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The Limiting Poisson Law of Massive MIMO

Detection with Box Relaxation

Hong Hu and Yue M. Lu

Abstract

Estimating a binary vector from noisy linear measurements is a prototypical problem for MIMO

systems. A popular algorithm, called the box-relaxation decoder, estimates the target signal by solving a

least squares problem with convex constraints. This paper shows that the performance of the algorithm,

measured by the number of incorrectly-decoded bits, has a limiting Poisson law. This occurs when the

sampling ratio and noise variance, two key parameters of the problem, follow certain scalings as the

system dimension grows. Moreover, at a well-defined threshold, the probability of perfect recovery is

shown to undergo a phase transition that can be characterized by the Gumbel distribution. Numerical

simulations corroborate these theoretical predictions, showing that they match the actual performance

of the algorithm even in moderate system dimensions.

I. INTRODUCTION

A. Motivations

Consider the problem of estimating a binary vector β ∈ {−1, 1}p from noisy linear measure-

ments in the form of

y = Aβ +w. (1)

Here, A ∈ R
n×p is a known sensing matrix and w ∼ N (0, σ2

pIn) denotes an unknown noise

vector. This is a prototypical model for multi-user detections in MIMO communication systems

[1], [2]. It also arises in other applications such as compressed sensing [3], source separation

[4], and image processing [5].
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Various algorithms have been proposed to solve (1). Examples include sphere decoding [6],

zero-forcing [7], approximate message passing [8], Markov chain Monte Carlo methods [9], and

semidefinite programming [10]. Among them, a convex-optimization based method, known as

the box-relaxation decoder [11]–[13], is popular in practice due to its simplicity and efficiency.

The method consists of merely two steps: (1) solve a box-constrained least squares problem

x∗ = argmin
x∈[−1,1]p

1

2
‖y −Ax‖2, (2)

and (2) obtain an estimate of β by taking the sign of x∗, i.e., β̂ = sign(x∗).

The performance of this algorithm can be measured by the bit error rate (BER):

BER =
1

p

p∑

i=1

1{β̂i 6=βi}, (3)

where 1{·} denotes the indicator function. The achievable BER depends on two key parameters:

the noise variance σ2
p , and the sampling ratio δp

def
= n/p.

Under the assumption that the sensing matrix A has i.i.d. normal entries, the authors of [12],

[13] analyzed the asymptotic BER achieved by the box-relaxation decoder. They show that, as

n, p → ∞ with δp → δ ∈ (1
2
,∞) and σ2

p ≡ σ2 > 0, the BER converges in probability to a

deterministic limit, i.e.,

BER
P−→ E(δ, σ2) ∈

(
0, 1

2

)
. (4)

This means that for any σ2 > 0 and δ > 1
2
, the algorithm can asymptotically achieve a weak

recovery of β: it is better than random guess, but β̂ always contains a nonzero fraction of errors.

Moreover, one can show that

lim
δ→∞

E(δ, σ2) = lim
σ2→0

E(δ, σ2) = 0. (5)

The expressions in (5), together with (4), suggest that the asymptotic BER can be made

arbitrarily small if we increase the number of measurements or reduce the noise variance. This

then raises a tantalizing question: is there a regime of (δp, σ
2
p) such that the box-relaxation

decoder can perfectly recover the target signal? Existing results in [12], [13] cannot answer this

question, for two reasons. First, BER
p→∞−→ 0 only guarantees that the number of error bits

Ne
def
=

p∑

i=1

1{β̂i 6=βi}, (6)

is sublinear in p, but it contains no information about the actual distribution of Ne, including

whether Ne = 0. The second issue is subtle but important. It has to do with the specific order
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with which the limits are taken in (4) and (5). There, we first send the dimension p → ∞ before

letting δp → ∞ or σ2
p → 0. In practice, p is large but always finite, and thus the speed with

which δp → ∞ and σ2
p → 0 [e.g., σ2

p = O(1/p) vs. σ2
p = O(1/ log p)] makes all the difference.

The goal of this paper is to present a precise asymptotic characterization of the probability

distribution of Ne. We show that, in certain scaling regimes of (δp, σ
2
p), the distribution of Ne

converges to a Poisson law. Moreover, we derive conditions under which the exact recovery

of β is possible and provide an asymptotic formula for P(Ne = 0) in the form of a Gumbel

distribution.

B. Main Results

We make the following assumptions throughout the paper.

(A.1) The elements of A are drawn from the i.i.d. Gaussian distribution: Aij
i.i.d.∼ N (0, 1

p
).

(A.2) β = −1p, where 1p denotes the all-ones vector.

(A.3) The noise is Gaussian: w ∼ N (0, σ2
pIn).

(A.4) lim infp→∞ δp > 1/2 and lim supp→∞ δp/ log p < ∞.

(A.5) lim infp→∞ σ2
p log

2 p > 0 and lim supp→∞ σ2
p < ∞.

In (A.2), we assume that each coordinate of true signal is −1 to simplify our derivations.

All the results still hold for arbitrary β, due to the rotational symmetry of A. In (A.4), the

requirement that lim infp→∞ δp > 1/2 is related to the fundamental limits of convex relaxation for

structural signal reconstruction. In [14], it is shown that, if lim supp→∞ δp ≤ 1
2
, the box-relaxation

decoder cannot successfully recover β even in the noiseless case. In (A.5), we essentially require

σ2
p > c/ log2 p for some c > 0. This restriction is due to the limitations of our current proof

techniques. We expect that many of our results still hold without this restriction.

To state our main results, we first need to introduce the following potential function:

Fp(τ ; σ
2
p, δp) =

τ

2

(
δp −

1

2

)
+

σ2
p

2τ
+

τ

2

∫ ∞

2
τ

(
x− 2

τ

)2

Φ(dx), (7)

where Φ is the CDF of the standard normal distribution. One can verify that Fp is a strictly

convex function of τ ∈ (0,∞). (See Appendix B for details.) Thus, one can uniquely define

fp
def
= min

τ>0
Fp(τ ; σ

2
p, δp) and τp

def
= argmin

τ>0
Fp(τ ; σ

2
p , δp). (8)

Another quantity that will be crucial in our analysis is

λp
def
= pΦ(− 1

τp
). (9)
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Theorem 1: Under (A.1)-(A.5), and if lim supp→∞
λp√
log p

< ∞, then

dTV(Ne,P(λp)) ≤
polylog p

p1/5
, (10)

where dTV is the total variation (TV) distance and P(λ) denotes a Poisson distribution with

parameter λ.

Remark 1: The theorem, whose proof can be found in Section II-D, characterizes the asymp-

totic distribution of Ne under certain scaling regimes of (δp, σ
2
p). It shows that the law of Ne

converges to that of a Poisson random variable with parameter λp, if λp grows no faster than
√
log p. This requirement on λp is not satisfied in the setting studied in [12] where both δp and

σ2
p are kept as fixed constants and consequently λp = O(p). In that case, one can expect that

√
p[Ne

p
− Φ(− 1

τp
)] converges to a Gaussian distribution.

The fact that Ne can have a limiting Poisson law is not surprising. Recall from its definition

in (6) that Ne is a sum of p Bernoulli random variables {1{β̂i 6=βi}}. Moreover, one can show that

P(β̂i 6= βi) ≈ Φ(− 1
τp
) and that these Bernoulli random variables are close to being independent.

Consequently, the law of Ne is approximately a Binomial distribution B(p,Φ(− 1
τp
)) with an

expected value equal to λp. As p → ∞ with λp = O(
√
log p), it is well-known that the Binomial

distribution converges to a Poisson distribution (i.e., the “law of small numbers”). The technical

contribution of this paper is to make the above arguments precise and rigorous. The main tool we

use is the leave-one-out approach (see, e.g., [15]), also known as the cavity method in statistical

physics [16], [17]. It allows us to carry out a detailed probabilistic analysis of the random

optimization problem in (2).

In our proof of Theorem 1, we did not attempt to optimize the rate of convergence shown on

the right-hand side of (10). The actual rate is likely to be faster. In Figure 1, we compare the

empirical distribution of Ne, obtained after averaging over 104 independent trials, against the

limiting Poisson distribution for three different problem dimensions. We can see that, even at a

moderate dimension of p = 200, the Poisson approximation is already accurate.

The characterization given in Theorem 1 allows us to study the conditions under which the

box-relaxation decoder can perfectly recover the target signal. Let Pcorrect
def
= P(Ne = 0) denotes

the probability of perfect recovery. We can show that a phase transition of Pcorrect emerges when

the following quantity

αp
def
=

δp − 1/2

2σ2
p log p

(11)

is near 1.
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Figure 1: Comparison of the empirical distribution of Ne and the limiting Poisson distribution,

over three different problem dimensions. In the experiments, we set σ2
p = 1 and choose δp so

that λp ≈ 1.1 for all three values of p.

Proposition 1: Under (A.1)-(A.5), and if limp→∞ αp = α∗, then

lim
p→∞

Pcorrect =




1, if α∗ > 1,

0, if α∗ < 1.
(12)

If α∗ = 1, a more refined characterization is available. Specifically, assume that

αp(x) = 1− log log p

2 log p
+

x− log
√
4π

log p
, (13)

for some constant x ∈ R (and thus αp(x)
p→∞−→ 1), then

lim
p→∞

Pcorrect = e−e−x

, (14)

where the right-hand side is the CDF of the Gumbel distribution.

Remark 2: The above proposition, proved in Section II-E, characterizes the scaling regimes

of (δp, σ
2
p) over which perfect recovery is achievable. The possible scalings are also flexible. For

example, if we keep the sampling ratio δp at a fixed value δ > 1/2, it then follows from (11)

and (12) that σ2
p = δ−1/2

2 log p
is the critical noise variance threshold for perfect recovery to happen.

Alternatively, if we fix the noise variance σ2
p ≡ σ2, then the critical threshold for the sampling

ratio is δp = 1/2 + 2σ2 log p.

To illustrate Proposition 1, we show some results from numerical experiments. In Figure 2a,

we plot the phase diagram of the empirical values of Pcorrect under different choices of (δp, σ
2
p),

as well as the theoretical phase transition boundary separating the regimes of perfect/nonperfect

recovery. In Figure 2b, we plot Pcorrect as a function of αp (by fixing δp = 1 and varying σ2
p).
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Figure 2: (a) Phase diagram of the box-relaxation decoder. Each pixel represents the value of

Pcorrect under a specific (δp, σ
2
p). The red curve is the theoretical transition boundary: σ2

p log p =

δp−1/2
2

. (b) Phase transition of Pcorrect with respect to αp. The dashed line represents the theoretical

threshold. (c) Near the phase transition boundary, Pcorrect is well-approximated by the Gumbel

distribution. In all three experiments, Pcorrect is estimated by averaging over 104 independent

trials. In (b) and (c), we fix δp = 1 and vary αp and x by changing σ2
p .

A transition indeed takes place near αp = 1, and the transition becomes sharper as we increase

the problem dimension p. When p is not very large, a more accurate approximation of Pcorrect is

given by the Gumbel distribution. This is illustrated in Figure 2c, where we zoom in the region

near the phase transition and compare the empirical success probability against the theoretical

prediction given in (14).

C. Related Work

The precise analysis of high-dimensional signal estimation has already been the subject of a

vast literature. Underpinning these rich results are several powerful techniques developed over the

years, including the nonrigorous replica method from statistical physics [18]–[20], approximate

message passing (AMP) [21]–[23], the cavity method [16], [17] and leave-one-out analysis [15],

Gaussian min-max theorem (GMT) [24], [25], as well as the geometric framework based on

Gaussian width [14] and statistical dimensions [26].

The box-constrained least square problem in (2) has been previously analyzed in [12], [13]

using GMT techniques. Analysis of similar problems can also be carried out by AMP [8].

However, these existing studies consider the setting where both the sampling ratio δp and the

noise variance σ2
p are kept as constants as p → ∞. Under such scalings, one can establish that
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the empirical measure of x∗, defined as µ̂(x∗)
def
= 1

p

∑p
i=1 δx∗

i
, converges to some deterministic

limiting measure. However, the convergence of the empirical measure is insufficient for our

purpose: flipping the signs of o(p) entries of x∗ will completely change the number of error bits

Ne, but it has no effect on the limiting empirical measure. In view of this, we choose to use the

leave-one-out approach, which allows us to construct a surrogate of x∗, denoted by x̃, in our

analysis. We show that ‖x∗ − x̃‖∞ → 0 but the statistical properties of x̃ are much easier to

obtain. We will elaborate on this point in Sec. II.

Our work considers settings where (δp, σ
2
p) can scale with the problem dimension p. Similar

settings with flexible scalings have been explored in other contexts, including, e.g., sparse linear

regression [27]–[29], spiked matrix estimation [30], and low-rank matrix recovery [31]. These

studies established the precise conditions under which perfect recovery in these problems is

achievable. In our work, we go one step further by establishing the asymptotic distribution of

the number of error bits Ne.

II. ROADMAP OF ANALYSIS

This section provides a general roadmap to our proof of Theorem 1, which is given in

Section II-D. To emphasize readability, we only highlight the main ideas and key intermediate

results here, leaving heavier technical details to the subsequent sections and to the appendix.

A. An Equivalent Scalar Problem

To analyze Ne, we need to understand the statistical properties of x∗, i.e., the optimal solution

of (2). A basic challenge lies in the fact x∗ is a high-dimensional vector with no closed-form

expressions. The key idea behind the cavity approach [16], [17] or the leave-one-out analysis

[15] is to circumvent this issue by focusing instead on a single coordinate of x∗. Specifically,

to study the ith coordinate xi, we can first rewrite the original problem (2) as

argmin
xi∈[−1,1]

min
x\i∈[−1,1]p−1

1

2
‖A\ix\i + ai(xi − βi)− y\i‖2

=argmin
xi∈[−1,1]

min
x\i∈[−1,1]p−1

max
u

u⊺[A\ix\i + ai(xi − βi)− y\i]−
1

2
‖u‖2 (15)

=argmin
xi∈[−1,1]

max
u

a
⊺

iu(xi − βi)− Li(u), (16)



8

where x\i is the vector formed by removing xi (and β\i is defined in the same way), ai is the

ith column of A, A\i denotes the matrix formed by removing ai from A, y\i = A\iβ\i +w,

and

Li(u) = ‖A⊺

\iu‖1 + u⊺y\i +
1

2
‖u‖2. (17)

In reaching (16), we have also used Sion’s minimax theorem [32] to swap the inner minimization

and maximization in (15).

Let u∗
\i = arg minu Li(u) and define a function

gp,i(v)
def
= max

u
(u− u∗

\i)
⊺aiv − [Li(u)− Li(u

∗
\i)]. (18)

We can then check that the optimization problem (16) has the same solution as

argmin
xi∈[−1,1]

gp,i(xi − βi) + a
⊺

iu
∗
\i(xi − βi). (19)

Thus, starting from the original problem (2) and after optimizing over all the “nuisance” variables

x\i, we have reached in (19), an equivalent scalar optimization problem over xi.

To nonspecialists, the reformulations leading to (19) might look slightly mysterious, but there

are several good reasons for doing so. First, note that (19) is obtained by subtracting −Li(u
∗
\i)

from (16). This manipulation does not change the minimizer of (16), but it sets the magnitude of

(19) to be O(1), which facilitates our later analysis. Second, we explicitly pull out a
⊺

iu
∗
\i in (19),

since its distribution is much easier to characterize than a
⊺

iu
∗ in (16), due to the independence

between ai and u∗
\i. This is in fact a major benefit of the leave-one-out analysis. Third, as we

will show next gp,i(xi − βi), which is a random one-dimensional function gp,i(v) evaluated at

v = xi − βi, has a particularly simple limiting form as p → ∞.

B. A Limiting Quadratic Function

The following proposition, whose proof is given in Section III-A, shows that gi(v) uniformly

converges to a simple quadratic function.

Proposition 2: Under (A.1)-(A.5), there exists c > 0 such that for any i ∈ [p] and ε > 0,

P

{
sup

v∈[−2,2]

∣∣∣gp,i(v)−
1

2
Apv

2
∣∣∣ > ε

}
≤ cδp

ε
e
−c−1pmin

{
ε2

δp
,ε

}

, (20)

where

Ap =
Ew⊺(y −Ax∗)

σ2
pp

. (21)
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Moreover, for γ > 2 and all large enough p, |Ap −A∗
p| < cp−1/(2γ), where

A∗
p

def
= fp/τp, (22)

and fp and τp are the quantities defined in (8).

There is a simple intuitive explanation for why gp,i(v) is approximately a quadratic function.

Recall that u∗
\i is the minimizer of Li(u). Thus, in a local neighborhood near u∗

\i, we can

approximate Li(u) by a second-order Taylor expansion: Li(u) ≈ Li(u
∗
\i) +

δ⊺H\iδ

2
, where δ =

u − u∗
\i and H i corresponds to the Hessian of Li(u) at u∗

\i. Substituting this approximation

into (18), we can immediately obtain that gp,i(v) ≈ a
⊺

i H
−1
i ai

2
v2. Since ai ∼ N (0, In

p
) and it is

independent of H i due to the leave-one-out construction, we can expect a
⊺

iH
−1
i ai to concentrate

near a constant as p → ∞. Of course, the above explanation is not rigorous in that Li(u) is not

smooth and H i may not exist. This is one technical challenge we address in the proof.

Since 1
2
A∗

pv
2 is a good approximation of gp,i(v), we can now approximate the optimization

problem in (19) by

x̃i = argmin
xi∈[−1,1]

A∗
p(xi − βi)

2

2
+ a

⊺

iu
∗
\i(xi − βi)

= Prox[−1,1]

(
βi −

a
⊺

i u
∗
\i

A∗
p

)
, (23)

where Prox[−1,1] denotes the proximal operator of the indicator function on [−1, 1]. Its solution,

denoted by x̃i, provides a good surrogate of x∗
i , as shown in the following proposition.

Proposition 3: Under (A.1)-(A.5), for any γ > 2, there exists c > 0, such that, for any i ∈ [p]

and ε ∈ (0, 1),

P (|x∗
i − x̃i| > ε) <

c

ε2
e−p

1
γ ε2/c, (24)

We prove this result in Section III-B. Here, we demonstrate the accuracy of the approximations

stated in (20) and (24) via numerical results shown in Figure 3.

Thanks to the independence between ai and u∗
\i, the surrogate solution x̃i is much easier to

analyze than x∗
i . Accordingly, we can consider the following approximations of β̂ and Ne:

β̃
def
= sign(x̃) and Ñe

def
=

p∑

i=1

1β̃i 6=βi
. (25)

Applying a union bound to (24) gives us maxi |x∗
i − x̃i| P−→ 0, i.e., the surrogate vector x̃ is

close to x∗ in ℓ∞ distance. This then allows us to show that P(β̂ 6= β̃) → 0, which also implies

dTV(Ne, Ñe) → 0.
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In our experiments, σ2
p = 1, δp = 1 and p = 1000.

Proposition 4: Under (A.1)-(A.5), it holds that

P(β̃ 6= β̂) ≤ λpp
−1/5 polylog p, (26)

and accordingly,

dTV(Ne, Ñe) ≤ λpp
−1/5 polylog p. (27)

The proof of Proposition 4 can be found in Section III-C. It shows that the distribution of Ne

is well captured by that of Ñe. Therefore, to obtain the limiting distribution of Ne, we just need

to analyze Ñe, which is what we are going to do next.

C. Approximate independence of {β̃i}i∈[p]
To derive the distribution of Ñe, we need to know the joint distribution of {x̃i}i∈[p]. From (23),

we know {x̃i}i∈[p] is determined by {a⊺

iu
∗
\i}i∈[p]. Since for i 6= j, u∗

\i ≈ u∗
\j , the set of variables

{x̃i}i∈[p] are correlated, but the correlations are weak. In fact, we can prove something stronger.

The following result, proved in Section IV-A, shows that any size-k subset of {a⊺

iu
∗
\i}i∈[p] are

approximately independent, provided that k is not too large.

Proposition 5: If k ≤ √
p, then there exists c > 0 such that, for any bi ∈ R, i = 1, 2, . . . , k

and ε > 0,

P

(
k⋂

i=1

{
a
⊺

iu
∗
\i ≤ bi

}
)

∈
[

k∏

i=1

Φ

(
bi −

√
δpε

fp

)
−∆p,k,

k∏

i=1

Φ

(
bi +

√
δpε

fp

)
+∆p,k

]
, (28)
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where Φ(·) is the CDF of the standard Gaussian and ∆p,k
def
= ckp

1
2 e

−c−1pmin

{
ε2

k2
,
ε√
p

}

.

It follows from (23) and (25) that
{
β̃i 6= βi

}
=
{
a
⊺

iu
∗
\i ≤ −A∗

p

}
. (Recall that we have

assumed that βi = −1 for all i.) By taking bi = −A∗
p in (28), we can conclude that the k events

{β̃i 6= βi}i∈[k] (or equivalently {1β̃i 6=βi
}i∈[k]) are also approximately independent. This is made

precise by the following proposition, whose proof can be found in Appendix E.

Proposition 6: If k ≤ p
1
8 , there exists c > 0, such that

P

(
k⋂

i=1

{
β̃i 6= βi

})
∈
[
Φk
(
−1+cp−1/4

τp

)
− ce−p1/4/c,Φk

(
−1−cp−1/4

τp

)
+ ce−p1/4/c

]
. (29)

Moreover, if σ2
p ≥ c′

log2 p
for some c′ > 0, then for all large enough p,

∣∣∣P
( k⋂

i=1

{
β̃i 6= βi

})
− Φk

(
− 1

τp

) ∣∣∣ ≤ Φk
(
− 1

τp

)
kp−1/4 polylog p, (30)

D. Proof of the Main Theorem

We are now ready to prove Theorem 1 by showing that the limiting distribution of Ñe converges

to Poisson. Recall that Ñe =
∑p

i=1 1β̃i 6=βi
. The approximate independence of {1β̃i 6=βi

} makes

the analysis tractable. Classical results on Poisson approximation of rare events deal with the

sum of p i.i.d. Bernoulli random variables with success probability λ/p. As p → ∞, the sum

converges in distribution to a Poisson random variable with rate λ. Things are slightly different

in our case, since Ñe is a summation of p weakly correlated Bernoulli random variables. The

following proposition, proved in Section IV-B, shows that the Poisson convergence still holds

under the weaker condition of approximate independence.

Proposition 7: If lim supp→∞
λp√
log p

< ∞, then

dTV(Ñe,P(λp)) ≤ p−1/5 polylog p, (31)

where P(λ) denotes a Poisson distribution with parameter λ.

Finally, since the TV distance is a metric, the statement of Theorem 1 immediately follows

from (27), (31) and the triangle inequality.

E. Proof of Proposition 1

Using the Gaussian tail bounds (133) and (134) given in Appendix F, we can get

lim
p→∞

λp =




0, α∗ > 1,

∞, α∗ < 1.
(32)
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Therefore, if α∗ > 1, it directly follows from Theorem 1 that P(Ne = 0) = 1.

The case that α∗ < 1 is more complicated. One can show that λp ≥ pc(α
∗), where c(α∗)

is some constant, so it is possible limp→∞ dTV(Ñe, Ne) 6→ 0. Instead, we can look at a subset

K ⊂ [p]. Define Ne,K as the number of error bits in K. and λp,K
def
= |K|Φ(−τ−1

p ). We can

find K satisfying λp,K ≍ √
log p. Then following same steps of proving Proposition 4 and

Proposition 10 in Appendix G, we can show limp→∞ P(Ne,K = 0) = 0, which indicates that

limp→∞ P(Ne = 0) = 0, since Ne,K ≤ Ne.

Finally, we prove (14). If αp satisfies (13), then for large p, σ2
p ≍ (log p)−1. Letting t = σ2

p

in (80), it follows that if αp → α∗, then 2αpτ
2
p log p → 1. On the other hand, from the auxiliary

bounds (131) given in Appendix F, we can get
m(−τ−1

p )

τp
→ 1. Applying (9) and (10) gives us

lim
p→∞

P(Ne = 0) = lim
p→∞

exp {−pΦ(−1/τp)}
(a)
= lim

p→∞
exp {−p · τpϕ(−1/τp)}

(b)
= lim

p→∞
exp

{
−p(2αp log p)

−1/2 e
−αp log p

√
2π

}

= lim
p→∞

exp

{
− exp

{
− log p

(
αp − 1 +

log(αp)

2 log p
+

log(4π) + log log p

2 log p

)}}

(c)
= e−e−x

,

where step (a) follows from
m(−τ−1

p )

τp
→ 1, step (b) follows from 2αpτ

2
p log p → 1 and we use

(13) in step (c).

III. THE LIMITING QUADRATIC FUNCTION

The goal of this technical section is to make the approximations shown in Figure 3 rigorous.

A. Proof of Proposition 2

To lighten notation, we will sometimes omit the leave-one-out subscript as used in Sec. II-A.

For example, A\i will be replaced by A, and ai by a, as long as doing so causes no confusion.

Let us first introduce the following function:

Gp(s)
def
= max

u
[s⊺u− L(u)]− [s⊺u∗ − L(u∗)], , (33)

where L(u) = ‖A⊺u‖1 + u⊺y + 1
2
‖u‖2 and u∗ = argmin

u

L(u). Using Gp(s) and omitting

subscript i, scalar function gp,i(v) defined in (18) can be also expressed as:

gp(v) = Gp(av)
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and correspondingly, we re-write (19) as:

min
−1≤x≤1

gp(x− β) + a⊺u∗(x− β). (34)

It can be seen that Gp(s) is related with the conjugate function of L(u), which is a strongly

convex function. Therefore, Gp(s) and gp(v) possess some nice properties that will be useful in

our proof. We gather them together in Appendix A.

We first show that gp(v) concentrates around its expectation, which is the following proposition.

Its proof will be given in Appendix C.

Proposition 8: There exists c > 0, s.t. for any ε > 0,

P

(
sup

v∈[−2,2]

|gp(v)− Egp(v)| > ε

)
≤ cδp

ε
e
−c−1pmin

{
ε2

δp
,ε

}

. (35)

The next result shows that Egp(v) is essentially a quadratic function in the large p limit.

Proposition 9: For any v ∈ [−2, 2],
∣∣∣∣Egp(v)−

1

2
Apv

2

∣∣∣∣ ≤
16δp
σ2
pp

, (36)

where Ap is defined in (21).

Proof: First we introduce the following auxiliary functions:

Qp(θ)
def
= min

x∈[−1,1]p

‖Ax− y +
√
θã‖2

2p
, θ ≥ 0, (37)

where ã ∼ N (0, In), independent of A,w. Clearly, the original problem (2) is the special case

when θ = 0. For notational convenience, we also define the expectation of Qp(θ) as:

Qp(θ)
def
= EQp(θ)

=
1

p
Emax

u
u⊺

√
θã− L(u), (38)

where L(u) is given in (33). Note that the connection between Qp(θ) and Egp(v) is:

Egp(v) =
Qp(v

2/p)−Qp(0)

v2/p
v2, (39)

i.e., Egp(v) can be approximated by the derivative of Qp(θ) at θ = 0. To make this intuition

rigorous, we need to study the analytical properties of Qp(θ).
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First, we show that Qp(θ) is differentiable on [0,∞) and Q
′
p(θ) is Lipschitz continuous. Indeed,

from (33) and (38),

Q
′
p(θ) =

1

p

∂

∂θ

[
Emax

u
u⊺

√
θã− L(u)

]

=
1

p

∂

∂θ
Emax

u
−
(
‖A⊺u‖1 + β⊺A⊺u+

1

2
‖u‖2 +

√
θ + σ2

pu
⊺w̃

)
(40)

(a)
= − Ew̃

⊺
ûθ

2p
√
θ + σ2

p

, (41)

where w̃ ∼ N (0, In) and ûθ corresponds to the optimal solution of (40). In step (a), we use

dominated convergence theorem (DCT) to interchange derivative and expectation. By the same

argument of (77) in Appendix A, we have for any b, c ≥ 0,

‖ûb − ûc‖ ≤
∣∣∣
√

b+ σ2
p −

√
c+ σ2

p

∣∣∣ ‖w̃‖. (42)

On the other hand, for any θ ≥ 0,

‖ûθ‖ = min
x∈[−1,1]p

‖Ax− (Aβ +
√

θ + σ2
pw̃)‖ ≤

√
θ + σ2

p‖w̃‖. (43)

Combining (41), (42) and (43), for any b > c ≥ 0, we can get

∣∣∣Q′
p(b)−Q

′
p(c)

∣∣∣ ≤ δp|b− c|
σ2
p

. (44)

Therefore, Q
′
p(h) is

δp
σ2
p
-Lipschitz.

Now we are ready to analyze Egp(v). By the mean value theorem, we get from (39) that

Egp(v) = Q
′
p

(
κpv2

p

)
v2, (45)

where κp ∈ [0, 1]. From (44) and (45), we deduce that

∣∣∣Egp(v)−Q
′
p(0)v

2
∣∣∣ ≤ v4δp

σ2
pp

≤ 16δp
σ2
pp

. (46)

On the other hand, from (41),

Q
′
p(0) = −Ew̃

⊺
û0

2σ2
pp

= −Ew⊺u∗

2σ2
pp

, (47)

It can be checked from (15) that u∗ = Ax∗ − y. Combining (46) and (47), we get (36).

Remark 3: It will be shown later [c.f. (59)] that Ap ≥ Cδp, for some constant C > 0.

Therefore, we know from (36) that the quadratic approximation of Egp(v) is accurate for large

p, if σp ≫ p−1/2. We will prove that, when σp < c√
log p

for some constant c, perfect recovery
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is achieved with high probability. This means that σp ≫ p−1/2 already covers the regime where

we are most interested in. In the following, we will take σp ≥ 1
log p

.

Proposition 8 and 9 immediately implies the first part of Proposition 2, i.e., (20). Next we

show Ap converges to A∗
p in the high-dimensional limit. From (47),

Ap = 2Q
′
p(0). (48)

Hence, it boils down to analyzing Q
′
p(θ) and its limit, which can be done as follows.

1) Convergence of Qp(θ): The CGMT framework in [13], [33] can be readily applied to

computing the limit of Qp(θ) in high dimensions.

Lemma 1: There exists c > 0, s.t., for any ε > 0 and θ ∈ [0, 1],

P
(
|Qp(θ)−Q∗

p(θ)| > ε
)
≤ ce

−pmin

{
ε2

δp
,ε

}
/c

min{ ε
δp

,

√
ε
δp

}
, (49)

where

Q∗
p(θ) =

1

2

[
min
τ>0

Fp

(
τ ; θ + σ2

p , δp
)]2

, (50)

with Fp defined in (7). Also for any γ > 2, there exists c > 0 such that

sup
θ∈[0,1]

|Qp(θ)−Q∗
p(θ)| < cp−1/γ . (51)

Remark 4: The proof of Lemma 1 will be given in Appendix D. We can find Q∗
p(0) =

f2
p

2
,

where fp is defined in (8). This can be understood from (37) and (49), since Q∗
p(θ) is the limiting

value of the squared fitting error when the noise variance is θ + σ2
p .

2) Smoothness of Q∗
p(θ):

Lemma 2: Q∗
p(θ) is twice differentiable over θ ≥ 0, with

Q∗
p

′(0) =
fp
2τp

(52)

and Q∗
p
′′(θ) ≤ C, for all θ ≥ 0, where C is some constant.

Proof: Note that Q∗
p(θ) is a composition of Rp(t) and t(θ) = θ+σ2

p , where Rp(t) is defined

in Appendix B. By chain rule, Q∗
p(θ) is twice differentiable, with Q∗

p
′(0) = fp

2τp
and

Q∗
p
′′(θ) = R′′

p(t)t
′(θ) +R′

p(t)t
′′(θ)

= R′′
p(θ + σ2

p). (53)

Then together with bound (84) shown in Appendix B, we know there exists C > 0, s.t., Q∗
p
′′(θ) ≤

C, for all θ ≥ 0.



16

3) Convergence of Ap to A∗
p: Now we can show the convergence of the curvature Ap, which

also implies the simple limiting form of gp(v).

Lemma 3: There exists c > 0 such that

|Ap −A∗
p| < cp−1/(2γ). (54)

Proof: For γ > 2, there exists C > 0, s.t. for θ ∈ (0, 1],

|Ap −A∗
p|

(a)

≤ 2
∣∣∣Q′

p(0)−
Qp(θ)−Qp(0)

θ

∣∣∣+ 2
∣∣∣Qp(θ)−Qp(0)

θ
− Q∗

p(θ)−Q∗
p(0)

θ

∣∣∣

+ 2
∣∣∣Q

∗
p(θ)−Q∗

p(0)

θ
−Q∗

p
′(0)
∣∣∣

(b)

≤ C


θδp

σ2
p
+

√
δpp

−
1
γ

θ
+ θ


 , (55)

where in step (a), we use (22), (48) and (52) and in step (b), we use (44), (51) and Lemma 2.

Therefore, taking θ = p
− 1
2γ and using Assumptions (A.4) and (A.5), we can get (54).

B. Proof of Proposition 3

Proposition 2 indicates that the original scalar problem (34) can be well approximated by

min
x∈[−1,1]

1

2
Ap(x− β)2 + a⊺u∗(x− β), (56)

which has an explicit optimal solution:

x̆ = Prox[−1,1]

(
β − a⊺u∗

Ap

)
. (57)

Note that the difference between x̆ and x̃ should be small, as implied by (23), (57) and (54). In

fact, we can directly prove x̃ → x∗ without considering x̆. The reason for us to introduce this

intermediate variable is to achieve a better convergence rate in our proof.

The first lemma below shows that the objective function of (56), i.e.,

ℓ̂p(x) =
1

2
Ap(x− β)2 + a⊺u∗(x− β) (58)

is strongly convex.

Lemma 4: There exists K > 0, s.t., Ap ≥ Kδp for all p large enough. Therefore, ℓ̂p(x) is

Kδp-strongly convex.

Proof: By (8) and the definition of A∗
p, we have

A∗
p =

1

2

(
δp −

1

2

)
+

σ2
p

2τ 2p
+

1

2

∫ ∞

2
τp

(
x− 2

τp

)2

Φ(dx) ≥ 1

2

(
δp −

1

2

)
. (59)
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Then from assumption (A.5) and (54), we know there exists K > 0 s.t. Ap ≥ Kδp > 0 and

ℓ̂p(x) is Kδp-strongly convex.

Then together with uniform convergence proved in Proposition 2, we can show x∗ → x̆.

Lemma 5: There exists c > 0 s.t., for ε ∈ (0, 1),

P (|x∗ − x̆| > ε) <
c

ε2
e−pε4/c. (60)

Proof: Since ℓ̂p(x) is Kδp-strongly convex,

ℓ̂p(x
∗)− ℓ̂p(x̆) ≥

1

2
Kδp(x

∗ − x̆)2. (61)

Let ℓp(x) be the objective function in (19). From (20) we know there exists c > 0, s.t., for

ε ∈ (0, 1), |ℓ̂p(x∗) − ℓp(x
∗)| ≤ δpε and |ℓ̂p(x̆) − ℓp(x̆)| ≤ δpε with probability greater than

1− c
ε
e−pε2/c. This indicates

ℓ̂p(x
∗)− ℓ̂p(x̆) ≤ [ℓp(x

∗) +
√

δpε]− [ℓp(x̆)−
√

δpε] ≤ 2δpε. (62)

From (61) and (62), we can get there exists c > 0 s.t. for all ε ∈ (0, 1), P (|x∗ − x̆| > √
ε) <

c
ε
e−pε2/c. Then changing

√
ε to ε in the above, we get (60).

Furthermore, using (54) we can also show x̆ → x̃.

Lemma 6: For γ > 2, there exists c > 0, s.t., for ε ∈ (0, 1),

P (|x̆− x̃| > ε) <
c

ε
e−p

1
γ ε2/c.

Proof: By the non-expansiveness of proximal operator Prox[−1,1](·), from (23) and (57) we

know there exists C > 0, s.t.,

|x̆− x̃| ≤
∣∣∣∣
1

Ap

− 1

A∗
p

∣∣∣∣ |a⊺u∗| ≤ C

δ2p
|a⊺u∗|p−

1
2γ , (63)

where we have used (54) and (59). Recall that u∗ = Ax∗ − y, so similar to (104) and (105),

we obtain that there exists c > 0, s.t., for all ε > 0, P
(∣∣∣ ‖u

∗‖√
p
− fp

∣∣∣ > ε
)
≤ c

√
δp

ε
e−pε2/c. Since

a and u∗ are independent, then from (63) it is not hard to show there exists c > 0, s.t., for all

ε ∈ (0, 1), P (|x̆− x̃| > ε) ≤ c
ε
e−p1/γε2/c.

Lemma 5 and 6 imply Proposition 3, based on which we can now prove Proposition 4.
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C. Proof of Proposition 4

Our strategy is to show that P(β̃ 6= β̂) is small, which implies P(Ñe 6= Ne) is small and so

is dTV(Ñe, Ne). Recall that Ñe and Ne are in the same probability space, and we have assumed

βi = −1, for any i ∈ [p]. Then the following simple relation holds:

{
β̃i 6= β̂i

}
⊂
{
|x̃i − x∗

i | > p−
1
5
}⋃{

x̃i ∈ [−p−
1
5 , p−

1
5 ]
}
. (64)

Since x̃i = Prox[−1,1]

(
βi −

a
⊺

iu
∗
\i

A∗
p

)
, for U ∈ (−1, 1), |x̃i| ≤ U ⇔

∣∣∣
a
⊺

iu
∗
\i

A∗
p

+ 1
∣∣∣ ≤ U . Then

letting bi = A∗
p(−1 + p−

1
5 ) and A∗

p(−1 − p−
1
5 ), k = 1 and ε = p−

1
5 in (28), we can show

P(|x̃i| ≤ p−
1
5 ) ≤ Φ(−1/τp)p

−1
5 polylog p, similar to (126) shown in Appendix E. On the other

hand, letting ε = p−
1
5 in (24), P(|x∗

i − x̃i| > p−
1
5 ) < p

2
5 e−p1/12/c. These together with (64)

indicate

P(β̃i 6= β̂i) ≤ Φ(−1/τp)p
−1
5 polylog p. (65)

By union bound,

P(β̃ 6= β̂) ≤
p∑

i=1

P(β̃i 6= β̂i) ≤ λpp
−1
5 polylog p.

Since dTV(Ñe, Ne) ≤ P(Ñe 6= Ne) ≤ P(β̃ 6= β̂), we obtain (27).

IV. ASYMPTOTIC DISTRIBUTIONS

This is another technical section. Our main goal here is to derive the asymptotic distribution

of {x̃i} and that of Ñe.

A. Proof of Proposition 5

By the exchangeability of
{
a
⊺

iu
∗
\i
}
i∈[p], we just need to consider the joint distribution of

{
a
⊺

iu
∗
\i
}
i∈[k], i.e., the first k coordinates. A key result we are going to establish is that

{
a
⊺

iu
∗
\i
}
i∈[k]

are approximately independent, provided that k is not too large.

Let u∗
\[k] be the optimal solution of

min
u

‖A⊺

\[k]u‖1 + u⊺A\[k]β\[k] +
1

2
‖u‖2 + u⊺w, (66)

where A\[k] is the matrix formed by removing the first k columns of A and β\[k] is defined in

the same way. In other words, u∗
\[k] is the leave-k-out solution of minu L(u). Also define

ũ\[k]
def
=

√
pfpu

∗
\[k]

‖u∗
\[k]‖

. (67)
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Since ai
i.i.d.∼ N (0, Ip/p), i = 1, 2, . . . , k and ũ\[k] is independent of {ai}i∈[k], with fixed norm

√
pfp, the joint distribution of

{
a
⊺

i ũ\[k]
}
i∈[k] is:

(
a
⊺

1ũ\[k] a
⊺

2ũ\[k] . . . a
⊺

kũ\[k]

)
⊺

∼ N (0, f 2
pIp). (68)

Our proof of approximate independence of
{
a
⊺

iu
∗
\i
}
i∈[k] consists of two steps:

1) Show the joint distribution of
{
a
⊺

iu
∗
\i
}
i∈[k] is closed to that of

{
a
⊺

iu
∗
\[k]
}
i∈[k]. This is proved

in Lemma 9.

2) Show the joint distribution of
{
a
⊺

iu
∗
\[k]
}
i∈[k] is closed to that of

{
a
⊺

i ũ\[k]
}
i∈[k], which are

mutually independent. This is proved in Lemma 12.

Details of the proof can be found in Appendix E.

B. The Limiting Poisson Law of Ñe

Before presenting the actual proof, it would help to first show some heuristic derivations.

We employ the following general inclusion-exclusion principle [34, p.106]: for any k ∈ [p], the

probability Pk that exactly k among p events A1, . . . , Ap occur is

Pk =

p∑

m=k

(
m

k

)
(−1)m−kSm, (69)

where

Sm =




1 m = 0,

∑
1≤i1<···<im≤p P

(⋂m
j=1Aij

)
1 ≤ m ≤ p.

(70)

In our setting, Ai = {β̃i 6= βi}, i = 1, 2, . . . , p and Pk = P(Ñe = k).

By the exchangeability of {β̃i}i∈[p], we have Sm =
(
p
m

)
S[m], , with S[m] = P

(
β̃i 6= βi, i ∈ [m]

)
.

From Proposition 6, for large enough p and “reasonably large” m, S[m] ≈ Φm
(
− 1

τp

)
, so

Sm =
p!S[m]

m!(p−m)!
≈ λm

p

m!
, (71)

where λp is defined in (9). Then combining (69) and (71), we have

P

(
Ñe = k

)
=

p−k∑

m=0

(
k +m

k

)
(−1)mSk+m

≈
p−k∑

m=0

(k +m)!

m!k!
(−1)m

λk+m
p

(k +m)!

≈ λk
p

k!
e−λp, (72)
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which implies that the PMF of Ñe is approximately Poisson with rate λp.

We now quantitatively analyze the error of approximation in (72). First, we approximate the

right-hand side of (69) by a truncated sum:
∑L

m=k

(
m
k

)
(−1)m−kSm, with L ≤ p. The reason

for this operation is that S[m] ≈ Φm
(
− 1

τp

)
may not be accurate for large m, since we only

have approximate finite event independence. We then need to control the error caused by the

truncation. Accordingly, we can apply Bonferroni’s inequality [34, p.110], stated as follows.

Under the same setting as (69), for k + 1 ≤ L ≤ p, we have

1) If L− k is odd,

L∑

m=k

(
m

k

)
(−1)m−kSm ≤ Pk ≤

L−1∑

m=k

(
m

k

)
(−1)m−kSm. (73)

2) If L− k is even,

L−1∑

m=k

(
m

k

)
(−1)m−kSm ≤ Pk ≤

L∑

m=k

(
m

k

)
(−1)m−kSm. (74)

Therefore, we need to choose a reasonably large L to attain a good trade-off between the

approximation error of (71) and the truncation error of (73) and (74), such that they are both

properly bounded. Our proof of Proposition 7 follows this idea. The details can be found in

Appendix H.

V. CONCLUSION

In this paper, we have presented an exact performance characterization of the box-relaxation

decoder in high dimensions. We show that, under certain scalings of the sampling ratio and the

noise variance, the number of incorrectly-decoded bits has a limiting Poisson distribution. In

addition, a phase transition from nonperfect to perfect recovery takes place at a well-defined

critical threshold. Numerical simulations show that the actual performance of the algorithm is

well captured by our theoretical predictions. Finally, it is worth mentioning that, although we

have assumed that the sensing matrix has i.i.d. normal entries, the results on the limiting Poisson

law should hold under more general matrix ensembles. We leave this as an interesting line of

work for future investigation.

APPENDIX

A. Properties of Gp(s) and gp(v)

Lemma 7: For any A and y, it holds that:
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1) Gp(s) is convex and differentiable in R
n, with

∇Gp(s) = u∗
s − u∗, (75)

where u∗
s

def
= argmax

u

s⊺u− L(u).

2) ∇Gp(s) is 1-Lipschitz continuous, i.e., ∀r, s ∈ R
n

‖∇Gp(r)−∇Gp(s)‖ ≤ ‖r − s‖ (76)

or equivalently,

‖u∗
r − u∗

s‖ ≤ ‖r − s‖. (77)

3) gp(v) is convex and differentiable with

∣∣g′p(v)
∣∣ ≤ 2‖a‖2, (78)

Proof: Let L∗(s)
def
= maxu s

⊺u − L(u), which is the conjugate function of L(u). We

know ∇Gp(s) = ∇L∗(s) − u∗. Since L(u) is closed and 1-strongly convex, L∗(s) is convex

and differentiable with ∇L∗(s) = u∗
s and ∇L∗(s) is 1-Lipschitz continuous [35, Chapter X].

Therefore, from (33) we know Gp(s) is convex. Since ∇Gp(r)−∇Gp(s) = ∇L∗(r)−∇L∗(s),

we get (75) and (76).

Since gp(v) = Gp(av), gp(v) is also convex and differentiable with g′p(v) = a⊺∇Gp(av). From

(75) and (76), we know ‖∇Gp(av)‖ ≤ ‖a‖v. Therefore, (78) follows from Cauchy-Schwartz

inequality and the fact that |v| ≤ 2.

B. Properties of the Optimization Problem (8)

In this section, we collect some useful properties of the one-dimensional optimization (8),

which was first studied in [13]. For our purpose, we consider a slightly more general setting:

fp(t) = min
τ>0

Fp(τ ; t, δp)

= min
τ>0

τ

2

(
δp −

1

2

)
+

t

2τ
+

τ

2

∫ ∞

2
τ

(
x− 2

τ

)2

Φ(dx), (79)

where t > 0 is a parameter. Note that (8) and the inline optimization of (50) are the cases where

t = σ2
p and t = (1+ θ)2σ2

p , respectively. Also we define the squared loss function: Rp(t)
def
=

f2
p (t)

2

and evidently, Rp

[
(1 + θ)2σ2

p

]
= Q∗

p(θ), where Q∗
p(θ) is defined in (50).
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1) Uniqueness of Optimal Solution: Let τ(t) be the minimizer of (79), which is the solution

of stationary equation:

h(τ)
def
= δp −

1

2
+

∫ ∞

2
τ

(
x2 − 4

τ 2

)
Φ(dx)− t

τ 2
= 0. (80)

By direct differentiation of h(τ) above, we can show h′(τ) =
∫∞

2
τ

8
τ3
Φ(dx) + 2t

τ3
> 0, so it is

a strictly increasing function. Also limτ→0 h(τ) = −∞ and limτ→∞ h(τ) = δp > 0. This also

establishes that the strict convexity of fp(t). Therefore, τ(t) is unique for any t > 0. Besides,

we can directly check that τ(t) is differentiable with

τ ′(t) =
τ(t)

8
∫∞
2/τ(t)

Φ(dx) + 2t
> 0, (81)

so τ(t) is strictly increasing.

2) Upper and Lower Bounds of τ(t): Since h
(√

t
δp

)
< −1

2
+
∫∞

2
τ

x2Φ(dx) < 0, by h(0+) <

0, h(∞) > 0 and uniqueness of τ(t), we have τ(t) ≥
√

t
δp

. Similarly, we can get τ(t) ≤

min{
√

t
δp−1/2

,
√

4+t
δp

} and τ(t) ≥
√

t
δp−1/2+vp

, where vp =
∫∞
bp

x2Φ(dx), with bp = 2
√

δp−1/2
t

and evidently, vp < 1/2. Therefore, τ(t) can be bounded as:

√
t

δp−1/2+vp
≤ τ(t) ≤ min

{√
t

δp−1/2
,
√

4+t
δp

}
. (82)

3) Properties of fp(t): From (79) we get fp(t) ≥ 0, f ′
p(t) =

1
2τ(t)

> 0 and f ′′
p (t) = − τ ′(t)

2τ2(t)
< 0,

so fp(t) is nonnegative, strictly increasing and concave. On the other hand, letting τ =
√

t
δp

in

(79) we can get fp(t) ≤ C
(√tδp

2
+ 1
)
, where C is some constant.

4) Properties of Rp(t): By the chain rule, R′
p(t) = fp(t)

2τ(t)
and R′′

p(t) =
∫∞
2/τ(t)

xΦ(dx)

τ(t)(8
∫∞
2/τ(t) Φ(dx)+2t)

.

Therefore, Rp(t) is strictly increasing and convex. From (80), we can show R′
p(t) is bounded:

R′
p(t) =

1

2

[
δp − 1

2
+

∫ ∞

2
τ(t)

x2 − 2x
τ(t)

Φ(dx)

]
≤ δp

2
. (83)

On the other hand, R′′
p(t) satisfies: R′′

p(t) ≤ ϕ(−2/τ(t))
2τ(t)t

, where ϕ(x) is the PDF of standard

Gaussian. Then using (82) and Assumption (A.4), we know there exists C > 0, s.t., for t > 0,

R′′
p(t) ≤

√
δp
8π
e−

2(δp−1/2)
t t−

3
2 ≤ C. (84)

C. Proof of Proposition 8

We first prove the pointwise convergence of gp(v) to Egp(v): there exists c > 0, s.t., for any

v ∈ [0, 2] and ε > 0,

P (|gp(v)− Egp(v)| > ε) ≤ ce
−c−1pmin

{
ε2

δp
,ε

}

. (85)
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Recall that gp(v) = Gp (av), so it is equivalent to prove |Gp(av) − EGp(av)| → 0. We first

control the moment generating function of Gp(av)−EGp(av). Let b be an i.i.d. copy of a. For

all |λ| ≤ p

2
√
2π

, we can apply Theorem 2.2 of [36, p.176] to get

E[exp λ(Gp(av)− EGp(av))] ≤ Ee
πλ
2
(bv)⊺∇Gp(av)

(a)

≤ EA,wEae
2λ2π2

p
‖a‖2

= exp

[
−n

2
log

(
1− 4λ2π2

p2

)]

(b)

≤ exp

(
4δpλ

2π2

p

)
.

In step (a), we take expectation over b and use |v| ≤ 2 and ‖∇Gp(av)‖ ≤ 2‖a‖, as implied by

(76); In step (b), we use the inequality log(1 + x) ≥ x
1+x

, for x > −1 and the condition that

|λ| ≤ p

2
√
2π

. As a result, for any ε ≥ 0 and λ ∈
[
0, p

2
√
2π

]
,

P (gp(v)− Egp(v) > ε) ≤ e−λε+
4δpλ

2π2

p . (86)

After minimizing the exponent on the RHS of (86) over λ ∈
[
0, p

2
√
2π

]
, we can get for any ε ∈

[0,
√
8πδp], P (gp(v)− Egp(v) > ε) ≤ e

− pε2

16δpπ2
; for any ε >

√
8πδp, P (gp(v)− Egp(v) > ε) ≤

e
− pε

4
√
2π . The other direction also holds by the same reasoning. Thus,

P (|gp(v)− Egp(v)| > ε) ≤ 2e
− p
16π2 min{ε

2

δp
,ε}
. (87)

To show uniform convergence (35), it suffices to prove the Lipschitz continuity of gp(v) and

Egp(v). From Lemma 1 of [37], we have for all x > 0, P
(
‖a‖2 ≥ δp+

2
√

δpx√
p

+ 2x
p

)
≤ exp(−x).

Let x = n(
√
y + 1 − 1)2, we have for y ≥ 2, P

(
‖a‖2
δp

− 1 ≥ y
)
≤ exp

(
−ny

4

)
. Therefore, by

taking y = K/δp, we get for any K ≥ 2δp,

P(‖a‖2 > K) ≤ P(‖a‖2 − δp > K/2) ≤ exp(−pK
4
). (88)

Combining it with (78), we know for K ≥ 2δp, gp(v) is 2K-Lipschitz with probability greater

than 1 − exp(−pK
4
). From (78), we can also get

∣∣∣dEgp(v)dv

∣∣∣ ≤ 2δp, so Egp(v) is 2δp-Lipschitz

continuous over v ∈ [0, 2]. Combining the Lipschitz continuity of gp(v) and Egp(v) with (85),

we can obtain (35) by a standard epsilon-net argument as follows. We need to consider different

values of ε:
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1) If ε ≥ δp, we construct an epsilon-net of [0, 2] formed by the following points: vk = k
4
,

k = 1, 2, . . . , 8. For any v ∈ [0, 2], denote v∗ as the closest point to v in the above epsilon-

net. By construction, |v − v∗| ≤ 1
8
. If gp(v) is 2K-Lipschitz, then for any v ∈ [0, 2],

|gp(v)− Egp(v)| ≤ |gp(v)− gp(v
∗)|+ |gp(v∗)− Egp(v

∗)|+ |Egp(v∗)− Egp(v)|

≤ K

4
+ |gp(v∗)− Egp(v

∗)|+ ε

2
, (89)

where we have used the Lipschitz continuity of gp(v) and Egp(v), as well as ε ≥ δp. Then

supv∈[0,2] |gp(v)− Egp(v)| ≥ 2ε, only if at least one of following holds: (i) K ≥ 2ε ≥ 2δp,

(ii) there exists a k ∈ {1, 2, . . . , 8}, s.t., |gp(vk) − Egp(vk)| ≥ ε. Combining (87) and (88)

and applying the union bound, we get for ε ≥ δp,

P( sup
v∈[0,2]

|gp(v)− Egp(v)| ≥ 2ε) ≤ 18e−
pε

16π2 . (90)

2) If ε < δp, we construct an epsilon-net of [0, 2] formed by the following points: vk =

2k/⌈8δp
ε
⌉, k = 1, 2, . . . , ⌈8δp

ε
⌉. In this case, for any v ∈ [0, 2], we have |v − v∗| ≤ ε

8δp
.

Then similar as previous argument, we have supv∈[0,2] |gp(v)−Egp(v)| ≥ 2ε, only if at least

one of following holds: (i) gp(v) is not 4δp-Lipschitz, (ii) there exists a k ≤ ⌈8δp
ε
⌉, s.t.,

|gp(vk)− Egp(vk)| ≥ ε. Combining (87) and (88) and applying the union bound, we get:

P( sup
v∈[0,2]

|gp(v)− Egp(v)| ≥ 2ε) ≤ 16δp
ε

e
− pε2

16π2δp . (91)

Combining (90) and (91), together with symmetry and the union bound, we directly get (35).

D. Proof of Lemma 1

The proof follows the CGMT framework [12], [13]. The optimization in (37) is equivalent to

Qp(θ) =p−
3
2 min
x∈[−1,1]p

max
u

u⊺

[√
pA −w̃

]

 x− β√

p(θ + σ2
p)


−

√
p‖u‖2
2

, (92)

where w̃ ∼ N (0, In). The corresponding auxiliary problem (AO) of (92) is

QAO,p(θ) = min
x∈[−1,1]p

max
u

−
√

‖x−β‖2
p

+ θ + σ2
p

g⊺u

p
+ ‖u‖√

p

[
h⊺(x−β)

p
+

h0

√
θ+σ2

p√
p

]
− ‖u‖2

2p

=
1

2

(
min

x∈[−1,1]p

√
‖x−β‖2

p
+ θ + σ2

p
‖g‖√

p
+ h⊺(x−β)

p
+

h0

√
θ+σ2

p√
p

)2

+

. (93)

where (x)+
def
= max{x, 0}, g ∼ N (0, In),h ∼ N (0, Ip), h0 ∼ N (0, 1) and they are mutually

independent.
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Now we analyze the inline optimization problem of (93), which can be simplified as:

φ(θ, g,h) = min
x∈[−1,1]p

inf
τ>0

√
δp

[
τ
2
+ ‖x−β‖2

2τp
+

θ+σ2
p

2τ

]
‖g‖√
n
+ h⊺(x−β)

p
+

h0

√
θ+σ2

p√
p

(94)

= inf
τ>0

[
τδp
2

+
θ+σ2

p

2τ

]
‖g‖√
n
+ 1

p

p∑

i=1

v (hi; τ, g) +
h0

√
θ+σ2

p√
p

︸ ︷︷ ︸
F (τ ;θ,g,h)

, (95)

where in (95) we make a change of variable: τ√
δp

→ τ and the parametric function v (h; τ, g)

is defined as:

v (h; τ, g)
def
=





0 h ≥ 0,

− τ
√
n

2‖g‖h
2 h ∈ [−2‖g‖

τ
√
n
, 0),

2
(

‖g‖
τ
√
n
+ h
)

h < −2‖g‖
τ
√
n
.

(96)

Denote τ ∗AO(θ) as the optimal solution in (95). From (94) and the fact that we did a change of

variable in (95), it can be seen τ ∗AO(θ) =
√

‖x∗−β‖2
pδp

+
θ+σ2

p

δp
. Therefore, for θ ∈ [0, 1], τ ∗AO(θ) ∈

Ω(σp, δp) , where Ω(σp, δp)
def
=

[
σp√
δp
,

√
5+σ2

p√
δp

]
. Note that this is consistent with (82).

We now show objective function F (τ ; θ, g,h) in (95) converges to F (τ ; θ)
def
= Fp(τ ; θ+σ2

p, δp)

with high probability over τ ∈ Ω(σp, δp). The first and third term in RHS of (95) is relatively

easy to deal with. By the concentration of
‖g‖√
n

(e.g. [38, p.44]) and h0√
p
, there exists c > 0, s.t.,

for any ε > 0 and τ ∈ Ω(σp, δp),

P

((
τδp
2

+
θ+σ2

p

2τ

) ∣∣∣ ‖g‖√
n
− 1
∣∣∣ >

√
δpε
)
≤ c exp(−nε2/c) (97)

and

P

(∣∣∣∣
h0

√
θ+σ2

p√
p

∣∣∣∣ > ε

)
≤ c exp(−pε2/c). (98)

Here in (97), we have used the fact that for τ ∈ Ω(σp, δp),
τδp
2

+
θ+σ2

p

2τ
≤ C

√
δp, where C is

some constant. For the second term, define the following function: V (h; τ, g)
def
=

∑p
i=1 v(hi;τ,g)

p
,

where v (h; τ, g) is given in (96). We now show there exists c > 0, s.t., for any ε ≥ 0,

P(|V (h; τ, g)− f(τ)| > ε) ≤ c exp(−pε2/c), (99)

where

f(t)
def
= − t

4
+ t

2

∫ ∞

2/t

(
x− 2

t

)2
Φ(dx). (100)
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First, note that for any fixed g, v (h; τ, g) is 2-Lipschitz continuous, so V (h; τ, g) is 2√
p
-Lipschitz

continuous w.r.t. h. Also we can verify that Ehv(h; τ, g) = f(τg), with τg
def
= τ

√
n

‖g‖ . Then using

Theorem 2.1 in [36, p.176], we have for any g and ε > 0,

P(|V (h; τ, g)− f(τg)| > ε) ≤ 2 exp(− pε2

2π2 ). (101)

It can be checked that f(t) in (100) satisfies f(t) ∈ [−1, 0] for any t > 0. Combining this with

(100) and (101), we know (99) holds for ε > 1
2
. On the other hand, by a direct differentiation,

we have f ′(t) = −1
4
+ 1

2

∫∞
2/t

(
x2 − 4

t2

)
Φ(dx). It is not hard to verify |f ′(t)| ≤ 1/4, for all

t > 0. Therefore, for any ε ∈ (0, 1/2), on the event Eε =
{∣∣∣‖g‖√

n
− 1
∣∣∣ < ε

}
, which happens with

probability P(Eε) ≥ 1− ce−nε2/c, there exists c > 0, s.t., |τg − τ | ≤ cε. As a result, there exists

c > 0, s.t., for ε ∈ (0, 1/2), P(|f(τg)− f(τ)| > ε) ≤ ce−nε2/c. This together with (101) implies

there exists c > 0, s.t., for ε ∈ (0, 1/2), inequality (99) still holds.

Combining (97) and (99), we get that there exists c > 0, s.t., for any ε > 0, τ ∈ Ω(σp, δp)

and θ ∈ [0, 1],

P (|F (τ ; θ, g,h)− F (τ ; θ)| > ε) ≤ ce−pε2/c. (102)

On the other hand, it can be verified from definition that there exists C > 0, s.t., F (τ ; θ, g,h)

and F (τ ; θ) are both Cδp-Lipschitz over τ ∈ Ω(σp, δp). Then by a similar epsilon-net argument

as in the proof of Proposition 8, we can get:

P
(

sup
τ∈Ω(σp,δp)

|F (τ ; θ, g,h)− F (τ ; θ)| > ε
)
≤ c

√
δp

ε
e−pε2/c. (103)

Since φ(θ, g,h) = minτ∈Ω(σp,αp) F (τ ; θ, g,h) and
√
2Q∗

p(θ) = minτ∈Ω(σp,αp) F (τ ; θ), from (103)

we know there exists c > 0, s.t., for any ε > 0,

P

(
|φ(θ, g,h)−

√
2Q∗

p(θ)| > ε
)
≤ c

√
δp

ε
e−pε2/c. (104)

Since
√

2QAO,p(θ) = max{φ(θ, g,h), 0}, from (104) we have

P

(
|
√
2QAO,p(θ)−

√
2Q∗

p(θ)| > ε

)
≤ c

√
δp

ε
e−pε2/c. (105)

Taking into account the fact Q∗
p(θ) ≤ Cδp (as shown in Appendix B), we can further obtain the

following Bernstein’s type inequality: there exists c > 0, s.t., for any ε > 0 and θ ∈ [0, 1],

P
(
|QAO,p(θ)−Q∗

p(θ)| > ε
)
≤ce

−pmin{ε
2

δp
,ε}/c

min{ ε
δp
,
√

ε
δp
}
. (106)
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Then by CGMT (e.g., [33, Corollary 5.1]), (106) implies that there exists c > 0, s.t.,

P
(
|Qp(θ)−Q∗

p(θ)| > ε
)
≤ ce

−pmin{ε
2

δp
,ε}/c

min{ ε
δp
,
√

ε
δp
}
. (107)

Finally, from (107) we know there exists c > 0, s.t., for any η > 0 and θ ∈ [0, 1],

E|Qp(θ)−Q∗
p(θ)| =

∫ ∞

0

P
(
|Qp(θ)−Q∗

p(θ)| ≥ t
)
dt

≤
√

δpη +

∫ ∞

√
δpη

cδp
t
e
− pt2

cδp dt+

∫ ∞

√
δpη

c

√
δp
t
e−

pt
c dt (108)

≤
√

δpη +
c2δp
p

(
e−pη2/c

η2
+

e−
√

δppη/c

√
η

)
. (109)

Then for γ > 2, letting η = p−1/γ in (109) and taking into account Assumption (A.4), we can

get E|Qp(θ)−Q∗
p(θ)| ≤ cp−1/γ for some c > 0 and all the sufficiently large p. As a result,

|Qp(θ)−Q∗
p(θ)| ≤ E|Qp(θ)−Q∗

p(θ)| ≤ cp−1/γ .

Since the constant c above does not depend on θ, we get (51).

E. Approximate k-wise Independence

1)
{
a
⊺

iu
∗
\i
}
i∈[k]

d≈
{
a
⊺

iu
∗
\[k]
}
i∈[k]: We first prove that the joint distribution of

{
a
⊺

iu
∗
\i
}
i∈[k] is

close to
{
a
⊺

iu
∗
\[k]
}
i∈[k]. To prove this, we can show a

⊺

iu
∗
\i ≈ a

⊺

iu
∗
\[k], for any i ∈ [k] and use the

fact that a
⊺

iu
∗
\i and a

⊺

iu
∗
\[k] are in the same probability space.

Lemma 8: There exists c > 0, s.t., for any ε > 0 and i = 1, 2, . . . , p− 1,

P

(∣∣a⊺

i (u
∗
\[i] − u∗

\[i+1])
∣∣ >

√
δpε
)
≤ ce−c−1pmin{ε2,ε}. (110)

Proof: To lighten notation, define ∆[i]
def
= u∗

\[i] − u∗
\[i+1]. Denote the objective function in

(66) as L\[i](u), (with k replaced by i here). By strong convexity of L\[i](u), we have

L\[i](u
∗
\[i+1])− L\[i](u

∗
\[i]) ≥ 1

2
‖∆[i]‖2. (111)

and

L\[i](u
∗
\[i+1])− L\[i](u

∗
\[i]) = |a⊺

i+1u
∗
\[i+1]| − |a⊺

i+1u
∗
\[i]| −∆⊺

[i]ai+1βi+1

+ L\[i+1](u
∗
\[i+1])− L\[i+1](u

∗
\[i])

≤ −1
2
‖∆[i]‖2 + 2‖∆[i]‖ · ‖ai+1‖, (112)
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where we use the fact |βi| = 1 and Cauchy-Schwartz inequality in the last step. From (111) and

(112), we can get ‖∆[i]‖ ≤ 2‖ai+1‖. Therefore, there exists c > 0, s.t., for any ε,D > 0,

P

(
|a⊺

i∆[i]| >
√

δpε
)
≤ P

(
|a⊺

i∆[i]| >
√

δpε
⋂

‖∆[i]‖ ≤ D
)
+ P

(
‖∆[i]‖ > D

)

≤ P

(∣∣∣a⊺

i
D∆[i]

‖∆[i]‖

∣∣∣ >
√

δpε
)
+ P

(
‖ai+1‖ > D

2

)

≤ e−
pδpε2

2D2 + ce
−c−1p

(
D

2
√

δp
−1

)2

+, (113)

where (x)+
def
= max{x, 0}. Then by choosing D ≍

√
δp for small ε and D ≍

√
δpε for large ε,

we can get (110).

Lemma 9: There exists c > 0, s.t., for any bi ∈ R, i = 1, 2, . . . , k and ε > 0,

P

(
k⋂

i=1

{
a
⊺

iu
∗
\i ≤ bi

}
)

≥ P

(
k⋂

i=1

{
a
⊺

iu
∗
\[k] ≤ bi −

√
δpε
})

− ck2e
−c−1pmin

{
ε2

k2
,
ε
k

}

(114)

and

P

(
k⋂

i=1

{
a
⊺

iu
∗
\i ≤ bi

}
)

≤ P

(
k⋂

i=1

{
a
⊺

iu
∗
\[k] ≤ bi +

√
δpε
})

+ ck2e
−c−1pmin

{
ε2

k2
,
ε
k

}

. (115)

Proof: From Lemma 8, for any k ∈ [p], there exists c > 0, s.t., for any ε > 0,

P

(∣∣a⊺

1(u
∗
\1 − u∗

\[k])
∣∣ >

√
δpε
)
≤

k−1∑

i=1

P

(∣∣a⊺

1(u
∗
\[i] − u∗

\[i+1])
∣∣ >

√
δpε

k−1

)

≤ cke
−c−1pmin

{
ε2

k2
,
ε
k

}

.

By the exchangeability of
{
a
⊺

iu
∗
\i,a

⊺

iu
∗
\[k]

}
i∈[k]

, we have for any i ∈ [k], it holds that

P

(∣∣a⊺

i (u
∗
\i − u∗

\[k])
∣∣ >

√
δpε
)
≤ cke

−c−1pmin

{
ε2

k2
,
ε
k

}

.

Therefore, we have for any ε > 0,

P

(
k⋂

i=1

{a⊺

iu
∗
\i ≤ bi}

)
= P

(
k⋂

i=1

{a⊺

iu
∗
\[k] ≤ bi − a

⊺

i (u
∗
\i − u∗

\[k])}
)

≤ P

(
k⋂

i=1

{a⊺

iu
∗
\[k] ≤ bi +

√
δpε}

)
+ P

(
k⋃

i=1

{
∣∣a⊺

i (u
∗
\i − u∗

\[k])
∣∣ >

√
δpε}

)

≤ P

(
k⋂

i=1

{a⊺

iu
∗
\[k] ≤ bi +

√
δpε}

)
+ ck2e

−c−1pmin

{
ε2

k2
,
ε
k

}

,

which is (114). The other direction (115) can be obtained in the same way.
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2)
{
a
⊺

iu
∗
\[k]
}
i∈[k]

d≈
{
a
⊺

i ũ\[k]
}
i∈[k]: Next we show the joint distribution of

{
a
⊺

iu
∗
\[k]
}
i∈[k] is

close to
{
a
⊺

i ũ\[k]
}
i∈[k]. First we show

‖u∗
\[k]

‖
√
p

≈ ‖ũ\[k]‖√
p

= fp.

Lemma 10: When k ≤ p
2
, there exist C, c > 0, s.t. for any ε > 0,

P

(∣∣∣‖u
∗
\[k]

‖
√
p

− fp

∣∣∣ >
√

δpε
)
≤ c

√
δpe

−c−1n

(

ε−
Ck
p

)2

+

max

{
ε−Ck

p
,n

−
1
2

} . (116)

Proof: By the definition of u∗
\[k], we can get

‖u∗
\[k]

‖
√
p

= 1√
p

min
x∈[−1,1]p−k

‖A\[k]x− (A\[k]β\[k] +w)‖

=
δp

δp,\[k]
·
minx∈[−1,1]p−k ‖Ã\[k]x− (Ã\[k]β\[k] + w̃)‖√

p− k
, (117)

where δp,\[k] =
n

p−k
, i.e., the sampling ratio after removing k predictors, Ã\[k]

i.i.d.∼ N
(
0, 1

p−k

)

and w̃ ∼ N
(
0,

δp,\[k]σ
2
p

δp
In

)
. Define

S∗
p(δ)

def
= δp

δ
min
τ>0

Fp

(
τ ;

δσ2
p

δp
, δ
)
, (118)

where Fp is defined in (7). Similar to (104), we can get for k ≤ p
2
, ∃c > 0, s.t., ∀ε > 0,

P

(∣∣∣‖u
∗
\[k]

‖
√
p

− S∗
p,\[k]

∣∣∣ > ε
)
≤ c

√
δp

ε
e−(p−k)ε2/c, (119)

where S∗
p,\[k]

def
= S∗

p(δp,\[k]).

On the other hand, |S∗
p,\[k] − fp| can be bounded as follows. From (118), we can show when

k ≤ p
2
, there exists C > 0, s.t.,

∣∣∣dS
∗
p(δ)

dδ

∣∣∣ ≤ C√
δp

for any δ ∈ [δp, δp,\[k]]. Since fp = S∗
p(δp) and

S∗
p,\[k] = S∗

p(δp,\[k]), by the mean value theorem, we can get for k ≤ p
2
, there exists C > 0, s.t.,

∣∣S∗
p,\[k] − fp

∣∣ ≤ Ck
√

δp

p
. (120)

Now combining (119) , (120) and the condition k ≤ p/2, we can obtain (116).

Based on Lemma 10, we can now show a
⊺

iu
∗
\[k] ≈ a

⊺

i ũ\[k], if k is not too large.

Lemma 11: If k ≤ √
p, then there exists c > 0, s.t., for any ε > 0 and i ∈ [k],

P

(∣∣a⊺

i (u
∗
\[k] − ũ\[k])

∣∣ >
√
δpε
)
≤ cp

1
2 e−

√
pε/c. (121)

Proof: Using (116) and following the similar steps as (113), we can get:

P

(
|a⊺

i (u
∗
\[k] − ũ\[k])| >

√
δpε
)
≤ Ce−

pε2

2D2 +
C
√

δpe
−C−1n

(

D√
p
−
Ck
p

)2

+

max

{
D√
p
−Ck

p
,n

−
1
2

} , (122)
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where C is some constant. Setting D = p
1
4 ε

1
2 in (122), we can obtain (121).

Using Lemma 11, we can show that the joint distributions of {a⊺

iu
∗
\[k]}i∈[k] and {a⊺

i ũ\[k]}i∈[k]
are similar.

Lemma 12: If k ≤ √
p, there exists c > 0, s.t., for any bi ∈ R, i = 1, 2, . . . , p and ε > 0,

P(a⊺

iu
∗
\[k] ≤ bi, i ∈ [k]) ≤P

(
a
⊺

i ũ\[k] ≤ bi +
√
δpε, i ∈ [k]

)
+ ckp

1
2 e−

√
pε/c (123)

and

P(a⊺

iu
∗
\[k] ≤ bi, i ∈ [k]) ≥P

(
a
⊺

i ũ\[k] ≤ bi −
√

δpε, i ∈ [k]
)
− ckp

1
2 e−

√
pε/c. (124)

Proof: The proof is similar to Lemma 9 and is omitted here.

3) Proof of Proposition 5: The proof follows directly Lemma 9 and Lemma 12.

4) Proof of Proposition 6: Letting bi = −A∗
p in (28), we have

P

( k⋂

i=1

{
β̃i 6= βi

})
≥ Φk

(
−1+

√
δpε/A∗

p

τp

)
−∆p,k (125)

≥ Φk
(
− 1

τp

)[
1− h(1/τp)

√
δpε

τpA∗
p

]k
−∆p,k, (126)

where h(x) = ϕ(−x)
Φ(−x)

is the so-called inverse Mills ratio. By (59), (126) and (132) given in

Appendix F, there exists c > 0, s.t., for any k ≤ √
p and small enough ε > 0,

P

( k⋂

i=1

{
β̃i 6= βi

})
≥ Φk

(
− 1

τp

)(
1− ckε

σ2
p

)
−∆p,k. (127)

On the other hand, we can also get the similar bounds as (125) and (127) for the other direction.

Now consider the case k ≤ p
1
8 . Accordingly, we set ε = p−

1
4 . Then there exists c, c′ > 0, s.t.,

∆p,k ≤ c′p
5
8 e−p1/4/c′ ≤ ce−p1/4/c. (128)

As a result, from (59), (125) and (128), if k ≤ p
1
8 , there exists c > 0, s.t.,

P

( k⋂

i=1

{
β̃i 6= βi

})
≥ Φk

(
− 1+cp

−
1
4

τp

)
− ce−p1/4/c. (129)

Meanwhile, we can also get for σ2
p ≥ c′

log2 p
,

P

( k⋂

i=1

{
β̃i 6= βi

})
− Φk

(
− 1

τp

) (a)

≥ −c

[
Φk
(
− 1

τp

)
kp−

1
4 polylog p+ e−p1/4/c

]

(b)

≥ −cΦk
(
− 1

τp

)[
kp−

1
4 polylog p+ e−p1/4/c

Φk(−
√

δp/σp)

]

(c)

≥ −Φk
(
− 1

τp

)
kp−

1
4 polylog p, (130)
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where in step (a), we use (127), in step (b), we use (82) and step (c) follows from inequality

(131) and conditions k ≤ p
1
8 and σ2

p ≥ c′

log2 p
. The other directions of (129) and (130) can be

derived similarly, which lead to (29) and (30).

F. Gaussian Tail Bounds

Here we gather some properties of the Gaussian tail bounds that will be used in our proof.

Let Φ(x) and ϕ(x) be the CDF and PDF of the standard Gaussian distribution, respectively. It

is well known that (see [38, p.14] for a proof), for any x > 0,

1

x
− 1

x3
≤ m(x) ≤ 1

x
, (131)

where m(x)
def
= Φ(−x)

ϕ(−x)
is known as the Mills ratio. Correspondingly, the inverse Mills ratio is

defined as h(x)
def
= 1/m(x). This provides us a way to approximate the tail probability Φ(−x)

by ϕ(x), which has an explicit form. In view of (82) and (131), there exists M > 1, s.t., for all

η ∈ [−1/2, 1/2],

1+η
τp

≤ h
(
− 1+η

τp

)
≤ M(1+η)

τp
. (132)

Meanwhile, from (82) and (132), for all η ∈ [−1/2, 1/2],

Φ
(
−1+η

τp

)
≤ 1

1+η

√
σ2
p

δp−1/2
1√
2π
e
− (1+η)2(δp−1/2)

2σ2
p (133)

and

Φ
(
−1+η

τp

)
≥ 1

M(1+η)

√
σ2
p

δp
1√
2π
e
− (1+η)2(δp−1/2+vp)

2σ2
p , (134)

where vp =
∫∞
bp

x2Φ(dx), with bp = 2
√

δp−1/2
σ2
p

.

G. An Auxiliary Result

Proposition 10: As p → ∞, it holds that

lim
p→∞

P(Ñe = 0) =




1, lim infp→∞ αp > 1,

0, lim supp→∞ αp < 1.
(135)

Proof: When lim infp→∞ αp > 1,
4σ2

p

δp−1/2
≤ 2

log p
for large enough p. Combining (29) and

(133) in Appendix F gives us

EÑe ≤ CpΦ
(
−1+η

τp

)
+ cpe−

4
√
p/c

≤ C
1+η

√
2

log p
p1−αp[1+o(η)], (136)
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where η = −cp−
1
4 and C is some constant. Therefore, from (136) and Markov’s inequality,

limp→∞ P(Ñe ≥ 1) = 0.

When lim supp→∞ αp < 1, then σp ≥ 1
log p

for large enough p and we have

EÑe

(a)

≥ pΦ
(
− 1

τp

)(
1− p−

1
4 polylog p

)

(b)

≥
2

(
1−p

−
1
4 polylog p

)

M log p
e−

vp log2 p
2 p1−αp , (137)

where step (a) follows from (30) and step (b) follows from (134) in Appendix F. In addition, it

can be checked that vp as defined in (82) satisfies vp ≤ e−b2p/2(bp+2)2

2
, where bp =

2
√

δp−1/2

σp
. If

αp ∈
[
1
2
, 1
)
, bp ≥ 2 log p√

δp−1/2
. Hence, there exists C > 0, such that for large enough p, vp ≤ 1

pC
.

Then from (137) we can get limp→∞EÑe = ∞. If αp < 1
2
, since τp is strictly increasing with

respect to σ2
p as shown in (81), by step (a) above, it still holds that limp→∞ EÑe = ∞.

We now prove that limp→∞ P(Ñe = 0) = 0, when limp→∞ EÑe = ∞. The key lies in the

approximate independence established in (30). First,

Var
(
Ñe

)
=

p∑

i=1

Var
(
1β̃i 6=βi

)
+
∑

i 6=j

Cov
(
1β̃i 6=βi

,1β̃j 6=βj

)

≤
p∑

i=1

P
(
a
⊺

iu
∗
\i ≤ −A∗

p

)

+
∑

i 6=j

∣∣P(a⊺

iu
∗
\i ≤ −A∗

p,a
⊺

ju
∗
\j ≤ −A∗

p)− P(a⊺

iu
∗
\i ≤ −A∗

p)P(a
⊺

ju
∗
\j ≤ −A∗

p)
∣∣

(a)

≤EÑe

(
1 + p−

1
4 polylog p

)
+ (EÑe)

2p−
1
4 polylog p, (138)

where in step (a), we have used (30), with k = 1, 2 and also (136). Let P(Ñe = 0) = 1 − qp,

qp ∈ [0, 1]. For any p, E
(
Ñe | Ñe > 0

)
= EÑe

qp
and hence E

(
Ñ2

e | Ñe > 0
)
≥
(

EÑe

qp

)2
, which

indicates that qp ≥ (EÑe)2

(EÑe)2+Var(Ñe)
. This combined with (138) and limp→∞ EÑe = ∞ leads to:

limp→∞ qp = 1. Therefore, we conclude that limp→∞ P(Ñe = 0) = 0.

H. Proof of Proposition 7

If αp ≥ 2, from (136) and (133), we know there exists c > 0, s.t., λp ≤ cp−
1
2 and EÑe ≤ cp−

1
2 .

Hence, dTV(Ñe,Pλp) can be bounded as:

dTV(Ñe,Pλp) ≤
1

2

∣∣∣P
(
Ñe = 0

)
− e−λp

∣∣∣ + 1

2
P

(
Ñe ≥ 1

)
+

1

2

(
1− e−λp

)
≤ 2cp−

1
2 .
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On the other hand, if αp < 2, then for large enough p, it holds that σp ≥ 1
log p

. Choose L in (73)

to be L = ⌊5 log p⌋ . Without loss of generality, assume L − k is odd (otherwise we add L by

1). Then from Bonferroni’s inequality (73), for k ≤ ⌊log p⌋,

P

(
Ñe = k

)
≤

L−1−k∑

m=0

(−1)m

k!m!
pm+kS[m+k]

(a)

≤
L−1−k∑

m=0

(−1)m

k!m!
pm+kΦm+k

(
− 1

τp

)
+

L−1−k∑

m=0

pm+kΦm+k

(
− 1
τp

)

k!m!
p−1/4Lp

(b)

≤ λk
p

k!
e−λp

(
1 +

(
λpe
L−k

)L−k

eλp−1

)
+

λk
p

k!
eλpp−1/4Lp

(c)

≤ λk
p

k!
e−λp

[
1 +

(
C

log2 p

)log p
+ p−1/5Lp

]
. (139)

Here, Lp is the shorthand notation for a term of order O(polylog p) and C is some constant,

step (a) follows from (30), in step (b) we use Taylor approximation and inequality n! ≥ e
(
n
e

)n

and step (c) follows from conditions L = ⌊5 log p⌋, k ≤ ⌊log p⌋ and lim supp→∞
λp√
log p

< ∞. In

a similar manner, for the other direction, we can also obtain

P

(
Ñe = k

)
≥ λk

p

k!
e−λp

[
1−

(
C

log2 p

)log p
− p−1/5Lp

]
. (140)

By (139) and (140), for k ≤ ⌊log p⌋,

∣∣∣P
(
Ñe = k

)
− λk

p

k!
e−λp

∣∣∣ ≤ λk
p

k!
e−λpp−1/5Lp. (141)

Then dTV(Ñe,P(λp)) can be bounded as:

dTV(Ñe,P(λp)) ≤ 1
2

⌊log p⌋∑

k=0

∣∣∣P(Ñe = k)− λk
pe

−λp

k!

∣∣∣+ 1
2

∞∑

k=⌊log p⌋+1

P(Ñe = k) +
∞∑

k=⌊log p⌋+1

λk
pe

−λp

2k!

(a)

≤ p−1/5Lp

2

⌊log p⌋∑

k=0

λk
pe

−λp

k!
+ 1

2


1−

⌊log p⌋∑

k=0

λk
pe

−λp

k!
(1− p−

1
5Lp)


+

∞∑

k=⌊log p⌋+1

λk
pe

−λp

2k!

(b)

≤ p−1/5Lp,

where in step (a) we use (141), in step (b) we use Chernoff’s bound for the tail probability of

Poisson random variables [38, p.20]: for X ∼ P(λ), k > λ, P(X > k) ≤ e−λ
(
eλ
k

)k
and the

condition that lim supp→∞
λp√
log p

< ∞.
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