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Abstract
We study the mixing and dissipation properties of the advection–diffusion equation
with diffusivity 0 < κ � 1 and advection by a class of random velocity fields on
T
d , d = {2, 3}, including solutions of the 2D Navier–Stokes equations forced by

sufficiently regular-in-space, non-degenerate white-in-time noise. We prove that the
solution almost surely mixes exponentially fast uniformly in the diffusivity κ . Namely,
that there is a deterministic, exponential rate (independent of κ) such that all mean-
zero H1 initial data decays exponentially fast in H−1 at this rate with probability
one. This implies almost-sure enhanced dissipation in L2. Specifically that there is
a deterministic, uniform-in-κ , exponential decay in L2 after time t � |log κ|. Both
the O(|log κ|) time-scale and the uniform-in-κ exponential mixing are optimal for
Lipschitz velocity fields. This work is also a major step in our program on scalar
mixing and Lagrangian chaos necessary for a rigorous proof of the Batchelor power
spectrum of passive scalar turbulence.
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1 Introduction

The evolution of a passive scalar gt under an incompressible fluid motion ut is a
fundamental problem in physics and engineering; see e.g. [56,66,71,76,79] and the
references therein. In applications, the scalar gt is typically the temperature distribution
or a chemical concentration that can be treated as a passive tracer. Here we study the
advection–diffusion equation with diffusivity 0 < κ � 1,

∂t gt + ut · ∇gt = κΔgt
g0 = g, (1.1)

on the periodic box T
d = [0, 2π ]d where g is a mean-zero L2 function and ut is an

incompressible velocity field evolving under any one of a variety of stochastic fluid
models, for example, the stochastically-forced 2D Navier–Stokes equations. We set
u0 = u, the initial condition of the fluid evolution (assumed to be in a sufficiently
regular Sobolev space).

Understanding the mixing and dissipation of gt under various fluid motions (ut )
is a central question in both physics and engineering applications, and has recently
received significant attention from the mathematics community, for example [1,13,
14,24,26,28,36,37,50,56,57,60,70,72,80] and the references therein (also see below
for more discussion). One case, crucial for many physical applications, not studied
in the mathematics community (until [13]) is that of velocity fields evolving under
ergodic, nonlinear dynamics. In [13], we showed that if (ut ) evolves according to
the stochastically-forced Navier–Stokes equations, then in the absence of diffusivity
(i.e., (1.1) with κ = 0), the passive scalar mixes exponentially fast almost surely with
respect to the noise on the fluid equation. Specifically, we show exponential decay in
any negative Sobolev norm

‖gt‖H−s := sup
‖ f ‖Hs=1

∣
∣
∣
∣

∫

f gt dx

∣
∣
∣
∣
≤ De−γ t‖g‖Hs , (1.2)
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Almost-sure enhanced dissipation and uniform-in-diffusivity… 779

where D(s, u, ω) is a random constant with finite moments (independent of g, but
depending on u and the noise sample ω), and γ > 0 is a deterministic constant
(independent of g, u and ω). The use of negative Sobolev norms to measure mixing is
standard in the literature and their decay corresponds to mixing in the sense of ergodic
theory (see discussions in [72] and the references therein; see also [82]). It is easy to
check that Lipschitz velocity fields that satisfy standard moment estimates cannot mix
scalars faster than (1.2) (see [13,14] and Remark 1.9).

The mixing in (1.1) arises due to the chaotic nature of the Lagrangian trajectories, a
phenomenon referred to as chaotic mixing. Chaos in the Lagrangian flow map is often
referred to as Lagrangian chaos (to distinguish it from the property of ut itself being
chaotic; see discussions in [23]). In our first work [14], we proved positivity of the
top Lyapunov exponent (a hallmark of sensitivity with respect to initial conditions)
for the Lagrangian flow. This provides a local hyperbolicity to the flow, and this was
subsequently upgraded to the global almost-sure, exponential mixing statement in
(1.2) by our second work [13] (the work [13] uses [14] as a lemma). We emphasize
that the mixing mechanism here is not turbulence or small scales in the velocity field
ut—indeed, the fields we work with are, at minimum,C2 spatially regular and it is not
directly relevant whether or not ut is chaotic. See e.g. [3,5,41,49,62,74,81], the reviews
[6,29,64], and the references therein for more discussion in the physics literature on
chaotic mixing and Lagrangian chaos.

The primary goal of the current paper is to prove that the almost-sure exponential
mixing estimate (1.2) holds also for (1.1) for 0 < κ � 1 uniformly in κ , that is, for
γ independent of κ and random constant D that satisfies uniform estimates in κ (see
Theorem 1.3 below). It is important to note that κ > 0 is a singular perturbation of
κ = 0, and to our knowledge, there is no general method in the literature by which one
can deduce uniform exponential mixing from the knowledge that one has exponential
mixing at κ = 0, for either deterministic or stochastic velocities. Indeed, the only
uniform-in-diffusivity mixing we are aware of are only at a polynomial rate and are all
essentially shear flows: inviscid damping in the Navier–Stokes equations near Couette
flow [16,20]; the recent work [27] on passive scalars in strictly monotone shear flows;
and Landau damping in Vlasov-Poisson with weak collisions [18,73]. In fact, it is
known that the introduction of diffusion can limit the mixing rate in certain contexts
[60].

When κ > 0, the scalar additionally dissipates in L2 due to the diffusivity:

1

2

d

dt
||gt ||2L2 = −κ ||∇gt ||2L2 .

From this balance it is clear that the creation of small scales due to mixing could
accelerate the L2 dissipation rate. This effect is usually called relaxation enhancement
or enhanced dissipation. The first general, mathematically rigorous study of this effect
in deterministic, constant-in-time velocity fields was the foundational work [25] (see
e.g. [8,22,55,67] for someof the earlierwork in the physics literature). The effect is now
being actively studied both for passive scalars [19,21,26,37,83] and also in the context
of hydrodynamic stability of shear flows and vortices (see e.g. [16,17,20,40,77] and the
references therein). In [26,37], it was shown that if a deterministic flow is exponentially
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mixing for κ = 0, then one sees exponential L2 dissipation after t � |log κ|2. The
uniform-in-κ exponential mixing we deduce for (1.1) in Theorem 1.3 allows to obtain
the rapid exponential L2 dissipation after t � |log κ| in Theorem 1.4 (note that for
stochastic velocities, this time scale is random). This time-scale is easily seen to be
optimal for Lipschitz fields that satisfy standard moment estimates (Theorem 1.8). We
emphasize here that if uniform-in-κ mixing were available for deterministic fields,
then corresponding optimal improvements of [26,37] could be proved with simpler
arguments than those in [26,37] (similarly, some of the results of [25]). However, such
mixing estimates are currently unavailable.

In addition to the intrinsic interest, the results herein are a crucial step in our
program on Lagrangian chaos and scalar mixing required for our proof of Batchelor’s
Law for the power spectrum of passive scalar turbulence in the forthcoming article
[15]. First conjectured in 1959 [11], Batchelor’s Law predicts that the distribution
of E

∣
∣ĝt (k)

∣
∣
2 behaves like |k|−d for statistically stationary passive scalars subject to

random sources in the κ → 0 limit with the Reynolds number of the fluid held fixed
(the so-called Batchelor regime of passive scalar turbulence). Batchelor’s law is the
analogue of Kolmogorov’s prediction of the−5/3 power law spectrum in 3D Navier–
Stokes [39]. Theorem 1.3 below provides the quantitative information on the low-to-
high frequency cascade required to verify this power spectrum law. See, e.g., [2,4,5,
33,42], our forthcoming preprint [15], and the references therein for more information.
In particular, note that neither the validity or scope of Batchelor’s law is completely
settled in the physics literature (see discussions in [4,33,61]), while our results provide
a credible argument for the universality of the Batchelor spectrum in a variety of
settings.

1.1 Stochastic Navier–Stokes

We first state our main results for the most physically interesting and mathematically
challenging cases that we are able to treat in this work: the stochastic 2D Navier–
Stokes equations and the 3D hyperviscous Navier–Stokes equations (on T

d , d = 2, 3
respectively). In Sect. 1.3 we discuss the setting used to study finite dimensional
models, which allow for smoother (in both space and time) velocity fields.

We define the natural Hilbert space on velocity fields u : T
d → R

d by

L2 :=
{

u ∈ L2(Td;Rd) :
∫

u dx = 0, div u = 0

}

,

with the natural L2 inner product. Let Wt be a cylindrical Wiener process on L2 with
respect to an associated canonical stochastic basis (Ω,F , (Ft ),P) and Q a positive
Hilbert–Schmidt operator on L2, diagonalizable with respect the Fourier basis on
L2. We will assume that Q satisfies the following regularity and non-degeneracy
assumption (see Sect. 1.3 for more discussion):

123



Almost-sure enhanced dissipation and uniform-in-diffusivity… 781

Assumption 1 There exists α satisfying α > 5d
2 and a constant C such that

1

C
‖(−Δ)−α/2u‖L2 ≤ ‖Qu‖L2 ≤ C‖(−Δ)−α/2u‖L2 .

We define our primary phase space of interest to be velocity fields with sufficient
Sobolev regularity:

H :=
{

u ∈ Hσ (Td , R
d) :

∫

u dx = 0, div u = 0

}

,

where σ ∈ (α− 2(d − 1), α− d
2 ). Note we have chosen α sufficiently large to ensure

that σ > d
2 + 3 so that H ↪→ C3.

We consider (ut ) evolving in H, which we refer to as the velocity process, by one
of the two following stochastic PDEs:

System 1 (2D Navier–Stokes equations)

{

∂t ut + ut · ∇ut = −∇ pt + νΔut + QẆt

div ut = 0 ,

where u0 = u ∈ H. Here, the viscosity ν > 0 is a fixed constant.

System 2 (3D hyper-viscous Navier–Stokes)

{

∂t ut + ut · ∇ut = −∇ pt − νΔ2ut + QẆt

div ut = 0,

where u0 = u ∈ H. Here, the hyperviscosity parameter ν > 0 is a fixed constant.

Since we will need to take advantage of the “energy estimates” produced by the
vorticity structure of the Navier–Stokes equations in 2D, we find it notationally con-
venient to define the following dimension dependent norm

‖u‖W :=
{

‖ curl u‖L2 d = 2

‖u‖L2 d = 3.
(1.3)

Remark 1.1 Note that since we consider velocity fields u such that div u = 0 and
∫

udx = 0, the norm ‖ · ‖W is equivalent to ‖ · ‖H3−d .

The following well-posedness theorem is classical (see Sect. 3).

Proposition 1.2 For both Systems 1, 2 and all initial data u ∈ H, there exists a P-a.s.
unique, global-in-time, Ft -adapted mild solution (ut ) satisfying u0 = u. Moreover,
(ut ) defines a Feller Markov process on H and the corresponding Markov semigroup
has a unique stationary probability measure μ on H.
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1.2 Main results

The first result is uniform-in-κ exponential mixing for passive scalars. It is important
to emphasize that the methods we employ in Theorem 1.3 are inherently stochastic.
This is not simply because they rely directly on the results of [13,14], but also because
the extension from κ = 0 to κ > 0 requires the use of the stochastic nature of Systems
1–2. A general method for extending exponential mixing at κ = 0 to uniform-in-κ
mixing does not, to our knowledge, currently exist. Here and for the remainder of the
paper, implicit constants will never depend on ω, κ , t , (ut ), or (gt ). See Sect. 2.6 for
notation conventions.

Theorem 1.3 (Uniformmixing)For each of Systems 1–2 and for all s > 0, p ≥ 1 there
exists a deterministic γ = γ (s, p) > 0 (depending only on s, p and the parameters
Q, ν) which satisfies the following properties. For all κ ∈ [0, 1], and for all u ∈ H
there is a P-a.s. finite random constant Dκ(ω, u) : Ω×H→ [1,∞) (also depending
on p, s) such that the solution to (1.1) with (ut ) given by the corresponding System 1
or 2 with initial data u, satisfies for all g ∈ Hs (mean-zero),

||gt ||H−s ≤ Dκ(ω, u)e−γ t ||g||Hs ,

where Dκ(ω, u) satisfies the following κ-independent bound: there exists a β ≥ 2
(independent of u, p, s) such that for all η > 0,

EDp
κ (·, u) �η,p (1+ ||u||H)pβ exp

(

η ||u||2W
)

. (1.4)

Theorem 1.3 in turn provides a quantitative lower bound on the dissipation rate that
is integrated and combined with parabolic regularity to deduce enhanced dissipation
(see Sect. 7 for more details). The recent quantitative works of [26,37] and the earlier
more qualitative works [25,83] required much more subtle arguments because there is
not yet an analogue of Theorem 1.3 for any deterministic velocity fields. Theorem 1.4
also provides stronger results than those of [26,37] in terms of both the rate of decay
and the characteristic time-scale of enhanced dissipation.

Theorem 1.4 (Enhanced dissipation) In the setting of Theorem 1.3, for any p ≥ 2, let
γ = γ (1, p) be as in Theorem 1.3. For all κ ∈ (0, 1], and for all u ∈ H there is a
P-a.s. finite random constant D′

κ(ω, u) : Ω × H → [1,∞) (also depending on p)
such that the solution to (1.1), satisfies for all g ∈ Hs (mean-zero) and u ∈ H,

||gt ||L2 ≤ D′
κ(ω, u)κ−1e−γ t ||g||L2 , (1.5)

where D′
κ also satisfies the following κ-independent bound for β sufficiently large

(independent of u, p, κ) and for all η > 0,

E
(

D′
κ(·, u)

)p �η,p (1+ ||u||H)pβ exp
(

η ||u||2W
)

. (1.6)
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Remark 1.5 Note that by incompressibility, the standard L2 energy estimate, and the
Poincaré inequality, there holds for all s, κ > 0

||gt ||H−s ≤ ||gt ||L2 ≤ e−κt ||g||L2 ≤ e−κt ||g||Hs .

Hence for any fixed κ0 > 0, Theorems 1.3 and 1.4 hold immediately for all κ ≥ κ0
(with no constants in front, just exponentially decaying factors). The purpose of these
theorems is to obtain quantitative information in the limit κ → 0.

Remark 1.6 Note that Theorem 1.4 implies the following:

‖gt‖L2 � D′
κe
−δ| log κ|−1t‖g‖L2 ,

where the implicit constant does not depend on κ and D′
κ satisfies (1.6). Both results

give the same characteristic time-scale of decay (τED ∼ |log κ|) but Theorem 1.4
gives faster drop off past that time.

Remark 1.7 (The Batchelor scale) In [60] it was observed that diffusion may actually
limit the effectiveness of mixing by incompressible flows due to the presence of a
limiting length scale λL = √

κ/γ , known as the Batchelor scale. Our Theorem 1.3
shows that while the addition of diffusion can change the constant Dκ , the exponential
decay e−γ t does not change with κ . This however does not contradict the existence of
the Batchelor scale. In fact, if one assumes that the H−1 decay rate in Theorem 1.3 is
optimal in the sense that one also has

‖gt‖H−1 ≥ Ce−γ t‖g‖H1

for a constantC > 0 depending on u0 ∈ H and the noisy sampleω, then this, combined
with the L2 bound given by Lemma 7.1, implies that the characteristic filamentation
length ‖gt‖H−1/‖gt‖L2 satisfies

lim inf
t→∞

‖gt‖H−1
‖gt‖L2

�
√

κ

γ
= λL ,

implying that the filamentation length is indeed limited by the Batchelor scale up to a
random constant.

The next estimate shows that the |log κ| dissipation time-scale is optimal for H1

data (see [65] for a related result in the deterministic setting). This estimate is a simple
consequence of the regularity of the velocity field, which implies small scales in the
passive scalar cannot be generated faster than exponential. The estimate is basically
trivial for bounded, deterministic velocity fields; for unbounded stochastic velocity
fields that can make large deviations, the dissipation time scale is a stopping time, and
the estimate is less trivial. Lower bounds on this time show that the | log κ| timescale
is optimal. See Sect. 7.1 for a proof.
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Theorem 1.8 (Optimality of the |log κ| time-scale) In the setting of Theorem 1.3, let

τ∗ = inf
{

t : ||gt ||L2 < 1
2‖g‖L2

}

.

Then, there exists a κ0 > 0 a sufficiently small universal constant such that for all
κ ∈ (0, κ0], one has

τ∗ ≥ δ(g, u, ω)| log κ| with probability 1 ,

where δ(g, u, ω) ∈ (0, 1) is a κ-independent random constant with the property that
for all β ≥ 1, p ≥ 1 and η > 0,

Eδ−p �p,η,β

‖g‖p
L2

‖g‖p
H1

(1+ ||u||H)pβ exp
(

η ||u||2W
)

. (1.7)

Remark 1.9 The proof of Theorem 1.8 shows that the H−1 exponential decay of The-
orem 1.3 is sharp even in the presence of diffusion.1 That is, for all p ≥ 1, there exists
an almost-surely finite random constant D(ω, u) (independent of κ) and a determin-
istic μ = μ(p) > 0 (independent of u, κ) such that for all g ∈ H1, and t < τ∗ (as in
Theorem 1.8),

||gt ||H−1 ≥ D(ω, u)e−μt
||g||2L2

||g||H1
.

Moreover, the random constant satisfies E(D)−p �η,p (1+ ||u||H)pβ exp
(

η ||u||2W
)

as in e.g. (1.4).

1.3 Finite dimensional models and Ckt C
∞
x examples

Assumption 1 essentially says that the forcing is QWt has high spatial regularity, but
cannot beC∞. The non-degeneracy requirement on Q can beweakened to amoremild
non-degeneracy at only high-frequencies (see [14]), but fully non-degenerate noise
simplifies some arguments. As discussed in [13,14], non-degenerate noise is used to
prove strong Feller for the infinite dimensional Furstenberg criterion [Theorem 4.7,
[14]] on which [13], and hence this work, depends critically. It is also used in [13] and
here to access geometric ergodicity in a wider variety of spaces than that currently
available in asymptotically strongFeller frameworks of [46,48] (see discussions in [13]
for more details). In all other places in [13,14] and here, non-degenerate noise is used
only to reduce the length and complexity of the works. However, for velocity fields
evolving according to finite dimensional models, degenerate noise is easily treated
by Hörmander’s theorem. This provides a robust way to produce examples of Ck

t C
∞
x

random fields satisfying Theorems 1.3 and 1.4.

1 The casewithout diffusion follows almost immediately from themultiplicative ergodic theorem (see [14]),
however, it requires an additional check to ensure that the randomconstant D possesses goodmoment bounds
(Lemma 7.3).
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To make this more precise: in all cases considered in this work, the additive noise
term QẆt can be represented in terms of a Fourier basis {em}m∈K on L2 by

QẆt =
∑

m∈K

qmemẆ
m
t

whereK := Z
d
0×{1, . . . , d−1} and {Wm

t }m∈K are a collection of iid one-dimensional
Wiener processes with respect to (Ω,F , (Ft ),P) see (Sect. 3 for more details and
the precise definition of the Fourier basis).

In this notation, we can consider the following weaker non-degeneracy condition:

Assumption 2 (Low mode non-degeneracy) Define K0 ⊂ K to be the set of m ∈ K

such that qm �= 0. Assumem ∈ K0 for all |m|∞ ≤ 2 (for m = (k, i), k = (ki )di=1 ∈ Z
d

we write |m|∞ = maxi |ki |).
We write HK0 ⊂ H for the subspace spanned by the Fourier modes m ∈ K0

and HN ⊂ H for the subspace spanned by the Fourier modes satisfying |m|∞ ≤ N .
Consider the degenerately-forcedStokes andGalerkin–Navier–Stokes systemsdefined
as follows.

System 3 The Stokes system in T
d (d = 2, 3) is defined, for u0 = u ∈ HK0 , by

{

∂t ut = −∇ pt +Δut + QẆt

div ut = 0
,

where Q satisfies Assumption 2 and K0 is finite.

System 4 The Galerkin–Navier–Stokes system in T
d (d = 2, 3) is defined, for u0 =

u ∈ HN , by {

∂t ut +Π≤N (ut · ∇ut + ∇ pt ) = νΔut + QẆt

div ut = 0
,

where Q satisfies Assumption 2; N ≥ 3 is an arbitrary integer; Π≤N denotes the
projection to Fourier modes with | · |∞ norm≤ N;HN denotes the span of the first N
Fourier modes; and ν > 0 is fixed and arbitrary.

Note that velocity fields ut evolving according to Systems 3 and 4 are spatially
C∞x and, at best, 1

2 -Hölder in time. We are also able to treat a class of evolutions with
non-white-in-time forcing, referred to as ‘OU tower noise’ in [13]. This is basically
an external forcing given by the projection of an Ornstein-Uhlenbeck process on R

M .

System 5 The (generalized) Galerkin–Navier–Stokes system with OU tower noise in
T
d (d = 2, 3) is defined, for u0 ∈ HN , by the stochastic ODE

∂t ut + X(u, u) = νΔut + QZt

∂t Zt = −AZt + Γ Ẇt ,
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786 J. Bedrossian et al.

where Zt ∈ HM, the operator A : HM → HM is diagonalizable and has a strictly
positive spectrum, and the bilinear term X(u, u) : HN × HN → HN satisfies u ·
X(u, u) = 0 and ∀ j , X(e j , e j ) = 0. Note that (ut ) is not Markov, but (ut , Zt )

is Markov and one must also specify the initial condition for the (Zt ) process, i.e.
Z0 = Z, when considering this setting.

All of our results extend to each of Systems 3, 4, and 5.

Theorem 1.10 Consider any of Systems 3–5. Assume that Q satisfies Assumption 2
and that the parabolic Hörmander condition is satisfied for (ut ) or (ut , Zt ) (see e.g.
[45]). Then, Theorems 1.3, 1.4, and 1.8 all hold (in the case of System 5, the estimates
on the random constants in (1.4), (1.6), and (1.7) all contain an additional factor of
exp

(

η |Z |2), i.e. the initial condition for the Zt process).

Remark 1.11 Note that for all k ≥ 0, one can construct examples of System 5 which
satisfy (ut ) ∈ L p(Ω;Ck

t,locC
∞
x ) for all p < ∞. See [13] for more details.

Remark 1.12 We have chosen to include Theorem 1.10 to emphasize that our methods
do not fundamentally require non-C∞x velocity fields, nor do they require velocity
fields that are directly subjected to white-in-time forcing. The difficulty in treating
infinite dimensional models with smooth-in-space, Ck

t forcing of ‘OU tower’ type
is the lack of an adequate extension of Hörmander’s theorem to infinite dimensions
(though, note that the theory ofHairer andMattingly [48] applies toOU tower forcing).
In addition, it would also be interesting to extend our works [13,14] and this work to
the non-white-in-time, uniformly bounded forcing studied in [51–53].

2 Outline

We will henceforth only discuss the proof for the infinite dimensional stochastic
Navier–Stokes Systems 1–2. Essentially the same proof applies to the systems in
Sect. 1.3 but each step is vastly simplified by the finite dimensionality (see [13] for a
brief discussion about the small changes required to treat System 5).

The vast majority of the work in this paper is to prove Theorem 1.3, which we
outline here. The proofs of Theorems 1.4 and 1.8 are discussed in Sect. 7.

2.1 Uniformmixing by uniform geometric ergodicity of two-point Lagrangian
process

The proof is based on the representation of the advection–diffusion equation as a
Kolmogorov equation of the corresponding stochastic Lagrangian process. To do this,
let W̃t denote a standard d-dimensional Wiener process with respect to a separate
stochastic basis (Ω̃, F̃ , F̃t , P̃). This naturally gives rise to an augmented probability
spaceΩ×Ω̃ with the associated product sigma-algebraF⊗F̃ , and product measure
P × P̃. In a slight abuse of notation, we will write Ẽ for the expectation with respect
to P̃ alone, and write E denote expectation with respect to the full product measure
P × P̃.

123
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Define the stochastic Lagrangian flow φt
κ(x) to solve the SDE

d

dt
φt

κ(x) = ut (φ
t
κ(x))+√

2κ ˙̃Wt φ0
κ(x) = x .

The fact that ut is incompressible implies that x �→ φt
κ is almost surely volume

preserving. The solution gt to the advection diffusion Eq. (1.1) is represented by this
stochastic flow in the sense that

gt = Ẽg ◦ (φt
κ)−1

(note that since ut ∈ C3 , the flow φt
κ : T

d → T
d is at least a C3 diffeomorphism

and therefore the inverse (φt
κ)−1 is defined in the usual sense). By incompressibiliy,

it follows that for f ∈ L2, f : T
d → R, we have

∫

gt (x) f (x) dx = Ẽ
∫

g(x) f
(

φt
κ(x)

)

dx . (2.1)

By choosing f , g ∈ Hs , the H−s decay of gt as in Theorem 1.3 follows once
we deduce (2.1) decays exponentially fast P-a.e.. We will show this by obtaining
H−s decay for observables advected by the Lagrangian flow φt

κ for almost every
Wt , W̃t -realization. This, in turn, will be deduced using geometric ergodicity of the
two-point process (ut , xκ

t , yκ
t ) on H × T

d × T
d defined by xκ

t = φt
κ(x), yκ

t = φt
κ(y)

for x, y ∈ T
d , x �= y. Note that each of xκ

t , yκ
t is driven by the same noise paths Wt ,

W̃t . Throughout, we write xt := x0t , yt := y0t for two-point process when κ = 0.

Let us make these ideas more precise. Let P(2),κ
t denote the Markov semigroup

associated to the κ-two-point process, that is, for measurable ϕ : H×T
d ×T

d → R,

P(2),κ
t ϕ(u, x, y) = E(u,x,y)ϕ(uκ

t , x
κ
t , yκ

t ) ,

whenever the RHS is defined. Define D = {(x, x) : x ∈ T
d} ⊂ T

d × T
d ; in our

setting, the complement H × Dc is the natural state space for the two-point process
(see [13] for a discussion of this point). Below, given a function V : Z → [1,∞) on
a metric space Z , we write CV the space of continuous observables φ : Z → R such
that

‖φ‖CV = sup
z∈Z

|φ(z)|
V (z)

< ∞.

We will deduce Theorem 1.3 from κ-uniform geometric ergodicity of the two-point
process, stated precisely below as Theorem 2.1. Its proof occupies the majority of this
paper, and is outlined in Sects. 2.2–2.5 below. Note that this implies μ×Leb×Leb is
the unique stationary measure for the two-point process on H ×Dc, where as before
μ is the stationary measure on H for the velocity field process (ut ).
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Theorem 2.1 There exists κ0 > 0 such that for all κ ∈ [0, κ0], there is a function
Vκ : H ×Dc → [1,∞) and κ-independent constants C > 0, γ > 0 such that for all
ψ ∈ CVκ

with
∫

H×Td×Td ψ(u, x, y)dμ(u)dxdy = 0, we have

|P(2),κ
t ψ(u, x, y)| ≤ Ce−γ tVκ(u, x, y) ||ψ ||CVκ

for all t ≥ 0, u ∈ H, (x, y) ∈ Dc. In general, the Lyapunov function Vκ depends on κ ,
but satisfies the following uniform-in-κ estimate: for β sufficiently large (independent
of κ) and ∀η > 0, we have

∫∫

Vκ(u, x, y) dxdy �η (1+ ‖u‖2H)β exp
(

η ||u||2W
)

for all u ∈ H.

By repeating the Borel–Cantelli argument in Section 7 of [13], to which we refer
the reader for details, Theorem 2.1 implies the following H−s decay result uniformly
in κ .

Corollary 2.2 Let κ ∈ [0, κ0] and γ, β, η > 0 be as in Theorem 2.1. Fix s, p > 0. There
exists a random constant D̃κ : Ω × Ω̃ × H → [1,∞) and γ ′ ∈ (0, γ ) (depending
on p and s, but not on κ) such that for all Hs, mean zero scalars f , g : T

d → R, we
have

∣
∣
∣
∣

∫

g(x) f (φt
κ(x)) dx

∣
∣
∣
∣
≤ D̃κ(ω, ω̃, u)e−γ ′t || f ||Hs ||g||Hs

where the random constant D̃κ satisfies the moment estimate (uniformly in κ) for β

sufficiently large (independent of u, p, κ) and η > 0,

E(D̃κ(·,̃ ·, u))p �p,η (1+ ‖u‖2H)β p exp
(

η ||u||2W
)

(2.2)

Proof of Theorem 1.3 assuming Corollary 2.2 Theorem 1.3 follows with Dκ(u, ω) :=
ẼD̃κ(ω,̃ ·, u), since by (2.1),

∣
∣
∣
∣

∫

gt (x) f (x) dx

∣
∣
∣
∣
=
∣
∣
∣
∣
Ẽ
∫

g(x) f
(

φt
κ(x)

)

dx

∣
∣
∣
∣

≤ ẼD̃κ(ω,̃ ·, u)e−γ ′t || f ||Hs ||g||Hs

= Dκ(ω, u)e−γ ′t || f ||Hs ||g||Hs .

For fixed u ∈ H, moment estimates in E for Dκ follow from (2.2) and Jensen’s
inequality with respect to Ẽ. This completes the proof of Theorem 1.3. ��

The rest of the paper is now dedicated to proving Theorem 2.1 (with the exception
of Sect. 7).
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Remark 2.3 The methodology of studying the two-point process follows our previous
work [13] on almost-sure H−s decay for Lagrangian flow in the absence of diffusivity
(i.e., κ = 0), to which we refer the reader for more detailed discussion and moti-
vation (see also [12,32]). That being said, the κ diffusivity can and does change the
dynamics, presenting issues that must be overcome if we are to succeed in provide the
κ-uniform in Theorem 1.3. Issues in this analysis include quantifying κ-dependence
on the mixing rate in Harris’s theorem (see Sect. 2.2–2.3 below) and dealing with the
singular perturbation limit κ → 0 (see Sect. 2.5.2).

2.2 Uniform geometric ergodicity: a ‘quantitative’Harris’s Theorem

To prove Theorem 2.1, we will run P(2),κ
t through the following mildly ‘quantitative’

version ofHarris’s Theorem (Theorem2.7) on geometric ergodicity forMarkov chains,
which keeps track of dependence of the constants appearing in the geometric decay
of observables in terms of the ‘inputs’. Since we use this result at several points
throughout this paper, we state it below at a high level of generality.

Let Z be a complete, separable metric space and (zn) a discrete-time Markov chain
on Z generating a Markov semigroup Pn . Geometric ergodicity of (zn) is usually
proved by combining two properties: aminorization conditionwhich allows to couple
trajectories initiated from a controlled subset of phase space (sometimes called a small
set), and a drift condition ensuring that trajectories visit this controlled subset with a
high relative frequency.

The latter can be formulated as follows:

Definition 2.4 (Drift condition) We say that a function V : Z → [1,∞) satisfies a
drift condition for the (zn) chain if there exist constants γ ∈ (0, 1), K > 0 for which

PV (z) ≤ γ V (z)+ K .

Functions V satisfyingDefinition 2.4 are commonly referred to asLyapunov functions.
Minorization in our context will be checked using the following standard result,

regarding suitably chosen sublevel sets {V ≤ R} as our ‘controlled’ regions of phase
space. Here we also need to check dependence on parameters.

Proposition 2.5 (Quantitative minorization) Let V : Z → [1,∞) satisfy the drift
condition with γ, K as in Definition 2.4 for the chain (zn). Assume that the Markov
operator P is given as P = P1/2 ◦ P1/2 for some Markov operator P1/2 satisfying
the following two properties:

(a) ∃z∗ ∈ Z such that ∀ζ > 0, ∃ε > 0 such that the following holds for all bounded,
measurable ψ : Z → R:

sup
z∈Bε(z∗)

∣
∣P1/2ψ(z)− P1/2ψ(z∗)

∣
∣ < ζ.
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(b) Let ε := ε be as in part (a) with ζ = 1
2 . Suppose that there exists R > 2K/(1−γ )

and η = η(R) > 0 such that

inf
z∈{V≤R}P1/2(z, Bε(z∗)) > η > 0 .

Then, the following minorization condition holds: for any z1, z2 ∈ {V ≤ R}, we have
that

‖P(z1, ·)− P(z2, ·)‖T V < α , (2.3)

where α := 1− η
2 ∈ (0, 1).

Remark 2.6 Note that condition (a) is commonly called strong Feller at z∗ and condi-
tion (b) is called topological irreducibility.

Crucially, Proposition 2.5 guarantees that the constants appearing in the minoriza-
tion condition (2.3) are controlled by ‘inputs’ ε, η(R) > 0. Verifying that these
constants can be chosen independently of the diffusivity κ > 0 is one of the steps
in our proofs below.

Proposition 2.5 follows from standard arguments– see, e.g., the proof of [Theorem
4.1, [38]]. However, since quantitative dependence on parameters is of central impor-
tance in the proof of our main results, for the sake of completeness we sketch the proof
of Proposition 2.5 in Sect. 3.1.

The following version of Harris’s theorem below now describes geometric ergod-
icity for Markov chains satisfying Definitions 2.4 and (2.3). Its proof is evident from
a careful reading of any of the several proofs of Harris’s theorem now available; see,
e.g., the book of Meyn & Tweedie [59] or the proof of Hairer & Mattingly [44].

Theorem 2.7 (Quantitative Harris’s Theorem) Assume that the Markov chain (zn)
satisfies a drift condition with Lyapunov function V in the sense of Definition 2.4,
as well as the conditions of Proposition 2.5. Then, the Markov chain (zn) admits a
unique invariant measure μ on Z such that the following holds: there exists constants
C0 > 0, γ0 ∈ (0, 1), depending only on γ, K , α, R as above, with the property that

∣
∣
∣
∣
Pnψ(z)−

∫

ψ dμ

∣
∣
∣
∣
≤ C0γ

n
0 V (z)‖ψ‖V

for all z ∈ Z , n ≥ 0 and ψ : Z → R with ‖ψ‖V < ∞.

We note that there are many works studying quantitative dependence in Harris’s
Theorem in amuchmore precise way; see, e.g., [9,34,58]. All we are using in this work
is the comparatively simpler fact that the constantsC0, γ0 can be uniformly controlled
in terms of the drift and minorization parameters γ, K , α, R.

We intend to apply the quantitative Harris’s Theorem (Theorem 2.7) to P = P(2),κ
T

on H ×Dc for some fixed, κ-independent T > 0. This will imply Theorem 2.1. The
most difficult step is the construction of the Lyapunov functionVκ satisfyingDefinition
2.4 for P(2),κ

T . Before turning to this, however, let us indicate how the hypotheses of
Proposition 2.5 will be checked once a suitable Vκ has been constructed.
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2.3 Checkingminorization for P(2),�T

Generally speaking, Markov kernels may degenerate in some regions of state space,
and so it is usually expected that minorization conditions such as (2.3) only hold
on certain subsets of state space bounded away from these degeneracies. Typically,
then, the Lyapunov function V is built so that suitable sublevel sets {V ≤ R} avoid
such degeneracies. In our setting, for the two point process on {(u, x, y) ∈ H ×Dc},
Markov kernels degenerate in two places: where ‖u‖H � 1, and where d(x, y) � 1.
The latter degeneracy is due to the fact that the setD = {(x, x) : x ∈ T

d} ⊂ T
d ×T

d

is almost surely invariant for the two point process. In view of these considerations,
the following property is natural and ensures sublevel sets are bounded away from
these degenerate regions of state space.

Definition 2.8 We say that a κ-dependent family of functions Vκ : H × T
d × T

d →
[1,∞) is uniformly coercive if ∀R > 0, ∃R′ > 0 (independent of κ) and ∃κ0 =
κ0(R) > 0 such that ∀κ ∈ (0, κ0) the following holds

{Vκ ≤ R} ⊂ ĈR′ := {‖u‖H ≤ R′} ∩ {d(x, y) ≥ 1/R′}.

As long as the Lyapunov function Vκ in our drift condition is uniformly coercive, it
suffices to check that the hypotheses of Proposition 2.5 (b) hold on a ’small’ set of
the form ĈR for a fixed R sufficiently large relative only to the parameters γ , K in
Definition 2.4 (both independent of κ). See Remark 2.20 for more discussion.

We now turn to the task of verifying the hypotheses (a) and (b) of Proposition 2.5.
Item (a) is deduced from the following uniform strong Feller regularity, which implies
that minorization holds across balls of possibly small (yet κ-uniform) radius.

Lemma 2.9 (Uniform strong Feller) For all T , R, ζ > 0, there exists ε = ε(T , ζ, R)

(independent of κ) and there exists κ0 > 0 such that the following holds for all
κ ∈ [0, κ0]. Let ϕ : H ×Dc → R be an arbitrary bounded measurable function and
let z∗ ∈ ĈR. Then,

sup
z∈Bε (z∗)

∣
∣
∣P

(2),κ
T ϕ(z)− P(2),κ

T ϕ(z∗)
∣
∣
∣ < ζ.

A straightforward adaptation of the methods in [13] implies that for fixed κ > 0, the
κ-two point process P(2),κ

T is strong Feller, hence transition kernels vary continuously
in the TV metric [69]. Lemma 2.9 is stronger, and is a kind of TV equicontinuity for
transition kernels, with uniform control on moduli of continuity in κ ∈ [0, κ0] and
across the small sets ĈR, R > 0. The proof is essentially a careful re-examination of
the methods in [13] to keep track of dependence on the κ parameter. A brief sketch is
given in Sect. 6.2.

Turning to hypothesis (b) in Proposition 2.5: fix a reference point of the form
z∗ = (0, x∗, y∗) ∈ H × Dc, where x∗, y∗ ∈ T

d are such that d(x∗, y∗) > 1/10. Fix
ε = ε(ζ ) for ζ = 1

2 as in Lemma 2.9. Item (b) in Proposition 2.5 is checked at z∗
from the following.
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Lemma 2.10 (Uniform topological irreducibility) Let T , R > 0 be arbitrary, and
let ε = ε(T , 1

2 , R) > 0 be as in Lemma 2.9 with ζ = 1
2 . Then, there exists κ ′0 =

κ ′0(R, T ), η = η(R, T ) such that the following holds for all κ ∈ [0, κ ′0]. For all

z = (u, x, y) ∈ ĈR, we have

P(2),κ
T (z, Bε(z∗)) ≥ η .

Note that in Lemma 2.10, the value of the upper bound κ ′0 depends on ε =
ε(T , 1/2, R), as well as T and R. This is an artifact of the proof: since the primary
case of interest is κ � 1, we treat the

√
κW̃t term as a perturbation and control tra-

jectories exclusively with theWt noise applied to the velocity field process (following
the scheme set out for κ = 0 in [Proposition 2.7, [13]]). A proof sketch in our setting
is given in Sect. 6.2.

By Proposition 2.5, Lemmata 2.9 and 2.10 imply the minorization condition as in
Proposition 2.5 for P := P(2),κ

1 when we set T = 1/2.

2.4 Drift condition for P(2),�T

We now turn to the more significant task of deriving a drift condition with a Lyapunov
function Vκ satisfying the κ-uniform coercivity condition in Definition 2.8.

The family of Lyapunov functions Vκ we construct for the two-point process will
serve the role of bounding the dynamics away from the ’degenerate’ regions ‖u‖H � 1
and d(x, y) � 1. Control of the first is done entirely on the Navier–Stokes process
(ut ) as follows.

Lemma 2.11 (Lemma 2.9, [13]) There exists Q > 0, depending only on the noise
coefficients {qm} in the noise term QWt and the dimension d, with the following
property. Let 0 < η < η∗ = ν/Q, β ≥ 0, and define

Vβ,η(u) = (1+ ||u||2H)β exp
(

η ||u||2W
)

(2.4)

where ‖ · ‖W is as in (1.3). Then (2.4) satisfies the drift condition as in Definition 2.4
for the (ut ) process.

Lemma 2.11 is taken verbatim from [13]. In fact, a more powerful estimate than that
in Definition 2.4 holds (a so-called super-Lyapunov property): see Lemma 3.2 in Sect.
3.2 for details. Obviously, these drift conditions do not depend on the κ parameter,
which only drives the Lagrangian flow itself.

Motivation: controlling dynamics nearD

Tobound the dynamics away from small neighborhoods {d(x, y) � 1} of the diagonal,
we seek to build Vκ with an infinite singularity along H × D. We again follow our
previous approach from [13], where a Lypaunov function for P(2)

t at κ = 0 was built
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using the linearized approximation when xt ≈ yt . As proved in our earlier work [14],
this linearization satisfies the following P-a.e.:

0 < λ1 = lim
t→∞

1

t
log |Dxφ

t | for all (u, x) ∈ H× T
d , (2.5)

where the Lyapunov exponent λ1 > 0 is a (deterministic) constant independent of the
initial (u, x) ∈ H × T

d . This guarantees that nearby particles separate exponentially
fast with high probability.

With this intuition in mind, following the reasoning given in [Section 2 of [13]],
it is natural to seek a Lyapunov function of the form Vκ = Vβ,η(u) + h p,κ (u, x, y),
where h p,κ (u, x, y) : H×Dc → R>0 is of the form

h p,κ (u, x, y) = χ(|w|)|w|−pψp,κ

(

u, x,
w

|w|
)

(2.6)

for some p > 0. Here, w = w(x, y) denotes the minimal displacement vector in R
d

from x to y, noting |w| = d(x, y), and χ : R≥0 → [0, 1] is a smooth cutoff satisfying
χ |[0,1/10] ≡ 1 and χ |[1/5,∞) ≡ 0.We regardψp,κ as a function on the spaceH× PT

d ,
where PT

d = T
d × Pd−1 is the projective bundle over T

d .
A natural candidate forψp,κ is (if it exists) the dominant, positive-valued eigenfunc-

tionof the ‘twisted’Markov semigroups P̂κ,p
t , defined for observablesψ : H×PT

d →
R, by

P̂κ,p
t ψ(u, x, v) = E(u,x,v)

∣
∣Dxφ

t
κv
∣
∣−p

ψ(ut , x
κ
t , vκ

t ) ,

whenever the RHS exists. Here, for κ > 0, we let (ut , xκ
t , vκ

t ) denote the projective
process2 on H × PT

d : the one-point process xκ
t on T

d is as before, and vκ
t ∈ Pd−1

is defined for initial v ∈ Pd−1 to be the projective representative of Dxφ
t
κv. We write

P̂κ
t for the p = 0 Markov semigroup corresponding to (ut , xκ

t , vκ
t ).

In [13], we showed that for κ = 0, the dominant eigenfunctionψp,0 exists, is unique

up to scaling, and satisfies P̂0,p
t ψp,0 = e−Λ(p,0)tψp,0 where Λ(p, 0) > 0 for all p

sufficiently small– in fact, Λ(p, 0) = pλ1 + o(p2), λ1 as in (2.5), and so our ability
to build a drift condition is directly the result of a positive Lyapunov exponent (see
also Remark 2.13). Once ψp,0 was been constructed, a careful infinitesimal generator
argument is then applied to pass from the linearized process (ut , xt , vt ) to nonlinear
process (ut , xt , yt ) [Section 6.3 of [13]]. In what remains we denote ψp := ψp,0,
P̂ p := P̂0,p, and Λ(p) := Λ(p, 0).

In our context, we seek to show that the dominant eigenfunctions ψp,κ for P̂κ,p
t , if

they exist, result in analogous drift and uniform coercivity conditions with constants

2 Equivalently, we can think of (ut , xκ
t , vκ

t ) as evolving on the sphere bundle H × ST
d , where ST

d ∼=
T
d × S

d−1. In this parametrization, vκ
t evolves according to the random ODE

v̇κ
t = (1− vκ

t ⊗ vκ
t )Dut (x

κ
t )vκ

t .
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uniformly controlled in κ . The quality of these conditions depends on (A) κ-uniform
control on ψp,κ from above and below, to ensure κ-uniform coercivity and to control
error in the linearization approximation; and (B) a κ-uniform lower bound on the value
Λ(p, κ) for which P̂κ,p

t ψp,κ = e−Λ(p,κ)tψp,κ , ensuring κ-uniform parameters in the
resulting drift condition.

The primary challenge in achieving these points is the fact that κ → P̂κ,p
t is a

singular (not operator- norm continuous) perturbation for p ≥ 0, t > 0, and so κ-
uniform control over ψp,κ and Λ(p, κ) must be carefully checked. This is the aim of
Proposition 2.12 below, which summarizes the κ-uniform controlled needed on this
eigenproblem.

Technical formulation of the eigenproblem for P̂�,p
t

In what follows, β, η > 0 are fixed admissible parameters for Lemma 2.11, and
V := Vβ,η. A finite number of times in the coming proofs, we will assume β is taken
sufficiently large, but always in a κ-independent way.

We defineC1
V to be the set of Fréchet-differentiable observablesψ : H×PT

d → R

for which

‖ψ‖C1
V
:= ‖ψ‖CV + sup

(u,x,v)∈H×PTd

‖Dψ(u, x, v)‖H∗

V (u)
< ∞ ,

where H∗ is shorthand for the dual space to H× T(x,v)(PT
d).

For reasons discussed in [13] (see also, e.g., [47]), for the purposes ofC0 semigroup
theory one usually restricts to the following separable subspace of observables well-
approximated by smooth, finite-dimensional observables.We define the (norm-closed)
subspace C̊1

V ⊂ C1
V to be the C1

V -closure and C̊V ⊂ CV to be the CV -closure of the
space of smooth cylinder functions

C̊∞0 (H× PT
d) := {ψ |ψ(u, x, v) = φ(ΠKu, x, v),K ⊂ K, φ ∈ C∞0 } ,

where ΠK denotes the orthogonal projection onto HK ∼= R
|K|.

The following statement lists all required properties of the dominant eigenfunctions
for P̂κ,p

t under the singular perturbation κ → 0. The result is crucial to our method for
dealing with this singularity and its proof occupies a substantial portion of the paper.
The proof is outlined in Sect. 2.5 below.

Proposition 2.12 There exist κ0, p0 > 0 for which the following holds.

(a) There exists T0 > 0 such that for all (κ, p) ∈ [0, κ0]×[0, p0], the (positive) oper-
ator P̂κ,p

T0
admits a simple, dominant, isolated, positive, real eigenvalue e−T0Λ(p,κ)

in C̊1
V such that Λ(p, κ) > 0, and have the following property: for each fixed

p > 0

lim
κ→0

Λ(p, κ) = Λ(p) > 0.
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(b) With πp,κ denoting the (rank 1) spectral projector corresponding to the dominant
eigenvalue of P̂κ,p

T0
, letψp,κ = πp,κ (1), where 1 denotes the unit constant function

on H× PT
d . The family {ψp,κ } has the following properties.

(i) For all t > 0, we have

P̂ p,κ
t ψp,κ = e−Λ(p,κ)tψp,κ .

(ii) We have ψp,κ ∈ C̊1
V , with ‖ψp,κ‖C1

V
bounded from above uniformly in κ, p.

(iii) For all p, κ sufficiently small, ψp,κ ≥ 0 and there holds the convergence

lim
κ→0

∣
∣
∣
∣ψp,κ − ψp

∣
∣
∣
∣
CV

= 0 .

Finally, for p sufficiently small, ∀R > 0, ∃κ0 = κ0(R) such that

inf
κ∈[0,κ0]

inf
(u,x,y)∈H×PT

d

‖u‖H≤R

ψp,κ (u, x, v) > 0 .

Remark 2.13 The value Λ(p, κ) is referred to as the moment Lyapunov exponent in
the random dynamical systems literature [7], and governs large deviation-scale fluctu-
ations in the convergence of Lyapunov exponents. Indeed, P̂κ,p

t is the Feynman–Kac
semigroup [75] with respect to the potential H(u, x, v) = 〈v, Du(x)v〉; see (4.1).

As in [Lemma 5.8 of [13]], one can show that

Λ(p, κ) = − lim
t→∞

1

t
logE|Dxφ

tv|−p

holds for all initial u ∈ H and (x, v) ∈ PT
d . This, in turn, implies the asymptotic

Λ(p, κ) = pλκ
1 + o(p)

where λκ
1 is the Lyapunov exponent

λκ
1 = lim

t→∞
1

t
log |Dxφ

t
κ |

for the κ-driven Lagrangian flow φt
κ .

Remark 2.14 We also note that it is possible to show, without too much additional
work, that limκ→0 λ1κ = λ10: for this, it suffices to use that (i) ∂

∂ p |p=0Λ(p, κ) = λ1κ
for all κ ∈ [0, κ0]; (ii) p �→ Λ(p, κ)/p is increasing in p (note that the formula
for Λ(p, κ)/p is an L p norm); and (iii) continuity of κ �→ Λ(p, κ) for κ ∈ [0, κ0]
(Proposition 2.19).We note that this argument does require that one considersΛ(p, κ)

and the corresponding semigroups P̂ p,κ
t for values p < 0, whereas our results mostly

assume p ≥ 0; this extension is straightforward and omitted.
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2.5 Proof outline of Proposition 2.12

The proof has two main components. The first is to establish spectral properties of the
semigroups P̂κ,p

t by viewing these, for fixed κ > 0, as norm-continuous perturbations
in the parameter p > 0 of the semigroups P̂κ

t . This part of the proof is a careful re-
working of the arguments in [13] to ensure that the relevant quantities do not depend
on the parameter κ . The following is a summary of the spectral picture derived.

Proposition 2.15 There exist κ0, p0, T0 > 0, c0 ∈ (0, 1) such that the following holds
for any κ ∈ [0, κ0], p ∈ [0, p0].
(a) The semigroup P̂κ,p

t is a C0-semigroup on C̊V . For any fixed t > 0, the norm
‖P̂κ,p

t ‖CV is bounded uniformly in κ . Additionally, for any t > 0, the operator
P̂κ,p
t has a simple, dominant, isolated eigenvalue e−Λ(p,κ)t , and satisfies

σ(P̂κ,p
t ) \ {e−Λ(p,κ)t } ⊂ Bct0

(0) . (2.7)

(b) We have that P̂κ,p
T0

is a bounded linear operator C1
V → C1

V sending C̊1
V into

itself, with ‖P̂κ,p
T0
‖C1

V
bounded uniformly in κ . Regarded as an operator in this

space, the value e−Λ(p,κ)T0 is a simple, dominant, isolated eigenvalue for P̂κ,p
T0

,
and satisfies

σ(P̂κ,p
T0

) \ {e−Λ(p,κ)T0} ⊂ B
c
T0
0

(0) .

2.5.1 Proof of Proposition 2.15 following [13]

We provide a brief sketch of the arguments and highlight where one must be most
careful about κ-dependence. Basic properties, such as C0 continuity on C̊V and uni-
form bounds in the CV and C1

V norms follow essentially the same as those in [13]; see
Sect. 4.1 for more details.

At p = 0, the uniform spectral picture for P̂κ
t in CV is derived by applying the

quantitative Harris theorem (Theorem 2.7) to the projective process (ut , xκ
t , vκ

t ). A
κ-uniform spectral gap follows by verifing the minorization and drift conditions with
constants independent of κ > 0. Since the PT

d factor is compact, it suffices to use
V = Vβ,η as the Lyapunov function in Definition 2.4 (via Lemma 2.11). The only
thing to check here is the minorization condition using Proposition 2.5. The following
is sufficient for our purposes. See Sects. 4.2.1 and 4.2.2 for sketches of parts (a) and
(b) respectively.

Proposition 2.16 (a) (Uniform strongFeller)For all κ sufficiently small, the following
holds. For any ζ > 0 there exists ε = ε(ζ, R) > 0, independent of κ , so that
for all bounded measurable ψ : H × PT

d → R and (u, x, v) ∈ H × PT
d ,

‖u‖H ≤ R, we have

sup
(u′,x ′,v′)∈Bε (u,x,v)

∣
∣
∣P̂κ

1 ψ(u, x, v)− P̂κ
1 ψ(u′, x ′, v′)

∣
∣
∣ < ζ .
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(b) (Uniform topological irreducibility) Fix ζ = 1/2 and let ε = ε( 12 , R) be as
in part (a). Fix a reference point (0, x∗, v∗) ∈ H × PT

d . Then, there exists
κ ′′0 = κ ′′0 (ε, R), η = η(ε, R) > 0 so that for all κ ∈ [0, κ ′′0 ], the following holds:
for all (u, x, v) ∈ H× PT

d , ‖u‖H ≤ R, we have

P̂κ
1 ((u, x, v), Bε(0, x∗, v∗)) ≥ η

Having verified the uniform spectral gaps for P̂κ
t semigroup, the proof of Proposi-

tion 2.15 (a) is completed using a spectral perturbation argument carried out in Sect.
4.4.1 and the convergence

lim
p→0

sup
κ∈[0,κ0]

‖P̂κ,p
t − P̂κ

t ‖CV→CV = 0

for any fixed t > 0 (see Lemma 4.3).
Next,we sketch the proof of Proposition 2.15 (b). Checking κ-uniformboundedness

in C1
V and propagation of C̊1

V again proceeds more-or-less verbatim from arguments

in [13]; see Sect. 4.1 for more details. As in [13], we are only able to show P̂κ,p
t is

bounded in C1
V for t ≥ T0 (T0 > 0 a κ-independent constant), which is why we state

the C1
V spectral picture for P̂κ,p

T0
. Following a standard argument in [Proposition 4.7;

[13]], the κ-uniform spectral gap in C1
V is obtained from the CV spectral gap from

Proposition 2.15(a) and the following κ-uniform gradient-type bound similar to those
pioneered by Hairer and Mattingly [46,48] for ergodicity with degenerate noise.

Lemma 2.17 (Uniform Lasota–Yorke regularity) There exists κ0 such that the follow-
ing holds uniformly in κ ∈ [0, κ0]. For all β ′ ≥ 2 sufficiently large and all admissible
η′ > 0 for Lemma 2.11, there exist C1 > 0, κ > 0 such that the following holds for
all κ ∈ [0, κ0]. For all ψ ∈ CV and t > 0, we have

‖DP̂κ
t ψ‖H∗ ≤ C1Vβ ′,η′

(√

P̂κ
t |ψ |2 + e−κt

√

P̂κ
t ‖Dψ‖2H∗

)

pointwise on H× PT
d .

The proof of Lemma 2.17 is analogous to that in [Proposition 4.6; [13]]; we provide
a sketch in Sect. 4.3 below.

Finally, the κ-uniform spectral gap in C̊1
V for P̂κ,p

T0
is obtained by a spectral pertur-

bation argument (see Sect. 4.4.2) and the fact that

lim
p→0

sup
κ∈[0,κ0]

‖P̂κ,p
T0

− P̂κ
T0‖C1

V→C1
V
= 0.

This completes the proof of Proposition 2.15; see Sect. 4 for more details.
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2.5.2 Overcoming the singular perturbation � �→ P̂�,p
t

We now move on to completing the proof of Proposition 2.12, which requires that
we contend with the potentially singular nature of κ �→ P̂κ,p

t . This is a significant
deviation from our previous work [13], which considers only the κ = 0 case.

More precisely, the mapping κ �→ P̂κ,p
t is not, to the best of our knowledge,

continuous with respect to the operator norm derived from any of the usual topologies
on observables ψ : H × PT

d → R. From the perspective of smooth dynamics,
this is unsurprising. For deterministic maps, Markov semigroups on observables are
calledKoopmanoperators, and for parametrized families of (deterministic)maps, these
Koopman operators typically vary discontinuously in the parameter with respect to
most useful operator norms. For an example related to our setting, where the parameter
dictates the amplitude of noise, see [10].

At least, we have the following strong operator continuity:

Lemma 2.18 Assume β > 0 to be taken sufficiently large. There exists p0 > 0 such
that the following holds for any ψ ∈ CV (H× PT

d):

lim
κ→0

sup
p∈[−p0,p0]

‖P̂ p,κ
t ψ − P̂ p

t ψ‖CV = 0 . (2.8)

For proof, see Lemma 5.3.
The continuity in (2.8) is not strong enough to immediately extend the P̂ p

t spectral
gap to a κ-uniform spectral gap on P̂κ,p

t . In order to leverage (2.8), we instead pass
to the limit in the eigenfunction/value problem. To roughly summarize: estimates on
dominant spectral projectors (Lemma5.1) and arguments using the scale of compactly-
embedded spaces Hσ ′ and the uniform C1

V estimates imply that
{

ψp,κ
}

κ∈(0,1) is
suitably ‘locally sequentially pre-compact’ in CV using a version of Arzela-Ascoli
(Lemma 5.5). This pre-compactness together with (2.8) ultimately allows to pass to
the limit in the eigenvalue problem P̂κ,p

t ψκ,p = e−tΛ(p,κ)ψκ,p, obtaining the follow-
ing.

Proposition 2.19 Let p ∈ [0, p0] be fixed. Then,

lim
κ→0

‖ψp,κ − ψp‖CV = 0 and lim
κ→0

Λ(p, κ) = Λ(p).

See Sect. 5.2 for the detailed proof. With Proposition 2.19 in hand, it is now straight-
forward to check the remaining items in Proposition 2.12; see Sect. 5.2 for such details.

Verifying the drift condition: infinitesimal generator argument

Assuming Proposition 2.12, let us sketch how the drift condition for the ‘nonlinear’
(ut , xκ

t , yκ
t ) process is derived, thereby completing the proof of Theorem 2.1. Let

p ∈ (0, p0] be fixed once and for all, and let κ > 0 be sufficiently small so that, as
in Proposition 2.12(a), we have Λ(p, κ) ≥ 1

2Λ(p, 0) uniformly in κ . Our Lyapunov
function Vκ is of the form
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Vκ(u, x, y) = Vβ+1,η(u)+ h p,κ (u, x, y) , (2.9)

where h p,κ is as in (2.6). Observe that Proposition 2.12 (b)(iii) ensures that Vκ as
above is uniformly coercive as in Definition 2.8.

To conclude the drift condition for Vκ as in Definition 2.4, we apply the analogue
of the infinitesimal generator argument used for the κ = 0 case in [13], again carefully
ensuring κ-independence of relevant quantities. Brushing aside details for themoment,
for κ ≥ 0 let L(2),κ denote the (formal) infinitesimal generator of the (ut , xκ

t , yκ
t )

process. We show that in fact h p,κ is in the domain of this generator, and that

L(2),κh p,κ ≤ −Λ(p, κ)h p,κ + C0Vβ+1,η.

The first term is good and reflects the strong exponential separation of nearby trajec-
tories (equivalently, repulsion from the diagonal), while the second is an error arising
from the linearized approximation of the velocity field (the constant C0 being inde-
pendent of κ). This uniform control in the linearization error makes critical use of the
uniform C1

V control on ψp,κ as in Proposition 2.12(b)(ii), while verifying that ψp,κ

is in the domain of L(2),κ uses ψp,κ ∈ C̊1
V and Proposition 2.12 (b)(i). See Sect. 6.3

where this argument is carried out in more detail.
The linearization error is overcome as follows: formally, a stronger version of the

drift condition for Vβ+1,η (see Remark 3.4) implies that for any ξ > 0 there exists
Cξ > 0 such that

LVβ+1,η ≤ −ξVβ+1,η + Cξ ,

whereL is the generator of the (ut ) process (we do not justify this inequality precisely
as written, but instead an integrated version that is almost equivalent; for details, see
Sect. 6.3 below and the proof of [Proposition 2.13; [13]]). Taking ξ ≥ C0+ 1

2Λ(p, 0)
ensures that the−ξVβ+1,η term successfully absorbs the linearization errorC0Vβ+1,η,
verifying the desired drift condition. With this established, Theorems 2.1 and 1.3 now
follow. See Proposition 6.5 in Sect. 6.3 for mathematical details.

Remark 2.20 (Setting the parameters) Let us lastly point out how to set parameters
consistently in a non-circular manner. Notice that Proposition 2.12 (b) (iii) has the
same ordering in the quantifiers of R and κ as Definition 2.8. We choose parameters
like this: first we fix p, κ small to obtain a κ-independent drift condition for Vκ as
defined in (2.9) – that is, (2.9) satisfies Definition 2.4 for γ , K both independent
of κ . Then, Vκ satisfies Definition 2.8 by Proposition 2.12 (b) (iii). Then, choose R
sufficiently large to satisfy Proposition 2.5 based on these parameters. Then, chooose
κ0 sufficiently small based on Definition 2.8 and Lemma 2.10 of Sect. 2.3 to obtain
minorization.

2.6 Notation

We use the notation f � g if there exists a constant C > 0 such that f ≤ Cg
where C is independent of the parameters of interest. Sometimes we use the notation
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f ≈a,b,c,... g to emphasize the dependence of the implicit constant on the parameters,
e.g. C = C(a, b, c, ...). We denote f ≈ g if f � g and g � f . In this work, such
implicit constants never depend on ω, κ , t , (ut ) (the velocity), or (gt ) (the passive
scalar).

Throughout,Rd is endowedwith the standard Euclidean inner product (·, ·) and cor-
responding norm |·|.We continue towrite |·| for the correspondingmatrix norm.When
the domain of the L p space is omitted it is understood to be T

d : || f ||L p = || f ||L p(Td ).

We use the notationsEX = ∫

Ω
X(ω)P(dω) and ||X ||L p(Ω) =

(

E |X |p)1/p.When (zt )
is a Markov process, we write Ez,Pz for the expectation and probability, respectively,
conditioned on the event z0 = z. We use the notation || f ||Hs =∑

k∈Zd |k|2s | f̂ (k)|2
(denoting f̂ (k) = 1

(2π)d/2

∫

Td e−ik·x f (x)dx the usual complex Fourier transform).We

occasionally use Fourier multiplier notation m̂(∇) f (ξ) := m(iξ) f̂ (ξ). Additionally,
we will often use r0 to denote a number in ( d2 +1, 3) such that the Sobolev embedding
Hr0 ↪→ W 1,∞ holds.

We denote PT
d ∼= T

d×Pd−1 for projective bundle.We often abbreviate TvPT
d =

T(x,v)PT
d for the tangent space of PT

d at (x, v) as the T
d factor is flat. We are often

working with the Hilbert spaces W × TvPT
d and H × TvPT

d . For these spaces we
denote the inner product 〈·, ·〉W (respectively H) and correspondingly for the norms
as the finite-dimensional contribution to the inner product is unambiguous. For linear
operators A : W × TvPT

d → W × TvPT
d we similarly denote the operator norm

||A||W and for linear operators A : W × TvPT
d → R we use the notation ||A||W∗

(analogously for H). For K ⊂ K, define ΠK : W × PT
d → K × PT

d to be the
orthogonal projection onto the subset of modes in K. For n ∈ N, Πn denotes the
orthogonal projection onto the modes with k ∈ K, |k| ≤ n.

3 Preliminaries

3.1 Proof of Proposition 2.5

For completeness, we provide a proof of our criterion for minorization, Proposition
2.5.

Proof of Proposition 2.5 Let z1, z2 ∈ {V ≤ R} be as in the statement, and let z∗ be as
in hypothesis (a) of Proposition 2.5. Fix ζ = 1

2 and the corresponding value of ε as in
hypothesis (b). By hypothesis (b), we have

P1/2(zi , A) ≥ η ν̂zi (A) , ν̂zi (A) := P1/2(zi , A ∩ Bε(z∗))
P1/2(zi , Bε(z∗))

Consequently we can write P1/2(zi , ·) as a convex combination of probability mea-
sures

P1/2(zi , ·) = ην̂zi (·)+ (1− η)ν̃zi (·) .
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Using P(x, A) = ∫

Z P1/2(y, A)P1/2(x, dy), we estimate

|P(z1, A)− P(z2, A)|
≤ η

∫

Bε (z∗)

∫

Bε (z∗)
|P1/2(w1, A)− P1/2(w2, A)|ν̂z1(dw1)ν̂z2(dw2)

+ (1− η)

Using hypothesis (a) and our choice of ε, there holds

|P(z1, A)− P(z2, A)| ≤ 1− η

2
,

which provides the desired minorization with α = 1− η
2 . ��

3.2 Stochastic Navier–Stokes and the super-Lyapunov property

Following the convention used in [13,14,78], we define a natural real Fourier basis on
L2 by defining for each m = (k, i) ∈ K := Z

d
0 × {1, . . . , d − 1}

em(x) =
{

cdγ i
k sin(k · x), k ∈ Z

d+
cdγ i

k cos(k · x), k ∈ Z
d−,

whereZ
d
0 := Z

d\ {0, . . . , 0},Zd+ = {k ∈ Z
d
0 : k(d) > 0}∪{k ∈ Z

d
0 : k(1) > 0, k(d) =

0} andZ
d− = −Z

d+, and for each k ∈ Z
d
0 , {γ i

k }d−1i=1 is a set of d − 1 orthonormal vectors
spanning the plane perpendicular to k ∈ R

d with the property that γ i
−k = −γ i

k . The

constant cd =
√
2(2π)−d/2 is a normalization factor so that em(x) are a complete

orthonormal basis of L2. Note that in dimension d = 2 K = Z
d
0 , hence γ 1

k = γk is
just a vector in R

2 perpendicular to k and is therefore given by γk = ±k⊥/|k|. We
assume that Q can be diagonalizedwith respect to {em}with eigenvalues {qm} ∈ �2(K)

defined by

Qem = qmem, m = (k, i) ∈ K.

Note that Assumption 1 is equivalent to

|qm | ≈ |k|−α, m = (k, i)

We will write the Navier–Stokes system as an abstract evolution equation on H by

∂t u + B(u, u)+ Au = QẆ =
∑

m∈K

qmemẆ
m, (3.1)

where

B(u, v) =
(

Id−∇(−Δ)−1∇·
)

∇ · (u ⊗ v)
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Au =
{

−νΔu if d = 2

−ν′Δu + νΔ2u if d = 3.

The (ut ) process with initial data u is defined as the solution to (3.1) in the mild sense
[31,54]:

ut = e−t Au −
∫ t

0
e−(t−s)AB(us, us)ds +

∫ t

0
e−(t−s)AQdW (s)

︸ ︷︷ ︸

=:Γt

, (3.2)

where the above identity holds P almost surely for all t > 0. The random process Γt

is referred to as the stochastic convolution for this additive SPDE. For (3.2), we have
the following well-posedness theorem.

Proposition 3.1 ([31,54]) For each of Systems 1–2, we have the following. For all
initial u ∈ H ∩ Hσ ′ with σ ′ < α − d

2 and all T > 0, p ≥ 1, there exists a P-a.s.
unique solution (ut ) to (3.2)which isFt -adapted, andbelongs to L p(Ω;C([0, T ];H∩
Hσ ′)) ∩ L2(Ω; L2(0, T ;Hσ ′+(d−1))).

Additionally, for all p ≥ 1 and 0 ≤ σ ′ < σ ′′ < α − d
2 ,

Eu sup
t∈[0,T ]

||ut ||pHσ ′ �T ,p,σ ′ 1+ ||u||pH∩Hσ ′

Eu

∫ T

0
||us ||2Hσ ′+(d−1) ds �T ,δ 1+ ||u||2Hσ ′

Eu sup
t∈[0,T ]

(

t
σ ′′−σ ′
2(d−1) ||ut ||Hσ ′′

)p

�p,T ,σ ′,σ ′′ 1+ ||u||pHσ ′ .

Wenowstate a precise version of the super-Lyapunovproperty for the drift functions
Vβ,η(u) := (1+ ‖u‖2H)β exp(η‖u‖2W). If d = 2 define Q = 64 supm=(k,i)∈K

|k| |qm |,
and if d = 3 define Q = 64 supm=(k,i)∈K

|qm |. Define η∗ = ν/Q.

Lemma 3.2 (Lemma 3.7 in [13]) Let (ut ) solve either Systems 1 or 2. There exists a
γ∗ > 0, such that for all 0 ≤ γ < γ∗, T ≥ 0, r ∈ (0, 3), C0 ≥ 0, and V (u) = Vβ,η

where β ≥ 0 and 0 < eγ T η < η∗, there exists a constant C = C(γ, T , r ,C0, β, η) >

0 such that the following estimate holds:

Eu exp

(

C0

∫ T

0
||us ||Hr ds

)

sup
0≤t≤T

V eγ t
(ut ) ≤ CV (u). (3.3)

Remark 3.3 It suffices to take γ∗ = ν
8 .

Remark 3.4 Note that Lemma 3.2 is strictly stronger than a drift condition. The
improvement in the power of V is sometimes called a super-Lyapunov property and it
provides an important strengthening of the notion of a drift condition. To see that (3.3)
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implies a drift condition, we write P1ϕ(u) = Euϕ(u1) as the Markov semi-group for
Navier–Stokes and apply Jensen’s inequality with (3.3) to deduce that ∃CL > 0,

P1V ≤ (eCL V )e
−γ

. (3.4)

Hence, ∀δ > 0, ∃Cδ > 0 such that P1V ≤ δV +Cδ . Furthermore, the bound (3.4) can
be iterated with repeated applications of Jensen’s inequality (c.f. [Proposition 5.11,
[48]]) to produce

PnV ≤ e
CL

e−γ

1−e−γ n V e−γ n
.

3.3 Jacobian estimates

In the course of this paper, we require a variety of Jacobian estimates for the projective
process (ut , xκ

t , vκ
t ) onH×PT

d (defined in Sect. 2.4). Analogous estimateswhen κ =
0were derived in [Section 3; [13]] and the same estimates apply here aswell (uniformly
in κ). This is because the Lagrangian and projective processes were estimated by L∞
estimates on the velocity (and its gradients), and hence are not sensitive to the noise
path of W̃t and so do not depend on κ . Since no real changes are needed, we will
merely state the necessary lemmas here and refer the reader to [Section 3; [13]] for
proofs.

Let us establish some useful shorthand notation. Recall the projective process
(ẑκt ) = (ut , xκ

t , vκ
t ) solves the abstract SDE in H× PT

d

∂t ẑ
κ
t = F(ẑκt )+ QẆt +

√
2κ ˙̃Wt .

wherewe view QẆt and
˙̃Wt as extended toH×Tvκ

t
PT

d (wewill abbreviate TvPT
d =

T(x,v)PT
d ) in the obvious manner and for each ẑ = (u, x, v) ∈ H× PT

d we write

F(ẑ) =
⎛

⎝

−B(u, u)− Au
u(x)

(I − v ⊗ v)(Du(x)v)

⎞

⎠ .

The Jacobian process J κ
s,t denotes the Fréchet derivative of the solution ẑ

κ
t with respect

to the value at time s < t . Hence, J κ
s,t solves the operator-valued equation

∂t J
κ
s,t = DF(ẑκt )J

κ
s,t , J κ

s,s = Id .

Additionally we let K κ
s,t :W × Tvκ

t
PT

d →W × Tvκ
s
PT

d denote the adjoint of J κ
s,t ,

in the sense that

〈

f , J κ
s,tξ

〉

W = 〈

K κ
s,t f , ξ

〉

W .
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A straightforward calculation (see [48]) shows that K κ
s,t solves the backward-in-time

equation

∂s K
κ
s,t = −DF(ẑκs )

∗K κ
s,t , K κ

t,t = I ,

where DF(ẑκs )
∗ :W× Tvκ

s
PT

d →W× Tvκ
s
PT

d is the adjoint to DF(ẑκs ).
In what follows, we will find it convenient to let z̃ = (ũ, x̃, ṽ) ∈ W × Tvκ

s
PT

d be
an initial perturbation and denote

z̃κt := (ũt , x̃
κ
t , ṽκ

t ) = J κ
s,t z̃ ∈W× Tvκ

t
PT

d ,

which readily solves the linear evolution equation

∂t z̃t = DF(ẑt )z̃t , z̃s = z̃.

Wenow state the necessary Jacobian estimates. As usual, all constants are implicitly
independent of κ .

Lemma 3.5 ∀σ > d
2 + 1, ∀r ∈ ( d2 + 1, 3), ∃C, q ′ > 0 such that the following holds

path-wise

||ũt ||W ≤ ||ũ||W exp

(

C
∫ t

s
||uτ ||Hr dτ

)

∣
∣
∣
∣J κ

s,t

∣
∣
∣
∣
Hσ→Hσ � exp

(

C
∫ t

s
||uτ ||Hr dτ

)(

1+ 〈t − s〉3 sup
s<τ<t

||uτ ||q
′

Hσ

)

.

Lemma 3.6 (Jacobian bounds in expectation) For all σ and all η > 0, there is a
constant CJ such that the following holds for all 1 ≤ p < ∞,

sup
s≤t≤1

E
∣
∣
∣
∣J κ

s,t

∣
∣
∣
∣
p
Hσ→Hσ ≤ V p

q ′,η(us) exp (pCJ ) .

Lemma 3.7 Let γ ∈ [0, α− d
2 ) and r ∈ ( d2 + 1, 3). Then, ∃κ′ such that the following

holds path-wise for 0 ≤ s ≤ t ≤ 1:

(t − s)
γ

2(d−1)
∣
∣
∣
∣J κ

s,t

∣
∣
∣
∣
W→Hγ � exp

(

C
∫ t

s
||uτ ||Hr dτ

)(

1+ sup
τ∈(s,t)

||uτ ||κ′
Hσ

)

.

Lemma 3.8 ∀σ > d
2 + 1, ∀r ∈ ( d2 + 1, 3), ∃C, q ′ > 0 such that the following hold

path-wise

∣
∣
∣
∣K κ

s,t

∣
∣
∣
∣
W→W � exp

(

C
∫ t

s
||uτ ||Hr dτ

)

∣
∣
∣
∣K κ

s,t

∣
∣
∣
∣
H→H � exp

(

C
∫ t

s
||uτ ||Hr dτ

)(

1+ 〈t − s〉3 sup
s<τ<t

||uτ ||q
′

Hσ

)

.
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3.4 Malliavin calculus preliminaries

In order to make hypoellipticity arguments in infinite dimensions, we apply Malliavin
calculus. We will be dealing with variables X ∈ W ×M, where M = PT

d ,Dc

or trivial variations thereof, and assume that X is a measurable function of a Wiener
process W = (Wt ) on L2 × R

M . The Malliavin derivative Dh X of X in a Cameron–
Martin direction h = (ht ) ∈ L2(R+,L2 × R

M ) is then defined by

Dh X(W ) := lim
ε→0

ε−1
[

X

(

W + ε

∫ ·

0
hsds

)

− X(W )

]

when the limit exists inW×M. If the above limit exists, we say that X isMalliavin
differentiable. In practice, the directional derivative Dh X admits a representation of
the form

Dh X =
∫ ∞

0
Ds Xhs ds,

where for a.e. s ∈ R+, Ds X is a Frèchèt derivative and defines a random, bounded
linear operator from L2 × R

M to W ×M (see [63] for more details). It is standard
that if Xt is a process adapted to the filtration Ft generated by Wt , then Ds Xt = 0 if
s ≥ t .

For real-valued random variables, the Malliavin derivative can be realized as a
Fréchet differential operator D : L2(Ω) → L2(Ω; L2(R+;L2 × R

M )). The adjoint
operator D∗ : L2(Ω; L2(R+;L2 × R

M )) → L2(Ω) is referred to as the Skorohod
integral, whose action on h ∈ L2(Ω; L2(R+;L2 × R

M )) we denote by

∫ ∞

0
〈ht , δWt 〉L2 := D∗h.

The Skorohod integral is an extension of the usual Itô integral; see [48,63]. Above,
we write 〈·, ·〉L2 for the inner product on L2 × R

M , and throughout will suppress
dependence of inner products on finite-dimensional factors. One moreover has the
following version of Itô isometry (see [63] or [30]):

E
(∫ ∞

0
〈ht , δWt 〉L2

)2

≤ E
∫ ∞

0
||ht ||2L2 + E

∫ ∞

0

∫ ∞

0
||Dsht ||2L2→L2 dsdt .

A fundamental result in the theory ofMalliavin calculus is theMalliavin integration
by parts formula.We stated the result for a process (ẑt )which takes values inH×PT

d

(see e.g. [30,63]); only trivial modifications are needed to state for the other processes
we apply Malliavin calculus to.

Proposition 3.9 Let ψ be a bounded Fréchét differentiable function onH× PT
d with

bounded derivatives and let ht be any process satisfying

E
∫ T

0
||ht ||2L2 dt + E

∫ T

0

∫ T

0
||Dsht ||2L2→L2 dsdt < ∞ .
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Then, the following relation holds

EDhψ(ẑT ) = E
(

ψ(ẑT )

∫ T

0
〈hs, δWs〉L2

)

.

4 Spectral theory for twistedMarkov semigroups

The primary aim of this section is to prove Proposition 2.15, which summarizes the
spectral picture we will use for the semigroups P̂κ,p

t to construct our drift condition.
First, we outline the basic boundedness, mapping, and convergence properties of the
projective P̂κ

t and twisted P̂κ,p
t Markov semigroups. Starting with p = 0, in Sect. 4.2

we establish κ-uniform spectral gaps in C̊V for P̂κ
t (Corollary 4.13), while in Sect.

4.3 we establish κ-uniform spectral gaps for P̂κ
T0

in C̊1
V , where T0 > 0 is a fixed

time chosen large (κ independent). In Sect. 4.4, we collect the remaining ingredients
necessary to apply our spectral perturbation arguments to conclude Proposition 2.15.

4.1 Basic properties

4.1.1 Mapping and semigroup properties

Lemma 4.1 For all p, κ ∈ [0, 1], P̂κ,p
t is a bounded (uniformly in p, κ) linear operator

CV → CV , satisfies the mapping P̂κ,p
t (C̊V ) ⊂ C̊V , and moreover {P̂κ,p

t }t≥0 defines
a C0-semigroup C̊V → C̊V .

Proof Uniform boundedness in κ for p �= 0 follows from the representation

P̂κ,p
t ψ(u, x, v) = E(u,x,v) exp

(

−p
∫ t

0
H(us, x

κ
s , vκ

s ) ds

)

ψ(ut , x
κ
t , vκ

t ) (4.1)

of P̂κ,p
t as a Feynman–Kac semigroup with potential H(u, x, v) := 〈v, Du(x)v〉,

together with Lemma 3.2. Since the
√

κW̃t noise applied to the Lagrangian flow is
additive, the C̊V mapping property follows as in [Lemma 5.3 (a); [13]] with no changes
and the strong continuity follows as in [Proposition 5.5; [13]]. ��
Lemma 4.2 There exists a time T0 > 0 such that ∀p, κ ∈ [0, 1], P̂κ,p

T0
is a bounded

(uniformly in p, κ) linear operator C1
V → C1

V and satisfies the mapping property

P̂κ,p
t (C̊1

V ) ⊂ C̊1
V .

Proof The uniform-in-κ boundedness follows from the representation (4.1) and the
argument in [Lemma 5.2 (a); [13]]. The C̊1

V → C̊1
V mapping property follows as in

[Lemma 5.3 (b); [13]]. ��
4.1.2 Convergence results as p → 0

Next we show that P̂κ,p
t → P̂κ

t uniformly in κ as p → 0 in various senses. Both
lemmas follow, as in [Lemma 5.2 (b); [13]], from (4.1) and Lemma 3.2.
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Lemma 4.3 For fixed t > 0, the following uniform-in-κ convergence holds:

lim
p→0

sup
κ∈[0,1]

‖P̂κ,p
t − P̂κ

t ‖CV = 0 .

Lemma 4.4 For any fixed T ≥ T0, the following uniform-in-κ convergence holds:

lim
p→0

sup
κ∈[0,1]

‖P̂κ,p
T − P̂κ

T ‖C1
V
= 0 .

4.2 Spectral picture for P̂�
t in C̊V

As the drift conditions are settled by Lemma 2.11, our main task in applying Theorem
2.7 is to establish the uniform minorization conditions contained in Proposition 2.16.

4.2.1 Proposition 2.16 (a): uniform strong Feller

The following is more than sufficient to imply Proposition 2.16 (a). The result follows
from checking uniformity in the argument used to prove [Proposition 2.12, [14]]
(which in turn builds from [35]). We provide a brief sketch.

Lemma 4.5 There exists a, b > 0 such that there exists a continuous, monotone
increasing, concave function X : [0,∞) → [0, 1] with X(r) = 1 for r > 1 and
X(0) = 0 such that the following holds uniformly in κ < 1, dH(z1, z2) < 1, and
t ∈ (0, 1):

∣
∣
∣P̂κ

t ϕ(z1)− P̂κ
t ϕ(z2)

∣
∣
∣ ≤ X

(
dH(z1, z2)

ta

)

(1+
∣
∣
∣

∣
∣
∣z1
∣
∣
∣

∣
∣
∣

b

H
) ||ϕ||L∞ .

Proof It suffices to consider vt ∈ S
d−1; see [Section 6.1 of [14]] for discussion. Define

the following augmented system (denoting Πv = I − v ⊗ v),

∂t ut = −B(ut , ut )− Aut + QẆt

∂t xt = ut (xt )+
√
2κ ˙̃Wt

∂tvt = Πvt Dut (xt )vt

∂tmt = Ṁt ,

where Mt ∈ R
2d is a finite dimensional Wiener process independent from Wt and

W̃t , and mt = (mi
t )
2d
i=1 is a diffusion on R

2d . We denote this augmented process by
wt = (ut , xt , vt ,mt ) ∈ H ×M, where M = T

d × S
d−1 × R

2d , which satisfies the
abstract SPDE

∂twt = F̂(wt )− Awt + Q̂Ẇt , (4.2)
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where F̂ and Q̂Ẇ are given by

F̂(u, x, v,m) =

⎛

⎜
⎜
⎝

−B(u, u)

u(x)
ΠvDu(x)v

0

⎞

⎟
⎟
⎠

, Q̂Ẇ =

⎛

⎜
⎜
⎝

QẆ√
2κ ˙̃Wt

0
Ṁ

⎞

⎟
⎟
⎠

(with the obvious extended definition Aw = (−Au, 0, 0, 0)). We similarly denote the
associated Markov semigroup as P̃κ

t . Analogously to [14], we prove uniform strong
Feller for the augmented process (4.2), which then implies the corresponding result
for the original process. As in [14,35] we fix a smooth, non-negative cutoff function
χ satisfying

χ(z) =
{

0 z < 1

1 z > 2

and let χρ(x) = χ(x/ρ) for ρ > 0. We then define a regularized drift Fρ(w) by

Fρ(u, x, v,m) = (1− χ3ρ(||u||H))F̂(u, x, v,m)+ χρ(‖u‖H)L(v,m),

where L(v,m) is a bounded vector-field on H×M given by

L(v,m) =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

0
∑d

j=1 ê j m j
(

1+|m j |2)1/2
Πv

∑d
j=1 ê j md+ j

(

1+|md+ j |2)1/2
0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

Here, {ê j }dj=1 the canonical basis for R
d , and we are using that for each v ∈ S

d−1,
{Πve j }dj=1 spans TvS

d−1. The cutoff/regularized process w
ρ
t = (uρ

t , x
ρ
t , v

ρ
t ,mt ) then

satisfies the SPDE (replacing Q̂ �→ Q for notational simplicity),

∂tw
ρ
t = Fρ(w

ρ
t )− Aw

ρ
t + QẆt . (4.3)

Denote P̃κ;ρ
t the Markov semigroup associated with the process (4.3). See the dis-

cussions in [14,35,68] on the utility of this cutoff. The main difficulty is to follow the
proof of [Proposition 6.1; [14]] and verify that the following gradient bound holds
uniformly in κ .

Lemma 4.6 There exists a, b, ρ∗, T∗ > 0 all independent ofκ , such that∀ρ ∈ (ρ∗,∞),
∃Cρ (independent of κ) such that for t < T∗ and all ϕ ∈ C2

b (H× PT
d), we have that

w → P̃κ;ρ
t ϕ(w) is Fréchet-differentiable, and satisfies

∣
∣
∣DP̃κ;ρ

t ϕ(w)h
∣
∣
∣ ≤ Cρ t

−a (1+ ||w||bH
)

||ϕ||L∞ ||h||H×Tv PTd
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for all h ∈ H× TvPT
d .

Proof The proof of [Proposition 6.1; [14]] is based on Malliavin calculus (see Sect.
3.4). Specifically, the main step is construct, for each h ∈ H × TvPT

d , a suitably
bounded control g = (gt )t∈[0,T ] such that the remainder

rT = DgwT − DwT h (4.4)

satisfies suitable estimates. First, the semigroup property and theMalliavin integration
by parts formula (Proposition 3.9) imply

DP̃κ;ρ
2T ϕ(w)h = E

(

P̃κ;ρ
T ϕ(wT )

∫ T

0
〈gt , δW (t)〉L2

)

− E
(

DP̃κ;ρ
T ϕ(wT )rT

)

,

where the stochastic integral above is interpreted as a Skorohod integral (Sect. 3.4),
since the control is not necessarily adapted. Lemma 4.6 then follows from a perturba-
tion argument (see [14]) provided we prove the analogue of [Lemma 6.3; [14]]:

Lemma 4.7 For all κ ∈ (0, κ0) where κ0 is a universal constant, and ∀ρ > 0, there
exists constants a∗, b∗ > 0 such that for T sufficiently small (all independent of
κ), there exists a control g = (gt )t∈[0,T ] (in general depending on κ) satisfying the
κ-uniform estimate

E
∫ T

0
||gt ||2L2 dt + E

∫ T

0

∫ T

0
||Dsgt ||2L2→L2 dsdt

�ρ T−2a∗(1+ ||w||H)2b∗‖h‖2H×TvM

with remainder term rT as in (4.4) estimated by

E ||rT ||2H×TvT M �ρ T ||h||2H×TvM .

In order to prove this lemma we need (A) uniform-in-κ estimates on the Jacobians and
Malliavin derivatives as in Section 6.5 of [14] and (B) uniform-in-κ estimates on the
partial Malliavin matrix (specifically, a κ-independent version of [Lemma 6.9; [14]]).

Jacobian and Malliavin estimates analogous to those in [Section 6.5; [14]] follow
essentially verbatim here as well. This is for the same reason as in Sect. 3.3: the esti-
mates on the (xt , vt ) processes are done using L∞ estimates on (ut ) and its derivatives,
and so are insensitive to the specific noise-path of W̃t .

The uniform Jacobian and Malliavin estimates are sufficient to perform the argu-
ments of [Section 6.5; [14]] once one verifies the uniform-in-κ non-degeneracy of the
Malliavin matrix [Lemma 6.9; [14]]. This requires more care. The addition of new
noise directions does not change the uniform spanning property of [Lemma 6.13; [14]]
(the new noise directions cannot help in a κ-independent way, but they are not detri-
mental either). The addition of the new directions adds additional O(κ) or O(

√
κ)

terms, for example, in [Proposition 6.10; [14]]; however, these terms do not present
any new difficulties beyond what is already required to treat the existing terms.
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The additional noise term
√

κW̃t also does not significantly change the time-
regularity estimates of Jacobian because the noise is additive and hence is not directly
present on the Lagragian trajectories (recall time-regularity estimates of the Jacobian
and its approximations play an important role in [Lemma 6.9; [14]]). The

√
κW̃t term

adds additional noise terms (to those already existing) to the expression for the time-
derivatives of the Jacobian. On the other hand, the coefficients are controlled using
the available regularity in H together with BDG, similar to the noise terms that are
already present. We omit these repetitive details for brevity; see [Section 6; [14]] for
more detail. ��

We are now ready to complete the proof of Lemma 4.5. To see the uniformmodulus
of continuity, we proceed as in [Proposition 2.12; [14]] and [35]:

∣
∣
∣P̃κ

t ϕ(z1)− P̃κ
t ϕ(z2)

∣
∣
∣ ≤

∣
∣
∣P̃κ

t ϕ(z2)− P̃κ,ρ
t ϕ(z2)

∣
∣
∣+

∣
∣
∣P̃κ

t ϕ(z1)− P̃κ,ρ
t ϕ(z1)

∣
∣
∣

+
∣
∣
∣P̃

κ,ρ
t ϕ(z1)− P̃κ,ρ

t ϕ(z2)
∣
∣
∣ .

The first two terms are controlled noting that the moment bounds are independent of κ
because this noise only affects the degrees of freedom on the compact manifold PT

d ,
hence by Proposition 3.1, for all b > 0 there holds (recall dH(z1, z2) < 1 so that the
sizes of z j are comparable),

∣
∣
∣P̃κ

t ϕ(z j )− P̃κ;ρ
t ϕ(z j )

∣
∣
∣ � ||ϕ||L∞ P

(

sup
0<s<t

∣
∣
∣

∣
∣
∣z

j
s

∣
∣
∣

∣
∣
∣
H

> ρ

)

� (1+
∣
∣
∣

∣
∣
∣z1
∣
∣
∣

∣
∣
∣

b

H
) ||ϕ||L∞

1

ρb
.

As in [14,35], an adaptation of [Lemma 7.1.5, [31]] combinedwith Lemma 4.6 implies

∣
∣
∣P̃

κ;ρ
t ϕ(z1)− P̃κ;ρ

t ϕ(z2)
∣
∣
∣ � Cε,ρdH(z1, z2)

ta
(1+

∣
∣
∣

∣
∣
∣z1
∣
∣
∣

∣
∣
∣

b

H
)eε

∣
∣
∣
∣z1
∣
∣
∣
∣
2
W ||ϕ||L∞ .

Putting these estimates together implies

∣
∣
∣P̃κ

t ϕ(z1)− P̃κ
t ϕ(z2)

∣
∣
∣ ≤

(
CρdH(z1, z2)

ta
+ 1

ρb

)

(1+
∣
∣
∣

∣
∣
∣z1
∣
∣
∣

∣
∣
∣

b

H
) ||ϕ||L∞ .

Without loss of generality we can assume Cρ is monotone increasing, continuous in
ρ, and satisfies limρ→∞ Cρ = ∞. We define the modulus of continuity by

X(r) := min
ρ∈[ρ∗,∞)

(

Cρr + 1

ρb

)

.

Concavity, continuity, and monotone increasing all follow by definition and the
continuity and monotonicity of Cρ and ρ−b. Finally it suffices to replace X with
min(1, X(r)) since the minimum of two concave, monotone, continuous functions is
still concave and continuous. ��
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4.2.2 Proof of Proposition 2.16(b): uniform topological irreducibility

The uniform topological irreducibility for Proposition 2.16 (b) is proved by a standard
approximate control argument; we include a sketch of the argument for completeness.
Specifically we prove the following.

Lemma 4.8 Fix an arbitrary z∗ ∈ H × PT
d . For all R > 0, ∀ε > 0, ∀T > 0,

∃κ ′0 = κ ′0(ε, T ) and ∃η > 0 such that for all κ ∈ [0, κ ′0] and z ∈ H × PT
d with

||z||H < R,

P̂κ
T (z, Bε(z∗)) > η.

Proof Consider the deterministic, κ = 0, control problem on H× PT
d

∂t ut + B(ut , ut )+ Aut = Qgt
∂t xt = ut (xt )

∂tvt = Πvt Dut (xt )vt .

Let z = (u, x, v) and z∗ = (u′, x ′, v′). By local parabolic regularity (Proposition
3.1) it suffices to take u ∈ H ∩ Hσ ′ for any σ < σ ′ < α − d

2 with ||u||Hσ ′ �
Rmax(1, T

σ−σ ′
2(d−1) ). For simplicity we further assume T = 1; the general case follows

similarly.
The following lemma is standard (see the discussions in [13,43] and the references

therein).

Lemma 4.9 Let u ∈ H ∩ Hσ ′ for σ < σ ′ < α − d
2 be as above. Then ∀ε > 0, ∃δ < ε

and a control g : [0, δ] → L2 such that ||uδ||H ≤ ε/4 and sup0<t<δ ||ut ||H ≤ 3 ||u||H.
Furthermore, sup0<t<δ ||gt ||W is bounded only in terms of t and δ.

The following lemma is essentially [Lemma 7.1; [14]].

Lemma 4.10 Let a ∈ (0, 1
2 ) and suppose ua = 0, (xa, va) = (x, v). There exists

Cg > 0 such that ∀(x, v), (x ′, v′) ∈ PT
d there exists a control g =: gctr ,a satisfying

supt∈(a,1−a)

∣
∣
∣
∣gctr ,at

∣
∣
∣
∣
W ≤ Cg such that u1−a = 0 and (x1−a, v1−a) = (x ′, v′).

The next lemma is essentially [Lemma 6.10; [13]].

Lemma 4.11 Let u′ ∈ H be arbitrary. Then ∀ε > 0, ∃δ � 1 and a control g :
[1 − δ, 1] → L2 such that if ||u1−δ||H ≤ ε

4 , then there holds
∣
∣
∣
∣u1 − u′

∣
∣
∣
∣
H < ε

4 ,
sup1−δ≤t≤1 ||ut ||H ≤ 3

∣
∣
∣
∣u′
∣
∣
∣
∣
H, and d(x1−δ, x1)+ d(v1−δ, v1) � δ

∣
∣
∣
∣u′
∣
∣
∣
∣
H.

Lemmas 4.9, 4.10, 4.11 exhibit an approximate control of the deterministic control
problem (4.5). Let (gt ) be such a deterministic control. As in [Lemma 7.3, [14]] we
have ∀ε, ∃η such that

P

(

sup
t∈(0,1)

∣
∣
∣
∣

∣
∣
∣
∣
Γt −

∫ t

0
e−(t−s)AQgsds

∣
∣
∣
∣

∣
∣
∣
∣
L∞t (0,1;H)

< ε

)

> η ,
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where Γt is the stochastic convolution as in (3.2).
A remaining point is to bound the contribution of the noise term

√
2κW̃t applied

directly to the Lagrangian flow. By a standard argument (using, e.g., the reflection
principle applied to supt∈(0,1) W̃

(i)
t for each component W̃ i

t ), we have the estimate

P

(

sup
t∈(0,1)

√
2κ|W̃t | > ε

)

� exp

(

− ε2

4d2κ

)

(4.5)

for ε > 0 fixed and all κ sufficiently small (recall d = 2 or 3). From here, Lemma 4.8
easily follows from a standard stability argument as in [Lemma 7.3; [14]]. ��

4.2.3 �-uniform spectral gap for P̂�
t in C̊V

We now apply Theorem 2.7 with the Lypaunov function V = Vβ,η (Lemma 2.11) and
the minorization condition guaranteed by Proposition 2.16 (c.f. Proposition 2.5).

Proposition 4.12 There exist constantsC, γ̂ > 0 (depending on the Lyapunov function
V ) such that the following holds for all κ > 0 sufficiently small.

There is a unique stationary measure νκ for the projective process inH× PT
d and

moreover, for all ψ ∈ CV and t ≥ 0, we have

∥
∥
∥
∥
P̂κ
t ψ −

∫

H×PTd
ψ dνκ

∥
∥
∥
∥
CV

≤ Ce−γ̂ t ||ψ ||CV
.

Corollary 4.13 There exists c0 ∈ (0, 1) (independent of κ) such that, regarding P̂κ
t as

a C0-semigroup of operators on C̊V , we have that for all t > 0, the eigenvalue 1 is
simple, dominant and isolated, and for all t ≥ 0 and κ sufficiently small

σ(P̂κ
t ) \ {1} ⊆ Bct0

(0).

4.3 Spectral picture for P̂�
T0
in C̊1V

Following [13], a spectral gap for P̂κ
T0
in C̊1

V will be deduced from the uniform spectral
gap in CV and the following Lasota–Yorke type gradient bound. The proof requires
checking the κ-uniformity of the analogous argument in [Proposition 4.6; [13]] (which
in turn follows [46,48] closely with some minor variations).

Proposition 4.14 (Lasota–Yorke estimate) ∀β ′ ≥ 2 sufficiently large and ∀η′ ∈
(0, η∗), ∃C1, κ > 0 such that the following holds ∀t > 0, and ẑ = (u, x, v) ∈
H× PT

d :

‖DP̂κ
t ψ(ẑ)‖H∗ ≤ C1Vβ ′,η′(u)

(√

P̂κ
t |ψ |2 (ẑ)+ e−κt

√

P̂κ
t ‖Dψ‖2H∗(ẑ)

)

.
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Proof The proof shares a few connections with that of Lemma 4.6 above. The proof is
again based on Malliavin calculus and requires (A) uniform-in-κ estimates on Jaco-
bians and Malliavin derivatives; and (B) uniform-in-κ estimates on the low-mode
non-degeneracy of the Malliavin matrix (in this case, a different Malliavin matrix
however). The Jacobian and Malliavin derivative estimates carry over in a κ-uniform
manner as in Sect. 3.3.

For an arbitrary control (gt ) : [0, T ] → L2 × T
d , denote the residual

ρt = Jtξ −Dg ẑt .

Then, Proposition 3.9 yields

DP̂tψ(ẑ)ξ = EDψ(ẑt )Jtξ = EDψ(ẑt )ρt + Eψ(ẑt )
∫ t

0
〈gs, δWs〉L2 .

Following the basic idea of [46,48] and [Proposition 4.6; [13]], the goal is to find a
control (gt ) such the latter Skorohod integral is uniformly bounded (for our case, in
both t and κ) and the former term is decaying exponentially (uniformly in κ).

In this notation, the Malliavin matrix M of interest here takes the following form
for ξ ∈W× Tvt PT

d :

〈Ms,tξ, ξ
〉

W =
∑

k∈K

∫ t

s
q2k
〈

ek, Kr ,tξ
〉2
W dr

+
∑

k∈{1,..,d}

∫ t

s
2κ
〈

êk, Kr ,tξ
〉2
W dr , (4.6)

where
{

êk
}

k∈{1,..,d} denotes the canonical orthonormal basis on R
d . One of the main

steps of the proof is to verify the non-degeneracy estimate [Proposition 4.11; [13]]
uniformly in κ . The reasons why this non-degeneracy extends to (4.6) in a κ-uniform
way are similar to those given in the proof of Lemma 4.6. First, the inclusion of new
noise directions does not change the spanning of the brackets [Lemma 4.15; [13]]
(it neither helps nor hinders in a κ-independent way). Second, the additional terms
O(κ) terms in (4.6) and the additional

√
2κ ˙̃Wt in dxκ

t do not significantly change the
latter arguments either: neither the time-regularity nor the space-regularity from the
additional derivatives pose a significant new challenge in the analogues of [Lemma
4.18, Lemma 4.19; [13]]. Hence, the proof of [Proposition 4.6; [13]] carries over in a
κ-uniform manner and we deduce Proposition 4.14. ��

Astraightforward argument (see [Proposition 4.7; [13]]) combines Proposition 4.12
with Proposition 4.14 and the super-Lyapunov property (Remark 3.4) to obtain the
desired geometric ergodicity in C1

V .

Proposition 4.15 For all V = Vβ,η with β sufficiently large and η ∈ (0, η∗), we
have that P̂κ

T0
satisfies the following for T0 sufficiently large (with T0 and the implicit

constant independent of κ): for ψ ∈ C1
V ,
∫

ψ dνκ = 0, we have
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‖P̂κ
nT0ψ‖C1

V
� e−αnT0 ||ψ ||C1

V
.

With T0 fixed once and for all, we immediately deduce the following.

Corollary 4.16 There exists c′0 ∈ (0, 1) and κ0 > 0 such that for all κ ∈ [0, κ0],
the eigenvalue 1 is simple, dominant, and isolated for the operator P̂κ

T0
on C̊1

V , and
satisfies

σ(P̂κ
T0) \ {1} ⊂ Bc′0(0).

4.4 Spectral picture for P̂�,p
t in C̊V and C̊1V

We now proceed to prove the spectral pictures for P̂κ,p
t inCV andC1

V as in Proposition
2.15.

4.4.1 Proof of Proposition 2.15(a): Spectral picture in CV

Throughout, p0, κ0 > 0 are fixed small constants, taken smaller as need be in the
following arguments. Let p ∈ [−p0, p0], κ ∈ [0, κ0].

We next establish the κ-uniform spectral gap in (2.7). We first establish some
preliminary resolvent estimates. Below, πκ denotes the projection φ �→ ∫

φ dνκ (the
latter interpreted as a constant-valued function) on CV . Recall that πκ is a spectral
projection for P̂κ

t corresponding to the dominant eigenvalue 1. Below, we write P̂κ
t =

πκ + Rκ
t , where Rκ

t := P̂κ
t ◦ (I − πκ).

Lemma 4.17 (a) We have ‖πκ‖CV =
∫

V dμ.
(b) For any z ∈ C \ {0, 1}, we have

(z − πκ)−1 = z−1
(

I − 1

1− z
πκ

)

. (4.7)

In particular, ∀δ > 0, ∃Cδ > 0 such that ‖(z − πκ)−1‖CV ≤ Cδ on the set
{|z − 1| ≥ δ} ∩ {|z| ≥ 3/4}.

(c) Fix t > 0 sufficiently large so that ‖Rκ
t ‖CV ≤ 1/(2Cδ) (independently of κ; see

Proposition 4.12). Then, ‖(z− P̂κ
t )−1‖CV �δ 1 for all z ∈ {|z− 1| ≥ δ} ∩ {|z| ≥

3/4}.
Proof of Lemma 4.17 For (a) one checks |πκφ| = ∣

∣
∫

φ dνκ
∣
∣ ≤ ‖φ‖CV

∫

V dμ. Equal-
ity is achieved at the function φ ≡ V . For (b), (4.7) can be deduced using a Neumann
series for |z| > 2

∫

V dμ and follows for z ∈ C \ {0, 1} by analytic continuation,
noting that the Neumann series expression simplifies due to the idempotent property
(πκ)n = πκ for all n ≥ 1. The estimate in (c) follows from Proposition 4.12, the
relation

(z − P̂κ
t )−1 = (I − (z − πκ)−1Rκ

t )−1(z − πκ)−1 ,

123



Almost-sure enhanced dissipation and uniform-in-diffusivity… 815

and the use of (4.7) item (b) to estimate ‖(z − πκ)−1‖CV from above. ��
We now complete the proof of Proposition 2.15 (a). Fix δ > 0, δ < 1/16 and

fix t > 0 sufficiently large so ‖Rκ
t ‖CV ≤ 1/2 for all κ ∈ [0, κ0]. We first show

σ(P̂κ,p
t ) ⊂ {|z| < 3/4} ∪ {|z − 1| < δ}. Fix z ∈ {|z| ≥ 3/4} ∩ {|z − 1| ≥ δ}. Then

z − P̂κ,p
t = (z − P̂κ

t )(I − (z − P̂κ
t )−1(P̂κ,p

t − P̂κ
t )).

Lemma 4.3 indicates that taking p small, we can make ‖P̂κ,p
t − P̂κ

t ‖CV arbitrarily
small. On the other hand, by Lemma 4.17 (c), ‖(z − P̂κ

t )−1‖−1 is bounded uniformly
from below in terms of δ > 0 above. Therefore, for any δ′ > 0, there exists p0 > 0
so that for all p ∈ [−p0, p0], we have ‖P̂κ,p

t − P̂κ
t ‖CV < δ′‖(z − P̂κ

t )−1‖−1.
For such p, κ and z, it now follows that (z − P̂κ,p

t )−1 exists and is bounded as a
CV operator, hence

σ(P̂κ,p
t ) ⊂ {|z| < 3/4} ∪ {|z − 1| < δ} .

At this point, the spectral projector

π p,κ = 1

2π i

∫

|z−1|=δ

(z − P̂κ,p
t )−1dz (4.8)

is nowdefined.Repeating familiar estimates,π p,κ isCV close toπκ = 1
2π i

∫

|z−1|=δ
(z−

P̂κ
t )−1dz, and hence must be rank 1. We conclude that there is a unique real, positive

eigenvalue e−tΛ(p,κ) in {|z − 1| < δ}.
At this point, we have shown that for some fixed t the desired spectral picture holds.

Passing from continuous to discrete time can now be carried out by repeating verbatim
the arguments in the proof [Proposition 2.16 in Section 5.2 of [13]].

4.4.2 Proof of Proposition 2.15(b): Spectral picture in C1V

Completing the proof of Proposition 2.15(b) is by now straightforward. From the
mapping and boundedness in Lemma 4.2 and the convergence in Lemma 4.4, coupled
with the C1

V uniform spectral gap in Corollary 4.16, Lemma 4.17 holds with C1
V

replacing CV on taking t ≥ T0. The desired spectral picture at any time T sufficiently
large now follows from the arguments given for CV in Sect. 4.4.1.

5 Uniform spectral perturbation of twistedMarkov semigroups

Our goal in this section is to complete the proof of Proposition 2.12. Given Proposition
2.15, this is mainly a matter of proving the convergence of the dominant eigenval-
ues/functions as κ → 0, i.e. Λ(p, κ) → Λ(p, 0) and ψp,κ → ψp,0 as in Proposition
2.19.
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5.1 Preliminary estimates in the limit � → 0

Below, πκ,p denotes the spectral projector for P̂κ,p
T , regarded either on CV or C1

V .
The following lemma provides uniform estimates and convergence on the spectral
projectors. It is a straightforward consequence of the resolvent arguments Lemma
4.17 and Sect. 4.4.1 above.

Lemma 5.1 We have

lim
p→0

sup
κ∈[0,κ0]

‖πκ,p − πκ‖C1
V→C1

V
= 0 . (5.1)

In particular, Proposition 2.12 (b) (ii) holds: for all p0, κ0 sufficiently small we have

sup
p∈[0,p0]

sup
κ∈[0,κ0]

‖ψp,κ‖C1
V

� 1 .

Proof Recall from (4.8) the formula for πκ,p. By repeating the arguments used to
bound π p,κ in the proof of Proposition 2.15 above, the convergence (5.1) follows
from Lemma 4.4. ��

Obviously, a critical part of our proof has to do with the precise sense in which
the semigroups P̂ p

t and P̂κ,p
t are close. For this, we start by understanding how the κ

projective process (xκ
t , vκ

t ) and the κ = 0 process (xt , vt ) converge to each other in a
suitable sense.

Lemma 5.2 The following estimate holds for each t > 0:

Ẽ sup
s∈[0,t]

d(xκ
s , vκ

s ; xs, vs) �
√

κt exp

(∫ t

0
‖∇us‖∞ds

)

.

Proof This follows from the fact that

sup
s∈[0,t]

d(xκ
s , vκ

s ; xs, vs) �
∫ t

0
‖∇us‖∞ sup

r∈[0,s]
d(xκ

r , vκ
r ; xr , vr )ds +

√
2κ sup

s∈[0,t]
|W̃s |

Taking expectation with Ẽ, using Ẽ sups∈[0,t] |W̃s | � t1/2, and applying Grönwall’s
lemma gives the result. ��

Next, we show the continuity in the strong operator topology of P p,κ
t φ in CV as

κ → 0. Below, V = Vβ,η as in Lemma 2.11.

Lemma 5.3 Assume β is sufficiently large. Then, there exists p0 > 0 so that for each
ψ ∈ C̊V , the following holds for any t > 0 fixed:

lim
κ→0

sup
p∈[−p0,p0]

‖P p,κ
t ψ − P p

t ψ‖CV→CV = 0.
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Proof Recall that similar to our proof of strong continuity in [13], in light of the
boundedness of P p,κ

t as κ → 0, it is sufficient to show strong continuity on smooth
cylinder functions ψ ∈ C∞. First note that for such ψ

Ẽ

∣
∣
∣
∣
exp

(∫ t

0
H(zs)ds

)

(ψ(zκt )− ψ(zt ))

∣
∣
∣
∣

�ψ exp

(

p
∫ t

0
‖∇us‖∞

)

Ẽd(xκ
t , vκ

t ; xt , vt )

and in addition

Ẽ

∣
∣
∣
∣
exp

(

p
∫ t

0
H(zκs )ds

)

− exp

(

p
∫ t

0
H(zs)ds

)∣
∣
∣
∣

� p exp

(∫ t

0
p‖∇us‖∞ds

)∫ t

0
‖∇2us‖∞Ẽd(xκ

s , vκ
s ; xs, vs)ds.

Applying Lemma 5.2 gives

|P p,κ
t ψ − P p

t ψ | �ψ

√
κt(1+ p)Eu exp

(

(1+ p)
∫ t

0
‖∇us‖∞ds

)

sup
s∈[0,t]

‖us‖Hσ .

The proof is complete upon using Lemma 3.2 and sending κ → 0. Note that, in fact,
the above estimates are uniform over compact time intervals t ∈ [0, T ]. ��

5.2 Proof of Proposition 2.19: Convergence of
{
Ãp,�

}
and3(p,�)

We are now ready for what is in some sense the crucial step in extending the work of
[13] to prove Theorem 2.1: passing to the limit in the eigenfunction/value relation for
ψp,κ as stated in Proposition 2.19.

Remark 5.4 First, note that all the arguments we have made hold for arbitrary σ ∈
(α−2(d−1), α− d

2 ). Moreover, the corresponding Λ(p, κ) are the same and ψp,κ ∈
CV (Hσ ′ × PT

d) agree onHσ × PT
d for σ ′ < σ with σ ′, σ ∈ (α− 2(d− 1), α− d

2 ).
See [Remark 5.6; [13]] for related discussions.

The first step is to use the uniform bound
∣
∣
∣
∣ψp,κ

∣
∣
∣
∣
C1
V

� 1 to apply the Arzela-Ascoli

theorem in classes of observables to extract limit points of
{

ψp,κ
}

κ∈(0,κ0]. This is a
little subtle due to the interplay between regularity in Hσ versus Hσ ′ and regularity
in the space of observables, CV versus C1

V .

Lemma 5.5 There exists p0, κ0 > 0 such that the following holds. For any p ∈ [0, p0]
and any sequence {κn}∞n=1 ⊂ (0, κ0], κn → 0, there exists an subsequence {κn′ }∞n′=1 ⊆
{κn}∞n=1 and a nonnegative, continuous function ψp,∗ : H × PT

d → R≥0 such that
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for any R > 0, we have

lim
n′→∞

sup
z=(u,x,v)∈H×PT

d

||u||H≤R

∣
∣ψp,κn′ (z)− ψp,∗(z)

∣
∣ = 0.

Proof To start, fix R > 0. Let σ ′ < σ and regard ψp,κ ∈ CV (Hσ ′ × PT
d) for all

p ∈ [0, p0], κ ∈ [0, κ0] as in Remark 5.4. By Corollary 5.1, there exists Cσ ′ > 0 so
that

∣
∣
∣
∣ψp,κ

∣
∣
∣
∣
C1
V (Hσ ′×PTd )

≤ Cσ ′ .

Note that the set DR := {(u, x, v) : u ∈ Hσ ′ , ‖u‖Hσ ≤ R, (x, v) ∈ PT
d} is compact

inHσ ′×PT
d . By theuniformC1

V (Hσ ′×PT
d)bound, it follows that the set

{

ψp,κn |DR

}

is uniformly bounded andHσ ′ -equi-continuous on theHσ ′ -compact setDR . Therefore,
by Arzela-Ascoli, there is a subsequence κn′ → 0 and a (Hσ ′ -uniformly continuous)
function ψp;R : DR → R≥0 such that

lim
n→∞ sup

||z||H≤R

∣
∣ψp,κn (z)− ψp;R(z)

∣
∣ = 0.

By diagonalization, we may refine the subsequence {κn′ } to find a limiting function
ψp;∗ defined over the entire Hσ×PT

d and continuous in this same topology (note that
continuity inHσ ′ × PT

d is stronger than continuity inHσ × PT
d if σ ′ < σ ) such that

ψp,κn converges uniformly to ψp;∗ on bounded sets. The fact that
∣
∣ψp;∗(z)

∣
∣ � V (u)

follows from this convergence and the κ-uniform estimates on ‖ψp,κ‖CV . ��
With Lemma 5.5, we can now pass to the limit in the eigenvalue.

Lemma 5.6 We have limκ→0 Λ(p, κ) = Λ(p, 0).

Proof Let ψ∗ = limn→∞ ψp,κn be a cluster point of {ψp,κ }κ>0 as in Lemma 5.5.
First we show that ψ∗ cannot be identically zero. By Corollary 5.1, for p small

enough the the spectral projectors π p,κ are κ-uniformly close to πκ in C1
V . Since

ψp,κ = π p,κ (1) and πκ(1) = 1, we conclude that supκ∈[0,κ0] ‖ψp,κ − 1‖CV � 1
for p small enough. Therefore, for p0 fixed and sufficiently small, we have that there
exists δ0, R0 > 0 so that ψp,κ > δ0 on {‖z‖H ≤ R0}. This lower estimate passes to
ψ∗, hence it cannot vanish identically.

Next, we show that ψ∗ = cψp for some c > 0. For this, notice that the uni-
form boundedness in Lemma 4.3 (with the uniform bound

∣
∣
∣
∣ψp,κn

∣
∣
∣
∣
CV

� 1) and the
convergence in Lemma 5.3 imply that

lim
n→∞‖P̂

p,κn
t ψp,κn − P̂ p

t ψ∗‖CV = 0

for fixed t > 0. Therefore

P̂ p
t ψ∗ = lim

κn→0
P̂ p,κn
t ψp,κn = lim

κn→0
e−Λ(p,κn)tψp,κn =

(

lim
κn→0

e−Λ(p,κn)t
)

ψ∗ .
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In the last equality, we have used the fact thatψ∗ > 0 to deduce that the limit e−tΛ∗ :=
limn e−Λ(p,κn)t exists. Therefore ψ∗ is an eigenfunction of P̂ p

t with eigenvalue e−Λ∗t .
ByCorollary 5.1, the limit−Λ∗ = − limn Λ(p, κn) is strictly larger than log c0 (where
c0 is as in Proposition 2.15 (a) for κ = 0, proved in [13]) for ∀p sufficiently small,
by Proposition 2.15 (a) in the κ = 0 case, we conclude that in fact Λ∗ = Λ(p, 0) and
ψ∗ = cψp,0 for some c > 0. Moreover, the convergence Λ(p, 0) = limn Λ(p, κn)
holds independently of the subsequence (κn), and so we deduce limκ→0 Λ(p, κ) =
Λ(p, 0) as desired. ��

It remains to show ψp,κ → ψp in the CV norm. We start by checking κ-uniform
convergence of the following limit formula for ψp,κ .

Lemma 5.7 The CV limit

ψp,κ (u, x, v) = lim
t→∞ eΛ(p,κ)t P̂κ,p

t 1

is uniform over κ ∈ [0, κ0].
Proof Consider the operator

Rκ,p
t := P̂κ,p

t ◦ (I − πκ,p) = (P̂κ,p
t − P̂κ

t ) ◦ (I − πκ,p)

+ P̂κ
t ◦ (πκ − πκ,p)+ P̂κ

t ◦ (I − πκ) .

Fix t > 0 so that Rκ
t := P̂κ

t has CV norm ≤ 1/3. Take p sufficiently small (inde-
pendently of κ ∈ [0, κ0] such that the above first and second terms are each < 1/6
(the first term estimated as in Lemma 4.3 and the second as in Sect. 4.4.1). Therefore
‖Rκ,p

t ‖CV ≤ 2/3 uniformly in κ . This implies the desired estimate. ��
Remark 5.8 Note that by the same arguments as those applied to ψp in [Lemma 5.7;
[13]], we deduce that ψp,κ ≥ 0 for all p, κ sufficiently small.

We now use this to show that the limits ψp,κn → ψp,∗ actually coincide with ψp

(independent of the subsequence κn → 0).

Lemma 5.9 For each p ∈ [0, p0],

lim
κ→0

‖ψp,κ − ψp‖CV = 0.

Proof For each t > 0, we have

‖ψp,κ − ψp‖CV ≤ ‖ψp,κ − eΛ(p,κ)t P̂ p,κ
t 1‖CV

+ ‖ψp − eΛ(p)t P̂ p
t 1‖CV + ‖eΛ(p,κ)t P̂ p,κ

t 1− eΛ(p)t P̂ p
t 1‖CV .

Combining Lemma 5.6 and 5.3, we see that

lim
κ→0

‖eΛ(p,κ)t P p,κ
t 1− eΛ(p)t P̂ p

t 1‖CV = 0
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for each t fixed, hence

lim sup
κ→0

‖ψp,κ − ψp‖CV

≤ sup
κ∈[0,κ0]

(‖ψκ,p − eΛ(p,κ)t P̂ p,κ
t 1‖CV + ‖ψp − eΛ(p)t P̂ p

t 1‖CV )

Sending t →∞ and applying Lemma 5.7 completes the proof. ��
The proof of Proposition 2.12 is largely complete, save for the uniform positive

lower bounds on ψp,κ on bounded sets as in item (b)(iii).

Lemma 5.10 For each R > 0, and p ∈ [0, p0] there exists κ0 small enough such that

inf
κ∈[0,κ0]

inf
(u,x,v)∈H×PT

d

‖u‖≤R

ψp,κ (u, x, v) > 0 .

Proof For p0 sufficiently small, by [Lemma 5.7; [13]], ∀R > 0, there exists c =
cR > 0 so that for all p ∈ [0, p0] on {V (u) ≤ R}, we have ψp ≥ c. Therefore, on
{V (u) ≤ R} we have

ψp,κ ≥ ψp − ‖ψp,κ − ψp‖CV V ≥ c − ‖ψp,κ − ψp‖CV R .

Applying Lemma 5.9 and choosing κ0 small enough depending on R and c gives
ψκ,p ≥ 1

2c. ��

6 Geometric ergodicity for the two-point process

The goal of this section is to apply Theorem 2.7 to deduce Theorem 2.1, namely the
geometric ergodicity of P(2,κ)

t . Themain difficulty is the construction of an appropriate
drift condition with suitable κ independent constants. This is done in Sect. 6.3 below
with the help of the uniform spectral theory deduced in Sects. 4 and 5. First, in Sect.
6.1 we record basic properties of the semigroup P(2),κ

t of the two-point κ-regularized
Lagrangian motion, namely that it is a C0 semi-group on an appropriate separable
Banach space. In Sect. 6.2 we prove the uniform strong Feller and topological irre-
ducibility needed to apply Proposition 2.5 to deduce the minorization condition (2.3).
Both Sects. 6.1 and 6.2 follow very similarly to analogous arguments in [13] and Sect.
4, hence some of proofs are only sketched with the reader encouraged to consult [13]
for more details.

6.1 C0-semigroup property

Define the function

V̂ (u, x, y) := d(x, y)−pV (u),
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where p > 0 is small and fixed. Let C̊V̂ be the theCV̂ -norm closure of smooth cylinder
functions

C̊∞0 (H×Dc) := {ϕ|ϕ(u, x, y) = ψ(ΠKu, x, v),K ⊂ K, ψ ∈ C∞0 }.

The first step is to check that P(2),κ
t is uniformly bounded onCV̂ andmaps the subspace

C̊V̂ to itself.

Lemma 6.1 For all p ∈ (0, p0), β ≥ 0, η ∈ (0, η∗), P(2),κ
t extends to a bounded

linear operator on CV̂ and there exists a C > 0 such that for all t > 0 and κ ∈ (0, 1),

‖P(2),κ
t ϕ‖CV̂

≤ eCt ||ϕ||CV̂
.

Moreover, for all t > 0 and κ ∈ (0, 1), P(2),κ
t (C̊V̂ ) ⊆ C̊V̂ .

Proof Uniform boundedness follows as in [Lemma 6.11; [13]] and the C̊V̂ mapping
property follows as in [Proposition6.12; [13]] (which itself is analogous to [Proposition
5.5; [13]]). ��
We will also find the following uniform-in-κ strong continuity property for P(2),κ

t
useful.

Lemma 6.2 Assume β ≥ 1 is sufficiently large universal constant. Then, there exists
κ0 > 0 so that for each ϕ ∈ C̊V̂ , the following holds

lim
t→0

sup
κ∈[0,κ0]

‖P(2),κ
t ϕ − P(2)

t ϕ‖CV̂
= 0.

In particular, {P(2),κ
t }t≥0 defines a C0-semigroup on CV̂ .

Proof The argument is essentially the same as that applied for Lemma 5.3 above,
hence the proof is omitted for brevity. ��

6.2 Uniform strong Feller and irreducibility

The first lemma we need to verify is a uniform strong Feller property as in Lemma
4.5 above. As in [Section 6.1.2; [13]] it is convenient to define the following metric:
for z1, z2 ∈ H×Dc, define

db(z
1, z2) := inf

γ :z1→z2

∫ 1

0
d(xs, ys)

−b(1+ ||us ||H)b ||γ̇s ||H×R2d ds,

where the infimum is taken over all differentiable curves [0, 1] # t �→ γt = (ut , xt , yt )
in H×Dc connecting z1 and z2. It is not hard to see that the metric db(·, ·) generates
the H×Dc topology since the extremal trajectories avoid the diagonal D.
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Using this metric, we obtain the following uniform strong Feller result; as the proof
is essentially a combination of the arguments therein and those found in [Proposition
6.5; [13]], we omit the proof for the sake of brevity.

Lemma 6.3 There exists a, b > 0 such that, there exists a continuous, monotone
increasing, concave function X : [0,∞) → [0, 1] with X(r) = 1 for r > 1 and
X(0) = 0 such that the following holds uniformly in κ < 1, db(z1, z2) < 1, t ∈ (0, 1),

∣
∣
∣P

(2),κ
t ϕ(z1)− P(2),κ

t ϕ(z2)
∣
∣
∣ ≤ X

(
db(z1, z2)

ta

)

(1+ ‖z1‖bH) ||ϕ||L∞ .

Next, we verify the uniform topological irreducibility away from the diagonal.
Specifically, combining the methods used to prove Lemma 4.8 above with those of
[Proposition 2.7; [13]]weprove the following.Thedetails are again omitted for brevity.

Lemma 6.4 Fix an arbitrary z∗ ∈ H × Dc. For all R > 0 sufficiently large, ∀ε > 0,
∀T > 0, ∃κ ′0 = κ ′0(ε, T , R) and ∃η > 0 such that for all κ ∈ [0, κ ′0] and z ∈
H × Dc with max(||u||H + d(x, y)−1, ||u∗||H + d(x∗, y∗)−1) < R (denoting z =
(u, x, y), z∗ = (u∗, x∗, y∗)

P̂(2),κ
T (z, Bε(z∗)) > η,

where we denote Bε(z∗) the ε-ball in H×Dc.

Lemmas 6.3 and 6.4 are sufficient to apply Proposition 2.5 to deduce the minoriza-
tion condition (2.3).

6.3 Uniform drift conditions

As mentioned, the main effort of this section is to deduce a drift condition on the
semi-group P(2),κ

t associated with the κ-two point motion (ut , xκ
t , yκ

t ). As discussed
in Sect. 2, it is natural to consider a Lyapunov function of the form

Vκ(u, x, y) = h p,κ (u, x, y)+ Vβ+1,η(u)

where

h p,κ (u, x, y) = χ(|w|)|w|−pψp,κ

(

u, x,
w

|w|
)

,

andw = w(x, y) is theminimumdisplacement vector from x to y,ψp,κ are the positive
eigenfunctions obtained in Proposition 2.12 for a particular choice of p ∈ (0, 1)
(sufficiently small) and χ(r) is a smooth cut-off equal to 1 for 0 ≤ r < 1/10 and 0 for
r > 1/5. The choice is β > 0 above is fixed arbitrary, sufficiently large by the steps
used to construct ψp,κ .

Our goal is to prove the following drift condition for Vκ .
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Proposition 6.5 There exists a K ≥ 1 independent of κ such that for all κ > 0 and
p ∈ (0, 1) small enough

P(2),κ
t Vκ ≤ e−Λ(p,κ)tVκ + K .

Remark 6.6 In light of the fact thatΛ(p, κ) → Λ(p) as κ → 0 we see that for κ small
enough, P(2),κ

t satisfies a uniform drift condition in the sense of Definition 2.4, with
constants γ and K that independent of κ .

LetL(2),κ denote the generator of P
(2),κ
t as aC0 semi-group on C̊V̂ . For convenience

we will work with the coordinates (u, x, w) where w = w(x, y) is the minimum
displacement vector from x to y. The two point motion can then equivalently be
written in these coordinates (ut , xκ

t , wκ
t ), where

wκ
t = w(xκ

t , yκ
t ).

Note thatwκ
t is not directly subject to white-in-time forcing since xκ

t and yκ
t are driven

by the same Brownian motion. Formally, in this new (u, x, w) coordinate system, one
expects the generator L(2),κ to take the form

L(2),κϕ = L(1),κϕ + (u(x + w)− u(x)) · ∇wϕ.

where L(1),κ is the generator for the Lagragian process (ut , xκ
t ). Note that κ > 0 is

a singular perturbation at the level of the generator L(1),κ since it corresponds to the
addition of a κΔ. Naturally, the strategy is to relate L(2),κ to the generator Lp,κ of the
twisted Markov semi-group P p,κ

t , which we know has a good uniform in κ spectral
gap, implying

Lp,κψp,κ = −Λ(p, κ)ψp,κ .

In order to do this, we must approximate the displacement process wκ
t with the lin-

earized process

w
∗,κ
t := Dφtw, w = w(x, y).

This can only be made sense of when x and y are suitably close, so the cut-off χ is
necessary. Using that ψp,κ is the dominant eigenfunction for Lp,κ we can show that
h p,κ is an approximate eigenfunction of P(2),κ with error contributions coming from
the cut-off χ and the approximation error made by approximating wt with w∗

t . This
is made precise in the following key Lemma.

Lemma 6.7 For all p ∈ (0, p0), κ ∈ [0, κ0], η ∈ (0, η∗) and β ≥ 1 taken large
enough, h p,κ belongs to Dom(L(2),κ ) on C̊V̂p,β,η

the following formula holds

L(2),κh p,κ = −Λ(p, κ)h p,κ + Ep,κ +Σ · ∇wh p,κ (6.1)
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where

Ep,κ (u, x, y) = H

(

u, x,
w

|w|
)

|w|1−pψp,κ

(

u, x,
w

|w|
)

χ ′(|w|),

with H(u, x, v) = 〈v, Du(x)v〉 and Σ(u, x, w) = u(x + w)− u(x)− Du(x)w.

As in [13], the strategy to justifying (6.1) (and h p,κ ∈ Dom(L(2),κ )) is to approxi-

mate P(2),κ
t h p,κ by the semi-group

T Pκ
t h p,κ (u, x, w) = Eu,x,wh p,κ (ut , x

κ
t , w

∗,κ
t )

for the linearized dynamics and write

P(2),κ
t h p,κ − h p,κ

t
= T Pκ

t h p,κ − h p,κ

t
+ P(2),κ

t h p,κ − T Pκ
t h p,κ

t
.

Showing that each term on the right-hand side has a limit as t → 0 in CV̂p,β,η
. First,

let us obtain the analogue of [Lemma 6.14; [13]], which shows that the generator of
the linearized semi-group T Pκ

t behaves well applied to h p,κ .

Lemma 6.8 For p ∈ (0, p), κ ∈ [0, κ0] and β > 0 large enough, the following limit
holds in CV̂p,β,η

lim
t→0

T Pκ
t h p,κ − h p,κ

t
= −Λ(p, κ)h p,κ + Ep,κ .

Proof Fix β0 > 0 so that ψp,κ ∈ C̊Vβ0,η . The proof is almost the same as that of
[Lemma 6.14; [13]], with some small differences. Indeed, using here the fact that
|w|−p ψp,κ is an eigenfunction for T Pκ

t with eigenvalue e−Λ(p,κ)t , we find

T Pκ
t h p,κ − h p,κ

t
= e−Λ(p,κ)t − 1

t
h p,κ + Ep,κ + ERt ,

where the remainder Rt takes the form

Rt = |w∗,κ
t |−pψp(ut , x

κ
t , vκ

t )
1

t

∫ t

0
|w∗,κ

s |H(us, x
κ
s , vκ

s )χ ′(|w∗,κ
s |)ds − Ep,κ .

The goal is therefore to show that Rt → 0 in CV̂p,β,η
for some β large enough as

t → 0. Note that, even though |w∗,κ
t | depends on κ it has the following formula

|w∗,κ
t | = exp

(∫ t

0
H(us, x

κ
s , vκ

s )ds

)

|w|, (6.2)
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and therefore is bounded independently of κ . Just as in [Lemma 6.14 , [13]], using the
fact that ψp,κ is in C̊Vβ0,η and using a density argument to approximate it by cylinder

functions ψ
(n)
p,κ , we can bound the remainder by

|Rt | � |w|1−p exp

(

Cp

∫ t

0
‖us‖Hr ds

)

× sup
s∈(0,t)

Vβ0+1,η(us)
(

Cn,κρt + ‖ψp,κ − ψ(n)
p,κ‖CVβ0,η

)

,

for r ∈ (1+ d/2, 3), where Cn depends badly on n and Dψ
(n)
p,κ and

ρt = sup
s∈(0,t)

(‖us − u‖Hr + dTd (xκ
s , x)+ dPd−1(vκ

s , v)
)

.

At this stage, the only significant difference from the proof in [13] is that d(xκ
s , x) is

influenced by the Brownian motion
√

κW̃t and is therefore given by

dTd (xκ
t , x) ≤

∫ t

0
‖us‖L∞ds +√

κ|W̃t |,

so that by theBurkholder-Davis-Gundy inequality and the fact thatE sups∈(0,t) ‖us‖2L∞
� eCt‖u‖2L∞ , we obtain for t ≤ 1

E sup
s∈(0,t)

dTd (xκ
t , x)2 �κ (1+ ‖u‖H)2t

Both ‖us − u‖Hr and dPd−1(vκ
s , v) are dealt with exactly as in [13]. Consequently ,

we obtain a bound on Rt of the form

E|Rt | � |w|1−pVβ1,η(u)(Cn,κ t
1/2 + ‖ψp,κ − ψ(n)

p,κ‖CV ).

for some constant depending on n and κ and β1 > β0 + 1 large enough. Sending
t → 0 first and then sending n →∞ still gives the result. ��
We similarly have the analogue of [Lemma 6.15; [13]], which shows the error made
in approximating P(2),κ

t by the linearized dynamics T Pκ
t .

Lemma 6.9 For p ∈ (0, p0), κ ∈ [0, κ0] and β > 0 large enough, the following limit
holds in CV̂p,β,η

lim
t→0

P(2),κ
t h p,κ − T Pκ

t h p,κ

t
= Σ · ∇wh p,κ .

Proof Again, the proof is almost identical to the proof in [Lemma 6.15; [13]] due to the
fact that the approximation is happening on the process wt , which does not have noise
directly driving it (the Brownian motion on xt and yt cancel). The main difference is
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the appearance of some terms due to Itô‘s formula, which can easily be dealt with. We
recall a sketch of the proof here. As in [Lemma 6.15, [13]], we introduce the events
(see [13] for a motivation for the definition of these sets)

At :=
{

t sup
s∈(0,t)

‖∇us‖∞ ≤ 1

100

}

,

Bt :=
{

t sup
s∈(0,t)

(‖∇us‖∞(|wκ
s | + |w∗,κ

s |)) ≤ |w∗,κ
t |
2

}

.

Note that for each δ > 0

1Ac
t ∪Bc

t
� t1+δ exp

(

2(1+ δ)

∫ t

0
‖us‖Hr ds

)

sup
s∈(0,t)

‖us‖1+δ
Hr , (6.3)

for r ∈ (1+ d/2, 3), so that by Lemma 3.2 we have limt→0 P(At ∩ Bt ) = 1. The first
step is to write

P(2),κ
t h p,κ − T Pκ

t h p,κ

t
= P(At ∩ Bt )Σ · ∇wh p,κ + E(R1

t + R2
t + R3

t ),

where the remainders R1
t ,R

2
t and R3

t are given by

R1
t =

1

t
1Ac

t ∪Bc
t
(h p,κ (ut , x

κ
t , wκ

t )− h p,κ (ut , x
κ
t , w

∗,κ
t ))

R2
t = 1At∩Bt

∫ 1

0
∇wh p,κ (ut , x

κ
t , w

θ,κ
t )dθ ·

(
wκ
t − w

∗,κ
t

t
−Σ

)

R3
t = 1At∩Bt

(∫ 1

0
∇wh p,κ (ut , x

κ
t , w

θ,κ
t )dθ −∇wh p,κ

)

·Σ

and wθ,κ := θwt + (1− θ)w
∗,κ
t .

In light of the fact that P(At ∩ Bt ) → 1, it suffices to show that ER1
t ,ER2

t and ER3
t

converge to 0 in CV̂p,β,η
for suitable choices of β and p. Indeed, an easy application

of (6.3) and Lemma 3.2 gives

E|R1
t | � tδ|w|−pE exp

(

Cp,δ

∫ t

0
‖us‖Hr ds

)

sup
s∈(0,t)

Vβ0+1,η(us) � tδ V̂p,β0+1,η

which implies ER1
t → 0 in CV̂p,β0+1,η

. Also, a similar argument to that in [Lemma

6.15 [13]] using properties of the sets At and Bt gives

|R2
t | � ‖ψp,κ‖C1

V
Vβ,η(ut )|w∗,κ

t |−p−1ρ1
t ,
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where

ρ1
t = sup

s∈(0,t)

(|u(yκ
s )− u(xκ

s )− u(y)+ u(x)| + ‖us − u‖Hr |w| + ‖us‖Hr |w∗,κ
s − w|) .

(6.4)
In order to estimate ρ1

t , the main difference this proof and the one in [13] is that the
quantity

|us(yκ
s )− us(x

κ
s )− u(y)+ u(x)|

now has to be estimated using Itô’s formula, which gives rise to a new terms of the
form |κΔut (xt ) − κΔut (yt )|, specifically using Itô‘s formula and that fact that us is
evaluated along Lagrangian trajectories gives

us(y
κ
s )− us(x

κ
s )− u(y)+ u(x) =

∫ s

0
B(uτ , uτ )(x

κ
τ )− B(uτ , uτ )(y

κ
τ ) dτ

+
∑

m∈K

qm

∫ s

0
(em(yκ

τ )− em(xκ
τ ))dWm

τ

+
∫ s

0
(uτ · ∇uτ )(y

κ
τ )− (uτ · ∇uτ )(x

κ
τ ) dτ

+ 1

2
κ

∫ s

0
Δuτ (y

κ
τ )−Δuτ (x

κ
τ ) dτ

+√κ

∫ s

0
(Duτ (y

κ
τ )− Duτ (x

κ
τ ))dW̃τ .

However, since σ is large enough, all the velocity fields are regular enough to bound
the differences on the right-hand-side above by (1+ ‖us‖2H)|wκ

s |. Applying the BDG
inequality and that fact that

|wκ
s | ≤ |w| exp

(∫ s

0
‖uτ‖Hr dτ

)

for r ∈ (1+ d/2, 3), implies that for t ≤ 1

(

E sup
s∈(0,t)

|us(yκ
s )− us(x

κ
s )− u(y)+ u(x)|2

)1/2

� t1/2|w|E sup
s∈(0,t)

exp

(∫ s

0
‖uτ‖Hr dτ

)

(1+ ‖us‖2H)

� t1/2|w|V1,η(u).
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The terms ‖us − u‖Hr |w| and ‖us‖Hr |w∗,κ
s − w| in (6.4) are treated similarly with

the help of the cut-off 1At giving (using also Lemma 3.2),

(

E(ρ1
t )

2
)1/2

� t1/2|w|V1,η(u).

Combining this [along with the formula (6.2) for w
∗,κ
t ] gives by Cauchy–Schwartz

that

E|R2
t | � t1/2‖ψp,κ‖C1

V
|w|−pVβ1,η(u),

implying that E|R2
t | → 0 in CV̂p,β1,η

as t → 0 for some β1 big enough.

Finally, to estimate R3
t , as in [13]we approximateψp,κ by smooth cylinder functions

ψ
(n)
p,κ in C1

V , a straight-forward computation using the cut-off 1Bt shows that

∣
∣
∣R3

t

∣
∣
∣ � |w|−p exp

(

C
∫ t

0
‖us‖Hr ds

)(

sup
s∈(0,t)

Vβ2,η(us)

)

×
(

Cn,κρ2
t + ‖Dvψp,κ − Dvψ

(n)
p,κ‖CV

)

,

for r ∈ (1+ d/2, 3) and some β2 large enough, where Cn,κ depends badly on n and
D2

vψ
(n)
p,κ and ρ2

t is given by

ρ2
t = sup

s∈(0,t)

(‖us − u‖Hr + dTd (xκ
s , x)+ 1As |wκ

s − w| + 1As |w∗,κ
s − w|) .

Again, very similarly to the proof of Lemma 6.8 ρ2
t can be estimated by BDG to

conclude that

E|R3
t | � |w|−pVβ3,η(u)(Cn,κ t

1/2 + ‖Dvψp,κ − Dvψ
(n)
p,κ‖CV ).

for some large enough β3. Sending t → 0 and then n →∞ implies that E|R3
t | → 0

as t →∞ in CV̂p,β3,η
. ��

As explained above, Lemmas 6.8 and 6.9 are sufficient to complete the proof of
Lemma 6.7.

Proof of Proposition 6.5 Given a Vβ,η and p from Lemma 6.7 using Taylor expansion
allows us to bound ( c.f. [Lemma 6.13; [13]])

∣
∣Ep,κ +Σ · ∇wh p,κ

∣
∣ � |w|1−pVβ+1,η‖ψp,κ‖C1

Vβ,η

.

Since we can take p < 1 and have uniform-in-κ bounds on ψp,κ in C1
Vβ,η

we obtain
the estimate

L(2),κh p,κ ≤ −Λ(p, κ)h p,κ + C ′Vβ+1,η, (6.5)
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for some κ independent constant C ′. The rest of the argument proceeds as in [Propo-
sition 2.13; [13]]. We briefly recall the sketch of the argument for the readers’
convenience. Using the super Lyapunov property it was shown in [(6.13), [13]] that
the following holds for all ζ > 0, (denoting Pt the semi-group of the Navier–Stokes
equations),

eΛ(p,κ)t Pt Vβ+1,η − Vβ+1,η ≤
∫ t

0
eΛ(p,κ)s Ps

(

(Λ(p, κ)− ζ )Vβ+1,η(us)+ Cζ

)

ds.

(6.6)
Then the estimate (6.5) on L(2),κh p,κ implies the following

eΛ(p,κ)t P(2),κ
t h p,κ − h p,κ ≤ C ′

∫ t

0
eΛ(p,κ)s PsVβ+1,ηds. (6.7)

By choosing ζ −Λ(p, κ) sufficiently large and adding (6.6) to (6.7), the desired drift
condition follows. This same argument is carried out in more detail in [Proposition
2.13; [13]]. ��

7 Enhanced dissipation

We now turn to the proof of enhanced dissipation Theorem 1.4. We begin by proving
an enhanced dissipation result for initial data g ∈ H1.

Lemma 7.1 Let γ and Dκ be as in Theorem 1.3 for p ≥ 2 and s = 1. Then, for any
mean-zero scalar g ∈ H1, and associated (gt ) solving (1.1), there holds

||gt ||2L2 ≤ min

(

||g||2L2 , γ D2
κ(u, ω)κ−1

(

e2γ t − 1
)−1 ||g||2H1

)

. (7.1)

Proof Note that because ||g||L2 ≤ ||g||1/2
H−1 ||g||1/2H1 , by Theorem 1.3 we have

d

dt
||gt ||2L2 = −2κ ||∇gt ||2L2 ≤ −2κ ||gt ||4L2

||gt ||2H−1
≤ −2κ ||gt ||4L2

D2
κ(u, ω) ||g||2H1

e2γ t .

Re-arranging gives

− d

dt

(
1

||gt ||2
)

= 1

||gt ||4L2

d

dt
||gt ||2L2 ≤ −κ

2

D2
κ(u, ω) ||g||2H1

e2γ t ,

and hence

1

||g||2L2

− 1

||gt ||2L2

≤ −κ
1

γ D2
κ(u, ω) ||g||2H1

(

e2γ t − 1
)

.
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Rearranging again gives

||gt ||2L2 ≤
||g||2L2

1+ κ
||g||2

L2

γ D2
κ (u,ω)||g||2

H1

(

e2γ t − 1
)
≤ γ κ−1D2

κ(u, ω)(e2γ t − 1)−1‖g‖2H1 .

��
Remark 7.2 Note that in the above proof, we could replace the H1 norm of g with any
Hs norm, s ∈ (0, 1), using instead H−s-decay in Theorem 1.3 and the interpolation
for mean-zero f , one has

|| f ||L2 ≤ || f ||1−θ

H1 || f ||θH−s

for suitable θ = θ(s).

We can complete the proof of Theorem 1.4 and extend to any L2 initial data using
parabolic regularity. Indeed, for any mean-zero scalar g ∈ H1, and associated (gt )
solving (1.1), there holds by standard parabolic regularity arguments, for r ∈ ( d2+1, 3)

||gt ||H1 ≤ C exp

(

Ct +
∫ t

0
||us ||Hr ds

)

sup
0<τ<t

||uτ ||H1

︸ ︷︷ ︸

(∗)

||g||L2√
κ

,

where C > 0 is a constant. For initial u ∈ H and random noise paths ω ∈ Ω ,
define D̃(ω, u) to be the quantity (∗) above with t = 1. By Lemma 3.2, we have that
(E(D̃(u, ω))p)1/p �p,η Vβ,η(u) for all β sufficiently large and all η ∈ (0, η∗).

By (7.1) for t ≥ 1, there then holds

||gt ||L2 ≤ min(||g||L2 ,
√

2γ κ−1/2Dκ(u1, θ1ω)e−γ t ||g1||H1)

≤ κ−1 D̃(u, ω)Dκ(u1, θ1ω)eγ

︸ ︷︷ ︸

=:D′κ (u,ω)

e−γ t ||g||L2 .

Above, θ1ω(t) = ω(t + 1) − ω(1) refers to the standard Wiener shift on paths in
C(R+;L2). This is precisely the inequality (1.5). It remains to estimate the p-th
moment of D′

κ .
Let V = Vβ,η as in Lemma 2.11 for η ∈ (0, η∗) arbitrary. When β is taken

sufficiently large, we have that

E(D′
κ(u, ω))p �

(

E(D̃(u, ω))2p
)1/2

E
(

(Dκ)2p(u1, θ1ω)
)1/2

=
(

E(D̃(u, ω))2p
)1/2

E
(

E
(

(Dκ)2p(u1, θ1ω)|F1

) )1/2

� V p/2(u)
(

EV p(u1)
)1/2

� V p(u)
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where we used that fact that u1 isF1 measurable and θ1ω is independent of F1.

7.1 Optimality of theO(
∣∣log�

∣∣) dissipation time-scale

Wecomplete this sectionwith the proof of Theorem 1.8, the optimality of the timescale
t = O(| log κ|) for enhanced L2 dissipation.

Proof of Theorem 1.8 To start, by the standard H1 norm growth bound on (1.1), any
solution satisfies the following lower bound on the time derivative of ||gt ||L2 :

d

dt
||gt ||2L2 = −κ ||∇gt ||2L2 ≥ −κ exp

(∫ t

0
||∇uτ ||L∞ dτ

)

||g||2H1 . (7.2)

By a straightforward application of Lemma 3.2 and Borel–Cantelli (or, alternatively,
the Birkhoff ergodic theorem), we observe the following almost sure growth bound.

Lemma 7.3 There exists a λ > 0 and a random constant D : H × Ω → [1,∞),
independent of κ , such that

exp

(∫ t

0
||∇uτ ||L∞ dτ

)

≤ Deλt .

Moreover, for any η > 0 with pη ∈ (0, η∗) and β ≥ 1, we have ED
p �p V p(u) for

V = Vβ,η.

Lemma 7.3 and (7.2) together imply the lower bound

||gt ||2L2 ≥ ‖g‖2L2 − κ‖g‖2H1Dλ−1(eλt − 1) ≥ ‖g‖2L2 − κ‖g‖2H1Dteλt

It follows that for each δ ∈ (0, 1)

‖gδ| log κ|‖2L2 ≥ ‖g‖2L2

(

1− δ| log κ|κ1−λδ
D‖g‖2

H1

‖g‖2
L2

)

.

Choosing

δ(g, u, ω) := min

{ ‖g‖2
L2

‖g‖2
H1D(u, ω)

,
1

2λ

}

gives

‖gδ| log κ|‖2L2 ≥ (1− | log κ0|κ1/2
0 )‖g‖2L2 .

Choosing κ0 small enough so that | log κ0|κ1/2
0 ≤ 3/4 implies τ∗ ≥ δ| log κ|, where

τ∗ is the enhanced dissipation time τ∗ = inf{t ≥ 0 : ‖gt‖L2 < 1
2‖g‖L2}. ��
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