanswered, commonly including what are
the properties of quenched galaxies and how do the galaxies
become quenched (Baldry et al. 2004; Noeske et al. 2007; Peng
et al. 2010; Geha et al. 2012), and the missing baryon problem in
which baryons predicted by the current cosmological model are
not observed (Persic & Salucci 1992; Fukugita et al. 1998;
Fukugita & Peebles 2004; Cen & Ostriker 2006; Bregman 2007;
Davé 2009). Star formation in galaxies is known to be inefficient
(Fukugita & Peebles 2004; Federrath 2015), which implies that
there is some process occurring within the CGM and its
interaction with the host galaxy that is preventing the gas from
cooling and forming stars efficiently. This process could be
related to the various feedback mechanisms injecting energy into
the system such as supernovae and active galactic nuclei (AGN;

Di Matteo et al. 2005; Springel et al. 2005; Scannapieco et al.
2008; Somerville et al. 2008; Marasco et al. 2015; Somerville &
Davé 2015; Agertz & Kravtsov 2016) that push central material
to the far parts of the galaxy while also affecting its
thermodynamic properties. These problems and many more
discussed in the literature are important to understand for galaxy
evolution theory, and can be studied theoretically through
cosmological simulations and observationally through galaxy
surveys at multiple redshifts and wavelengths.
An emergent method to observe the CGM is observing the

cosmic microwave background (CMB). While initially measured
to be homogeneous and isotropic, fluctuations (called aniso-
tropies) in temperature have been detected, and these aniso-
tropies can give insight on the seeds of structure formation and
growth. Secondary anisotropies due to the Sunyaev–Zeldovich
(SZ) effect (Sunyaev & Zeldovich 1970) have also recently been
measured, which can be further broken down into thermal (tSZ)
and kinetic (kSZ) effects (Sunyaev & Zeldovich 1972, 1980).
The tSZ effect describes the increase in energy of CMB

photons due to scattering off ionized electrons in galaxies and
galaxy clusters, and produces distortions in the nearly perfect
blackbody spectrum of the CMB. It is a function of frequency,
ν, and the Compton-y parameter, shown in Equation (1). The
amplitude of this distortion is proportional to the line-of-sight
(LOS) integral of the electron pressure, so it can be used as a
probe of the gas pressure within galactic halos.
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where ΔT(ν) is the shift in temperature measured as the tSZ
signal, TCMB is the temperature of the CMB, spectral function
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f (ν)= xcoth(x/2)− 4, with = nx h

k TB CMB
, h is the Planck

constant, kB is the Boltzmann constant, y(θ) is the Compton-y
parameter measured within θ, σT is the Thomson scattering
cross section, me is the electron mass, c is the speed of light,
dA(z) is the angular diameter distance at redshift z, and Pe is the
electron pressure.

The kSZ effect is the Doppler shift of CMB photons
scattering off free electrons in galaxies and clusters with
peculiar velocities, causing Doppler shifts in the CMB
temperature that are directly related to the peculiar momentum.
These shifts in temperature are proportional to the LOS integral
of peculiar velocity multiplied by electron number density;
therefore, we can use the kSZ to measure the density of the
CGM in extragalactic halos (Battaglia et al. 2017).
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where ne is the electron number density, vp is the peculiar
velocity, and τ(θ) is the optical depth.

Combining the tSZ and kSZ effects provides complete
thermodynamic information of the CGM (Battaglia et al.
2017) and can provide constraints on the physical processes
that govern star formation and feedback, and thus galaxy
evolution. The combination of SZ measurements is a relatively
new method to study the CGM. While the tSZ effect has been
observable in galaxies and galaxy clusters for several years,
detections of the kSZ effect have only recently been possible
through cross-correlation of CMB observations with galaxy
catalogs (e.g., first detected in Hand et al. 2012). Among the kSZ
estimators that exist in the literature, a recent powerful method
uses a velocity-weighted stack, in which the signal measured for
each halo on the CMB map is weighted by an estimate of its
LOS velocity, reconstructed from the density field (e.g., Planck
Collaboration et al. 2016a; Schaan et al. 2016, 2021). Using this
method, recent results from the Atacama Cosmology Telescope
(ACT) DR5 and Planck (Amodeo et al. 2021; Schaan et al.
2021) have achieved high signal-to-noise measurements of the
kSZ and tSZ effects, and in turn, of the electron density,
temperature, and pressure distribution around the CMASS
(constant stellar mass) galaxies from the Baryon Oscillation
Spectroscopic Survey (BOSS; Ahn et al. 2014), constraining the
effects of feedback and finding tensions with cosmological
simulations. The signal-to-noise ratio (S/N) in measurements
like those of Schaan et al. (2021) and Amodeo et al. (2021) will
increase rapidly, as forecasted in Battaglia et al. (2017), and will
make the tSZ and kSZ effects even more powerful probes
of astrophysical processes related to galaxy formation and
evolution (Ade et al. 2019; Abazajian et al. 2019; Battaglia et al.
2019). With such a high S/N, correctly modeling details of the
sample becomes very important, and this is the crucial question
that this study addresses.

Since it is not possible to directly observe galaxy evolution
over cosmological timescales, simulations offer the only
method of tracking and characterizing the physical properties
and locations of baryons in the galaxies (including the CGM
and even farther into the IGM) in controlled environments at
multiple redshifts, which can act as predictors for how we
believe real galaxies behave. In this study we have developed
methods using cosmological simulations to study the

thermodynamic properties of galaxy halos, thus constraining
the baryonic processes that are responsible for making star
formation inefficient and affecting the galaxy’s evolutionary
track.
In the current era of high signal-to-noise SZ observations,

modeling the halo samples becomes a major and important
uncertainty to understand. Not taking certain properties of the
sample into account in the model could bias the way in which
the observations are interpreted.
In this study we use simulated halo samples from the

IllustrisTNG (The Next Generation) simulation (Marinacci
et al. 2018; Naiman et al. 2018; Pillepich et al. 2018; Springel
et al. 2018; Nelson et al. 2018, 2019) to test various
components of modeling an example of an observed halo
population. We model a subsample of the CMASS sample
from the BOSS survey, Data Release 10 (Ahn et al. 2014), of
which SZ profile measurements have already been made
(Amodeo et al. 2021; Schaan et al. 2021). This subsample is
chosen to contain galaxies in the region covered by ACT, that
are mainly central galaxies of group-sized halos, selected with a
halo mass lower than 1014Me. The sample is spectroscopic,
with a range of redshifts 0.4< z< 0.7 and median redshift
z= 0.55. This is just one example of a possible observed halo
sample, but the results are expected to be applicable to
modeling other samples as well.
In this paper we summarize the simulations used in Section 2.1.

We discuss how we extract the simulated halo information and
construct thermodynamic profiles in Section 2.2, the modeling
uncertainties explored in Section 2.3, and the fitting procedure in
Section 2.4. We discuss our methods of modeling the CMASS
sample in Section 3.1, and projecting the simulated three-
dimensional profiles into a two-dimensional, observing space in
Section 3.2. Finally, we discuss the results of fitting in 3D in
Section 4.1 and 2D in Section 4.2, and how the modeling
uncertainties affect the shape of the profiles and fitting parameters
in each.

2. Theoretical Profiles

We begin by describing our methods for producing and
analyzing simulated three-dimensional profiles, which will also
be used for computing and analyzing the two-dimensional
profiles discussed in Section 3.

2.1. Simulations

We have developed methods using the Illustris and IllustrisTNG
simulations to study halo properties. Illustris (Vogelsberger et al.
2014) is the original large-scale hydrodynamical simulation of
galaxy formation, and provides the foundation on which its
successor TNG (Springel et al. 2018) was built. Illustris includes
models for gas cooling, stellar evolution, various forms of feedback
(e.g., from supernovae and AGN), and many other physical
processes to produce galaxy and cluster samples that matched
observed trends and scaling relations well (Vogelsberger et al.
2014). However, Illustris did struggle to reproduce other trends,
such as low gas mass fractions in halos, discussed in detail in Genel
et al. (2014); Vogelsberger et al. (2014); Nelson et al. (2015). Thus,
the TNG simulations were created to address these discrepancies,
along with including numerical advancements to the overall
simulation code. TNG includes the same basic physical processes
as the Illustris simulations, and additionally includes a new
implementation of growth and feedback from supermassive black
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holes (SMBHs), galactic winds, and magnetic fields based on ideal
magnetohydrodynamics (Weinberger et al. 2017; Marinacci et al.
2018; Pillepich et al. 2018).5

Both Illustris and TNG simulations have varying box sizes
and resolutions. For Illustris, the smallest volume and lowest
resolution run is Illustris-3, which has a box size of 106.53

Mpc3 and tracks 2× 4553 gas and dark matter particles. For
TNG the smallest volume and lowest resolution run currently
available is TNG100-3, with a box size of 110.73 Mpc3 and
2× 4553 tracked particles. The TNG simulation with the next
lowest level of resolution for the same box size is TNG100-2,
and has 2× 9103 resolution elements. In the following section,
we compare the thermodynamic profiles of halos generated
from these sets of simulations and we focus on TNG100-3 for
the remainder of the paper.

2.2. Generating 3D Profiles

We have identified simulated halos with certain properties of
interest and created thermodynamic radial profiles using the
publicly available stacking code repository Illstack.6 An
already existing public TNG repository illustris-
python7 allows for the extraction of particle information
from each snapshot, and offers access to the group catalogs of
the simulations which include positions, masses, radii, and
other quantities of the halos defined by the “friends-of-friends”
algorithms. In theory, one could study the simulated halo
properties only using the information provided in the group
catalog, however the study would be limited by the
predetermined cuts and boundaries defined by the TNG halo
finding algorithms in post-processing and would lack particles
beyond a certain radius. Illstack expands on the framework
of illustris-python by storing the quantities of interest
of every particle in the entire snapshot along with the halo
positions of the group catalog, then linking the particles to the
halos out to arbitrarily high radii. We do not perform cuts in the
phase space of the simulated gas particles; rather, we select the
halos for which we compute profiles by their group properties
(mass and/or color) discussed in Section 2.3. The halos are
then split into several radial bins, and the quantities are stacked

in each of these bins to create 3D radial profiles. We define the
radial bins to extend from 1× 10−4−1× 102 Mpc split into 25
bins in logspace, resulting in radial bin size ∼0.55Mpc.
Illstack also accounts for periodic boundary conditions to
ensure that all halo and particle information is utilized even if a
halo is located near the edge of the simulated box.
Examples of the output from Illstack are shown in

Figure 1. In particular, the profiles display the properties of
pressure and gas density to be directly related to the observable
tSZ and kSZ effects, respectively. This figure shows the density
and pressure profiles derived from halos of the same mass

range ( ( ) 12 log 13M

M10 , with M as the halo mass of the

group catalog) and same redshift (z= 0.55) of the three
different simulations described previously in Section 2.1. The
solid lines show the median of each radial bin, and the bands
show the ±1σ distribution of the values within each radial bin.
Differences among all of these simulations can be seen in the
profiles, such as higher density values at inner regions and
lower density values from middle regions from Illustris
compared to TNG, and similar differences in the pressure
profiles, which could be a result of the different prescription of
AGN feedback among the simulations. Since the shortcomings
of Illustris are well known and documented, we focus our
analyses on TNG for the remainder of the paper.
Furthermore, given the mass ranges in which we are

interested we do not see significant differences between the
resolution levels of the TNG simulations, and thus do not
require the higher resolution. Therefore we can be efficient with
our computing resources and use the smallest box currently
available with the lowest resolution, TNG100-3.

2.3. Modeling Uncertainties

Once the simulated profiles are computed, we can further
divide them to study various halo sample modeling uncertain-
ties using Illstack. It has the ability to select and make
profiles for halos of different types (e.g., within a desired mass
range, different redshifts, and colors). We test different options
for modeling halo populations including splitting by mass and
color, adding a two-halo term to the fitting model, and
matching the shape of an observed mass distribution.

2.3.1. Mass-splitting Definitions

Relating the stellar contents of a galaxy to the dark matter
halo in which it resides has been the subject of many studies in

Figure 1. Mean profiles of 3D gas density (left) and thermal pressure (right) of Illustris (blue), TNG100-3 (red), and TNG100-2 (black) as functions of radius at
redshift z = 0.55 for halo masses ( ) M M12 log 13h10 . The bands show the ±1σ distribution of the values in each radial bin.

5 We note that TNG uses the Planck cosmology from Planck Collaboration
et al. (2016b), while Illustris adopted the Wilkinson Microwave Anisotropy
Probe cosmology from Hinshaw et al. (2013).
6 https://github.com/marcelo-alvarez/illstack
7 https://github.com/illustristng/illustris_python
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the past decade (e.g., Leauthaud et al. 2011, 2012; Behroozi
et al. 2010, 2013), and an understanding of the topic is essential
for understanding how dark matter plays a role in galaxy
formation and evolution. This widely studied relation is called
the stellar−halo mass relation (SHMR), and it attempts to map
the stellar mass of a galaxy, usually estimated through
photometric or spectroscopic surveys, to the underlying dark
matter halo mass, usually calculated through lensing, kine-
matics, or abundance matching. The functional form of the
relation is debated, as well as its redshift dependence (Behroozi
et al. 2013).

As described in Behroozi et al. (2010), measurements of the
stellar mass of galaxies introduce significantly more systematic
uncertainties than measurements of the halo mass, which could
be a reason the computed relations vary among studies using
different surveys and methods (Shankar et al. 2014). While the
uncertainty in stellar mass function is more troublesome, there
are still systematics in the derivation of halo masses, described
in more detail by Behroozi et al. (2010). With all of the
uncertainties in both sides of the relation, the resulting relation
is therefore quite uncertain.

We use the TNG simulations in this study so that we have
values for both stellar and halo masses. Illstack has the ability
to select for halos by either mass option, so we derive stacked
profiles for two separate populations based on mass type. This
allows us to explore the differences in profiles of these samples,
along with effects of stacking on samples with different mass
distributions discussed further in Section 2.3.4, we show how
important it is to correctly model the sample, including the
SHMR. Our exploration is specific to TNG, but it does provide a
range of uncertainty that could arise from the SHMR.

Aside from looking at differences in the samples based on
the mass type selection, we also perform a study on how the
profiles change as a function of mass (both stellar and halo).
We derive the TNG samples to match the limits of the CMASS
sample analyzed in Amodeo et al. (2021) and discussed further
in Section 3.1). We further explore any trends in mass by
splitting this sample into four smaller mass bins, discussed
further in Section 4.1.2.

2.3.2. Color-splitting Definitions

One of the previously mentioned enigmas of CGM theory is
the cause of galaxy quenching. The theoretical picture for
quenched galaxies is that they are mostly red in color, as a result
of little or no star formation. With Illstack we can separate
the simulated halos into a red population and study the differences
in the equivalent profiles of the entire sample that also includes
active, bluer halos. Since the group catalogs of the Illustris
simulations do not provide color information for the main halo,
we use the colors from the most massive subhalo within the host
halo of the TNG group catalog as representative of the whole
halo. We derive subpopulations within each of the mass bins
based on color using the TNG color cut in Nelson et al. (2018),
which is defined as the difference in magnitudes g− r> 0.6.
Using this color cut, we split the populations into one without a
color cut (“tot” for total), and one with a red color cut (“red”).

2.3.3. Two-halo Term

Since Illstack can make profiles out to arbitrarily high
radii, it can be used to study other theoretical aspects of the
interaction of the CGM and IGM, i.e., the two-halo term. As

can be seen in Figure 1 the profiles are generally decreasing
functions of radius but there is a point of inflection near the
outer part of the profile. This part of the profile has been called
the two-halo term and is due to contributions from neighboring
halos and the overall enhancement of density and pressure from
gravitational clustering of gas that has not yet virialized
(Cooray & Sheth 2002; Vikram et al. 2017; Hill et al. 2018).
The part of the profile associated with virialized gas in the

main halo is called the one-halo term and represents the signal
only from the main halo. A model for the two-halo term was
first described by Vikram et al. (2017), but it is largely
neglected in SZ measurement literature. It has been shown that
the two-halo term contribution to measured halo signals can be
significant, especially around lower mass halos (Vikram et al.
2017; Hill et al. 2018), and is therefore important to include
when modeling observed signals. We show the contributions of
the different terms as a function of radius in Figure 2. The
figure shows a density profile (top panel) and pressure profile
(bottom panel) for a halo of mass 2× 1013Me at redshift
z= 0.57 as functions of radius scaled by the virial radius, r200c,
defined as the radius of the sphere whose mean density is 200
times the critical density of the universe at redshift z. The red
and blue dashed lines correspond to the one-halo and two-halo

Figure 2. Density profile (top) and pressure profile (bottom) of a halo with mass
2× 1013 Me and redshift z= 0.57 as functions of scaled radius. The profiles are
split into the components of the profiles as a function of scaled radius for the one-
halo (red, dashed) and two-halo (blue, dashed) terms, using the two-halo term
model of Vikram et al. (2017). The profile combining the terms is shown in purple.
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terms, respectively, and the solid purple line shows the total
profile combining the terms. It can be seen that for this halo, the
two-halo term begins to significantly contribute to the profile
around 1 virial radius. The amplitude and radius at which the
two-halo term begins to contribute varies according to the mass
and redshift of a halo, discussed further in Vikram et al. (2017).

Here we include the model for the two-halo term for both
density and pressure profiles derived in Vikram et al. (2017),
multiplied by an amplitude A2h that we allow as a free
parameter when fitting the profiles as in Amodeo et al. (2021),
discussed further in Section 2.4.

2.3.4. Matching the Shape of the Mass Distribution

The distribution of the halos in the simulation does not
match the distribution of the data as seen in the right panel of
Figure 3, therefore a straight average of the halos in the mass
range could be biased. We test the importance of matching the
shape of the mass distribution by weighting each halo
appropriately to ensure that the contribution of each mass bin
of the simulated sample matches the contribution of the
corresponding mass bin of the observed sample.

We use the same weights as those used in Amodeo et al.
(2021). In more detail, the weights are computed so the area of
the histogram of the CMASS sample (shown in the right panel
of Figure 3) is equal to 1 (i.e., ∑iwiΔm= 1, where wi are the
weights of each mass bin and Δm is the width of the bin). The
bin edges are shown by the blue vertical lines in the right panel
of Figure 3, so a different weight is applied to the halos falling
in each of these bins, according to their mass. This is especially
important for the TNG halos that fall into the first two mass
bins, since the shape of the distribution within these bins
significantly differs from the observed CMASS distribution.
We show this can cause considerable bias in the inferences of
the profiles’ parameters.

The specific method for the weighting is we assign each halo a
weight according to its mass, then do a weighted average for all
halos within each radial bin to get the matched stack. The
equation for the matched profile value in each radial bin would be

= å
å

valm
val w

w

* . In contrast, the unmatched (unweighted) average

would be =val
Num

vals (N is number of halos in the bin), with all
halos contributing an equal amount. This process is only relevant
for the calculation of the raw 3D radial profiles; we are not
weighting the observed 2D profiles, rather we do the weighing
and stacking of the 3D profiles then project the average (weighted
and unweighted) into the 2D SZ observables.
As the tSZ signal is proportional to M5/3 and the kSZ signal

is linearly dependent on mass (see Equations (1) and (2)), we
expect the distribution matching to have more of an effect on
the pressure profiles than density. However, we provide both
matched and unmatched results for both quantities. This kind of
weighting could be done for the redshift distribution as well,
but as described in Amodeo et al. (2021), the CMASS redshift
distribution is peaked around the median and the resulting
profiles with redshift weighting do not significantly differ from
profiles without redshift weighting. Therefore, we simply use
the median redshift of the CMASS distribution.
We also explore the effects of the different mass type-

selected samples to further study the importance of correctly
modeling the SHMR. In deriving the mass bins within each
type to perform the distribution matching, we chose limits to
align with the sample analyzed in Amodeo et al. (2021). Within
each of the limits, we further split into smaller bins and
assigned weights based on a normalized distribution (same
procedure and weights as in Amodeo et al. 2021), shown in the
right panel of Figure 3. Since the CMASS sample was chosen
spectroscopically by stellar mass, we need to convert these
stellar mass bins into corresponding halo mass bins to calculate
the quantities that require halo mass information. Following the
same procedure as Amodeo et al. (2021), we use the SHMR of
Kravtsov et al. (2018) to perform this conversion. Since TNG
has not been tuned to match these sorts of observed relations,
the Kravtsov relation does not match the TNG SHMR (see the
left panel of Figure 3). By using the Kravtsov relation as the
basis of converting our stellar mass weighting bins to halo
masses, we can see the effects of using the same weights
calculated for a stellar mass distribution (like the CMASS
sample) on a sample that has been selected for halo mass. In

Figure 3. Left panel: Comparison of the SHMR used for calculating corresponding halo masses for CMASS stellar mass sample (Kravtsov et al. 2018) and SHMR of
TNG. The SHMR relation compared to the simulations sample is clearly different, showing the importance of this modeling uncertainty, which we explore through
modeling the CMASS sample two ways, via halo masses and stellar masses. Right panel: Histograms of the CMASS sample analyzed in Amodeo et al. (2021) shown
in gray and the TNG mh sample in red. The blue vertical lines show the weights derived by Amodeo et al. (2021). This comparison shows that while the limits of the
TNG sample are chosen to match those of the CMASS sample, the distributions are not the same shapes, resulting in the importance of considering distribution
matching.
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other words, we are using the same weights (computed using
the SHMR) on halos that are selected by different mass types.

The TNG sample shown in the left panel of Figure 3 is halo

mass selected for halos with masses ( ) 11 log 14M

M10 . As

can be seen in the figure, the slope of the SHMR for TNG is
much steeper than the relation of Kravtsov et al. (2018).

2.4. Fitting Procedure of Simulated Profiles

We fit the profiles computed for the different samples (red
versus total, matched versus unmatched) using the simulated
data (


d ) and errors (


S), given by the ±1σ distribution of

profiles in each radial bin shown in Figure 1. We assume the
likelihood, ( )


L d , to have the form

( ) [ ( )] [ ( )] ( )
       m q m q= - - S --

L d d dln
1

2
, 3T 1

where ( ) 
m q is the model evaluated with parameters


q. The

posterior, ( )

qP , is written in terms of the likelihood as

( ) ( ) ( ) ( )
  
q qµP L d Pr , 4

where ( )

qPr are the priors on the parameters


q. We maximize

the posterior probability functions using the Markov chain
Monte Carlo (MCMC) calculation package emcee (Foreman-
Mackey et al. 2013) to quantify the different effects and biases
of model selection (one-halo versus two-halo term GNFW
model, matched versus unmatched) and sample selection (red
versus total, stellar mass versus halo mass).

For the models ( ) 
m q in Equations (3) and (4) we use a

generalized Navarro–Frenk–White (GNFW) profile (Zhao
1996, see also Hernquist 1990; Navarro et al. 1997), as it is
a simple parametric model that captures the shape of the
density and pressure profiles (Nagai et al. 2007).

The GNFW gas density profile has the functional form
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( ) [ ( ) ]
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where scaled radius x≡ r/r200c, fb is the baryon fraction
Ωb/Ωm, ρcr(z) is the critical density of the universe at redshift z,
H0 is the Hubble constant, and G is the gravitational constant.

The GNFW thermal pressure profile has the functional form

( ) ( ) [ ( ) ]

( )
( )

r

= +

=

g a b-P x

P
P x x x x

P
GM z f

r

1 ,

200

2
, 6

c
c t c t

c
b

200
0 , ,

200
200c cr

200c
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where M200c is the mass of the sphere whose mean density is 200
times the critical density of the universe at a redshift z. In both
Equations (5) and (6), xc is the core radius, α is the slope of the
GNFW profile at x∼ 1, β is the outer slope of the profile at x? 1,
and γ is the inner slope of the profile at x= 1 (Zhao 1996).

For the gas density profiles (Equation (5)) we perform fits for
parameters ρ0, αk, and βk, keeping parameters xc,k and γk fixed
due to degeneracies, described in Battaglia (2016). The values
we adopt for these fixed parameters along with the flat priors on
the free parameters ( ( )


qPr in Equation (4)) are shown in

Table 1. The fits are not sensitive to choice of initial states, but

we use the fitting formulas derived in Battaglia (2016) as the
starting points for each of the MCMC chains.
For the thermal pressure profiles (Equation (6)) we perform

fits for parameters P0, xc,t, and βt, keeping parameters αt and γt
fixed as described in Battaglia et al. (2012a). Similarly to the
treatment of the density fits, we use the fitting formulas derived
in Battaglia et al. (2012a) as the starting points for each of the
MCMC chains.
As in Amodeo et al. (2021), we add in the contributions of

neighboring halos with the addition of a two-halo term
multiplied by an amplitude, A2h, which is a free parameter in
the fits, such that the final forms of the fitting equations are

( )
=
= +

P P
P P A P

,
, 7

h

h t h h

GNFW1h 1

GNFW 1 2 2

where PGNFW1h is the model used when just taking the one-
halo term into account, and PGNFW is the model used for taking
both one-halo and two-halo terms into the fit. The fitting
equations for the different models of density similarly take
this form.
We run several independent MCMC chains for each sample

until the Gelman–Rubin statistic (Gelman & Rubin 1992)
reaches values of 1.1. We combine the independent chains
and derive marginalized estimates for each parameter using the
median ±1σ as the error estimates. We select the model
resulting in the minimum χ2 as our best fit, shown as the fits in
Figure 4.

3. Observational Profiles

In order to understand how the above modeling choices
described in Section 2.3 impact the CGM properties that we
will infer from observations we need to forward model the
simulated profiles from TNG into an observable space, e.g.,
projected SZ profiles. Here we choose to model a subsample of
CMASS, as recent SZ profile measurements of this sample
have been made (Amodeo et al. 2021; Schaan et al. 2021). The
general outline of this procedure is to make the modeling
selections within the 3D simulated TNG halos, project the
computed profiles to how they would actually be observed in
the 2D observing space of SZ effect measurements, and fit the
profiles with the same process as described in Section 2.4.

Table 1
Values for the Fixed Parameters and Free Parameters in the GNFW Profile Fits

Pressure Density

Fixed

αt = 1.0 xc,k = 0.5
γt = −0.3 γk = −0.2

Free

P0, xc,t, βt, At2h ρ0, αk, βk, Ak2h

P0: (0.1,30) ( )rlog : 1.0, 6.010 0

xc, t: (0.01,1.0) αk: (0.1,6.0)
βt: (1.0,10.0) βk: (1.0,10.0)
At2h: (0.01,5.0) Ak2h: (0.01,5.0)

Note. A2h is the amplitude of the two-halo term. Priors for the fits are given for
the free parameters.
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3.1. Modeling the Sample Selection

For our fiducial model, we design our simulated halo sample
and fitting model to best reflect the properties of the observed
CMASS halo sample.

We use the halos of a single TNG snapshot at z= 0.55 to
match the median redshift of the CMASS sample, z= 0.55
(Ahn et al. 2014). We use Illstack to select for stellar
masses to match the sample analyzed in Amodeo et al. (2021)
shown in the right panel of Figure 3, and further separate into
finer mass bins within this range to weight the TNG sample to
match the observed mass distribution. More specifically, the
stellar mass limits of the sample are 10.71�M� 11.72, and
the halo mass limits of the sample are 12.12�M� 13.98,
where ( )=M M Mlog x10 and Mx is either stellar or halo mass.
CMASS galaxies are large red galaxies (LRGs; Padmanabhan
et al. 2007), so we use Illstack to select for red halos as
defined by the TNG color cut described in Section 2.3.2.
Lastly, we include a two-halo term to the model as described in
Section 2.4. Table 2 summarizes the labels for each modeling
uncertainty.

3.2. Generating 2D Profiles

The signals of the kSZ and tSZ effects are integrated along
the LOS, so we need to project our simulated 3D profiles in the
same way. We use the repository Mop-c-GT,8 (Model-to-
observable projection code for Galaxy Thermodynamics),
introduced in Amodeo et al. (2021). This repository inputs
3D gas density and pressure radial profiles and outputs 2D

profiles of observable quantities through LOS projection.
Specifically, it produces profiles of the temperature shifts in
CMB signal due to the kSZ and tSZ effects, which we derive
from the simulated gas density and pressure profiles,
respectively. For the kSZ signal, we assume that the rms of
the peculiar velocities projected along the LOS is 313 km s−1,
as predicted by the linear theory at z= 0.55 and adopted in
Schaan et al. (2021). This value only impacts the amplitude of
the signal and is a systematic uncertainty in the velocity
reconstruction, which is beyond the scope of this analysis.
Mop-c-GT also allows for forecasting of signals received by
individual instruments with instrumental beam convolution,
and an aperture photometry filter is also used, described in
more detail in Amodeo et al. (2021) and Schaan et al. (2021).
Here we convolve the profiles with a Gaussian beam of 1.4′ at
frequency 150 GHz, corresponding to the forecasted Simons
Observatory (SO) experimental setup described in Ade et al.
(2019). We are using a method to create stacked profiles of

Figure 4. Simulated profiles of density (left) and pressure (right) showing the populations fit with different mass selections, color selections, distribution-matching
options, and fitting models. The solid lines are the TNG profiles for the population specified by the legend, the dashed lines are the best fit from the GNFW model, and
the dotted lines are the best fit from the GNFW1h model. In the bottom panels, the profiles and fits are normalized by a fiducial TNG profile for sample ms-red, m
(solid red curve) denoted as rgas

* and Pth*. This figure shows that selections by color and mass type (seen in the left panels) and the distribution matching (seen in the
right panels) have varying levels of significance on the profiles. Furthermore, this figure shows the inclusion of a two-halo term to the fitting model provides a closer
match to the profile than a model that only includes the one-halo term.

Table 2
Explanation of the Labels Used to Identify the Choices Included for the Halo

Sample and Fitting Model, See Section 3.1

Sample Selection

“ms” = Stellar mass-selected “red” = Color-selected, g− r > 0.6
“mh” = Halo mass-selected “tot” = No color selection

Fitting Model

“m” = CMASS mass distribution
matched

“GNFW” = With two-halo term

“um” = Unmatched “GNFW1h” = No two-halo term

8 https://github.com/samodeo/Mop-c-GT
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multiple hundreds of halos. The halos could have differing
individual orientations, but by stacking together we are able to
assume a spherically symmetric profile. Thus, changing the
direction of projection should not yield different results (see
Battaglia et al. 2012b). To further demonstrate that additional
contributions along the LOS are completely subdominant, we
performed a test extending the projected profiles out to ∼50
Mpc to see whether the contributions to the profile from larger
radii affect the results of the projection process. We find that
the difference in the projected SZ profiles extending to 10Mpc
and extending to 50Mpc is completely negligible, =0.1%,
which highlights the benefit of using the aperture photometry
filter.

Similar analyses and profiles can be made for other CMB
experiments, such as CMB-S4, and the subsequent error bars
will change with the different sensitivities, frequency channels,
and beams (e.g., see Section 1.4.2.1 in the CMB-S4 Science
Case and Reference Design document, Abazajian et al. 2019).

3.3. Fitting Procedures for Observational Profiles

We compute the 2D observational profile using the parameters
q from the best fit of the 3D theoretical profile using Mop-c-GT,
with the same GNFW models ( ) 

m q as defined in Section 2.4. We
use this profile as the data,


d , to calculate the likelihood of the

same form as Equation (3). However, instead of using the
distribution of the 3D profiles as the errors


S we use the

covariance matrix of forecasted errors for the SO experiment of
Battaglia et al. (2017), in which the authors use a semi-analytical
foreground model that includes contributions from the cosmic
infrared background, primary CMB fluctuations, extragalactic
radio emission, and galactic cirrus.

We fit for the same parameters (

q) for each kind of profile

and use the same priors, ( )

qPr , previously described in

Section 2.4 and shown in Table 1.

4. Results

4.1. 3D Simulations

Here we show the results of fitting the 3D simulated profiles,
focusing on the different modeling choices and any trends in
mass. The parameters of the fits for each sample and model are
shown in Table 3.

4.1.1. Modeling Choices

As a qualitative example to demonstrate the effects of
different modeling procedures, we show fits of the 3D profiles
in Figure 4. The profiles computed from TNG are shown in
solid lines, while the best GNFW and GNFW1h fits are shown
by dashed and dotted lines, respectively. To be able to see
differences more clearly, all of the profiles and fits have been
normalized by the fiducial TNG profile for the ms-red, m
sample, denoted as rgas

* and Pth* in the bottom panels of the
figure. We explore different modeling choices in each column,
though the trends are similar for both pressure and density.
Both columns show profiles of differing mass selections;
additionally, in the left column we show profiles differing in
color selection, and in the right column we show profiles
differing in distribution-matching options.

First, the left column of Figure 4 shows the differences in
sample selection, including mass type and color, for the
distribution-matched density profiles. While the inner regions

of the profiles for the ms-tot and mh-tot samples have higher
values than the other profiles, it can be seen that for the rest of
the profiles, the ms samples tend to have higher values than the
mh samples. Beyond the inner part of the profiles, the color
selection does not appear to have a significant effect: for the mh
samples the red color-selected sample has higher values than
the corresponding tot sample (compare solid purple curve with
solid turquoise curve), and within the ms samples the profiles
of the red and tot samples are nearly identical (compare the
solid red and solid black curves).
Next, the right column of Figure 4 shows the differences in

distribution-matching options and mass selection of the pressure
profiles. A separation between the matched and unmatched
profiles can be seen in both panels, with the unmatched profiles
having lower values (0.7 times the fiducial profile Pth*, which is
matched) than their matched counterparts. This is expected since
the matched and unmatched samples are compiled from different
halo distributions (Figure 3). Mass distribution matching is
expected to have a larger effect on the pressure profiles than the
density profiles, due to the pressure’s dependence on M5/3.
Differences are seen among the density profiles as well, although
to a lesser extent. Similarly to the density profiles of the left
column, within each of the weighting groupings the profiles of the
ms samples tend to have higher values than those of the mh
samples.
Lastly, Figure 4 shows how the fits vary for the different

fitting models, GNFW versus GNFW1h. An obvious feature in
both bottom panels of the figure is the spike in values around
1Mpc, although more significant for the GNFW1h model
(dotted) and more significant for pressure than density. This
indicates the fits’ inabilities to accurately reflect the shape of
the outer profiles, and in this case the best GNFW1h models
return higher values than the actual profiles at these radii by
factors of 2 or 3. It can be seen by eye that the GNFW model
provides better fits to the profiles, as the spikes are less
significant and they more closely align with the actual profiles
at other radii.

4.1.2. Mass Dependence

As described in Section 2.3.1, we split the simulated halos
into mass bins to observe any trends in our models. In Figure 5
we show the marginalized estimates for parameters ρ0 and βt,
resulting from the MCMC chains. The points in each mass bin
show the median of all the samples with the error bars showing
the 1σ range. The top and bottom axes show the stellar mass
and halo mass bins used to select the halos, respectively. We
note that the top and bottom axes are not related by an SHMR
but they just show the mass bins further divided, therefore one
should not compare the ms versus mh (red versus blue) values.
Some of the parameters have flat trends with mass, but others

have relations like those shown in Figure 5. The top panel
shows that the normalization factor for the GNFW density
profile has a negative trend scaling with mass, and the bottom
panel shows that βt for the GNFW1h pressure profile has a
positive trend with mass. The CMASS sample spans a large
range in masses and such a range is probably not unique to
CMASS. Figure 5 shows that some parameters show mass
dependencies while others do not. Capturing such mass trends
is important when modeling observable samples for cross
correlations, and is a motivating reason for why we looked into
matching the sample to the observed mass distribution.
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4.2. Modeled Observations

Here we show the results of projecting and fitting the 2D
simulated profiles. Figure 6 shows the projection process using
Mop-c-GT; the left columns show the fits of the 3D simulated
profiles from TNG for different halo selections and fitting models,
which are input into the projection code, and the right columns
show these different populations projected into tSZ and kSZ
temperature shifts described in Section 3.2. The different line
styles correspond to the different kind of fit, as specified in the
legend of the figure, and all of the fits are selected by minimum
χ2. The error bars are the forecasted errors for the SO experiment.

The top panels of Figure 6 show fits for the density profiles.
While not as prominent as the differences in pressure, the
inclusion of mass-distribution matching does have an effect on
the observed density. In general, a profile with higher 3D
values will have higher measurable signals, which is what we
see in this figure. The GNFW and GNFW1h-matched models
have higher values than the unmatched fits in 3D, and thus have
higher kSZ signals. Within each of the fitting models the stellar
mass-selected sample has higher kSZ signals than the halo
mass-selected sample, which is also seen in the 3D profiles.
This is the result of SHMR of IllustrisTNG being lower than
the Kravtsov et al. (2018) relation, so at a fixed stellar mass

Table 3
Parameters from 3D Fits for Each Sample and Model

Model GNFW-matched
Density Pressure

mstar-tot mstar-red mh-tot mh-red mstar-tot mstar-red mh-tot mh-red
rlog10 0 3.67,

-
+3.04 0.28

0.60
3.28,

-
+2.92 0.21

0.41
4.34,

-
+3.22 0.42

0.84
3.38,

-
+2.88 0.23

0.46
P0 4.18, -

+8.86 4.17
8.25 4.03, -

+8.66 4.02
7.89 2.74, -

+6.94 3.62
8.50 2.86, -

+7.45 3.96
8.77

αk 0.64,

-
+1.49 0.79

1.66
0.80,

-
+1.65 0.84

1.62
0.43,

-
+1.10 0.56

1.19
0.68,

-
+1.67 0.88

1.78
xc,t 0.97, -

+0.59 0.30
0.27 1.00, -

+0.60 0.30
0.27 0.98, -

+0.51 0.28
0.31 0.93, -

+0.53 0.29
0.30

βk 3.37,

-
+4.31 1.06

2.01
3.20,

-
+4.10 1.01

1.99
3.44,

-
+4.76 1.31

2.42
3.30,

-
+4.90 1.55

2.67
βt 6.09, -

+5.46 2.07
2.42 6.14, -

+5.43 2.00
2.36 6.31, -

+5.65 2.40
2.65 5.80, -

+5.67 2.31
2.59

Ak2h 1.40,

-
+1.60 0.36

0.43
1.37,

-
+1.57 0.36

0.43
1.31,

-
+1.50 0.34

0.43
1.34,

-
+1.53 0.34

0.41
At2h 0.57, -

+0.95 0.47
0.82 0.53, -

+0.87 0.42
0.72 0.51, -

+0.98 0.52
1.01 0.51, -

+0.91 0.46
0.82

Model GNFW-unmatched
Density Pressure

mstar-tot mstar-red mh-tot mh-red mstar-tot mstar-red mh-tot mh-red

rlog10 0 4.11,

-
+3.25 0.42

0.89
3.38,

-
+2.98 0.26

0.59
5.68,

-
+3.62 0.58

1.04
3.48,

-
+2.91 0.26

0.57
P0 3.95, -

+9.31 4.53
8.70 4.91, -

+10.70 5.05
8.88 3.84, -

+10.16 5.25
9.56 4.47, -

+10.85 5.56
9.59

αk 0.49,

-
+1.02 0.51

1.09
0.68,

-
+1.24 0.62

1.16
0.30,

-
+0.83 0.38

0.77
0.61,

-
+1.42 0.75

1.48
xc,t 0.98, -

+0.59 0.31
0.28 0.98, -

+0.62 0.31
0.26 0.98, -

+0.59 0.30
0.28 0.95, -

+0.60 0.30
0.27

βk 3.30,

-
+3.85 0.79

1.32
2.91,

-
+3.41 0.71

1.29
3.54,

-
+4.31 0.93

1.54
3.03,

-
+4.01 1.10

2.20
βt 5.00, -

+4.75 1.80
2.42 4.65, -

+4.48 1.63
2.26 4.61, -

+4.80 2.02
2.72 4.55, -

+4.79 1.88
2.61

Ak2h 1.31,

-
+1.47 0.33

0.40
1.28,

-
+1.47 0.34

0.41
1.20,

-
+1.36 0.31

0.38
1.30,

-
+1.50 0.34

0.41
At2h 0.49, -

+0.84 0.41
0.71 0.47, -

+0.80 0.39
0.64 0.44, -

+0.86 0.46
0.86 0.47, -

+0.91 0.46
0.82

Model GNFW1h-matched
Density Pressure

mstar-tot mstar-red mh-tot mh-red mstar-tot mstar-red mh-tot mh-red

rlog10 0 6.00,

-
+4.68 1.01

0.89
6.00,

-
+4.53 0.96

0.95
6.00,

-
+4.76 1.00

0.84
6.00,

-
+4.45 1.00

1.00
P0 18.33,

-
+10.02 5.93

10.94
17.37,

-
+10.24 6.01

10.81
13.26,

-
+6.51 4.07

10.91
13.80,

-
+7.32 4.71

11.28

αk 0.17,

-
+0.25 0.06

0.14
0.16,

-
+0.25 0.07

0.14
0.17,

-
+0.24 0.05

0.12
0.16,

-
+0.25 0.07

0.15
xc,t 0.06, -

+0.14 0.08
0.21 0.06, -

+0.14 0.07
0.19 0.05, -

+0.15 0.10
0.31 0.05, -

+0.14 0.09
0.26

βk 2.06,

-
+1.95 0.18

0.16
1.99,

-
+1.90 0.16

0.15
2.03,

-
+1.94 0.17

0.16
1.92,

-
+1.83 0.17

0.16
βt 1.53, -

+1.80 0.33
0.44 1.54, -

+1.81 0.33
0.43 1.42, -

+1.73 0.35
0.49 1.41, -

+1.72 0.35
0.47

Model GNFW1h-unmatched
Density Pressure

mstar-tot mstar-red mh-tot mh-red mstar-tot mstar-red mh-tot mh-red

rlog10 0 6.00,

-
+4.80 1.01

0.82
6.00,

-
+4.55 1.01

0.96
6.00,

-
+4.92 0.99

0.75
6.00,

-
+4.40 1.04

1.04
P0 19.54, -

+9.58 5.70
11.05 19.23,

-
+10.53 5.99

10.73
16.64,

-
+7.79 4.59

11.06
16.50,

-
+8.88 5.27

11.09

αk 0.16,

-
+0.23 0.05

0.11
0.16,

-
+0.24 0.06

0.14
0.16,

-
+0.22 0.04

0.10
0.15,

-
+0.24 0.07

0.16
xc,t 0.06, -

+0.16 0.09
0.23 0.08, -

+0.19 0.10
0.25 0.07, -

+0.22 0.13
0.34 0.08, -

+0.21 0.13
0.31

βk 1.97,

-
+1.87 0.17

0.16
1.88,

-
+1.78 0.16

0.15
1.94,

-
+1.84 0.17

0.15
1.84,

-
+1.73 0.17

0.16
βt 1.39, -

+1.64 0.30
0.38 1.42, -

+1.67 0.31
0.38 1.29, -

+1.57 0.30
0.38 1.39, -

+1.69 0.33
0.41

Note. The best values (minimum χ2) for each fit are listed first, followed by the marginalized parameter listed as the median ±1σ.
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TNG will select a higher halo mass. Furthermore, the GNFW1h
models overpredict the values of the profiles at high radii (seen
previously in Figure 4), so the amplitudes of the profiles only
taking into account the one-halo term are higher than the
models including a two-halo term.

The lower panels of Figure 6 shows fits for the pressure profiles.
As shown previously in Figure 4, the inclusion of mass-distribution
matching has a significant effect on the 3D pressure profiles due to
its dependence on M5/3. We can see this in more detail in both
bottom panels, along with similar trends to the top panel density
profiles with the matched models and the stellar mass-selected
sample resulting in higher values and amplitudes. It is clear from
Figure 6 that the modeling choices for the cross-correlation signal
are important simply by comparing the differences in the observed
profiles to the size of the forecasted errors.

4.3. Testing the Number of Free Parameters

Certain parameters of the GNFW profile are degenerate, as
discussed in Section 2.4. We test how changing the number of

free parameters in the fits of the observed profiles affects the
results by fixing another parameter for each type of profile,
shown in Figure 7. For density we fix αk and for pressure we
fix xc,t, as each of these parameters have degeneracies with

rlog10 0 and βt, respectively, as seen by the contours in this
figure.
Figure 7 shows an example of contours of fits for the

GNFW-m model of the ms-red sample using a different number
of free parameters. We find that some profile information is lost
in the projection process, resulting in the input 3D parameters
not being recovered as well in the 2D fit with all parameters
free. The solid lines show the values of the best 3D fit
parameters, which serve as inputs for the 2D fits. The red
contours show the fits with all of the GNFW parameters free
(see Table 1), and the blue contours show fits holding one extra
parameter constant. The small panels show the corresponding
values calculated as a GNFW profile to show the differences in
the 3D profiles. It can clearly be seen by the contours that
fixing an extra parameter in the fits results in better alignment
with the true values, as the peaks of the blue contours closely
match the solid lines. Similarly, the corresponding 3D profile
computed using the parameters from the blue contours more
closely aligns with the 3D profile computed using the input
parameters than the red.
This result indicates that with this experiment we cannot

resolve the inner/intermediate parts of the profile for neither
density or pressure. Perhaps with a new experiment, such as
CMB-HD (Sehgal et al. 2019) we would be able to resolve the
profile further into the interior at the redshift of the CMASS
sample. Furthermore, if we were to choose a different sample to
model at lower redshift, we expect that our ability to resolve the
inner parts of these profile would improve. Hereafter, we show
the fits fixing an additional parameter to be able to constrain
whether differences are due to the number of free parameters or
the modeling choices.

4.4. Biases from Modeling Choices

In Figure 8 we show contours for pressure and density of
different samples, all for the GNFW-m model. These fits use
different input data (


d ) for the 2D observable profiles

corresponding to each color and mass selection to show how
the shapes of the profiles differ among differently-selected
samples. We note the differences in two-halo term amplitudes
in this work and Amodeo et al. (2021) are due to the TNG
simulations having a larger two-halo term amplitude compared
to the observations presented in Schaan et al. (2021).
For pressure, there is a clear separation among the P0 values

favored by the halo- and stellar-mass-selected samples, with the
ms samples returning higher P0 values than the mh samples.
The contours show more of a spread in the remaining
parameters, with more significant differences in βt than At2h.
For density, the normalization parameter rlog10 0 shows the
most significant spread among samples, with the mh-tot sample
favoring the highest values and ms-red sample favoring the
lowest values. For βk we see a spread similar to βt for pressure,
and for Ak2h the fits for all of the samples return nearly the same
values. The differences among the contours for these samples
show again that the modeling choices yield different results.
Figure 9 shows contours only for the ms-red sample, but

with different fitting models and distribution-matching options.
The solid lines show the corresponding value of the 3D best fit
for each parameter, which is used as input for the 2D fits. This

Figure 5. Mass dependence of marginalized parameters for each sample fit by
the GNFW model (top) and GNFW1h model (bottom). The point in each bin
shows the median of the MCMC chains with error bars ±1σ showing the
distribution within the bin. The red and blue lines (showing different mass
selections) have been slightly offset in each mass bin to more clearly show the
different error bars, along with different cap sizes to more clearly show the
error bars of the red vs. tot samples.

10

The Astrophysical Journal, 919:2 (15pp), 2021 September 20 Moser et al.



figure differs from Figure 8 in that the fits all use the same input
profile


d for the 2D observable profiles, calculated by the

GNFW-m model, but use different fitting models (

m), such as

without a two-halo term or without mass-distribution matching.
By treating the GNFW-m profile as our truth, we can show how
well the other models recover the given parameters. Simply by
looking at the contours we can see that assuming an incorrect
model results in estimates of the parameters not being very
close to the actual values. For density, the GNFW-um model
returns nearly correct values for rlog10 0 and Ak2h, although
slightly lower values for βk, indicating that inclusion of
distribution matching is not as important to kSZ model fitting
as the inclusion of a two-halo term. The estimates from the fits
with GNFW1h models are much lower than the true values for

rlog10 0 and βk, with no information on a two-halo term.
For pressure we see more of a spread in returned values of

different fitting models. The model that returns the closest
value to the truth for P0 is the GNFW1h-um model, for βt the

GNFW1h-m model, and for At2h the GNFW-um model returns
nearly the correct value. This indicates that the inclusion of
mass-distribution matching is more important for tSZ model
fitting than kSZ, and is equally as important as the inclusion of
a two-halo term (see the σ values of Table 4). For both of the
profiles, incorrectly assuming the model induces systematic
effects in the resulting parameters.
The resulting values of the 2D fits with the fiducial ms-red,

GNFW-m model as the data are shown in Table 4 (contours
shown in Figure 9), allowing for comparisons of the
importance of different modeling choices. Next to the estimates
for each parameter in the table is the number of σ away from
the corresponding fiducial value of the GNFW-m model.
As a specific example, in the right panel of Figure 9 we show

contours of the ms-red sample for density. Taking the GNFW-
m model as our truth, the input values for rlog10 0, βk, and Ak2h

were 3.28± 0.04, 3.20± 0.11, and 1.37± 0.23, respectively. If
we fit this profile with the GNFW-um model, we would get

Figure 6. Projection process of Mop-c-GT. Input 3D theoretical profiles (in this case, from TNG) and output the tSZ and kSZ observable temperature shifts as a
function of radius in arcminutes. The different colors correspond to different mass selections, and different line styles correspond to different fitting models and
inclusion of distribution matching. The error bars correspond to the forecasted SO error bars at 150 GHz, discussed further in Section 3.3. These profiles show the
effects of 1. selecting by different mass types, with the ms samples having higher values and amplitudes than the mh samples, 2. mass-distribution matching, with
more significant differences for pressure but still relevant for density, and 3. inclusion of a two-halo term, which results in lower amplitudes of the observed profiles as
the 1h-only model overpredicts the values.
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values for these parameters of 3.29± 0.04, 2.95± 0.10, and
1.33± 0.23, which would be differences of 0.2, 1.7, and 0.1σ.
If we fit the profile with the GNFW1h-m model, we would get
values for rlog10 0 and βk of 3.12± 0.02 and 2.71± 0.06,
which are differences of 3.6σ and 3.9σ, with no information on
the two-halo term. Lastly, if we fit the profile with the
GNFW1h-um model, we would get values for rlog10 0 and βk
of 3.14± 0.02 and 2.52± 0.05, differences of 3.1σ and 5.6σ,
respectively, also with no information on the two-halo term.
For this sample, it is clear that the inclusion of a two-halo term
to the fitting model is the most important modeling systematic,
as the differences between the input and selected values for the
GNFW-um model are smaller than the differences of the
GNFW1h models.

5. Conclusions

In summary, we have developed methods to extract halo
information from the IllustrisTNG simulations. We derive halo
samples of different properties of interest, such as within a
specific mass range or selected by color, and stack the
thermodynamic properties of density and pressure to create
3D radial profiles using Illstack. We fit these profiles to a
GNFW profile, testing the importance of the halo sample
modeling uncertainties of mass selection, color selection, mass-
distribution matching, and addition of a two-halo term to the
fitting model. We project the profiles into a 2D observing space
using Mop-c-GT, resulting in profiles with units of CMB
temperature shifts due to the kSZ and tSZ effects, and perform

Figure 7. Contours for fits of projections for tSZ (left) and kSZ (right) for the GNFW-m model of the ms-red samples. The contours for fits with all GNFW parameters
free are shown in red, and the contours for fits fixing an additional parameter are shown in blue. The vertical lines show the input parameter, the best 3D fit from the
corresponding sample. The small panels show the 3D profiles computed using the corresponding values for each of the different contours, using a GNFW model, and
the same profiles normalized by the TNG profile to more clearly see the differences. This figure shows that the fits are not sensitive to information of the inner profiles,
resulting in degeneracies, more significant for pressure. Fixing an additional parameter allows for better constraints on the remaining free parameters.

Figure 8. Comparison of parameter spaces for fits of the 2D projections of different samples, all for the GNFW-m model. An additional parameter is fixed, xc,t for
pressure (left) and αk for density (right), as discussed in Section 4.3. This figure shows the differences among the fits of different samples (ms vs. mh, and red vs. tot),
highlighting the importance of these modeling choices.
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Figure 9. Comparison of parameter spaces for fits of the 2D projections ms-red sample with the GNFW-m model as the fiducial model. The solid lines indicate the
values of the fits of the 3D profiles for the same sample (ms-red, GNFW-m). This figure shows that for density the most important modeling choice of the fitting model
is the inclusion of a two-halo term, and for pressure both inclusion of distribution weighting and two-halo term are important.

Table 4
Parameters from 2D Fits for Each Sample and Model

Model GNFW-matched
(Input Parameters for Fits Below)

Density Pressure

ms-tot ms-red mh-tot mh-red ms-tot ms-red mh-tot mh-red

rlog10 0 -
+3.67 0.05

0.05
-
+3.28 0.04

0.04
-
+4.34 0.10

0.10
-
+3.39 0.06

0.07 P0 -
+4.20 0.23

0.25
-
+4.05 0.22

0.24
-
+2.78 0.25

0.28
-
+2.89 0.22

0.25

βk -
+3.37 0.11

0.11
-
+3.20 0.11

0.11
-
+3.45 0.16

0.16
-
+3.30 0.16

0.16 βt -
+6.10 0.15

0.16
-
+6.16 0.15

0.16
-
+6.36 0.25

0.27
-
+5.83 0.20

0.21

Ak2h -
+1.41 0.23

0.23
-
+1.37 0.23

0.23
-
+1.32 0.23

0.23
-
+1.35 0.23

0.23 At2h -
+0.57 0.06

0.06
-
+0.53 0.06

0.06
-
+0.52 0.06

0.06
-
+0.51 0.06

0.06

Model GNFW-unmatched
Density Pressure

ms-tot ms-red mh-tot mh-red ms-tot ms-red mh-tot mh-red

rlog10 0 -
+3.69 0.05

0.05, 0.3σ -
+3.29 0.04

0.04, 0.2σ -
+4.42 0.10

0.10, 0.6σ -
+3.41 0.07

0.07, 0.3σ P0 -
+6.80 0.37

0.40, 5.9σ -
+5.98 0.32

0.34, 4.9σ -
+7.52 0.66

0.76, 6.7σ -
+4.86 0.37

0.41, 4.5σ

βk -
+3.12 0.10

0.10, 1.7σ -
+2.95 0.10

0.10, 1.7σ -
+3.13 0.14

0.14, 1.5σ -
+3.03 0.14

0.15, 1.2σ βt -
+4.88 0.11

0.12, 6.0σ -
+5.00 0.12

0.12, 5.7σ -
+4.60 0.17

0.18, 5.3σ -
+4.66 0.15

0.16, 4.4σ

Ak2h -
+1.38 0.23

0.23, 0.1σ -
+1.34 0.23

0.23, 0.1σ -
+1.29 0.24

0.23, 0.1σ -
+1.33 0.24

0.23, 0.1σ At2h -
+0.55 0.06

0.06, 0.2σ -
+0.51 0.06

0.06, 0.2σ -
+0.49 0.06

0.06, 0.2σ -
+0.49 0.06

0.06, 0.2σ

Model GNFW1h-matched
Density Pressure

ms-tot ms-red mh-tot mh-red ms-tot ms-red mh-tot mh-red

rlog10 0 -
+3.47 0.03

0.03, 3.4σ -
+3.12 0.02

0.02, 3.6σ -
+3.94 0.05

0.05, 3.6σ -
+3.13 0.04

0.04, 3.1σ P0 -
+3.11 0.13

0.13, 3.8σ -
+3.08 0.13

0.13, 3.5σ -
+1.79 0.11

0.12, 3.1σ -
+1.98 0.11

0.12, 3.2σ

βk -
+2.86 0.06

0.06, 4.1σ -
+2.71 0.06

0.06, 3.9σ -
+2.79 0.08

0.08, 3.6σ -
+2.62 0.08

0.08, 3.8σ βt -
+5.24 0.10

0.10, 4.5σ -
+5.35 0.10

0.10, 4.2σ -
+5.07 0.15

0.15, 4.0σ -
+4.79 0.12

0.12, 4.2σ

Model GNFW1h-unmatched
Density Pressure

ms-tot ms-red mh-tot mh-red ms-tot ms-red mh-tot mh-red

rlog10 0 -
+3.49 0.03

0.03, 3.1σ -
+3.14 0.02

0.02, 3.1σ -
+4.03 0.05

0.05, 2.8σ -
+3.16 0.04

0.04, 2.7σ P0 -
+5.12 0.20

0.21, 2.9σ -
+4.62 0.18

0.19, 2.0σ -
+4.92 0.30

0.33, 5.3σ -
+3.39 0.18

0.19, 1.7σ

βk -
+2.67 0.05

0.05, 5.8σ -
+2.52 0.05

0.05, 5.6σ -
+2.56 0.07

0.07, 5.0σ -
+2.43 0.07

0.07, 5.0σ βt -
+4.26 0.07

0.07, 10.5σ -
+4.41 0.07

0.07, 9.9σ -
+3.77 0.10

0.10, 8.9σ -
+3.90 0.09

0.09, 8.4σ

Note. We use the GNFW-m model as the fiducial model as the data,

d , in the likelihood. We list the marginalized parameter for each fit as the median ±1σ, followed

by the number of σ away from the true value (of the GNFW-m model). This table shows fits with an additional parameter fixed, xc,t for pressure and αk for density,
described further in Section 4.2.
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the same fitting routine. We test the importance of the different
modeling uncertainties in 2D by modeling how SO would
detect an observed sample (subsample of CMASS, analyzed in
Amodeo et al. 2021) of differently-derived halo populations.
Below we reiterate the important takeaways of the study.

We show in several ways that mass selection, color selection,
mass-distribution matching, and fitting to a model that includes
the addition of a two-halo term having varying levels of
importance when modeling a sample of halos. These results are
seen by the differences in the theoretical 3D profiles (see
Figure 4) and the observational 2D profiles (see Figure 6). The
main trends of these figures are: 1. the stellar mass-selected
samples tend to have higher density and pressure values than
the halo mass-selected samples due to the shape of TNG’s
SHMR, and 2. weighting by the observed mass distribution has
a larger effect on the pressure profiles due to its nonlinear
dependence on mass, but is still relevant for the density
profiles.

To further demonstrate the importance of matching the
observed mass distribution, we show that some GNFW
parameters fit to the 3D theoretical profiles show dependence
on mass, shown in Figure 5. Therefore, modeling these mass
trends by weighting to the observed mass distribution is
important when modeling observed samples for cross
correlations.

For the redshift and mass ranges of the observed CMASS
sample, we show that the fits are not sensitive to the properties
of the inner/intermediate profiles for both pressure and density.
With the error bars that are forecasted for SO, the inclusion of
such inner parameters, especially in pressure, results in strong
degeneracies with other parameters, shown in Figure 7. After
fixing an additional parameter in the GNFW fits, we show that
we are able to better constrain the remaining free parameters
and better understand the fits in relation to the modeling
uncertainties of interest. We show again that different
selections in mass and color return either clear separations
between populations or a spread of estimates for each
parameter.

Lastly, in Figure 9 we show in more detail that fitting to a
model including weighting by the mass distribution and
addition of a two-halo term are extremely important. Given a
fiducial profile, not including either of these modeling choices
returns incorrect values for each parameter. Shown by Table 4,
for this sample the inclusion of a two-halo term tends to be
more important than the inclusion of weighting by the mass
distribution for the density profiles, seen by the lower σ values
from the fiducial profile’s parameters. For the pressure profiles
the σ values for the models lacking matching by the mass
distribution and a two-halo term are comparable, indicating that
both of these systematics need to be addressed.

The uncertainties explored in this study are by no means an
exhaustive list to consider when modeling a sample of halos.
For example, as briefly discussed previously, measurements of
masses on both sides of the SHMR are quite uncertain but in
particular the measurements of stellar masses introduce
significantly more systematic uncertainties. One could perform
the same kind of study for this uncertainty by designing
samples corresponding to different methods of estimating an
observed sample’s stellar mass, e.g., converting luminosity to
stellar mass, and quantifying how the 3D and 2D profiles differ
accordingly. We did explore the SHMR used in CMASS with
respect to TNG by selecting and weighting halos according to

either their halo masses and stellar masses. In Figure 8 we can
see the differences in the inferred profile parameters for both
the density and pressure. Thus, going forward detailed
modeling of the SHMR will be critical. Along similar lines
the halo occupation distribution is another modeling concern
for future SZ observations (Pandey et al. 2020).
In the future, we plan to expand these studies to explore the

prescriptions of different parameters used in simulations other
than TNG, and study any potential trends with redshift. To
expand the variety of simulations, we plan to use the
Cosmology and Astrophysics with MachinE Learning Simula-
tions (CAMELS) suite of simulations (Villaescusa-Navarro
et al. 2021). CAMELS is a suite of thousands of simulations
varying astrophysical and cosmological parameters, and will be
very useful in further studying modeling choices such as the
ones discussed in this paper.
With a greater understanding of how to correctly model an

observed sample, including the choices discussed in this study
and more, we will be more prepared to interpret observations
with ever-increasing signal-to-noise and resolution. Better
interpretations of observations will allow for a better under-
standing of the current unsolved theoretical questions of the
CGM and galaxy evolution as a whole.
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