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Abstract

We study the mixing and dissipation properties of the advection—diffusion equation
with diffusivity 0 < k¥ < 1 and advection by a class of random velocity fields on
T, d = {2, 3}, including solutions of the 2D Navier—Stokes equations forced by
sufficiently regular-in-space, non-degenerate white-in-time noise. We prove that the
solution almost surely mixes exponentially fast uniformly in the diffusivity «. Namely,
that there is a deterministic, exponential rate (independent of «) such that all mean-
zero H' initial data decays exponentially fast in H~' at this rate with probability
one. This implies almost-sure enhanced dissipation in L2. Specifically that there is
a deterministic, uniform-in-«, exponential decay in L? after time ¢ 2 |logk|. Both
the O(|logk|) time-scale and the uniform-in-x exponential mixing are optimal for
Lipschitz velocity fields. This work is also a major step in our program on scalar
mixing and Lagrangian chaos necessary for a rigorous proof of the Batchelor power
spectrum of passive scalar turbulence.
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1 Introduction

The evolution of a passive scalar g, under an incompressible fluid motion u, is a
fundamental problem in physics and engineering; see e.g. [56,66,71,76,79] and the
references therein. In applications, the scalar g; is typically the temperature distribution
or a chemical concentration that can be treated as a passive tracer. Here we study the
advection—diffusion equation with diffusivity 0 < k < 1,

0rgr +ur - Vg = kAg
g =g, (L.D)

on the periodic box T¢ = [0, 2 ]¢ where g is a mean-zero L? function and u; is an
incompressible velocity field evolving under any one of a variety of stochastic fluid
models, for example, the stochastically-forced 2D Navier—Stokes equations. We set
uo = u, the initial condition of the fluid evolution (assumed to be in a sufficiently
regular Sobolev space).

Understanding the mixing and dissipation of g; under various fluid motions (u,)
is a central question in both physics and engineering applications, and has recently
received significant attention from the mathematics community, for example [1,13,
14,24,26,28,36,37,50,56,57,60,70,72,80] and the references therein (also see below
for more discussion). One case, crucial for many physical applications, not studied
in the mathematics community (until [13]) is that of velocity fields evolving under
ergodic, nonlinear dynamics. In [13], we showed that if (u;) evolves according to
the stochastically-forced Navier—Stokes equations, then in the absence of diffusivity
(i.e., (1.1) with k = 0), the passive scalar mixes exponentially fast almost surely with
respect to the noise on the fluid equation. Specifically, we show exponential decay in
any negative Sobolev norm

/ S grdx

gl s :== sup < De7 gl (1.2)

I las=1
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Almost-sure enhanced dissipation and uniform-in-diffusivity. .. 779

where D(s, u, ®) is a random constant with finite moments (independent of g, but
depending on u and the noise sample w), and y > 0 is a deterministic constant
(independent of g, u and w). The use of negative Sobolev norms to measure mixing is
standard in the literature and their decay corresponds to mixing in the sense of ergodic
theory (see discussions in [72] and the references therein; see also [82]). It is easy to
check that Lipschitz velocity fields that satisfy standard moment estimates cannot mix
scalars faster than (1.2) (see [13,14] and Remark 1.9).

The mixing in (1.1) arises due to the chaotic nature of the Lagrangian trajectories, a
phenomenon referred to as chaotic mixing. Chaos in the Lagrangian flow map is often
referred to as Lagrangian chaos (to distinguish it from the property of u, itself being
chaotic; see discussions in [23]). In our first work [14], we proved positivity of the
top Lyapunov exponent (a hallmark of sensitivity with respect to initial conditions)
for the Lagrangian flow. This provides a local hyperbolicity to the flow, and this was
subsequently upgraded to the global almost-sure, exponential mixing statement in
(1.2) by our second work [13] (the work [13] uses [14] as a lemma). We emphasize
that the mixing mechanism here is not turbulence or small scales in the velocity field
u;—indeed, the fields we work with are, at minimum, C 2 spatially regular and it is not
directly relevant whether or not u;, is chaotic. See e.g. [3,5,41,49,62,74,81], the reviews
[6,29,64], and the references therein for more discussion in the physics literature on
chaotic mixing and Lagrangian chaos.

The primary goal of the current paper is to prove that the almost-sure exponential
mixing estimate (1.2) holds also for (1.1) for 0 < x < 1 uniformly in k, that is, for
y independent of k and random constant D that satisfies uniform estimates in « (see
Theorem 1.3 below). It is important to note that k > 0 is a singular perturbation of
k = 0, and to our knowledge, there is no general method in the literature by which one
can deduce uniform exponential mixing from the knowledge that one has exponential
mixing at k = 0, for either deterministic or stochastic velocities. Indeed, the only
uniform-in-diffusivity mixing we are aware of are only at a polynomial rate and are all
essentially shear flows: inviscid damping in the Navier—Stokes equations near Couette
flow [16,20]; the recent work [27] on passive scalars in strictly monotone shear flows;
and Landau damping in Vlasov-Poisson with weak collisions [18,73]. In fact, it is
known that the introduction of diffusion can limit the mixing rate in certain contexts
[60].

When « > 0, the scalar additionally dissipates in L? due to the diffusivity:

53 el = =< IVell}

From this balance it is clear that the creation of small scales due to mixing could
accelerate the L dissipation rate. This effect is usually called relaxation enhancement
or enhanced dissipation. The first general, mathematically rigorous study of this effect
in deterministic, constant-in-time velocity fields was the foundational work [25] (see
e.g.[8,22,55,67] for some of the earlier work in the physics literature). The effect is now
being actively studied both for passive scalars [19,21,26,37,83] and also in the context
of hydrodynamic stability of shear flows and vortices (see e.g. [16,17,20,40,77] and the
references therein). In [26,37], it was shown that if a deterministic flow is exponentially
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780 J. Bedrossian et al.

mixing for kx = 0, then one sees exponential L2 dissipation after r > |log«|?. The
uniform-in-x exponential mixing we deduce for (1.1) in Theorem 1.3 allows to obtain
the rapid exponential L? dissipation after r > |log k| in Theorem 1.4 (note that for
stochastic velocities, this time scale is random). This time-scale is easily seen to be
optimal for Lipschitz fields that satisfy standard moment estimates (Theorem 1.8). We
emphasize here that if uniform-in-x mixing were available for deterministic fields,
then corresponding optimal improvements of [26,37] could be proved with simpler
arguments than those in [26,37] (similarly, some of the results of [25]). However, such
mixing estimates are currently unavailable.

In addition to the intrinsic interest, the results herein are a crucial step in our
program on Lagrangian chaos and scalar mixing required for our proof of Batchelor’s
Law for the power spectrum of passive scalar turbulence in the forthcoming article
[15]. First conjectured in 1959 [11], Batchelor’s Law predicts that the distribution
of E |§, (k) |2 behaves like |k|~¢ for statistically stationary passive scalars subject to
random sources in the ¥k — 0 limit with the Reynolds number of the fluid held fixed
(the so-called Batchelor regime of passive scalar turbulence). Batchelor’s law is the
analogue of Kolmogorov’s prediction of the —5/3 power law spectrum in 3D Navier—
Stokes [39]. Theorem 1.3 below provides the quantitative information on the low-to-
high frequency cascade required to verify this power spectrum law. See, e.g., [2,4,5,
33,42], our forthcoming preprint [15], and the references therein for more information.
In particular, note that neither the validity or scope of Batchelor’s law is completely
settled in the physics literature (see discussions in [4,33,61]), while our results provide
a credible argument for the universality of the Batchelor spectrum in a variety of
settings.

1.1 Stochastic Navier-Stokes

We first state our main results for the most physically interesting and mathematically
challenging cases that we are able to treat in this work: the stochastic 2D Navier—
Stokes equations and the 3D hyperviscous Navier—Stokes equations (on T¢, d = 2, 3
respectively). In Sect. 1.3 we discuss the setting used to study finite dimensional
models, which allow for smoother (in both space and time) velocity fields.

We define the natural Hilbert space on velocity fields u : T¢ — R? by

L2 = {MGLZ(Td;]Rd) : /udx:O, diVLt:O},

with the natural L? inner product. Let W, be a cylindrical Wiener process on L? with
respect to an associated canonical stochastic basis (§2, .%, (%), P) and Q a positive
Hilbert—Schmidt operator on L2, diagonalizable with respect the Fourier basis on
L2. We will assume that Q satisfies the following regularity and non-degeneracy
assumption (see Sect. 1.3 for more discussion):
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Assumption 1 There exists o satisfying o > % and a constant C such that

1 _ _
o= Pyl < 1Qullpz < Cl(=2)"ulpz.

We define our primary phase space of interest to be velocity fields with sufficient
Sobolev regularity:

H:= {ueH"(T‘i,Rd) : /udx:O, divu:O},

whereo € (¢ —2(d — 1), o — %). Note we have chosen « sufficiently large to ensure
that o > %’+3sothatH — C3.

We consider (u;) evolving in H, which we refer to as the velocity process, by one
of the two following stochastic PDE:s:

System 1 (2D Navier—Stokes equations)

Blu, +u; - VM[ = —Vp, + VAM[ + QW[
divu, =0,

where ug = u € H. Here, the viscosity v > 0 is a fixed constant.

System 2 (3D hyper-viscous Navier—Stokes)

3lu, +u; - Vu, = —Vp, — VAZMI + QW[
divu, =0,

where uy = u € H. Here, the hyperviscosity parameter v > 0 is a fixed constant.

Since we will need to take advantage of the “energy estimates” produced by the
vorticity structure of the Navier—Stokes equations in 2D, we find it notationally con-
venient to define the following dimension dependent norm

curl u d=2
lufw = | Iz (1.3)
lully2 d=3.

Remark 1.1 Note that since we consider velocity fields u such that divu = 0 and
fudx = 0, the norm || - ||w is equivalent to || - ||g3—d-

The following well-posedness theorem is classical (see Sect. 3).
Proposition 1.2 For both Systems 1, 2 and all initial data u € H, there exists a P-a.s.
unique, global-in-time, F;-adapted mild solution (u,) satisfying uo = u. Moreover,

(uy) defines a Feller Markov process on H and the corresponding Markov semigroup
has a unique stationary probability measure . on H.
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1.2 Main results

The first result is uniform-in-« exponential mixing for passive scalars. It is important
to emphasize that the methods we employ in Theorem 1.3 are inherently stochastic.
This is not simply because they rely directly on the results of [13,14], but also because
the extension from k = 0 to ¥ > 0 requires the use of the stochastic nature of Systems
1-2. A general method for extending exponential mixing at k = 0 to uniform-in-x
mixing does not, to our knowledge, currently exist. Here and for the remainder of the
paper, implicit constants will never depend on w, «, t, (u;), or (g;). See Sect. 2.6 for
notation conventions.

Theorem 1.3 (Uniform mixing) For each of Systems 1-2 and forall s > 0, p > 1 there
exists a deterministic y = y (s, p) > 0 (depending only on s, p and the parameters
Q, v) which satisfies the following properties. For all k € [0, 1], and for allu € H
there is a P-a.s. finite random constant Dy (w, u) : 2 x H — [1, 00) (also depending
on p, s) such that the solution to (1.1) with (u;) given by the corresponding System 1
or 2 with initial data u, satisfies for all g € H® (mean-zero),

gl gr—s < Dic(w, we " |Igllys

where D, (w, u) satisfies the following k-independent bound: there exists a p > 2
(independent of u, p, s) such that for all n > 0,

EDL () Sy.p (1 -+ lulli)” exp (n luly ) (1.4)

Theorem 1.3 in turn provides a quantitative lower bound on the dissipation rate that
is integrated and combined with parabolic regularity to deduce enhanced dissipation
(see Sect. 7 for more details). The recent quantitative works of [26,37] and the earlier
more qualitative works [25,83] required much more subtle arguments because there is
not yet an analogue of Theorem 1.3 for any deterministic velocity fields. Theorem 1.4
also provides stronger results than those of [26,37] in terms of both the rate of decay
and the characteristic time-scale of enhanced dissipation.

Theorem 1.4 (Enhanced dissipation) In the setting of Theorem 1.3, for any p > 2, let
y = y(, p) be as in Theorem 1.3. For all k € (0, 1], and for all u € H there is a

P-a.s. finite random constant D), (w,u) : 2 x H — [1, 00) (also depending on p)
such that the solution to (1.1), satisfies for all g € H* (mean-zero) and u € H,

gl 2 < DL(w, wc ™ e lgll,2, (1.5)

where D). also satisfies the following x-independent bound for B sufficiently large
(independent of u, p, k) and for all n > 0,

E (D, (1) Spp U+ lull) exp (111l fy) - (1.6)
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Remark 1.5 Note that by incompressibility, the standard L? energy estimate, and the
Poincaré inequality, there holds for all s, « > 0

—kt —kt
gl s < llgell2 < e ™ Igll2 < e ™ gl ps -

Hence for any fixed k9 > 0, Theorems 1.3 and 1.4 hold immediately for all « > «q
(with no constants in front, just exponentially decaying factors). The purpose of these
theorems is to obtain quantitative information in the limit x — 0.

Remark 1.6 Note that Theorem 1.4 implies the following:
lgell 2 < Dye o g o,

where the implicit constant does not depend on « and D, satisfies (1.6). Both results
give the same characteristic time-scale of decay (tgp ~ |logk|) but Theorem 1.4
gives faster drop off past that time.

Remark 1.7 (The Batchelor scale) In [60] it was observed that diffusion may actually
limit the effectiveness of mixing by incompressible flows due to the presence of a
limiting length scale A, = +/«/y, known as the Batchelor scale. Our Theorem 1.3
shows that while the addition of diffusion can change the constant D, the exponential
decay e~ ! does not change with «. This however does not contradict the existence of
the Batchelor scale. In fact, if one assumes that the H~! decay rate in Theorem 1.3 is
optimal in the sense that one also has

—yt
gl -1 = Ce " ligl

foraconstant C > 0 dependingonuo € H and the noisy sample w, then this, combined
with the L? bound given by Lemma 7.1, implies that the characteristic filamentation
length || gl g-1/1l8¢1l ;2 satisfies

_ K
liminf 180 > [,
t=>o0 g2 v

implying that the filamentation length is indeed limited by the Batchelor scale up to a
random constant.

The next estimate shows that the |log «| dissipation time-scale is optimal for H'
data (see [65] for arelated result in the deterministic setting). This estimate is a simple
consequence of the regularity of the velocity field, which implies small scales in the
passive scalar cannot be generated faster than exponential. The estimate is basically
trivial for bounded, deterministic velocity fields; for unbounded stochastic velocity
fields that can make large deviations, the dissipation time scale is a stopping time, and
the estimate is less trivial. Lower bounds on this time show that the | log k| timescale
is optimal. See Sect. 7.1 for a proof.
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784 J. Bedrossian et al.

Theorem 1.8 (Optimality of the [log k| time-scale) In the setting of Theorem 1.3, let
we=inf {1 [lgll2 < 3llglg2} -

Then, there exists a ko > 0 a sufficiently small universal constant such that for all
Kk € (0, kol, one has

T > 0(g, u, w)|logk| with probability 1,

where (g, u, w) € (0, 1) is a k-independent random constant with the property that
forallB>1,p>1andn > 0,

_ ”g”pz
B8P Sy (14 ) exp (el Fy) (1.7
H!

Remark 1.9 The proof of Theorem 1.8 shows that the H ~! exponential decay of The-
orem 1.3 is sharp even in the presence of diffusion.! That is, for all p > 1, there exists
an almost-surely finite random constant D(w, u) (independent of ) and a determin-
istic © = p(p) > 0 (independent of u, k) such that for all g € H' andt < 7, (asin
Theorem 1.8),

2
lgll2,

lgllg—1 = B(a), u)e M .
gl g

Moreover, the random constant satisfies E(D)~” Spp U+ ||u||H)"ﬂ exp (17 IIMII%V)
asine.g. (1.4).

1.3 Finite dimensional models and C’t‘C,?o examples

Assumption 1 essentially says that the forcing is Q W; has high spatial regularity, but
cannot be C*°. The non-degeneracy requirement on Q can be weakened to a more mild
non-degeneracy at only high-frequencies (see [14]), but fully non-degenerate noise
simplifies some arguments. As discussed in [13,14], non-degenerate noise is used to
prove strong Feller for the infinite dimensional Furstenberg criterion [Theorem 4.7,
[14]] on which [13], and hence this work, depends critically. It is also used in [13] and
here to access geometric ergodicity in a wider variety of spaces than that currently
available in asymptotically strong Feller frameworks of [46,48] (see discussions in [13]
for more details). In all other places in [13,14] and here, non-degenerate noise is used
only to reduce the length and complexity of the works. However, for velocity fields
evolving according to finite dimensional models, degenerate noise is easily treated
by Hormander’s theorem. This provides a robust way to produce examples of C tk cx
random fields satisfying Theorems 1.3 and 1.4.

! The case without diffusion follows almost immediately from the multiplicative ergodic theorem (see [14]),
however, it requires an additional check to ensure that the random constant D possesses good moment bounds
(Lemma 7.3).
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To make this more precise: in all cases considered in this work, the additive noise
term Q W, can be represented in terms of a Fourier basis {e,, }mecx on L? by

QWI = Z QmemWIm

meK

where K := Zg x{1,...,d—1}and {W/"},,cKk are a collection of iid one-dimensional
Wiener processes with respect to (£2, .7, (%), P) see (Sect. 3 for more details and
the precise definition of the Fourier basis).

In this notation, we can consider the following weaker non-degeneracy condition:

Assumption 2 (Low mode non-degeneracy) Define Koy C K to be the set of m € K
suchthat q,;, # 0. Assumem € Ko forall im|s, <2 (form = (k,i), k = (k,~)f:1 ezd
we write |m|~ = max; |k;|).

We write Hx,, C H for the subspace spanned by the Fourier modes m € Ko
and Hy C H for the subspace spanned by the Fourier modes satisfying |m|,, < N.
Consider the degenerately-forced Stokes and Galerkin—Navier—Stokes systems defined
as follows.

System 3 The Stokes system in T (d = 2, 3) is defined, for ug = u € Hy,, by

orur = =Vp + Aug + QWt
divu, =0

where Q satisfies Assumption 2 and Ky is finite.

System 4 The Galerkin—Navier—Stokes system in T (d = 2, 3) is defined, for ug =
u € Hy, by

dus + My (uy - Vuy + Vpy) = vAu; + QW,
div ur = 0
where Q satisfies Assumption 2; N > 3 is an arbitrary integer; I1<y denotes the

projection to Fourier modes with | - |oc norm < N; Hy denotes the span of the first N
Fourier modes; and v > 0 is fixed and arbitrary.

Note that velocity fields u, evolving according to Systems 3 and 4 are spatially
C* and, at best, %-Ht’)lder in time. We are also able to treat a class of evolutions with
non-white-in-time forcing, referred to as ‘OU tower noise’ in [13]. This is basically
an external forcing given by the projection of an Ornstein-Uhlenbeck process on R .

System 5 The (generalized) Galerkin—Navier—Stokes system with OU tower noise in
T (d = 2, 3) is defined, for ug € Hy, by the stochastic ODE

oy + X(u,u) =vAau, + Q7
WZi=—AZ, +TW,,
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786 J. Bedrossian et al.

where Z; € Hyy, the operator A : Hyy — Hyy is diagonalizable and has a strictly
positive spectrum, and the bilinear term X (u,u) : Hy x Hy — Hy satisfies u -
X(wu,u) = 0and Vj, X(ej,e;) = 0. Note that (u,) is not Markov, but (u;, Z;)
is Markov and one must also specify the initial condition for the (Z;) process, i.e.
Zo = Z, when considering this setting.

All of our results extend to each of Systems 3, 4, and 5.

Theorem 1.10 Consider any of Systems 3-5. Assume that Q satisfies Assumption 2
and that the parabolic Hormander condition is satisfied for (u;) or (us, Z;) (see e.g.
[45]). Then, Theorems 1.3, 1.4, and 1.8 all hold (in the case of System 5, the estimates
on the random constants in (1.4), (1.6), and (1.7) all contain an additional factor of
exp (n |Z |2), i.e. the initial condition for the Z; process).

Remark 1.11 Note that for all k > 0, one can construct examples of System 5 which
satisfy (u;) € LP(82; ck %) for all p < oo. See [13] for more details.

tloc X

Remark 1.12 We have chosen to include Theorem 1.10 to emphasize that our methods
do not fundamentally require non-C° velocity fields, nor do they require velocity
fields that are directly subjected to white-in-time forcing. The difficulty in treating
infinite dimensional models with smooth-in-space, C;‘ forcing of ‘OU tower’ type
is the lack of an adequate extension of Hormander’s theorem to infinite dimensions
(though, note that the theory of Hairer and Mattingly [48] applies to OU tower forcing).
In addition, it would also be interesting to extend our works [13,14] and this work to
the non-white-in-time, uniformly bounded forcing studied in [51-53].

2 Outline

We will henceforth only discuss the proof for the infinite dimensional stochastic
Navier-Stokes Systems 1-2. Essentially the same proof applies to the systems in
Sect. 1.3 but each step is vastly simplified by the finite dimensionality (see [13] for a
brief discussion about the small changes required to treat System 5).

The vast majority of the work in this paper is to prove Theorem 1.3, which we
outline here. The proofs of Theorems 1.4 and 1.8 are discussed in Sect. 7.

2.1 Uniform mixing by uniform geometric ergodicity of two-point Lagrangian
process

The proof is based on the representation of the advection—diffusion equation as a
Kolmogorov equation of the corresponding stochastic Lagrangian process. To do this,
let W, denote a standard d-dimensional Wiener process with respect to a separate
stochastic basis (.Q J J,, P) This naturally gives rise to an augmented probability
space £2 X 2 with the associated product sigma-algebra Z ® &, and product measure
P x P.Ina slight abuse of notation, we will write E for the expectation with respect
to P _alone, and write E denote expectation with respect to the full product measure
P xP.

@ Springer
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Define the stochastic Lagrangian flow ¢ (x) to solve the SDE
d ; ! i~ 0
3 % () = ur (9 (x)) + V2 W h(x) =x.

The fact that u, is incompressible implies that x + ¢~ is almost surely volume
preserving. The solution g, to the advection diffusion Eq. (1.1) is represented by this
stochastic flow in the sense that

g =Ego (@)™

(note that since u; € C> , the flow ¢,’C - T¢ — T is at least a C3 diffeomorphism
and therefore the inverse (q),’{)_1 is defined in the usual sense). By incompressibiliy,
it follows that for f € L%, f : T — R, we have

/gz(X)f(X)dx ZE/g(x)f(q),’((X)) dx. 2.1

By choosing f, g € H*, the H® decay of g; as in Theorem 1.3 follows once
we deduce (2.1) decays exponentially fast P-a.e.. We will show this by obtaining
H~* decay for observables advected by the Lagrangian flow ¢! for almost every
W,, W,-realization. This, in turn, will be deduced using geometric ergodicity of the
two-point process (us, x, y<) on H x T¢ x T¢ defined by x = ¢.(x), y = ¢.(y)
forx,y € T9, x # y. Note that each of x, y is driven by the same noise paths W;,
W;. Throughout, we write x; := x?, V= ytO for two-point process when k = 0.

Let us make these ideas more precise. Let P,(z)’K denote the Markov semigroup
associated to the «k-two-point process, that is, for measurable ¢ : H x T x T4 - R,

2),
Pl( )K(p(u7xv y) = E(u,x,y)ﬁo(”;(a .X;(, )’;() s

whenever the RHS is defined. Define D = {(x,x) : x € T¢} ¢ T x T¢; in our
setting, the complement H x D¢ is the natural state space for the two-point process
(see [13] for a discussion of this point). Below, given a function V : Z — [1, c0) on
a metric space Z, we write Cy the space of continuous observables ¢ : Z — R such
that

. | (2)]
lollc, = fgg V)

<0

We will deduce Theorem 1.3 from «-uniform geometric ergodicity of the two-point
process, stated precisely below as Theorem 2.1. Its proof occupies the majority of this
paper, and is outlined in Sects. 2.2-2.5 below. Note that this implies & x Leb x Leb is
the unique stationary measure for the two-point process on H x D¢, where as before
w is the stationary measure on H for the velocity field process (u;).
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788 J. Bedrossian et al.

Theorem 2.1 There exists ko > 0 such that for all k € [0, ko], there is a function
Vi : H x D¢ — [1, 00) and k-independent constants C > 0, y > 0 such that for all

Y € Cy, with fode'ﬂ‘d ¥(u, x, y)du(u)dxdy = 0, we have

, _
PP Y, x, )| < Ce Ve, x,9) [1¥ I

forallt > 0,u € H, (x,y) € D°. In general, the Lyapunov function V, depends on «,
but satisfies the following uniform-in-k estimate: for B sufficiently large (independent
of k) and Vn > 0, we have

J[ etwxonavay £, (@ i ess (n11eify)

forallu € H.

By repeating the Borel-Cantelli argument in Section 7 of [13], to which we refer
the reader for details, Theorem 2.1 implies the following H ~* decay result uniformly
ink.

Corollary 2.2 Letk € [0, KQ] andy, ,B,J] > O0beasinTheorem?2.1. Fixs, p > 0. There
exists a random constant D, : 2 x 2 x H — [1,00) and y' € (0, y) (depending
on p and s, but not on « ) such that for all H®, mean zero scalars f, g : T — R, we
have

‘/g(X)f(d)ﬁ(X))dx < De(w, &, w)e™ " || £l s gl s

where the random constant Dy satisfies the moment estimate (uniformly in « ) for B
sufficiently large (independent of u, p, k) and n > 0,

EDe (%00 Spy (14 1l exp (n11ully ) 22)

Proof of Theorem 1.3 assuming Corollary 2.2 Theorem 1.3 follows with Dy (u, w) :=
ED,(w,, u), since by (2.1),

‘ f () fx)dx| = |E f g0 f (oL (x)) dx
<EDe(@,%we ™ |1 £l gl e
= D, e " |l gl s -

For fixed u € H, moment estimates in E for D follow from (2.2) and Jensen’s
inequality with respect to E. This completes the proof of Theorem 1.3. O

The rest of the paper is now dedicated to proving Theorem 2.1 (with the exception
of Sect. 7).
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Remark 2.3 The methodology of studying the two-point process follows our previous
work [13] on almost-sure H —* decay for Lagrangian flow in the absence of diffusivity
(i.e., k = 0), to which we refer the reader for more detailed discussion and moti-
vation (see also [12,32]). That being said, the « diffusivity can and does change the
dynamics, presenting issues that must be overcome if we are to succeed in provide the
k-uniform in Theorem 1.3. Issues in this analysis include quantifying x -dependence
on the mixing rate in Harris’s theorem (see Sect. 2.2-2.3 below) and dealing with the
singular perturbation limit k — 0 (see Sect. 2.5.2).

2.2 Uniform geometric ergodicity: a ‘quantitative’ Harris’s Theorem

To prove Theorem 2.1, we will run P,(2)’K through the following mildly ‘quantitative’
version of Harris’s Theorem (Theorem 2.7) on geometric ergodicity for Markov chains,
which keeps track of dependence of the constants appearing in the geometric decay
of observables in terms of the ‘inputs’. Since we use this result at several points
throughout this paper, we state it below at a high level of generality.

Let Z be a complete, separable metric space and (z,,) a discrete-time Markov chain
on Z generating a Markov semigroup P". Geometric ergodicity of (z,) is usually
proved by combining two properties: a minorization condition which allows to couple
trajectories initiated from a controlled subset of phase space (sometimes called a small
set), and a drift condition ensuring that trajectories visit this controlled subset with a
high relative frequency.

The latter can be formulated as follows:

Definition 2.4 (Drift condition) We say that a function V : Z — [1, 0o) satisfies a
drift condition for the (z;) chain if there exist constants y € (0, 1), K > 0 for which

PV <yV(@)+K.

Functions V satisfying Definition 2.4 are commonly referred to as Lyapunov functions.

Minorization in our context will be checked using the following standard result,
regarding suitably chosen sublevel sets {V < R} as our ‘controlled’ regions of phase
space. Here we also need to check dependence on parameters.

Proposition 2.5 (Quantitative minorization) Let V : Z — [1, 00) satisfy the drift
condition with y, K as in Definition 2.4 for the chain (z,). Assume that the Markov
operator P is given as P = P12 o P12 for some Markov operator Py, satisfying
the following two properties:

(a) Jz4 € Z such thatV¢ > 0, e > 0 such that the following holds for all bounded,
measurable  : Z — R:

sup  |Piav(2) — Pipy ()| < ¢.

Z€B€(z*)
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(b) Lete := € beasinpart(a)with = % Suppose that there exists R > 2K /(1 —y)
and n = n(R) > 0 such that

inf  Py/2(z, B 0.
Ze{lgsm 1/2(z, Be(z+)) > 1 >

Then, the following minorization condition holds: for any z1, 7o € {V < R}, we have
that

Pz, ) = Plz2, ity <« 2.3)

where o :=1— 1 € (0, 1).

Remark 2.6 Note that condition (a) is commonly called strong Feller at z, and condi-
tion (b) is called topological irreducibility.

Crucially, Proposition 2.5 guarantees that the constants appearing in the minoriza-
tion condition (2.3) are controlled by ‘inputs’ €, n(R) > 0. Verifying that these
constants can be chosen independently of the diffusivity x > 0O is one of the steps
in our proofs below.

Proposition 2.5 follows from standard arguments— see, e.g., the proof of [Theorem
4.1, [38]]. However, since quantitative dependence on parameters is of central impor-
tance in the proof of our main results, for the sake of completeness we sketch the proof
of Proposition 2.5 in Sect. 3.1.

The following version of Harris’s theorem below now describes geometric ergod-
icity for Markov chains satisfying Definitions 2.4 and (2.3). Its proof is evident from
a careful reading of any of the several proofs of Harris’s theorem now available; see,
e.g., the book of Meyn & Tweedie [59] or the proof of Hairer & Mattingly [44].

Theorem 2.7 (Quantitative Harris’s Theorem) Assume that the Markov chain (z,)
satisfies a drift condition with Lyapunov function V in the sense of Definition 2.4,
as well as the conditions of Proposition 2.5. Then, the Markov chain (z,) admits a
unique invariant measure . on Z such that the following holds: there exists constants
Co > 0,y € (0, 1), depending only on y, K, a, R as above, with the property that

=< Coyy V@II¥llv

‘P”llf(z)—/t/fdu

forallz€e Z,n>0and  : Z — Rwith |¥]|ly < oo.

We note that there are many works studying quantitative dependence in Harris’s
Theorem in a much more precise way; see, e.g., [9,34,58]. All we are using in this work
is the comparatively simpler fact that the constants Cy, ¥y can be uniformly controlled
in terms of the drift and minorization parameters y, K, «, R.

We intend to apply the quantitative Harris’s Theorem (Theorem 2.7) to P = P;z)"‘
on H x D¢ for some fixed, k-independent 7" > 0. This will imply Theorem 2.1. The
most difficult step is the construction of the Lyapunov function V satisfying Definition
2.4 for P}D’K. Before turning to this, however, let us indicate how the hypotheses of
Proposition 2.5 will be checked once a suitable V), has been constructed.
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2.3 Checking minorization for P(Tz)’K

Generally speaking, Markov kernels may degenerate in some regions of state space,
and so it is usually expected that minorization conditions such as (2.3) only hold
on certain subsets of state space bounded away from these degeneracies. Typically,
then, the Lyapunov function V is built so that suitable sublevel sets {V < R} avoid
such degeneracies. In our setting, for the two point process on {(u, x, y) € H x D¢},
Markov kernels degenerate in two places: where ||u||g > 1, and where d(x, y) < 1.
The latter degeneracy is due to the fact that the set D = {(x, x) : x € T} ¢ T¢ x T4
is almost surely invariant for the two point process. In view of these considerations,
the following property is natural and ensures sublevel sets are bounded away from
these degenerate regions of state space.

Definition 2.8 We say that a «-dependent family of functions V, : H x T x T¢ —
[1, 00) is uniformly coercive if VR > 0, 3R’ > 0 (independent of «) and Ixy =
ko(R) > 0 such that Yk € (0, ko) the following holds

(Ve <R} CCr = {llullm < R} N {d(x,y) = 1/R}.

As long as the Lyapunov function V, in our drift condition is uniformly coercive, it
suffices to check that the hypotheses of Proposition 2.5 (b) hold on a ’small’ set of
the form Cg for a fixed R sufficiently large relative only to the parameters y, K in
Definition 2.4 (both independent of k). See Remark 2.20 for more discussion.

We now turn to the task of verifying the hypotheses (a) and (b) of Proposition 2.5.
Item (a) is deduced from the following uniform strong Feller regularity, which implies
that minorization holds across balls of possibly small (yet k-uniform) radius.

Lemma 2.9 (Uniform strong Feller) For all T, R, ¢ > O, there exists € = €(T, ¢, R)
(independent of k) and there exists ko > 0 such that the following holds for all
k € [0,kg). Let ¢ : H x D° — R be an arbitrary bounded measurable function and
let 7, € Cg. Then,

2), 2),
sup [P o(z) — PP p(zi)| < ¢
z€Be(z4)

A straightforward adaptation of the methods in [13] implies that for fixed « > 0, the
Kk -two point process P}Z)’K is strong Feller, hence transition kernels vary continuously
in the TV metric [69]. Lemma 2.9 is stronger, and is a kind of TV equicontinuity for
transition kernels, witp uniform control on moduli of continuity in k¥ € [0, ko] and
across the small sets Cg, R > 0. The proof is essentially a careful re-examination of
the methods in [13] to keep track of dependence on the « parameter. A brief sketch is
given in Sect. 6.2.

Turning to hypothesis (b) in Proposition 2.5: fix a reference point of the form
7% = (0, x4, y+) € H x D¢, where x4, y, € T are such that d(x, ys) > 1/10. Fix
€ =€) for¢ = % as in Lemma 2.9. Item (b) in Proposition 2.5 is checked at z,
from the following.
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Lemma 2.10 (Uniform topological irreducibility) Let T, R > 0 be arbitrary, and
let € = (T, %, R) > 0 be as in Lemma 2.9 with ¢ = % Then, there exists Ic(’) =
ko(R,T),n = n(R,T) such that the following holds for all k € [0, y]. For all

z=(u,x,y) € éR, we have
2),
P (2, Be(z4) = .

Note that in Lemma 2.10, the value of the upper bound «; depends on € =
€(T,1/2, R), as well as T" and R. This is an artifact of the proof: since the primary
case of interest is k < 1, we treat the i/k W; term as a perturbation and control tra-
jectories exclusively with the W; noise applied to the velocity field process (following
the scheme set out for x = 0 in [Proposition 2.7, [13]]). A proof sketch in our setting
is given in Sect. 6.2.

By Proposition 2.5, Lemmata 2.9 and 2.10 imply the minorization condition as in
Proposition 2.5 for P := Pl(z)’K when weset T = 1/2.

2.4 Drift condition for P(Tz)"‘

We now turn to the more significant task of deriving a drift condition with a Lyapunov
function V, satisfying the x-uniform coercivity condition in Definition 2.8.

The family of Lyapunov functions V, we construct for the two-point process will
serve the role of bounding the dynamics away from the *degenerate’ regions ||u|jg > 1
and d(x, y) < 1. Control of the first is done entirely on the Navier—Stokes process
(uy) as follows.

Lemma2.11 (Lemma 2.9, [13]) There exists Q > 0, depending only on the noise
coefficients {q,,} in the noise term QW; and the dimension d, with the following
property. Let 0 < n < n* =v/Q, B > 0, and define

V() = (1-+ 11l ) exp (n 11ul Ry ) 24)

where || - |lw is as in (1.3). Then (2.4) satisfies the drift condition as in Definition 2.4
for the (u;) process.

Lemma 2.11 is taken verbatim from [13]. In fact, a more powerful estimate than that
in Definition 2.4 holds (a so-called super-Lyapunov property): see Lemma 3.2 in Sect.
3.2 for details. Obviously, these drift conditions do not depend on the « parameter,
which only drives the Lagrangian flow itself.

Motivation: controlling dynamics near D
To bound the dynamics away from small neighborhoods {d (x, y) < 1} of the diagonal,

we seek to build V, with an infinite singularity along H x D. We again follow our
previous approach from [13], where a Lypaunov function for Pt(2> at k = 0 was built
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using the linearized approximation when x; ~ y;. As proved in our earlier work [14],
this linearization satisfies the following P-a.e.:

1
0 < i = lim " log|Dy¢'|  forall (u,x) € Hx T?, (2.5)

where the Lyapunov exponent X1 > 0 is a (deterministic) constant independent of the
initial (#, x) € H x T¢. This guarantees that nearby particles separate exponentially
fast with high probability.

With this intuition in mind, following the reasoning given in [Section 2 of [13]],
it is natural to seek a Lyapunov function of the form V. = Vg ,,(u) + hp  (u, x, y),
where i (1, x,y) : H x D° — R is of the form

Ry (it %, y) = x(IwD)w| PPy (u,x, IZ—|> 2.6)

for some p > 0. Here, w = w(x, y) denotes the minimal displacement vector in R4
from x to y, noting |w| = d(x, y), and x : R>o — [0, 1] is a smooth cutoff satisfying
x110,1/101 = 1and x|{1/5,00) = 0. Weregard v/, , as a function on the space H x PTY,
where PT? = T x P9~ is the projective bundle over T¢.

A natural candidate for v/, , is (if it exists) the dominant, positive-valued eigenfunc-
tion of the ‘twisted’ Markov semigroups P, defined for observables ¢ : Hx PT¢ —
R, by

PPy, x, v) = Egur,p) | Dedlo]| 7 ¥ur, xE 05,

whenever the RHS exists. Here, for « > 0, we let (4, x;°, vf) denote the projective
process® on H x PT?: the one-point process x on T¢ is as before, and v € P4~!
is defined for initial v € P9~! to be the projective representative of D, ¢Lv. We write
13[" for the p = 0 Markov semigroup corresponding to (u;, xf, vy ).

In [13], we showed that for ¥ = 0, the dominant eigenfunction ¥, ¢ exists, is unique
up to scaling, and satisfies }A’to’pt//p,o = ¢~ A0y o where A(p,0) > 0 for all p
sufficiently small- in fact, A(p, 0) = pA; + o(p?), A1 as in (2.5), and so our ability
to build a drift condition is directly the result of a positive Lyapunov exponent (see
also Remark 2.13). Once v, o was been constructed, a careful infinitesimal generator
argument is then applied to pass from the linearized process (i, x;, v;) to nonlinear
process (u;, x;, y;) [Section 6.3 of [13]]. In what remains we denote ¥, := ¥ 0,
PP = PP and A(p) := A(p, 0).

In our context, we seek to show that the dominant eigenfunctions v, , for ﬁtK’p ,if
they exist, result in analogous drift and uniform coercivity conditions with constants

2 Equivalently, we can think of (u;, x£, vf) as evolving on the sphere bundle H x ST, where ST =
T4 x §4-1 In this parametrization, vy evolves according to the random ODE

v = (1 —vf ® vf)Duy(xf)vf .
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uniformly controlled in «. The quality of these conditions depends on (A) k-uniform
control on v/, , from above and below, to ensure «-uniform coercivity and to control
error in the linearization approximation; and (B) a x -uniform lower bound on the value
A(p, k) for which IS,K’pwp,K = e‘A(”"‘)’wp,,(, ensuring k-uniform parameters in the
resulting drift condition.

The primary challenge in achieving these points is the fact that k — P°7 is a
singular (not operator- norm continuous) perturbation for p > 0,¢ > 0, and so «-
uniform control over ¥, , and A(p, «) must be carefully checked. This is the aim of
Proposition 2.12 below, which summarizes the k-uniform controlled needed on this
eigenproblem.

Technical formulation of the eigenproblem for f’t"’p

In what follows, 8,n > 0 are fixed admissible parameters for Lemma 2.11, and
V := Vg_,. A finite number of times in the coming proofs, we will assume B is taken
sufficiently large, but always in a k-independent way.

We define C‘l, to be the set of Fréchet-differentiable observables  : Hx PT¢ — R
for which

DY (u, x, v)||g
Il == l¥lcy, + sup —_—
v ! (,x,v)€Hx PT4 V(u)

where H* is shorthand for the dual space to H x T(y ) (PT?).

For reasons discussed in [13] (see also, e.g., [47]), for the purposes of Cp semigroup
theory one usually restricts to the following separable subspace of observables well-
approximated by smooth, finite-dimensional observables. We define the (norm-closed)
subspace ¢ ‘1, ccC ‘1, to be the C \l,—closure and € y C Cy to be the Cy-closure of the
space of smooth cylinder functions

CEOMH x PTY) := (¢ |y (u, x, v) = p(Tcu, x,v), K C K, ¢ € C},

where [T denotes the orthogonal projection onto Hx: = RIX,

The following statement lists all required properties of the dominant eigenfunctions
for ﬁtK’p under the singular perturbation k — 0. The result is crucial to our method for
dealing with this singularity and its proof occupies a substantial portion of the paper.
The proof is outlined in Sect. 2.5 below.

Proposition 2.12 There exist ko, po > 0 for which the following holds.

(a) There exists To > 0 such that for all (x, p) € [0, kol x [0, pol, the (positive) oper-
ator P;;p admits a simple, dominant, isolated, positive, real eigenvalue e~ T0A(P-<)

in C \1, such that A(p, k) > 0, and have the following property: for each fixed
p=>0

lim A(p,«) = A(p) > 0.
k—0
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(b) With m, . denoting the (rank 1) spectral projector corresponding to the dominant
eigenvalue oflsg;P, letyry o = 7p (1), where 1 denotes the unit constant function
onH x PTY. The family {Vp.«} has the following properties.

(i) Forallt > 0, we have
ﬁtp”(llfp,;( — e*A(p,K)l‘wp’K

(ii) We have Yrp € Cl, with 1¥p.i ||C‘1/ bounded from above uniformly in k, p.
(iii) For all p, « sufficiently small, ¥, . > 0 and there holds the convergence

,}LH})HW»K - WHCV =0.

Finally, for p sufficiently small, YR > 0, ko = ko(R) such that

inf inf Ypu, x,v) >0.
k€[0,k0] (u,x,y)eHx PT?
lulm<R

Remark 2.13 The value A(p, k) is referred to as the moment Lyapunov exponent in

the random dynamical systems literature [7], and governs large deviation-scale fluctu-

ations in the convergence of Lyapunov exponents. Indeed, IS,K’p is the Feynman—Kac

semigroup [75] with respect to the potential H (u, x, v) = (v, Du(x)v); see (4.1).
As in [Lemma 5.8 of [13]], one can show that

.1 _
A(p, k) = —tgrgo;IOgEleqﬁ’vl p

holds for all initial ¥ € H and (x, v) € PT<. This, in turn, implies the asymptotic

A(p, k) = pA| +o(p)

where Af is the Lyapunov exponent
AY = lim ! log | Dy |
1 ¢ ¢t g XV

for the «-driven Lagrangian flow ¢..

Remark 2.14 We also note that it is possible to show, without too much additional
work, that lim, ¢ A}c = A(l): for this, it suffices to use that (i) %|p=0A(p, K) = )\,1(
for all « € [0, xp]; (ii) p — A(p,«)/p is increasing in p (note that the formula
for A(p, k)/p is an L? norm); and (iii) continuity of k — A(p, «) for k € [0, ko]
(Proposition 2.19). We note that this argument does require that one considers A(p, k)
and the corresponding semigroups ﬁ,p " for values p < 0, whereas our results mostly
assume p > 0; this extension is straightforward and omitted.
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2.5 Proof outline of Proposition 2.12

The proof has two main components. The first is to establish spectral properties of the
semigroups f’,K’p by viewing these, for fixed ¥ > 0, as norm-continuous perturbations
in the parameter p > 0 of the semigroups f’," . This part of the proof is a careful re-
working of the arguments in [13] to ensure that the relevant quantities do not depend
on the parameter k. The following is a summary of the spectral picture derived.

Proposition 2.15 There exist ko, po, Ty > 0, co € (0, 1) such that the following holds

forany k € [0, kol, p € [0, pol

(a) The semigroup 1’3,'6’[7 is a Co-semigroup on Cy. For any fixed t > 0, the norm
||IA’IK’p||cV is bounded uniformly in k. Additionally, for any t > 0, the operator
13,K’p has a simple, dominant, isolated eigenvalue e~ AP and satisfies

o (B \{e 7"} C B, (0). 2.7)

(b) We have that Is'T(Op is a bounded linear operator C %, - C %, sending ¢ {, into
itself, with ”ﬁ;(;p”C{, bounded uniformly in k. Regarded as an operator in this

space, the value e=4PT0 js q simple, dominant, isolated eigenvalue for P'T((;p ,
and satisfies

o (P \ ™47} C B 1y (0).

2.5.1 Proof of Proposition 2.15 following [13]

We provide a brief sketch of the arguments and highlight where one must be most
careful about k-dependence. Basic properties, such as C continuity on Cy and uni-
form bounds in the Cy and C‘l, norms follow essentially the same as those in [13]; see
Sect. 4.1 for more details.

At p = 0, the uniform spectral picture for ﬁtK in Cy is derived by applying the
quantitative Harris theorem (Theorem 2.7) to the projective process (u;, x;, vf). A
k-uniform spectral gap follows by verifing the minorization and drift conditions with
constants independent of ¥ > 0. Since the PT? factor is compact, it suffices to use
V = Vg, as the Lyapunov function in Definition 2.4 (via Lemma 2.11). The only
thing to check here is the minorization condition using Proposition 2.5. The following
is sufficient for our purposes. See Sects. 4.2.1 and 4.2.2 for sketches of parts (a) and
(b) respectively.

Proposition 2.16 (a) (Uniform strong Feller) For all k sufficiently small, the following
holds. For any ¢ > 0 there exists € = €(¢, R) > 0, independent of k, so that
for all bounded measurable v : H x PTY — R and (u,x,v) € Hx PTY,
lullg < R, we have

sup Pl (u, x,v) — Py, x' 0| < ¢.

(W' ,x",v")eBe (u,x,v)
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(b) (Uniform topological irreducibility) Fix { = 1/2 and let ¢ = e(%, R) be as
in part (a). Fix a reference point (0, xy, vs) € H x PT?. Then, there exists
Ky = Kk{ (€, R),n =n(e, R) > 0 so that for all k € [0, k], the following holds:
forall (u,x,v) € H x PTY, lullg < R, we have

ﬁf((”? X, U)s BE(Os X, U*)) 2 n

Having verified the uniform spectral gaps for f’," semigroup, the proof of Proposi-
tion 2.15 (a) is completed using a spectral perturbation argument carried out in Sect.
4.4.1 and the convergence

. DK, D A
hm Sup ”Pt - P[K”Cv—)CV = O
P=0 e e0,x01

for any fixed t > 0 (see Lemma 4.3).

Next, we sketch the proof of Proposition 2.15 (b). Checking k -uniform boundedness
in C‘l, and propagation of CO"I, again proceeds more-or-less verbatim from arguments
in [13]; see Sect. 4.1 for more details. As in [13], we are only able to show IStK’P is
bounded in C ‘1, for t > Ty (Tp > 0 a k-independent constant), which is why we state
the C ‘1, spectral picture for 13;(;17 . Following a standard argument in [Proposition 4.7;
[13]], the k-uniform spectral gap in C‘l, is obtained from the Cy spectral gap from
Proposition 2.15(a) and the following x-uniform gradient-type bound similar to those
pioneered by Hairer and Mattingly [46,48] for ergodicity with degenerate noise.

Lemma 2.17 (Uniform Lasota—Yorke regularity) There exists k such that the follow-
ing holds uniformly in k € [0, ko). For all B’ > 2 sufficiently large and all admissible
n > 0 for Lemma 2.11, there exist C; > 0, 3¢ > 0 such that the following holds for
all k € [0, kg]. Forall € Cy and t > 0, we have

IDPSy (s < C1 Vg (\/ﬁ;‘w + e%l,/ﬁkunwn%{*)

pointwise on H x PT¢.

The proof of Lemma 2.17 is analogous to that in [Proposition 4.6; [13]]; we provide
a sketch in Sect. 4.3 below.

Finally, the «-uniform spectral gap in C}, for ﬁ;(;p is obtained by a spectral pertur-
bation argument (see Sect. 4.4.2) and the fact that

lim sup [|PSP — PE |1 1 =0.
Tt To'C C
P=04e0,0] ° 0Ty

This completes the proof of Proposition 2.15; see Sect. 4 for more details.

@ Springer



798 J. Bedrossian et al.

2.5.2 Overcoming the singular perturbation x f’:"p

We now move on to completing the proof of Proposition 2.12, which requires that
we contend with the potentially singular nature of k¥ +—> 13;(’1’ . This is a significant
deviation from our previous work [13], which considers only the ¥ = 0 case.

More precisely, the mapping « +—> 13;(”7 is not, to the best of our knowledge,
continuous with respect to the operator norm derived from any of the usual topologies
on observables ¢ : H x PT¢ — R. From the perspective of smooth dynamics,
this is unsurprising. For deterministic maps, Markov semigroups on observables are
called Koopman operators, and for parametrized families of (deterministic) maps, these
Koopman operators typically vary discontinuously in the parameter with respect to
most useful operator norms. For an example related to our setting, where the parameter
dictates the amplitude of noise, see [10].

At least, we have the following strong operator continuity:

Lemma 2.18 Assume B > 0 to be taken sufficiently large. There exists py > O such
that the following holds for any ¥ € Cy (H x PT9):

lim  sup ||P”*y — P'¥llc, =0. (2.8)
€=0 pe[—po, pol

For proof, see Lemma 5.3.

The continuity in (2.8) is not strong enough to immediately extend the 13,p spectral
gap to a k-uniform spectral gap on ﬁ,K’p . In order to leverage (2.8), we instead pass
to the limit in the eigenfunction/value problem. To roughly summarize: estimates on
dominant spectral prQ] ectors (Lemma 5.1) and arguments using the scale of compactly-
embedded spaces H°' and the uniform C \1, estimates imply that {1//p K}K con 1
suitably ‘locally sequentially pre-compact’ in Cy using a version of Arzela—Ascoli
(Lemma 5.5). This pre-compactness together with (2.8) ultimately allows to pass to
the limit in the eigenvalue problem P;"” v, , = e =4y, obtaining the follow-
ing.

Proposition 2.19 Let p € [0, po] be fixed. Then,

i [ = Ypllcy =0 and  lim A(p. i) = A(p).

See Sect. 5.2 for the detailed proof. With Proposition 2.19 in hand, it is now straight-
forward to check the remaining items in Proposition 2.12; see Sect. 5.2 for such details.

Verifying the drift condition: infinitesimal generator argument

Assuming Proposition 2.12, let us sketch how the drift condition for the ‘nonlinear’
(us, xf, yf) process is derived, thereby completing the proof of Theorem 2.1. Let
p € (0, po] be fixed once and for all, and let k > 0 be sufficiently small so that, as
in Proposition 2.12(a), we have A(p, k) > %A(p, 0) uniformly in «. Our Lyapunov
function V, is of the form
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Ve, x,y) = V1) +hpic(u, x,y), (2.9)

where hj . is as in (2.6). Observe that Proposition 2.12 (b)(iii) ensures that V, as
above is uniformly coercive as in Definition 2.8.

To conclude the drift condition for V, as in Definition 2.4, we apply the analogue
of the infinitesimal generator argument used for the ¥k = 0 case in [13], again carefully
ensuring k-independence of relevant quantities. Brushing aside details for the moment,
for k > 0 let L), denote the (formal) infinitesimal generator of the (u;, x;, ;)
process. We show that in fact &, , is in the domain of this generator, and that

£(2),th,/c < —A(p, K)hp,/c + COVﬂ+l,n~

The first term is good and reflects the strong exponential separation of nearby trajec-
tories (equivalently, repulsion from the diagonal), while the second is an error arising
from the linearized approximation of the velocity field (the constant C being inde-
pendent of «). This uniform control in the linearization error makes critical use of the
uniform C \1, control on ¥, , as in Proposition 2.12(b)(ii), while verifying that ¥ .
is in the domain of L) , uses ¥, € Co"l, and Proposition 2.12 (b)(i). See Sect. 6.3
where this argument is carried out in more detail.

The linearization error is overcome as follows: formally, a stronger version of the
drift condition for Vg1, (see Remark 3.4) implies that for any & > 0 there exists
Cs > 0 such that

LVgi1y < —EVgy1, +Ce,

where L is the generator of the (1) process (we do not justify this inequality precisely
as written, but instead an integrated version that is almost equivalent; for details, see
Sect. 6.3 below and the proof of [Proposition 2.13; [13]]). Taking & > Co + %A(p, 0)
ensures that the —& Vg1 ,, term successfully absorbs the linearization error Co Vg1 5,
verifying the desired drift condition. With this established, Theorems 2.1 and 1.3 now
follow. See Proposition 6.5 in Sect. 6.3 for mathematical details.

Remark 2.20 (Setting the parameters) Let us lastly point out how to set parameters
consistently in a non-circular manner. Notice that Proposition 2.12 (b) (iii) has the
same ordering in the quantifiers of R and « as Definition 2.8. We choose parameters
like this: first we fix p, x small to obtain a «-independent drift condition for V, as
defined in (2.9) — that is, (2.9) satisfies Definition 2.4 for y, K both independent
of k. Then, V, satisfies Definition 2.8 by Proposition 2.12 (b) (iii). Then, choose R
sufficiently large to satisfy Proposition 2.5 based on these parameters. Then, chooose
ko sufficiently small based on Definition 2.8 and Lemma 2.10 of Sect. 2.3 to obtain
minorization.

2.6 Notation

We use the notation f < g if there exists a constant C > 0 such that f < Cg
where C is independent of the parameters of interest. Sometimes we use the notation
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f ~a.b.c.... g toemphasize the dependence of the implicit constant on the parameters,
e.g.C = C(a,b,c,...). Wedenote f ~ gif f < gand g < f.In this work, such
implicit constants never depend on w, k, t, (u;) (the velocity), or (g;) (the passive
scalar).

Throughout, R4 is endowed with the standard Euclidean inner product (-, -) and cor-
responding norm |- |. We continue to write | - | for the corresponding matrix norm. When
the domain of the L? space is omitted it is understood to be T¢: f e = f1lLpcpdy-

We use the notations EX = [, X (@)P(dw) and [|X||1»(q) = (E[X|7)"”. When (z/)
is a Markov process, we write E;, P; for the expectation and probability, respectively,
conditioned on the event zo = z. We use the notation || f||gs = Zkezd Iklzs |f (l<)|2
(denoting f (k) = W Jpa €78 f (x)dx the usual complex Fourier transform). We

occasionally use Fourier multiplier notation n@ &) :=m(i§) f (&). Additionally,
we will often use rp to denote a number in (% + 1, 3) such that the Sobolev embedding
H' — W1 holds.

We denote PT¢ = T9 x P4~ for projective bundle. We often abbreviate 7, PT¢ =
T(x.v) PT for the tangent space of PT¢ at (x, v) as the T¢ factor is flat. We are often
working with the Hilbert spaces W x T, PT¢ and H x T, PT?. For these spaces we
denote the inner product (-, )y (respectively H) and correspondingly for the norms
as the finite-dimensional contribution to the inner product is unambiguous. For linear
operators A : W x T,PT¢ — W x T, PT¢ we similarly denote the operator norm
||Allw and for linear operators A : W x T,PT? — R we use the notation [ Ay
(analogously for H). For K C K, define [T : W x PT? — K x PT¢ to be the
orthogonal projection onto the subset of modes in . For n € N, [T, denotes the
orthogonal projection onto the modes with k € K, |k| < n.

3 Preliminaries
3.1 Proof of Proposition 2.5

For completeness, we provide a proof of our criterion for minorization, Proposition
2.5.

Proof of Proposition 2.5 Let z1, zo € {V < R} be as in the statement, and let z, be as
in hypothesis (a) of Proposition 2.5. Fix ¢ = % and the corresponding value of € as in
hypothesis (b). By hypothesis (b), we have

P12(zi, AN Be(z4))
PI/Z(ZI‘, Be(z4))

Pi2(zi, A) = n i, (A), D,(A) =

Consequently we can write P1/2(z;, -) as a convex combination of probability mea-
sures

Pij2(zis ) =nb;, () + A =iy ().
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Using P(x, A) = [, Pij2(y, A)P12(x, dy), we estimate
[P(z1, A) — P(z2, Al
< 77/ f [P12(wi, A) — Pra(wa, AV, (dwi)D,, (dw))
Be(z4) Y Be(zx)
+d—n
Using hypothesis (a) and our choice of €, there holds
P1 A) = P Al 1= 3,

which provides the desired minorization witho = 1 — % O

3.2 Stochastic Navier-Stokes and the super-Lyapunov property

Following the convention used in [13,14,78], we define a natural real Fourier basis on
L2 by defining for eachm = (k,i) € K := Zg x{l,...,d -1}

caylsink -x),  keZd
em(x) = i d
cayg cos(k - x), keZZ,

where Zd := Z\ {0, ..., 01,24 = {k e Z¢ : kD > 0}U{k € Z¢ : kD > 0,k D =
0}and 2% = —Zi, and foreach k € Zg, {y,f }?;11 isasetof d — 1 orthonormal vectors
spanning the plane perpendicular to k € R with the property that y' 0= —y,f . The
constant ¢ = +/2(27)~4/? is a normalization factor so that e,, (x) are a complete

orthonormal basis of L2. Note that in dimension d = 2 K = Zg, hence ykl = Y is
just a vector in R? perpendicular to k and is therefore given by y, = +k*/|k|. We
assume that Q can be diagonalized with respect to {e,, } with eigenvalues {g,,} € 22(K)
defined by
Qem = Qmem, m = (kv l) € K
Note that Assumption 1 is equivalent to
|Qm| %|k|7as m:(kvl)

We will write the Navier—Stokes system as an abstract evolution equation on H by

i+ B(u,u) + Au= QW =Y guen W™, (3.1)

meK

where

Bu,v) = (Id —V(—A)—lv-) V. u®v)
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—VvAu ifd=2
Au = » .
—V'Au +vA“u  ifd = 3.

The (u;) process with initial data u is defined as the solution to (3.1) in the mild sense
[31,54]:

t t
u, = e My — / e UIAB(uy, ug)ds + f e DA 0dW (s), (3.2)
0 0

=13

where the above identity holds P almost surely for all # > 0. The random process I}
is referred to as the stochastic convolution for this additive SPDE. For (3.2), we have
the following well-posedness theorem.

Proposition 3.1 ([31,54]) For each of Systems 1-2, we have the following. For all
initial u € HNH" with o' < a — % and all T > 0, p > 1, there exists a P-a.s.
unique solution (u;) to (3.2) which is F;-adapted, and belongsto L? ($2; C ([0, T']; HN
H°')) N L2(2; L%(0, T; HO T@=Dy),

Additionally, forall p > 1and 0 < o' < 0" < a — £,

p

E, sup llufll? Srpor 1+ Ilull?

te(0,7T]

T
2 2
E, fo its 1y d St 1 Ml

o —o! )4
E, sup (tz“"” ||ul||H(r”) Sp1oter LHull? .
1€[0,T]

We now state a precise version of the super-Lyapunov property for the drift functions
V() := (1 + [lullg)” exp(yllulfy). If d = 2 define Q = 64 sup,,_ i cx K| lgm|.
and if d = 3 define Q = 64 sup,,_ ;)ck |gm|- Define n, = v/Q.

Lemma 3.2 (Lemma 3.7 in [13]) Let (u;) solve either Systems 1 or 2. There exists a
Y« > 0, such that forall 0 <y <y, T 20,7 € (0,3), Co = 0, and V(u) = Vg
where B > 0and 0 < eVTn < Ny, there exists a constant C = C(y, T, r, Co, B, n) >
0 such that the following estimate holds:

T
E, exp <C0/ |lus||gr ds) sup ve” (uy) < CV(u). 3.3)
0 0<t<T

Remark 3.3 It suffices to take y, = g.

Remark 3.4 Note that Lemma 3.2 is strictly stronger than a drift condition. The
improvement in the power of V is sometimes called a super-Lyapunov property and it
provides an important strengthening of the notion of a drift condition. To see that (3.3)
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implies a drift condition, we write Pi¢(u) = E,¢(u1) as the Markov semi-group for
Navier—Stokes and apply Jensen’s inequality with (3.3) to deduce that 3C;, > 0,

PV < (rvye”. (3.4)

Hence, V§ > 0,3Cs > Osuchthat PV < §V + Cs. Furthermore, the bound (3.4) can
be iterated with repeated applications of Jensen’s inequality (c.f. [Proposition 5.11,
[48]]) to produce

_e ’

PV <eStiemye

3.3 Jacobian estimates

In the course of this paper, we require a variety of Jacobian estimates for the projective
process (u;, x;, vf) on Hx PT9 (defined in Sect. 2.4). Analogous estimates when k =
0 were derived in [Section 3; [13]] and the same estimates apply here as well (uniformly
in k). This is because the Lagrangian and projective processes were estimated by L*°
estimates on the velocity (and its gradients), and hence are not sensitive to the noise
path of W, and so do not depend on «. Since no real changes are needed, we will
merely state the necessary lemmas here and refer the reader to [Section 3; [13]] for
proofs.

Let us establish some useful shorthand notation. Recall the projective process
(<) = (uy, x, v¥) solves the abstract SDE in H x PT¢

32 = FE) + QW; + vV2c W,

where we view Q W, and VT/ ; as extended to H x Ty PTY (we will abbreviate T, P Td =
T(XYU)P’]I‘d) in the obvious manner and for each Z = (u, x, v) € H x PT? we write

—B(u,u) — Au
F@2) = u(x)
(I —v®v)(Du(x)v)

The Jacobian process J§', denotes the Fréchet derivative of the solution Z with respect
to the value at time s < 7. Hence, J{, solves the operator-valued equation

oJs, =DF(@E)J5,, Jo,=1d.

Additionally we let K, : W x Ty PT? — W x Ty PT? denote the adjoint of Jos
in the sense that

(f’ JvKt$>w = <K§,tf’ é5‘>W
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A straightforward calculation (see [48]) shows that K ;‘, , solves the backward-in-time
equation

0KS, = —DF(E)*KS,, Kf =1,

s,

where DF(Z§)* : W x Ty PT? - W x Ty PT is the adjoint to D F (£¥).
In what follows, we will find it convenient to let 7 = (i, X, v) € W x Ty« PT be
an initial perturbation and denote

2= (i, X, 0F) = IS, 2 € W x Ty PTY,
which readily solves the linear evolution equation
07 = DF(zt)Eh 7y = 2.

We now state the necessary Jacobian estimates. As usual, all constants are implicitly
independent of «.

Lemma3.5 Yo > 4 + 1, Vr € (4 +1,3), 3C, q' > 0 such that the following holds
path-wise

t
il < llillw exp (C/ PR dr)
N

t /
I o pge S exp (C/ ot |lgar dr) <1+<t—s>3 sup ||u,||;§a).
N

s<t<t

Lemma 3.6 (Jacobian bounds in expectation) For all o and all n > 0, there is a
constant Cj such that the following holds for all 1 < p < oo,

sup1E||JS'f,HII_7[U_)H0 < Vql:,,,(us) exp (pCy).

s<t<

Lemma3.7 Lety € [0, — %) andr € (% + 1, 3). Then, 35 such that the following
holds path-wise for0 <s <t < 1:

Y t /
(t — §)%@D H‘]SK,IHW—)HV < exp (C/ [zl dl’) (1 + sup ||u,||f_1‘a> .
N

TE(S,1)

Lemma3.8 Vo > % +1,Vr e (% +1,3), 3C, ¢’ > 0 such that the following hold
path-wise

t
K o w S exp (Cf et |1y dr)
s

l !
||K§,,||HQH§exp(Cf ||uf||H»~dr) <1+<t—s>3 sup ||uf||€,a).
S

s<t<t
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3.4 Malliavin calculus preliminaries

In order to make hypoellipticity arguments in infinite dimensions, we apply Malliavin
calculus. We will be dealing with variables X € W x M, where M = PT¢, D¢
or trivial variations thereof, and assume that X is a measurable function of a Wiener
process W = (W;) on L? x RM . The Malliavin derivative D, X of X in a Cameron—
Martin direction & = (h;) € L? R4, L2 x RM) is then defined by

DpX (W) := m% e ! [X (W +€ / hxds> — X(W)}
€E—> 0

when the limit exists in W x M. If the above limit exists, we say that X is Malliavin
differentiable. In practice, the directional derivative D, X admits a representation of
the form

o0
DhXZ/ DsXhy ds,
0

where for a.e. s € Ry, DX is a Frechet derivative and defines a random, bounded
linear operator from L? x RM to W x M (see [63] for more details). It is standard
that if X, is a process adapted to the filtration .%; generated by W;, then Ds X, = 0 if
s >1.

For real-valued random variables, the Malliavin derivative can be realized as a
Fréchet differential operator D : L?(£2) — L*(2; L*>(Ry; L?> x RM)). The adjoint
operator D* : L2(£2; L>(Ry; L? x RM)) — L?(£2) is referred to as the Skorohod
integral, whose action on i € L2(£2; LZ(R+; L2 x RM)) we denote by

o0
/ <ht7 (SW[)LZ = D*h
0

The Skorohod integral is an extension of the usual Itd integral; see [48,63]. Above,
we write (-, -)12 for the inner product on L? x R and throughout will suppress
dependence of inner products on finite-dimensional factors. One moreover has the
following version of Itd isometry (see [63] or [30]):

00 2 00 0o poo
E(/ <ht,aw,>Lz> sE/ ||h,||iz+E/ / [ Dohi] 22 dsdr.
0 0 0 0

A fundamental result in the theory of Malliavin calculus is the Malliavin integration
by parts formula. We stated the result for a process (Z;) which takes values in H x PT¢
(see e.g. [30,63]); only trivial modifications are needed to state for the other processes
we apply Malliavin calculus to.

Proposition 3.9 Let s be a bounded Fréchét differentiable function on H x PT¢ with
bounded derivatives and let h; be any process satisfying

T T T
B[ bR ar+ B [ [ Dl dsdr < oo,
0 0 0
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Then, the following relation holds

T
ED,y(zr) =E (W(ET)/O (hs, 3Ws>L2> -

4 Spectral theory for twisted Markov semigroups

The primary aim of this section is to prove Proposition 2.15, which summarizes the
spectral picture we will use for the semigroups ﬁtK’p to construct our drift condition.
First, we outline the basic boundedness, mapping, and convergence properties of the
projective ﬁt" and twisted IS,K’p Markov semigroups. Starting with p = 0, in Sect. 4.2
we establish «-uniform spectral gaps in Cy for f’l" (Corollary 4.13), while in Sect.
4.3 we establish x-uniform spectral gaps for 13’750 in Cc"l,, where Tp > 0 is a fixed
time chosen large (x independent). In Sect. 4.4, we collect the remaining ingredients
necessary to apply our spectral perturbation arguments to conclude Proposition 2.15.

4.1 Basic properties
4.1.1 Mapping and semigroup properties

Lemma 4.1 Forall p, « € [0, 1], P/? is a bounded (uniformlyin p, i) lmearoperator
Cy — Cy, satlsﬁes the mappmg P P(CV) C Cv, and moreover {P }zzo defines
a Co-semigroup CV — CV

Proof Uniform boundedness in « for p # 0 follows from the representation
N t
PPy (u, x, v) = Eqyx.0) exp (—p/ H (us, xg , vf)dS) Vu, xf,v0)  (40)
0

of P°7 as a Feynman—Kac semigroup with potential H (u, x, v) := (v, Du(x)v),
together with Lemma 3.2. Since the +/k W; noise applied to the Lagrangian flow is
additive, the C'y mapping property follows as in [Lemma 5.3 (a); [ 13]] with no changes
and the strong continuity follows as in [Proposition 5.5; [13]]. |
Lemma 4.2 There exists a time Ty > 0 such that Vp,«x € [0, 1], ﬁ;o’p is a bounded
(uniformly in p, k) linear operator C‘I, — C‘l, and satisfies the mapping property
PP (C) c €.

Proof The uniform-in-« boundedness follows from the representation (4.1) and the

argument in [Lemma 5.2 (a); [13]]. The ¢ ‘1, - C ‘1, mapping property follows as in
[Lemma 5.3 (b); [13]]. |

4.1.2 Convergenceresultsasp — 0

Next we show that P — P¥ uniformly in k as p — 0 in various senses. Both
lemmas follow, as in [Lemma 5.2 (b); [13]], from (4.1) and Lemma 3.2.
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Lemma 4.3 For fixed t > 0, the following uniform-in-xk convergence holds:

lim sup |27 — Pfc, =0.
P—=>0 410,17

Lemma 4.4 Forany fixed T > Ty, the following uniform-in-k convergence holds:

lim su P P _ px =0.
o p T ||c‘1/
xel0,1]

4.2 Spectral picture for f’:‘ in Cy

As the drift conditions are settled by Lemma 2.11, our main task in applying Theorem
2.7 is to establish the uniform minorization conditions contained in Proposition 2.16.

4.2.1 Proposition 2.16 (a): uniform strong Feller

The following is more than sufficient to imply Proposition 2.16 (a). The result follows
from checking uniformity in the argument used to prove [Proposition 2.12, [14]]
(which in turn builds from [35]). We provide a brief sketch.

Lemma 4.5 There exists a,b > 0 such that there exists a continuous, monotone
increasing, concave function X : [0,00) — [0, 1] with X(r) = 1 forr > 1 and
X(0) = 0 such that the following holds uniformly in k < 1, du(z',z%) < 1, and
te(0,1):

A A du(z', 2%) b
H@@U—wwwﬂsx(ﬂ77—)a+Hﬂanuw

Proof Tt suffices to consider v; € S¢~1; see [Section 6.1 of [14]] for discussion. Define
the following augmented system (denoting IT, = I — v ® v),

Orur = —B(up, ur) — Au; + QWt

Orxe = ur(xr) + V2 Wt

orvy = Hu,Dut(xt)Ut

oym; = Mt,
where M; € R is a finite dimensional Wiener process independent from W; and
Wt, and m; = (m! )2‘11 is a diffusion on R24. We denote this augmented process by
wy = (U, x¢, v5, my) € Hx M, where M = T4 x S9! x R24_ which satisfies the
abstract SPDE

dw, = F(w;) — Aw, + OW,, (4.2)
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where F and Q W are given by

—B(u,u) QW
_ B u(x) ~. | VW,
F(M,x, Usm)_ HUDM()C)U I QW_ 0
0 M

(with the obvious extended definition Aw = (—Au, 0, 0, 0)). We similarly denote the
associated Markov semigroup as ﬁzK- Analogously to [14], we prove uniform strong
Feller for the augmented process (4.2), which then implies the corresponding result
for the original process. As in [14,35] we fix a smooth, non-negative cutoff function
X satisfying

0 z<1
x(@) = | 222

and let x,(x) = x(x/p) for p > 0. We then define a regularized drift F,(w) by
Fo(u,x,v,m) = (1= x3p(lullg) F(u, x, v,m) + x,(lule) L(v, m),

where L (v, m) is a bounded vector-field on H x M given by

0
d - j
Zj:l ej—" NI72
(l+|m1| )
L(v,m) = I Zd R md+i
. e
v j=1 j(1+|md+j|2)1/2
0

Here, {¢ j}‘;:1 the canonical basis for RY, and we are using that for each v € s4 -1
{171)61‘}31.:1 spans T,S?~!. The cutoff/regularized process w/ = (u’, x, vf, m,) then

satisfies the SPDE (replacing 0 — O for notational simplicity),
dqw! = Fy(wf) — Aw! + QW,. 4.3)

Denote IFJVIK;p the Markov semigroup associated with the process (4.3). See the dis-
cussions in [14,35,68] on the utility of this cutoff. The main difficulty is to follow the
proof of [Proposition 6.1; [14]] and verify that the following gradient bound holds
uniformly in k.

Lemma 4.6 Thereexistsa, b, py, Ty > 0allindependent of i, suchthatVp € (py, 00),
3C, (independent of k) such that fort < Ty and all ¢ € C2(H x PT?), we have that

w — EKW o(w) is Fréchet-differentiable, and satisfies

PP pwih| = Cpt= (14 Iy ) el Wallgger, pre
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forallh € H x T, PT.

Proof The proof of [Proposition 6.1; [14]] is based on Malliavin calculus (see Sect.
3.4). Specifically, the main step is construct, for each 7 € H x T, PT?, a suitably
bounded control g = (g;):¢[0,7] such that the remainder

rr = Dng — DU)Th (44)

satisfies suitable estimates. First, the semigroup property and the Malliavin integration
by parts formula (Proposition 3.9) imply

T
DPy p(w)h =E (P;”’wwn /0 (g1, «SW(r))Lz) —E(DP; pwrrr).

where the stochastic integral above is interpreted as a Skorohod integral (Sect. 3.4),
since the control is not necessarily adapted. Lemma 4.6 then follows from a perturba-
tion argument (see [14]) provided we prove the analogue of [Lemma 6.3; [14]]:

Lemma 4.7 For all k € (0, ko) where kg is a universal constant, and Vp > 0, there
exists constants a, by, > 0 such that for T sufficiently small (all independent of
k), there exists a control g = (g;)e(0,1] (in general depending on k) satisfying the
K -uniform estimate

T ) T T )
Ef lgil2, dr + E/ f 1Dsgil2, . dsdr
0 0 0

So T2+ [[wllg) Wl 7, pq

with remainder term rr as in (4.4) estimated by

2 2
EllrrllervTM So TRl lgsr, p -

In order to prove this lemma we need (A) uniform-in-« estimates on the Jacobians and
Malliavin derivatives as in Section 6.5 of [14] and (B) uniform-in-« estimates on the
partial Malliavin matrix (specifically, a k-independent version of [Lemma 6.9; [14]]).

Jacobian and Malliavin estimates analogous to those in [Section 6.5; [14]] follow
essentially verbatim here as well. This is for the same reason as in Sect. 3.3: the esti-
mates on the (x;, v;) processes are done using L°° estimates on (u,) and its derivatives,
and so are insensitive to the specific noise-path of W,.

The uniform Jacobian and Malliavin estimates are sufficient to perform the argu-
ments of [Section 6.5; [14]] once one verifies the uniform-in-« non-degeneracy of the
Malliavin matrix [Lemma 6.9; [14]]. This requires more care. The addition of new
noise directions does not change the uniform spanning property of [Lemma 6.13; [14]]
(the new noise directions cannot help in a xk-independent way, but they are not detri-
mental either). The addition of the new directions adds additional O (x) or O (y/k)
terms, for example, in [Proposition 6.10; [14]]; however, these terms do not present
any new difficulties beyond what is already required to treat the existing terms.
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The additional noise term /k W, also does not significantly change the time-
regularity estimates of Jacobian because the noise is additive and hence is not directly
present on the Lagragian trajectories (recall time-regularity estimates of the Jacobian
and its approximations play an important role in [Lemma 6.9; [14]]). The /k Wt term
adds additional noise terms (to those already existing) to the expression for the time-
derivatives of the Jacobian. On the other hand, the coefficients are controlled using
the available regularity in H together with BDG, similar to the noise terms that are
already present. We omit these repetitive details for brevity; see [Section 6; [14]] for
more detail. O

We are now ready to complete the proof of Lemma 4.5. To see the uniform modulus
of continuity, we proceed as in [Proposition 2.12; [14]] and [35]:

Proh) = Pro@)| = [Bro@ - B e@| + [ProE) - B
| B - B
The first two terms are controlled noting that the moment bounds are independent of
because this noise only affects the degrees of freedom on the compact manifold PT¢,

hence by Proposition 3.1, for all b > 0 there holds (recall dg(z', z%) < 1 so that the
sizes of z/ are comparable),
)

<+ el -
~ < H Plipeo pb'

z

Pro(z)) — EK;pw(Z")) < ||§0||L°°IP< sup

O<s<t

Asin [14,35], an adaptation of [Lemma 7.1.5, [31]] combined with Lemma 4.6 implies

Cepdu(z', 2%) b 1
Cor®tL 2D |11l I gl

‘Igfgpw(zl) — Fz'(;pw(zz)‘ S
Putting these estimates together implies

Cpdu(z!, z%)
ta

~ ~ 1 b

Proeh) - Pro@)| < ( - ﬁ) A |2 || ) 1l
Without loss of generality we can assume C, is monotone increasing, continuous in
0, and satisfies lim,_, o C), = 00. We define the modulus of continuity by

X(r) := min <Cpr + i})) .
PE[P«,00) P

Concavity, continuity, and monotone increasing all follow by definition and the

continuity and monotonicity of C, and p~". Finally it suffices to replace X with

min(1, X (r)) since the minimum of two concave, monotone, continuous functions is

still concave and continuous. O
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4.2.2 Proof of Proposition 2.16(b): uniform topological irreducibility

The uniform topological irreducibility for Proposition 2.16 (b) is proved by a standard
approximate control argument; we include a sketch of the argument for completeness.
Specifically we prove the following.

Lemma 4.8 Fix an arbitrary z, € H x PTe. Forall R > 0, Ve > 0, VT > 0,
Ik = ky(e, T) and In > O such that for all k € [0, k)] and z € H x PT? with
llzllg < R,

Pf (2. Be(z4)) > 1.
Proof Consider the deterministic, k = 0, control problem on H x PT?

Orur + B(ug, up) + Auy = Qg;
0 xr = ur(xr)
0rvr = Iy, Duy (x0)vy.

Let z = (u,x,v) and z, = (u/, x’,v"). By local parabolic regularity (Proposition
3.1) it suffices to take u € HN H forany o < o' < a — % with [[ul gor S

Rmax(1, T @ ). For simplicity we further assume 7" = 1; the general case follows
similarly.

The following lemma is standard (see the discussions in [13,43] and the references
therein).

Lemma4.9 Letu c HN H"/fora <o <a-— % be as above. Then Ve > 0, 36 < €
and a control g : [0, §] — L2 such that |lus|lyg < €/4andsupy_, _s |lusllg < 3 llully.
Furthermore, supy_,_s |18:|lw is bounded only in terms of t and 6.

The following lemma is essentially [Lemma 7.1; [14]].

Lemma4.10 Let a € (O, %) and suppose ug, = 0, (x4, v4) = (x,v). There exists
Cq > 0 such that V(x, v), (x',v) € PT? there exists a control g =: g% satisfying
SUD; e (a.1—a) Hgtm’aHW < Cq such that uj—q = 0 and (x1—q, vi—a) = (X', V).

The next lemma is essentially [Lemma 6.10; [13]].

Lemma4.11 Let u' € H be arbitrary. Then ¥Ye¢ > 0, 38 « 1 and a control g :
(1= 8,11 — L2 such that if |l sllyg < . then there holds |juy — /||y < &

supy _s<r<1 el < 3 u|

w and d(x1—s,x1) +d(vi—5,v1) S8 HM/HH

Lemmas 4.9, 4.10, 4.11 exhibit an approximate control of the deterministic control
problem (4.5). Let (g;) be such a deterministic control. As in [Lemma 7.3, [14]] we
have Ve, 3 such that

P| sup
1€(0,1)

t
r —/ e "4 Qgds
0

<€l >n,
L0, 1;H)
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where I3 is the stochastic convolution as in (3.2). ~

A remaining point is to bound the contribution of the noise term /2« W; applied
directly to the Lagrangian flow. By a standard argument (using, e.g., the reflection
principle applied to sup, (g 1) W ) for each component W’ ), we have the estimate

2
P( sup 2« |Wi| >E) < exp (— € > 4.5)

1€(0,1) 4d%k

for € > 0 fixed and all « sufficiently small (recall d = 2 or 3). From here, Lemma 4.8
easily follows from a standard stability argument as in [Lemma 7.3; [14]]. m]

4.2.3 K-uniform spectral gap for P in &y

We now apply Theorem 2.7 with the Lypaunov function V = Vg , (Lemma 2.11) and
the minorization condition guaranteed by Proposition 2.16 (c.f. Proposition 2.5).

Proposition 4.12 There exist constants C, y > 0(depending on the Lyapunov function
V') such that the following holds for all k > 0 sufficiently small.

There is a unique stationary measure v* for the projective process in H x PT¢ and
moreover, for all € Cy andt > 0, we have

Corollary 4.13 There exists cy € (0, 1) (independent of k) such that, regarding ﬁf as
a Co-semigroup of operators on Cy, we have that for allt > 0, the eigenvalue 1 is
simple, dominant and isolated, and for all t > 0 and « sufficiently small

<Ce " Ylle, -
Cy

Pl — ¥ dv¥

Hx PT4

o (P)\ {1} € By (0).

4.3 Spectral picture for f’fo inC)

Following [13], a spectral gap for f”T(O inC ‘1/ will be deduced from the uniform spectral
gap in Cy and the following Lasota—Yorke type gradient bound. The proof requires
checking the «-uniformity of the analogous argument in [Proposition 4.6; [13]] (which
in turn follows [46,48] closely with some minor variations).

Proposition 4.14 (Lasota—Yorke estimate) V8’ > 2 sufficiently large and ¥n' €
(0, n*), 3Cy, ¢ > 0 such that the following holds ¥Vt > 0, and 7 = (u,x,v) €
H x PT?:

IDPF Y ()l < Ci Vi (u) (\/ BEIWIR Q) + e\ BXIIDY |1 (2)) .
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Proof The proof shares a few connections with that of Lemma 4.6 above. The proof is
again based on Malliavin calculus and requires (A) uniform-in-« estimates on Jaco-
bians and Malliavin derivatives; and (B) uniform-in-x estimates on the low-mode
non-degeneracy of the Malliavin matrix (in this case, a different Malliavin matrix
however). The Jacobian and Malliavin derivative estimates carry over in a k-uniform
manner as in Sect. 3.3.

For an arbitrary control (g;) : [0, T] — L? x T¢, denote the residual

pr = Ji§ — Dyz;.

Then, Proposition 3.9 yields

. t
DPy (2§ =EDY (2)Ji§ =EDY () ps +E1ﬁ(2t)/0 (85, 8Wis)y2 .

Following the basic idea of [46,48] and [Proposition 4.6; [13]], the goal is to find a
control (g;) such the latter Skorohod integral is uniformly bounded (for our case, in
both ¢ and k) and the former term is decaying exponentially (uniformly in «).

In this notation, the Malliavin matrix M of interest here takes the following form
for £ € W x T, PT¢:

(Ms,tgv E)W = Z/ CI]% <ek7 Kr,t%—)%)v dr

keKV*

t
+ > /2K(ék,K,,,g)€Vdr, (4.6)
ke{l,...d} "

where {ék } kell....d) denotes the canonical orthonormal basis on RY. One of the main
steps of the proof is to verify the non-degeneracy estimate [Proposition 4.11; [13]]
uniformly in k. The reasons why this non-degeneracy extends to (4.6) in a k-uniform
way are similar to those given in the proof of Lemma 4.6. First, the inclusion of new
noise directions does not change the spanning of the brackets [Lemma 4.15; [13]]
(it neither helps nor hinders in a x-independent way). Second, the additional terms
O (k) terms in (4.6) and the additional v/2« VT/, in dx{ do not significantly change the
latter arguments either: neither the time-regularity nor the space-regularity from the
additional derivatives pose a significant new challenge in the analogues of [Lemma
4.18, Lemma 4.19; [13]]. Hence, the proof of [Proposition 4.6; [13]] carries over in a
k-uniform manner and we deduce Proposition 4.14. O

A straightforward argument (see [Proposition 4.7; [13]]) combines Proposition 4.12
with Proposition 4.14 and the super-Lyapunov property (Remark 3.4) to obtain the
desired geometric ergodicity in C \1,

Proposition 415 For all V. = Vg, with B sufficiently large and n € (0, n*), we
have that 13;0 satisfies the following for Ty sufficiently large (with Ty and the implicit
constant independent of k): for Y € C‘I,, J ¥ dv* =0, we have
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125l S e ™ 1vlicy -
With Ty fixed once and for all, we immediately deduce the following.

Corollary 4.16 There exists 66 € (0,1) and ko > 0 such that for all k € [0, ko],

the eigenvalue 1 is simple, dominant, and isolated for the operator ﬁ}‘ on C ‘1, and
0
satisfies

a(Pf)\ {1} C B (0).

4.4 Spectral picture for f’:{’p in €y and fﬂ,

We now proceed to prove the spectral pictures for 13[/«,1: inCy and C ‘1, as in Proposition
2.15.

4.4.1 Proof of Proposition 2.15(a): Spectral picture in Cy

Throughout, pg, kg > 0 are fixed small constants, taken smaller as need be in the
following arguments. Let p € [—po, pol, k€ € [0, ko]-

We next establish the «-uniform spectral gap in (2.7). We first establish some
preliminary resolvent estimates. Below, 7 denotes the projection ¢ +—> f ¢ dv* (the
latter interpreted as a constant-valued function) on Cy. Recall that 7* is a spectral
projection for ISI" corresponding to the dominant eigenvalue 1. Below, we write 13,’( =
7“ + Ry, where Rf := 13;‘ o(l —m").

Lemma4.17 (a) We have |7“||c, = [V du.
(b) Foranyz € C\ {0, 1}, we have

(z—n9) =71 (1 - %n”) ) 4.7

In particular, Y6 > 0, 3Cs > 0 such that ||(z — n")_1||cv < Cs on the set
{le =11 = 8} N{lz| = 3/4}.

(c) Fixt > O sufficiently large so that |Rf ||c, < 1/(2Cs) (independently of k; see
Proposition 4.12). Then, ||(z — P}) V¢, Ss 1forallz € |z — 1] > 8} N {jz| =
3/4}.

Proof of Lemma4.17 For (a) one checks [7*¢| = | [ ¢ dv*| < ll¢llc, [ V du. Equal-
ity is achieved at the function ¢ = V. For (b), (4.7) can be deduced using a Neumann
series for |z| > 2f V du and follows for z € C \ {0, 1} by analytic continuation,
noting that the Neumann series expression simplifies due to the idempotent property
()" = 7 for all n > 1. The estimate in (c) follows from Proposition 4.12, the
relation

(z— 13;‘)—1 = —-(z— n“)_lR;‘)_l(Z — 7,

@ Springer



Almost-sure enhanced dissipation and uniform-in-diffusivity. .. 815

and the use of (4.7) item (b) to estimate ||(z — 7*) ! llc, from above. m]

We now complete the proof of Proposition 2.15 (a). Fix 6 > 0, § < 1/16 and
fix t > O sufficiently large so ||Rf |lc, < 1/2 for all ¥ € [0, ko]. We first show

o (P°P) C {|z] <3/4}U{lz — 1| < 8}. Fix z € {|z| > 3/4} N {|z — 1| = &}. Then
2= PP = (2= PYU — (z— PY~L(PSP — PXY).

Lemma 4.3 indicates that taking p small, we can make ||ﬁtK’p — 13," llc, arbitrarily
small. On the other hand, by Lemma 4.17 (¢), ||(z — f’," )~1||~! is bounded uniformly
from below in terms of § > 0 above. Therefore, for any 8’ > 0, there exists pg > 0
so that for all p € [—po, pol, we have || 7 — P<|lc, < 8'||(z — P<)~1||~ 1.

For such p, k and z, it now follows that (z — ﬁ,K‘p )~! exists and is bounded as a
Cy operator, hence

o (P°") C {lzl < 3/4)U{lz — 1] < ).
At this point, the spectral projector

1 A
P = — (z— Py dz (4.8)
27i Jiz—1j=s

. . . . Pk Ko 1 _
is now defined. Repeating familiar estimates, 7 7-* is Cy closeton® = 5~ f|171|=5(z

ﬁ," )’] dz, and hence must be rank 1. We conclude that there is a unique real, positive
eigenvalue e A7) in {|z — 1| < §).

At this point, we have shown that for some fixed ¢ the desired spectral picture holds.
Passing from continuous to discrete time can now be carried out by repeating verbatim
the arguments in the proof [Proposition 2.16 in Section 5.2 of [13]].

4.4.2 Proof of Proposition 2.15(b): Spectral picture in Cﬂ,

Completing the proof of Proposition 2.15(b) is by now straightforward. From the
mapping and boundedness in Lemma 4.2 and the convergence in Lemma 4.4, coupled
with the C ‘1, uniform spectral gap in Corollary 4.16, Lemma 4.17 holds with C ‘1,
replacing Cy on taking r > Tp. The desired spectral picture at any time 7" sufficiently
large now follows from the arguments given for Cy in Sect. 4.4.1.

5 Uniform spectral perturbation of twisted Markov semigroups

Our goal in this section is to complete the proof of Proposition 2.12. Given Proposition
2.15, this is mainly a matter of proving the convergence of the dominant eigenval-
ues/functions as k — 0, i.e. A(p, k) — A(p,0) and ¥, , — ¥p 0 as in Proposition
2.19.
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5.1 Preliminary estimates in the limit xk — 0

Below, 77 denotes the spectral projector for ﬁ'T"P , regarded either on Cy or C‘l,.
The following lemma provides uniform estimates and convergence on the spectral
projectors. It is a straightforward consequence of the resolvent arguments Lemma
4.17 and Sect. 4.4.1 above.

Lemma 5.1 We have

lim sup |7*? —7"|1 1 =0. 5.D
=0 4€0,x0] Cv=Cy

In particular, Proposition 2.12 (b) (ii) holds: for all py, ko sufficiently small we have

sup sup ”1!/[71(”(/"1/ ST
P€l0, pol k€[0,x0]

Proof Recall from (4.8) the formula for 7*°7. By repeating the arguments used to
bound 77* in the proof of Proposition 2.15 above, the convergence (5.1) follows
from Lemma 4.4. m|

Obviously, a critical part of our proof has to do with the precise sense in which
the semigroups P and P,*” are close. For this, we start by understanding how the «
projective process (x/, vy ) and the x = 0 process (x;, v;) converge to each other in a
suitable sense.

Lemma 5.2 The following estimate holds for each t > 0:

t
E sup d(xy,vy; x5, v5) S VKtexp (/ ||VuS||oods> .
0

s€[0,7]

Proof This follows from the fact that

t
sup d(xSK,v;‘;xs,vs)S/ [Vuslloo sup d(xf, vyS; X, vp)ds + /26 sup [Wy]
s€[0,1] 0 rel0,s] s€[0,1]

Taking expectation with E, using E SUP;e[0.] |WS| < t1/2, and applying Gronwall’s

lemma gives the result. O

Next, we show the continuity in the strong operator topology of P”“¢ in Cy as
k — 0. Below, V = Vg , as in Lemma 2.11.

Lemma 5.3 Assume B is sufficiently large. Then, there exists po > 0 so that for each
Y € Cy, the following holds for any t > 0 fixed:

lim sup ||[P/"y — Psz||Cv—>Cv =0.
k=0 pe[—po, pol
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Proof Recall that similar to our proof of strong continuity in [13], in light of the
boundedness of Ptp “as Kk — 0, it is sufficient to show strong continuity on smooth
cylinder functions ¥ € C®. First note that for such ¥

E

t
exp (/0 H(Zs)dS) W (zy) — w(zt))‘
t
Sy exp <p/ ”Vus”oo) Ed(x{, v x:, vp)
0
and in addition

t t
exp <p/0 H(z?)ds) — exp <p[0 H(Zs)d5>

t t
< pexp </ P”Vus”oods)f V21 | Ed (X, 055 Xy, v5)ds.
0 0

E

Applying Lemma 5.2 gives

t
|PP*y — PPy| Sy Vit (1+ p)E, exp ((1 +p) /0 ||Vus||oods) sup lluts || o -
s€[0,t

The proof is complete upon using Lemma 3.2 and sending « — 0. Note that, in fact,
the above estimates are uniform over compact time intervals ¢ € [0, T']. O

5.2 Proof of Proposition 2.19: Convergence of { Yp, K} and A(p, k)

We are now ready for what is in some sense the crucial step in extending the work of
[13] to prove Theorem 2.1: passing to the limit in the eigenfunction/value relation for
V¥p.« as stated in Proposition 2.19.

Remark 5.4 First, note that all the arguments we have made hold for arbitrary o €
(a—2d—-1),a— %). Moreover, the corresponding A(p, «) are the same and ¥, , €
Cy(H x PTY) agree on H” x PT? foro’ < o witho', 0 € (0 —2(d — 1), o — %).
See [Remark 5.6; [13]] for related discussions.

The first step is to use the uniform bound | | Yoo« < 1toapply the Arzela-Ascoli
ceOuko]" This is a

little subtle due to the interplay between regularity in H° versus H " and regularity
in the space of observables, Cy versus C ‘1,

||C‘V
theorem in classes of observables to extract limit points of {I/fpy,(}

Lemma 5.5 There exists po, ko > 0 such that the following holds. For any p € [0, po]
and any sequence {k,},2; C (0, kol, kn — 0, there exists an subsequence {ic,/}7_| <

{kn}o2 | and a nonnegative, continuous function Yy, : H x PTY — R>q such that
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forany R > 0, we have

lim sup |1ﬁp,xn, (@) — ¥pa(@)| = 0.
=00 7 —(u,x,v)eHx PT?
lullp<R

Proof To start, fix R > 0. Let 0’ < o and regard ¥, , € CV(H", x PT9) for all
p € [0, pol, k € [0, ko] as in Remark 5.4. By Corollary 5.1, there exists C,» > 0 so
that

||vaKHC‘1,(H"/><PTd) = Cor.

Note that the set Zg := {(u, x,v) :u € H", lullge < R, (x,v) € PT4)} is compact
inH x PTY. By the uniform C‘l, (H"/ x PT?) bound, it follows that the set { Yoo | D }
is uniformly bounded and H' -equi-continuous on the H",—compact set Zg. Therefore,
by Arzela-Ascoli, there is a subsequence k,; — 0 and a (H",—uniformly continuous)
function Y. g : Zr — Rxg such that

lim sup |lhp,/c,, (2) — wpiR(Z)| =0.

n—00
llzllg=R

By diagonalization, we may refine the subsequence {k,} to find a limiting function
¥ p:« defined over the entire H x PT< and continuous in this same topology (note that
continuity in H® x PT? is stronger than continuity in H” x PT¢ if ¢’ < &) such that
¥ p.x, converges uniformly to . on bounded sets. The fact that |/, (2)| < V (u)
follows from this convergence and the «x-uniform estimates on ||V, «llc,, - O

With Lemma 5.5, we can now pass to the limit in the eigenvalue.
Lemma 5.6 We have lim,_.qg A(p, «) = A(p, 0).

Proof Let Y, = lim,_, o ¥ i, be a cluster point of {/},  }«>0 as in Lemma 5.5.
First we show that 1, cannot be identically zero. By Corollary 5.1, for p small
enough the the spectral projectors w7* are k-uniformly close to 7* in C‘l,. Since
pu = (1) and 7*(1) = 1, we conclude that sup,c(g ,,; I¥px — e, K 1
for p small enough. Therefore, for pg fixed and sufficiently small, we have that there
exists 89, Ry > 0 so that ¥, » > o on {||z|lH < Ro}. This lower estimate passes to
Y4, hence it cannot vanish identically.
Next, we show that ¥, = ¢y, for some ¢ > 0. For this, notice that the uni-
form boundedness in Lemma 4.3 (with the uniform bound H\/fp,,(n < 1) and the
convergence in Lemma 5.3 imply that

ey

im (| 27"y — PP Yillcy, =0
n— 00
for fixed ¢ > 0. Therefore

PPy = lim PP ", = lim e APty = <lim eAU”K")’) V.

kn—0 kn—0 tn—>0
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1Ay .
— At

In the last equality, we have used the fact that i, > 0 to deduce that the limit e
lim,, e~ A(P%n)! exists. Therefore v, is an eigenfunction of P with eigenvalue e
By Corollary 5.1, the limit — A, = — lim,, A(p, k) is strictly larger than log co (where
co is as in Proposition 2.15 (a) for k = 0, proved in [13]) for Vp sufficiently small,
by Proposition 2.15 (a) in the x = 0 case, we conclude that in fact A, = A(p, 0) and
Yy = crp,o for some ¢ > 0. Moreover, the convergence A(p, 0) = lim, A(p, «,)
holds independently of the subsequence (k;), and so we deduce lim,_.o A(p, k) =
A(p, 0) as desired. O

It remains to show ¥, , — V¥, in the Cy norm. We start by checking «-uniform
convergence of the following limit formula for v/, .

Lemma 5.7 The Cy limit
Y, x,v) = lim AP PPy
t—00

is uniform over k € [0, ko).
Proof Consider the operator
ROV =P o (I — Py = (PS7 — PF)o (I — 1P)
+ f’t" o(m* — 7Py + f’l" ol — 7).
Fix t > 0 so that Ry := f’," has Cy norm < 1/3. Take p sufficiently small (inde-
pendently of « € [0, k] such that the above first and second terms are each < 1/6

(the first term estimated as in Lemma 4.3 and the second as in Sect. 4.4.1). Therefore
|R;?llc, <2/3 uniformly in «. This implies the desired estimate. m|

Remark 5.8 Note that by the same arguments as those applied to v/, in [Lemma 5.7;
[13]], we deduce that v, , > 0 for all p, « sufficiently small.

We now use this to show that the limits v, , — ¥ « actually coincide with v,
(independent of the subsequence «;, — 0).

Lemma 5.9 For each p € [0, pol,
im [ — ¥pllc, = 0.
k—0

Proof For each t > 0, we have

A(p, D DK
Ve — Uplley < IWpi — AP PP ¢,

+ 1, — eXPP 1 ¢y + [l P PP — AP PP,
Combining Lemma 5.6 and 5.3, we see that

’}1_13) ”eA(p,/c)tPtﬂ,Kl B eA(p)tﬁtPIHCV -0
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for each ¢ fixed, hence

limsup |¥p.« — Vpllcy

k—0
< sup (Iep — PP ey + 1Yy — M B T cy)
k€[0,k0]
Sending + — oo and applying Lemma 5.7 completes the proof. O

The proof of Proposition 2.12 is largely complete, save for the uniform positive
lower bounds on /), , on bounded sets as in item (b)(iii).

Lemma 5.10 Foreach R > 0, and p € [0, po] there exists kg small enough such that

inf inf Ypu,x,v) >0.
k€[0,x0] (u,x,v)eHx PTY
lul <R

Proof For pq sufficiently small, by [Lemma 5.7; [13]], VR > 0, there exists ¢ =
cr > 0so that for all p € [0, po] on {V(u) < R}, we have Yp > c. Therefore, on
{V(u) < R} we have

wp,l( = wp - Ipr,K - 1pp”CVV =>c— ”Wp,f( - lpp”CVR .

Applying Lemma 5.9 and choosing k¢ small enough depending on R and c gives
Yiep = %c. O

6 Geometric ergodicity for the two-point process

The goal of this section is to apply Theorem 2.7 to deduce Theorem 2.1, namely the
geometric ergodicity of P,(Z’K) . The main difficulty is the construction of an appropriate
drift condition with suitable « independent constants. This is done in Sect. 6.3 below
with the help of the uniform spectral theory deduced in Sects. 4 and 5. First, in Sect.
6.1 we record basic properties of the semigroup P,(Z)’K of the two-point «-regularized
Lagrangian motion, namely that it is a Cp semi-group on an appropriate separable
Banach space. In Sect. 6.2 we prove the uniform strong Feller and topological irre-
ducibility needed to apply Proposition 2.5 to deduce the minorization condition (2.3).
Both Sects. 6.1 and 6.2 follow very similarly to analogous arguments in [13] and Sect.
4, hence some of proofs are only sketched with the reader encouraged to consult [13]
for more details.

6.1 Cp-semigroup property
Define the function

Viu, x,y) :=d(x, )"V (u),
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where p > 0is small and fixed. Let C (v be the the Cy,-norm closure of smooth cylinder
functions

CSP(H x D°) := {plou, x, y) = ¥ (Ixu, x,v), K C K, ¢ € C}.

The first step is to check that Pt(z)"( is uniformly bounded on C, and maps the subspace
¢ p toitself.

Lemma6.1 Forall p € (0, pg), B > 0, n € (0,n%), P,(z)’K extends to a bounded
linear operator on C‘; and there exists a C > 0 such that forallt > 0 and k € (0, 1),

2), c
1P glc, < e liglic, -

Moreover, forallt > 0 and k € (0, 1), Pt(z)’K(CO’\;) - Cv

Proof Uniform boundedness follows as in [Lemma 6.11; [13]] and the Co“; mapping
property follows as in [Proposition 6.12; [ 13]] (which itselfis analogous to [Proposition
5.5; [131D). O

We will also find the following uniform-in-« strong continuity property for P,(z)‘K
useful.

Lemma 6.2 Assume B > 1 is sufficiently large universal constant. Then, there exists
ko > 0 so0 that for each ¢ € Cy, the following holds

. 2 2
lim sup | P2 g — PPglc, =0.

=0 [0, 0]

In particular, {P,<2)’K}t20 defines a Co-semigroup on Cy.

Proof The argument is essentially the same as that applied for Lemma 5.3 above,
hence the proof is omitted for brevity. O

6.2 Uniform strong Feller and irreducibility

The first lemma we need to verify is a uniform strong Feller property as in Lemma
4.5 above. As in [Section 6.1.2; [13]] it is convenient to define the following metric:
forz!, z2 € H x D¢, define

yizl—>22

1
dp(z',7%) = inf /d(xs,ysr"(l+||us||H)”||y'S||Hszdds,
0

where the infimum is taken over all differentiable curves [0, 1] 3 t — y; = (uy, X, yr)
in H x D¢ connecting z! and z2. It is not hard to see that the metric dp (-, -) generates
the H x D¢ topology since the extremal trajectories avoid the diagonal D.
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Using this metric, we obtain the following uniform strong Feller result; as the proof
is essentially a combination of the arguments therein and those found in [Proposition
6.5; [13]], we omit the proof for the sake of brevity.

Lemma 6.3 There exists a,b > 0 such that, there exists a continuous, monotone
increasing, concave function X : [0,00) — [0, 1] with X(r) = 1 forr > 1 and
X (0) = 0 such that the following holds uniformly ink < 1, dp(z!',7%) < 1,1 € (0, 1),

2), 2),
PO o) = PO o) < X ( L+ 11 Nl

dp(z', 2%)
ta
Next, we verify the uniform topological irreducibility away from the diagonal.

Specifically, combining the methods used to prove Lemma 4.8 above with those of
[Proposition 2.7; [13]] we prove the following. The details are again omitted for brevity.

Lemma 6.4 Fix an arbitrary z, € H x D€. For all R > 0 sufficiently large, Ve > 0,
YT > 0, 3k, = «\(e, T, R) and 3n > 0 such that for all k € [0,«}] and z €
H x D¢ with max(||ullg + d(x, y) 7!, |lusllg + d (x4, y5)~ ") < R (denoting z =
(u, X, ¥), 25 = (Us, Xy, Vi)

A 2 R
PP (2, Be(z:)) > 1,

where we denote Be(zy) the €-ball in H x D¢.

Lemmas 6.3 and 6.4 are sufficient to apply Proposition 2.5 to deduce the minoriza-
tion condition (2.3).

6.3 Uniform drift conditions

As mentioned, the main effort of this section is to deduce a drift condition on the
semi-group Pt(z) ** associated with the «-two point motion (u;, x, y¥). As discussed
in Sect. 2, it is natural to consider a Lyapunov function of the form

Vie(u, x,y) = hp,/((ua x,y)+ V;3+1,77(u)

where

w

hpac@u,x,y) = x(whlwl™"¥p (u,x, m) ,
andw = w(x, y)is the minimum displacement vector from x to y, ¥, . are the positive
eigenfunctions obtained in Proposition 2.12 for a particular choice of p € (0, 1)
(sufficiently small) and yx (r) is a smooth cut-off equal to 1 for 0 < r < 1/10 and 0 for
r > 1/5. The choice is B > 0 above is fixed arbitrary, sufficiently large by the steps
used to construct ¥, .

Our goal is to prove the following drift condition for V.
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Proposition 6.5 There exists a K > 1 independent of k such that for all k > 0 and
p € (0, 1) small enough

PP Y, < e APRIY, 4 K.

Remark 6.6 1In light of the fact that A(p, k) — A(p) as k — 0 we see that for k small

enough, P,(2)’K satisfies a uniform drift condition in the sense of Definition 2.4, with
constants y and K that independent of «.
Let L2y, denote the generator of Pt(z)"‘ as a Cp semi-group on ¢ v~ For convenience
we will work with the coordinates (u, x, w) where w = w(x, y) is the minimum
displacement vector from x to y. The two point motion can then equivalently be
written in these coordinates (u,, x;, wy ), where

wi = wxy, y5).

Note that wy is not directly subject to white-in-time forcing since x; and y/ are driven
by the same Brownian motion. Formally, in this new (u, x, w) coordinate system, one
expects the generator L(2) . to take the form

Loyep =Lyep + wx +w) —u(x)) - Vyo.

where L(1) . is the generator for the Lagragian process (u;, x{). Note that « > 0 is
a singular perturbation at the level of the generator £(1) , since it corresponds to the
addition of a k A. Naturally, the strategy is to relate L) . to the generator £, , of the
twisted Markov semi-group P/, which we know has a good uniform in x spectral

gap, implying
l:p,KI/jp,K = —A(P» K)wp,lb

In order to do this, we must approximate the displacement process wy with the lin-
earized process

w* = Dd'w, w=w(,y).

This can only be made sense of when x and y are suitably close, so the cut-off x is
necessary. Using that ¥, . is the dominant eigenfunction for £, , we can show that
hp.« is an approximate eigenfunction of P @)K with error contributions coming from
the cut-off x and the approximation error made by approximating w; with w;. This
is made precise in the following key Lemma.

Lemma 6.7 For all p € (0, pg), k € [0,x0l, n € (0,n*) and B > 1 taken large
enough, hp . belongs to Dom(L(2) ) on CV,) P the following formula holds

£(2),th,)( = —A(P, K)hp,/( + gp,/( + X vwhp,/( (6.1)
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where

w _ w
Epulu,x,y) =H (u,x, —) =Py, . (u,x, —) x'(qw)),
[w] [w]

with H(u, x, v) = (v, Du(x)v) and X (u, x, w) = u(x + w) — u(x) — Du(x)w.

As in [13], the strategy to justifying (6.1) (and &, , € Dom(L(2) ,)) is to approxi-
(2),« :
mate P,”"" h) . by the semi-group

TP[th,K(uv X, w) = Eu,x,whp,f((ulv x;(’ w[*’/()
for the linearized dynamics and write

2), 2),
P My = hp _ TP hpi = hpoe N PP h, = TP hy.

t t t

Showing that each term on the right-hand side has a limitas 7 — 0in Cy, . . First,

let us obtain the analogue of [Lemma 6.14; [13]], which shows that the generator of
the linearized semi-group T P/ behaves well applied to /1, .

Lemma 6.8 For p € (0, p), k € [0, ko] and B > 0 large enough, the following limit
holds in C, 5
p.p.n

TP‘hy,,—h
}%# = =A@, Ohp + Epi.

Proof Fix By > 0 so that v/, € évﬁov,, The proof is almost the same as that of
[Lemma 6.14; [13]], with some small differences. Indeed, using here the fact that
|w|™? v, is an eigenfunction for T P/ with eigenvalue e~ AP e find

TPfh,, —h At
! p,;« Pk _ e : hp,K +5p,x VER,

where the remainder R; takes the form

1 t
— *’ - k) i)
Ry = w7y, (uy, xy, vf)?/ |wi | H (us, x, v x (wi*ds — Ep .
0

The goal is therefore to show that R; — 0 in C A for some B large enough as

t — 0. Note that, even though |w;"| depends on « 1t has the following formula

t
lw | = exp (/0 H(ug, x¥, vf)ds) |w], (6.2)
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and therefore is bounded independently of k. Just as in [Lemma 6.14 , [13]], using the
fact that ¥, is in Cyj , and using a density argument to approximate it by cylinder

functions 1//[(7"1,){, we can bound the remainder by

t
IR < lw|' P exp (cp/ ||ux||Hrds)
0

X SUp Va1 (s) (Coei + 1 = ¥ lley,, )
5€(0,1) o

forr € (1 +d/2,3), where C,, depends badly on n and Dwg',l and

pr = sup (lug — ullgr + dpa(xy, x) + dpa1 (vf, V).
s€(0,1)

At this stage, the only significant difference from the proof in [13] is that d (xg , x) is
influenced by the Brownian motion /k W; and is therefore given by

t
da (x5, ) < / g [l zods + V&I,
0

so that by the Burkholder-Davis-Gundy inequality and the fact that E sup¢ ¢, [|us| %oc
< €€ lu|? ., we obtain for ¢ < 1

E sup dpa(xf, x)* Se (1 + ulw)?t
s€(0,1)

Both |Jus — ullgr and dpa—1 (v§, v) are dealt with exactly as in [13]. Consequently ,
we obtain a bound on R; of the form

E|R/| < [wl'™P Vo, n)(Coct' 2 + [Wpsc = ¥ llcy)-

for some constant depending on n and « and 1 > By + 1 large enough. Sending
t — 0 first and then sending n — oo still gives the result. O

We similarly have the analogue of [Lemma 6.15; [13]], which shows the error made

in approximating P,(z)’K by the linearized dynamics 7 Pf.

Lemma 6.9 For p € (0, po), k € [0, ko] and B > 0 large enough, the following limit
holds in C .

(2).x
lim P, hpw—TPfhy
t—0 t

= 2 Vyhpy

Proof Again, the proof is almost identical to the proof in [Lemma 6.15; [13]] due to the
fact that the approximation is happening on the process w;, which does not have noise
directly driving it (the Brownian motion on x; and y; cancel). The main difference is
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the appearance of some terms due to Itd‘s formula, which can easily be dealt with. We
recall a sketch of the proof here. As in [Lemma 6.15, [13]], we introduce the events
(see [13] for a motivation for the definition of these sets)

1
Ar =91 sup [[Viuslloo < — ¢,
{Sqo,,) T 100
p o |wi ™|
B, := 11 sup ([Vuslleo(wy |+ [w ) < —— ¢ .
5€(0,1) 2

Note that for each § > 0

t
ﬂAgUB,csﬂ“exp(z(lM) /0 ||us||Hrds) sup s, (6.3)

s€(0,1)

forr € (1+d/2,3), so that by Lemma 3.2 we have lim;_,o P(A; N B;) = 1. The first
step is to write

PP Ry — TP hy,
t

=P(A, N B) X -Vyhy +E(R! + R} + R)),
where the remainders R!,R? and R} are given by

1 *,K
Rt = ?ﬂA,‘UBf(hp,K(uta x;(a w;() - hp,/((ut’ )C;(, Wy )
2 ! 0 wf —w"
N 3
R; :ﬂAtht/O thp,,((ut,x;‘,wt )dé - (f—z)

1
R} = 1,03 </ Ve (g, x w!™*)do — thpgk) >
0

and w?* := Qw, + (1 — O)w,~.
In light of the fact that P(A; N B;) — 1, it suffices to show that ER!, ER,2 and ER,3
converge to 0 in Cy, b for suitable choices of 8 and p. Indeed, an easy application

of (6.3) and Lemma 32 gives

t
E|Rzll S f5|w|_pEeXP (Cp.é/(.) ”us”H’ds) Sz)p Vﬂo+1,n(”x) < tSVP,ﬁO—H,n
s€(0,1)

which implies ER,1 — 0in Cy fottn’ Also, a similar argument to that in [Lemma
p.Bo+Ln

6.15 [13]] using properties of the sets A; and B; gives
RIS 1Wpacllcy, Ve @olw™ 177 o/,
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where

pl = sup (lu(yf) —u(xf) —u(y) +u0)| + lluwg — wll g lwl + llus |l g wi —wl) .

s€(0,1)
(6.4)
In order to estimate ,otl, the main difference this proof and the one in [13] is that the
quantity

lus (v5) — us (x5) — u(y) + u(x)]

now has to be estimated using Itd’s formula, which gives rise to a new terms of the
form |k Aus(x;) — k Aus(yr)], specifically using It6‘s formula and that fact that u; is
evaluated along Lagrangian trajectories gives

s (yg) — us(xg) — u(y) + u(x) =/0 B(ur, ur)(xy) — Blur, ur)(y;) dr

+ Y dm / (en () — e (x)AW?”

meK 0

+/ (ug - V”t)(yf) — (ur - V“t)(xf)df
0
+ l/( /S Aur () — Au (x¥)dr

2 Jo

+ Vi / (Duy (y%) — Duy (x<))dW.
0

However, since o is large enough, all the velocity fields are regular enough to bound
the differences on the right-hand-side above by (1 + ||uy ||%{)|wf |. Applying the BDG
inequality and that fact that

s
| < w] exp (f nurnmdr)
0

forr € (1 +d/2, 3), implies that for r < 1

1/2
(E sup i (y%) — us (x¥) — u(y) + u<x>|2>

s€(0,1)
12 ' 2
St 2 lw|E sup exp </ ”ur”H’dT) (I + llusllg)
s€(0,1) 0
S PV ).
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The terms |lus — ul| g |w| and |Jug|| g |lwy™ — w| in (6.4) are treated similarly with
the help of the cut-off 14, giving (using also Lemma 3.2),

172
(E@?) " o2 wviy ),

Combining this [along with the formula (6.2) for w;"*] gives by Cauchy—Schwartz
that

EIR?| S "2 1¥pacllcy lwl ™ Ve, (),

implying that E|Rt2| —>0inCy - t — 0 for some B big enough.
p.P1:n
Finally, to estimate R,3 ,asin[13] we approximate v/, , by smooth cylinder functions
wl(,",){ in C‘l,, a straight-forward computation using the cut-off 1 g, shows that

t
(C/ ”“s”H’ds) ( sup Vﬁz,n(“x))
0 s€(0,1)

x (Cow? + 1DWps = DAy )

3
e

forr e (14+d / 2, 3) and some B, large enough, where C, , depends badly on n and

D2 (") and ,ot is given by

pi = sup (llus — ullpgr + dpa(xf, x) + L |ws — w| + L, [wE* —w]).

se(0,1)

Again, very similarly to the proof of Lemma 6.8 p,2 can be estimated by BDG to
conclude that

E|R}| < |w| ™7 Vpy @) (Croet ' + 1 Dyirp e — Do) licy)-

for some large enough 3. Sending + — 0 and then n — oo implies that ElRt3 | - 0
ast — ooin C v, O
B3
As explained above, Lemmas 6.8 and 6.9 are sufficient to complete the proof of
Lemma 6.7.

Proof of Proposition 6.5 Given a Vg , and p from Lemma 6.7 using Taylor expansion
allows us to bound ( c.f. [Lemma 6.13; [13]])

[+ - Vulp| S Vpsralvpeley
1

Since we can take p < 1 and have uniform-in-« bounds on ¥/, , in C‘l,ﬁ we obtain
R

the estimate
£(2),th,/< < —A(p, K)hp,/c + C/V/erl,V)’ (6.5)
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for some « independent constant C’. The rest of the argument proceeds as in [Propo-
sition 2.13; [13]]. We briefly recall the sketch of the argument for the readers’
convenience. Using the super Lyapunov property it was shown in [(6.13), [13]] that
the following holds for all ¢ > 0, (denoting P; the semi-group of the Navier—Stokes
equations),

t
APy — Vg < / e PES P((A(p, k) = ©)Vgg1,n(us) + Cr) ds.
0

(6.6)
Then the estimate (6.5) on L) /1, implies the following
t
AP p@Ky e <C f AP Py ds. (6.7)
0

By choosing ¢ — A(p, «) sufficiently large and adding (6.6) to (6.7), the desired drift
condition follows. This same argument is carried out in more detail in [Proposition
2.13; [13]]. O

7 Enhanced dissipation

We now turn to the proof of enhanced dissipation Theorem 1.4. We begin by proving
an enhanced dissipation result for initial data g € H'.

Lemma 7.1 Let y and D, be as in Theorem 1.3 for p > 2 and s = 1. Then, for any
mean-zero scalar g € H', and associated (g;) solving (1.1), there holds

—1
llg:l[2, < min (||g||iz Ly D, o (1= 1) ||g||§,l> . an

1/2 1/2

Proof Note that because |Igll,2 < llgll,Z, llgll ;1

by Theorem 1.3 we have

d g4, g%, 5
— g2, = =2¢ ||V, < =2k ——E < e —— L2 21,
dr ok L llge12, DX(u. o) |gl%,

Re-arranging gives

d( 1 ) d 5 2 .
—— = — gy < —k e,
dr \llgl*/  llgllj.dt =k DZ(u. o) gl1%,

and hence

1 1 1 2
_ _ vt _
5 7 =K 2 — (e l).
1glZ, gl y D2(u, ) 181131
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Rearranging again gives

2
18112,

g2,
l+x——=L — (e2rt — 1
+ yDE<u,w>||gu§,1( )

llg:l12, < <y 'Diu. )@ = D7 gl
O

Remark 7.2 Note that in the above proof, we could replace the H'! norm of g with any
H? norm, s € (0, 1), using instead H ~*-decay in Theorem 1.3 and the interpolation
for mean-zero f, one has

12 < A A1,
for suitable 8 = 6(s).

We can complete the proof of Theorem 1.4 and extend to any L? initial data using
parabolic regularity. Indeed, for any mean-zero scalar g¢ € H', and associated (g;)
solving (1.1), there holds by standard parabolic regularity arguments, forr € (% +1,3)

’ gl
gl SCeXp(Ct+f ||us||Hrds) sup Ilue|l 80L2
0 O<t<t \/E

()

where C > 0 is a constant. For initial # € H and random noise paths v € 2,
define 5(@, 1) to be the quantity (x) above with # = 1. By Lemma 3.2, we have that
(E(5(u, w))PH/r Span Vg, (u) for all B sufficiently large and all n € (0, n*).

By (7.1) for t > 1, there then holds

llgell 2 < min(lgll 2, v2yk " 2Dy (ur, Gr)e ™" |lgi 1)
< k7' D@, w) Dy (u1, O1w)e” ¢ 7" ||gll 2 .

=D} (u,w)

Above, O1w(t) = w(t + 1) — (1) refers to the standard Wiener shift on paths in
C(R,;L?). This is precisely the inequality (1.5). It remains to estimate the p-th
moment of D,.

Let V. = Vg, as in Lemma 2.11 for n € (0, n,) arbitrary. When g is taken
sufficiently large, we have that

E(D,t.0))" < (EBw.0)) " E (D0 . 61)

= (BB 0)) " EE (00 (. 010)171) )

S VPRw) (VP )
S VP
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where we used that fact that u is .%| measurable and 6w is independent of .%].

7.1 Optimality of the O(|log «|) dissipation time-scale

We complete this section with the proof of Theorem 1.8, the optimality of the timescale
t = O(|logk]|) for enhanced L? dissipation.

Proof of Theorem 1.8 To start, by the standard H' norm growth bound on (1.1), any
solution satisfies the following lower bound on the time derivative of ||g;||;2:

d t
o llg:ll72 = =k [IVgl72 > —k exp (f Ve[ dr) lgll3,: - (1.2)
0

By a straightforward application of Lemma 3.2 and Borel-Cantelli (or, alternatively,
the Birkhoff ergodic theorem), we observe the following almost sure growth bound.

Lemma 7.3 There exists a » > 0 and a random constant D : H x 2 — [1, 00),
independent of k, such that

t
exp (f Vel oo dr) < DeM .
0

Moreover, for any n > 0 with pn € (0, n*) and B > 1, we have ED’ Sp VP (u) for
V ="Vg,.

Lemma 7.3 and (7.2) together imply the lower bound
lgell22 = gll7> — kliglz DA~ (e = 1) > lIgl7, — «ligl3, Dte™

It follows that for each § € (0, 1)

_ 5”8”21
lgsitogrlll72 = llgll? 2 (1 — 5| log k| '\

2
gl

Choosing

2
1
o(g,u,w) = min{ ”g”Lz }

g%, D, @) 2%
gives
1/2
18511011122 = (1 = [logkoliky’)llgl3 -

Choosing «( small enough so that | log K0|Ké/ 2 < 3/4 implies 1, > §|logk|, where
7, is the enhanced dissipation time 7, = inf{t > 0 : [|g;|l;2 < %||g||Lz}. O
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