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The Limiting Poisson Law of Massive MIMO

Detection with Box Relaxation

Hong Hu and Yue M. Lu

Abstract

Estimating a binary vector from noisy linear measurements is a prototypical problem for MIMO
systems. A popular algorithm, called the box-relaxation decoder, estimates the target signal by solving a
least squares problem with convex constraints. This paper shows that the performance of the algorithm,
measured by the number of incorrectly-decoded bits, has a limiting Poisson law. This occurs when the
sampling ratio and noise variance, two key parameters of the problem, follow certain scalings as the
system dimension grows. Moreover, at a well-defined threshold, the probability of perfect recovery is
shown to undergo a phase transition that can be characterized by the Gumbel distribution. Numerical
simulations corroborate these theoretical predictions, showing that they match the actual performance

of the algorithm even in moderate system dimensions.

I. INTRODUCTION
A. Motivations

Consider the problem of estimating a binary vector 3 € {—1,1}" from noisy linear measure-
ments in the form of

y=AB+w. (1)

Here, A € R™* is a known sensing matrix and w ~ N(0,021,) denotes an unknown noise
vector. This is a prototypical model for multi-user detections in MIMO communication systems
[L], [2]. Tt also arises in other applications such as compressed sensing [3]], source separation

[4], and image processing [S].

H. Hu and Y. M. Lu are with the John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge,
MA 02138, USA (e-mails: honghu@g.harvard.edu and yuelu@seas.harvard.edu). This work was supported by the Harvard FAS
Dean’s Fund for Promising Scholarship, and by the US National Science Foundation under grants CCF-1718698 and CCF-
1910410.


http://arxiv.org/abs/2006.08416v1

Various algorithms have been proposed to solve (I)). Examples include sphere decoding [6],
zero-forcing [7], approximate message passing [8]], Markov chain Monte Carlo methods [9], and
semidefinite programming [10]. Among them, a convex-optimization based method, known as
the box-relaxation decoder [11]-[13]], is popular in practice due to its simplicity and efficiency.
The method consists of merely two steps: (1) solve a box-constrained least squares problem

T = iregfflfll? %Hy — Az|]?, )
and (2) obtain an estimate of 3 by taking the sign of x*, i.e., B = sign(x*).

The performance of this algorithm can be measured by the bit error rate (BER):

1 p
BER = ]_9 Z ]I{Bﬁéﬁi}’ 3)
i=1
where 1, denotes the indicator function. The achievable BER depends on two key parameters:
the noise variance ag, and the sampling ratio 0, L) /.
Under the assumption that the sensing matrix A has i.i.d. normal entries, the authors of [12],
[13] analyzed the asymptotic BER achieved by the box-relaxation decoder. They show that, as

n,p — oo with 4, — ¢ € (3,00) and 02 = o

> 0, the BER converges in probability to a
deterministic limit, i.e.,

BER = £(6,02) € (0,1). ()

This means that for any ¢ > 0 and § > %, the algorithm can asymptotically achieve a weak
recovery of 3: it is better than random guess, but 3 always contains a nonzero fraction of errors.

Moreover, one can show that

lim £(6,0%) = lim £(,0%) = 0. 5)

6—00 02—=0
The expressions in (3)), together with (), suggest that the asymptotic BER can be made
arbitrarily small if we increase the number of measurements or reduce the noise variance. This
then raises a tantalizing question: is there a regime of (51,,0'5) such that the box-relaxation
decoder can perfectly recover the target signal? Existing results in [12], [13] cannot answer this
question, for two reasons. First, BER %0 only guarantees that the number of error bits

p
N Z LIETRe ©)

i=1
is sublinear in p, but it contains no information about the actual distribution of N, including

whether N, = 0. The second issue is subtle but important. It has to do with the specific order



with which the limits are taken in () and (5)). There, we first send the dimension p — oo before
letting 0, — oo or af, — 0. In practice, p is large but always finite, and thus the speed with
which 6, — oo and o} — 0 [e.g., 07 = O(1/p) vs. 02 = O(1/log p)] makes all the difference.

The goal of this paper is to present a precise asymptotic characterization of the probability
distribution of N.. We show that, in certain scaling regimes of (J,, 012,), the distribution of N,
converges to a Poisson law. Moreover, we derive conditions under which the exact recovery
of 3 is possible and provide an asymptotic formula for P(N, = 0) in the form of a Gumbel

distribution.

B. Main Results

We make the following assumptions throughout the paper.

(A.1) The elements of A are drawn from the i.i.d. Gaussian distribution: A;; N (0, %)
(A2) B8 = —1,, where 1, denotes the all-ones vector.

(A.3) The noise is Gaussian: w ~ N(0,021,).

(A4) liminf, . 6, > 1/2 and limsup,_,, d,/logp < oo.

(A5) liminf, , 07 log® p > 0 and limsup,,_, o) < oo0.

In [(A.2), we assume that each coordinate of true signal is —1 to simplify our derivations.
All the results still hold for arbitrary (3, due to the rotational symmetry of A. In [(A.4)] the
requirement that lim inf,, , . 0, > 1/2 is related to the fundamental limits of convex relaxation for
structural signal reconstruction. In [[14], it is shown that, if lim SUP,_ 00 0y < %, the box-relaxation
decoder cannot successfully recover 3 even in the noiseless case. In[(A.5)] we essentially require
012, > ¢/ log?p for some ¢ > 0. This restriction is due to the limitations of our current proof

techniques. We expect that many of our results still hold without this restriction.

To state our main results, we first need to introduce the following potential function:

F('25)—Z 5_1 4_0_1%_'_1/00 —g 2<I>(d) (7
pT7O'p7;D_2 P 2 o 2 /2 v T h

where ® is the CDF of the standard normal distribution. One can verify that F}, is a strictly
convex function of 7 € (0,00). (See Appendix [B] for details.) Thus, one can uniquely define

fp défm;g FP(T;U]%v(Sp) and Tp d:efargﬂéin FP(T; 0-127’51)). (8)
p T>

Another quantity that will be crucial in our analysis is

A & pd(—L). )

Tp



Theorem 1: Under (A3), and if limsup,, . —= < oo, then

polylog p

dTV(N87 ‘@()\P)) S p1/5 )

(10)

where dry is the total variation (TV) distance and 2?(\) denotes a Poisson distribution with
parameter .

Remark 1: The theorem, whose proof can be found in Section [[I-D} characterizes the asymp-
totic distribution of N, under certain scaling regimes of (d,, O'g). It shows that the law of N,
converges to that of a Poisson random variable with parameter A,, if A\, grows no faster than
v/Iog p. This requirement on ), is not satisfied in the setting studied in [12] where both ¢, and

2

o, are kept as fixed constants and consequently )\, = O(p). In that case, one can expect that

VD5 — ®(—-)] converges to a Gaussian distribution.

The fact that N, can have a limiting Poisson law is not surprising. Recall from its definition
in (@) that N, is a sum of p Bernoulli random variables {1 (B.+p:)}- Moreover, one can show that
P(B\Z # 5;) ~ @(—%) and that these Bernoulli random variables are close to being independent.
Consequently, the law of N, is approximately a Binomial distribution 5(p, <I>(—T—1p)) with an
expected value equal to \,. As p — oo with A, = O(y/log p), it is well-known that the Binomial
distribution converges to a Poisson distribution (i.e., the “law of small numbers”). The technical
contribution of this paper is to make the above arguments precise and rigorous. The main tool we
use is the leave-one-out approach (see, e.g., [[15]), also known as the cavity method in statistical
physics [16]], [17]. It allows us to carry out a detailed probabilistic analysis of the random
optimization problem in (2.

In our proof of Theorem [Il we did not attempt to optimize the rate of convergence shown on
the right-hand side of (I0). The actual rate is likely to be faster. In Figure [I, we compare the
empirical distribution of N,, obtained after averaging over 10* independent trials, against the
limiting Poisson distribution for three different problem dimensions. We can see that, even at a
moderate dimension of p = 200, the Poisson approximation is already accurate.

The characterization given in Theorem [I] allows us to study the conditions under which the
box-relaxation decoder can perfectly recover the target signal. Let P.opyec &ef P(N, = 0) denotes

the probability of perfect recovery. We can show that a phase transition of P,y €merges when

the following quantity
def Op — 1/2

= (11)
202 log p

P

is near 1.
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Figure 1: Comparison of the empirical distribution of N, and the limiting Poisson distribution,
over three different problem dimensions. In the experiments, we set 012, = 1 and choose d,, so

that A\, ~ 1.1 for all three values of p.

Proposition 1: Under [(A.DH(A.5), and if lim,, ., o, = o, then

1, ifa*>1,
lim Pcorrect - (12)

e 0, ifa*<1.
If o* = 1, a more refined characterization is available. Specifically, assume that

log log p n x — logV4m

=1- 13
() 2logp log p (13)

for some constant € R (and thus ay,(z) "= 1), then
lim Pcorrect = e—e*”’ (14)

p—0o0
where the right-hand side is the CDF of the Gumbel distribution.
Remark 2: The above proposition, proved in Section [I-E] characterizes the scaling regimes
of (6, 012,) over which perfect recovery is achievable. The possible scalings are also flexible. For

example, if we keep the sampling ratio d,, at a fixed value 6 > 1/2, it then follows from (II))

and (I2)) that 012, = ‘;Iolg/ i is the critical noise variance threshold for perfect recovery to happen.

Alternatively, if we fix the noise variance af, = o2, then the critical threshold for the sampling

ratio is 8, = 1/2 + 202 log p.
To illustrate Proposition [I, we show some results from numerical experiments. In Figure 2al
we plot the phase diagram of the empirical values of Py under different choices of (d,, ag),

as well as the theoretical phase transition boundary separating the regimes of perfect/nonperfect

recovery. In Figure we plot Pret as a function of «, (by fixing J, = 1 and varying af,).
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Figure 2: (a) Phase diagram of the box-relaxation decoder. Each pixel represents the value of

Promeet under a specific (d,,02). The red curve is the theoretical transition boundary: 012, logp =

P ~p
w. (b) Phase transition of Fyoree With respect to «,. The dashed line represents the theoretical
threshold. (c) Near the phase transition boundary, P, iS Well-approximated by the Gumbel
distribution. In all three experiments, P is estimated by averaging over 10? independent

trials. In (b) and (c), we fix J, = 1 and vary o, and = by changing ag.

A transition indeed takes place near o, = 1, and the transition becomes sharper as we increase
the problem dimension p. When p is not very large, a more accurate approximation of Ppgyect 1S
given by the Gumbel distribution. This is illustrated in Figure where we zoom in the region
near the phase transition and compare the empirical success probability against the theoretical

prediction given in (I4).

C. Related Work

The precise analysis of high-dimensional signal estimation has already been the subject of a
vast literature. Underpinning these rich results are several powerful techniques developed over the
years, including the nonrigorous replica method from statistical physics [18]-[20], approximate
message passing (AMP) [21]-[23], the cavity method [16], [17] and leave-one-out analysis [13]],
Gaussian min-max theorem (GMT) [24], [25], as well as the geometric framework based on
Gaussian width [[14] and statistical dimensions [26]].

The box-constrained least square problem in has been previously analyzed in [12], [13]
using GMT techniques. Analysis of similar problems can also be carried out by AMP [8].
However, these existing studies consider the setting where both the sampling ratio ¢, and the

noise variance O‘S are kept as constants as p — oo. Under such scalings, one can establish that



the empirical measure of x*, defined as fi(x*) & %Zle dz:, converges to some deterministic
limiting measure. However, the convergence of the empirical measure is insufficient for our
purpose: flipping the signs of o(p) entries of x* will completely change the number of error bits
N, but it has no effect on the limiting empirical measure. In view of this, we choose to use the
leave-one-out approach, which allows us to construct a surrogate of x*, denoted by &, in our
analysis. We show that ||x* — Z||., — 0 but the statistical properties of x are much easier to
obtain. We will elaborate on this point in Sec.

Our work considers settings where (0,, O'g) can scale with the problem dimension p. Similar
settings with flexible scalings have been explored in other contexts, including, e.g., sparse linear
regression [27]-[29], spiked matrix estimation [30], and low-rank matrix recovery [31]. These
studies established the precise conditions under which perfect recovery in these problems is

achievable. In our work, we go one step further by establishing the asymptotic distribution of

the number of error bits V..

II. ROADMAP OF ANALYSIS

This section provides a general roadmap to our proof of Theorem [0 which is given in
Section [I-Dl To emphasize readability, we only highlight the main ideas and key intermediate

results here, leaving heavier technical details to the subsequent sections and to the appendix.

A. An Equivalent Scalar Problem

To analyze N., we need to understand the statistical properties of x*, i.e., the optimal solution
of (@). A basic challenge lies in the fact x* is a high-dimensional vector with no closed-form
expressions. The key idea behind the cavity approach [16]], [17] or the leave-one-out analysis
[LS] is to circumvent this issue by focusing instead on a single coordinate of x*. Specifically,
to study the ith coordinate x;, we can first rewrite the original problem () as

: : 1
arg min min =

I?
zie=1,1] ®E[-1,1p~1 2

[Avxy; + ai(z; — Bi) — Yy
=4arg min min max uT[A\iCE\i + ai(xi — ﬁl) _ y\,] _ EHUHQ (15)
xi€[—1,1] zE[-L1P1 u . 5

=argmin max au(x; — ;) — L;(u), (16)
z;€[-1,1] ¢



where @\; is the vector formed by removing z; (and 3,; is defined in the same way), a; is the
ith column of A, A,; denotes the matrix formed by removing a; from A, y,; = A\;8,; + w,
and

1
Li(w) = [Alull + Ty + 5 [lu] (17)

In reaching (L)), we have also used Sion’s minimax theorem [32] to swap the inner minimization
and maximization in (L3).
Let u{; = arg min, L;(u) and define a function

gpi(v) & max (u — uf)Taw — [Li(w) = Li(uf,)]. (18)

We can then check that the optimization problem (I6) has the same solution as
argmin g, :(v; — 8;) + ajul;(z; — Bi). (19)
x;€[—1,1]
Thus, starting from the original problem (2} and after optimizing over all the “nuisance” variables
x\;, we have reached in (I9), an equivalent scalar optimization problem over x;.

To nonspecialists, the reformulations leading to (19) might look slightly mysterious, but there
are several good reasons for doing so. First, note that is obtained by subtracting —L,-('u,ii)
from (16). This manipulation does not change the minimizer of (I6)), but it sets the magnitude of
(19D to be O(1), which facilitates our later analysis. Second, we explicitly pull out a}uti in (19)),
since its distribution is much easier to characterize than a]u* in (L6), due to the independence
between a; and uil This is in fact a major benefit of the leave-one-out analysis. Third, as we
will show next g, ;(z; — f3;), which is a random one-dimensional function g, ;(v) evaluated at

v = x; — [, has a particularly simple limiting form as p — oo.

B. A Limiting Quadratic Function

The following proposition, whose proof is given in Section [II-Al shows that g;(v) uniformly
converges to a simple quadratic function.

Proposition 2: Under [(A.1)H(A.5), there exists ¢ > 0 such that for any ¢ € [p] and € > 0,

1 5, —c lpmin ﬁ,e
IP’{ sup | gp.i(v) — —ApUZ‘ > 5} < i P {‘51’ }, (20)
vE[—2,2] 2 S
where
EwT(y — Ax*
4, = 20T AT @1



Moreover, for 7 > 2 and all large enough p, |4, — A%| < cp~ /7, where

AL g (22)

p ~ JP
and f, and 7, are the quantities defined in (8).

There is a simple intuitive explanation for why g, ;(v) is approximately a quadratic function.

Recall that u; is the minimizer of L;(w). Thus, in a local neighborhood near uii, we can
8TH\ ;0

approximate L;(u) by a second-order Taylor expansion: L;(u) ~ L;(u};) + ——, where § =

*

u — uj; and H; corresponds to the Hessian of L;(u) at wy;. Substituting this approximation

TH 'a; . ..
%50, Since a; ~ N(0,22) and it is

into (I8), we can immediately obtain that g,;(v) ~ =

independent of H; due to the leave-one-out construction, we can expect a] H; 'a; to concentrate
near a constant as p — oo. Of course, the above explanation is not rigorous in that L;(w) is not
smooth and H; may not exist. This is one technical challenge we address in the proof.
Since %Azzﬂ is a good approximation of g, ;(v), we can now approximate the optimization
problem in (I9) by
~ . A;(l"z' - 6:’)2
Z; = argmin —————

z;€[—1,1] 2

= Prox_1y (8 — i) . (23)

where Prox[_; ;) denotes the proximal operator of the indicator function on [—1, 1]. Its solution,
denoted by z;, provides a good surrogate of z, as shown in the following proposition.
Proposition 3: Under [(A.DH(A.5)] for any v > 2, there exists ¢ > 0, such that, for any i € [p]

and € € (0,1), 1

P(a; ~ Tl > &) < e, (24)
We prove this result in Section [[II-Bl Here, we demonstrate the accuracy of the approximations
stated in (20) and (24) via numerical results shown in Figure 31
Thanks to the independence between a; and uii, the surrogate solution z; is much easier to
analyze than z]. Accordingly, we can consider the following approximations of ﬁ and N.:
p
Y sign(Z) and N, & Z 15 2, (25)
i=1
Applying a union bound to (24) gives us max; |z} — Z;| 250, ie., the surrogate vector I is
close to «* in ¢, distance. This then allows us to show that IP’(B £ 3) — 0, which also implies
dry(N,, N.) = 0.
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Figure 3: Accuracy of the leave-one-out approximation. (a) Comparison of g, ;(v) with its
limiting prediction %A;;vz, (b) Comparison between z; and its leave-one-out approximation ;.

In our experiments, 0> = 1, §, = 1 and p = 1000.

Proposition 4: Under [(A.DH(A.5)| it holds that

P(B # B) < A\p~ /% polylog p, (26)

and accordingly,

dry(N,, N.) < \,p~° polylog p. 27)

The proof of Proposition 4] can be found in Section [II-Cl It shows that the distribution of N,
is well captured by that of N.. Therefore, to obtain the limiting distribution of N., we just need

to analyze Ne, which is what we are going to do next.

C. Approximate independence of {EZ-},-E[,,}

To derive the distribution of N,, we need to know the joint distribution of {Z; };c[,. From (23),
we know {7; }c|p is determined by {a}uii}ie[p]. Since for i # j, ul; ~ ul;, the set of variables
{Z:}icpy are correlated, but the correlations are weak. In fact, we can prove something stronger.
The following result, proved in Section [V-Al shows that any size-k subset of {a]ul;}e|; are
approximately independent, provided that k is not too large.

Proposition 5: If k < /p, then there exists ¢ > 0 such that, for any 0; € R,7 = 1,2,...,k

and € > 0,

()i (2) e ()

, (28)
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where ®(-) is the CDF of the standard Gaussian and A, ; o ckp%e_flpmin{z_;%}.

It follows from and (23) that { B; # Bi} = {a}’u{i < —Ar}. (Recall that we have
assumed that 3; = —1 for all i.) By taking b; = — A in 28), we can conclude that the % events
{B; # Bitiew (or equivalently {15 ; }iex)) are also approximately independent. This is made
precise by the following proposition, whose proof can be found in Appendix [El

Proposition 6: If k < pé, there exists ¢ > 0, such that

P((V{AA8)) € [0t (-22) o onat (-2 ]

1=

/

Moreover, if af, > for some ¢ > 0, then for all large enough p,

log? p
k

P(O{F#a}) -0 (-L)] <ot (<L) b/ polylogp, (30)

i=1
D. Proof of the Main Theorem

We are now ready to prove Theorem [I]by showing that the limiting distribution of N, converges
to Poisson. Recall that N, = =1 15,25 The approximate independence of {15, } makes
the analysis tractable. Classical results on Poisson approximation of rare events deal with the
sum of p i.i.d. Bernoulli random variables with success probability A/p. As p — oo, the sum
converges in distribution to a Poisson random variable with rate A. Things are slightly different
in our case, since Ne is a summation of p weakly correlated Bernoulli random variables. The
following proposition, proved in Section shows that the Poisson convergence still holds
under the weaker condition of approximate independence.

>‘P

Proposition 7: If limsup,,_, . Tiosp < 00 then

dry(Ne, 2(\,)) < p~'/° polylog p, 3D
where Z()\) denotes a Poisson distribution with parameter \.

Finally, since the TV distance is a metric, the statement of Theorem [I] immediately follows

from (27), and the triangle inequality.

E. Proof of Proposition (Il

Using the Gaussian tail bounds (133)) and given in Appendix [E|, we can get

0, a* > 1,
lim A\, = (32)

p—00
o0, af <1
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Therefore, if a* > 1, it directly follows from Theorem [I] that P(N, = 0) = 1.

The case that a* < 1 is more complicated. One can show that \, > p“®"), where c(a*)
is some constant, so it is possible lim,_, dTV(Ne, N.) 4 0. Instead, we can look at a subset
K C [p]. Define N, as the number of error bits in K. and A, x o IK|®(—7,"). We can
find KC satisfying A\, =< +/logp. Then following same steps of proving Proposition H and
Proposition [I0] in Appendix [G, we can show lim, . P(N.x = 0) = 0, which indicates that
lim, 0o P(N, = 0) = 0, since N, < N..

Finally, we prove (I4). If o, satisfies (I3, then for large p, o =< (logp)~'. Letting t = o
in (80D, it follows that if a;, — o, then 2osz§ log p — 1. On the other hand, from the auxiliary

m(=7p 1)

bounds (I31) given in Appendix [F, we can get ——— — 1. Applying @) and (0O) gives us

lim P(N, =0) = lim exp {—p®(—1/7,)}
p—r00

pP—o0

a) ..
= lim exp {—p - 7p(—1/7,)}
p—00

—aplogp
® . _ -1/2¢
= plirgo exp { p(20y, log p) Ner: }

1 log(4 log1
= lim exXp{ —exps — 1ng ap — 1+ Og(ap) + Og( 7T) + log log p
p—roo 2logp 2logp

g e_eiz

Y

m(=7y 1)

where step (a) follows from

(13) in step (c).

— 1, step (b) follows from 2ap7'§ logp — 1 and we use

III. THE LIMITING QUADRATIC FUNCTION

The goal of this technical section is to make the approximations shown in Figure [3| rigorous.

A. Proof of Proposition

To lighten notation, we will sometimes omit the leave-one-out subscript as used in Sec. [I-Al
For example, A,; will be replaced by A, and a; by a, as long as doing so causes no confusion.
Let us first introduce the following function:

Gy(s) = max[sTu — L(u)] — [sTu* — L(u")],, (33)

where L(u) = ||[ATul|; + uTy + 3||ul* and u* = argmin L(u). Using G,(s) and omitting

u
subscript 4, scalar function g, ;(v) defined in (1)) can be also expressed as:

9p(v) = Gy(av)
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and correspondingly, we re-write (19) as:

min _g,(r — 8) + a’u’(z — B). (34)

—1<z<1
It can be seen that G,(s) is related with the conjugate function of L(w), which is a strongly
convex function. Therefore, G,(s) and g,(v) possess some nice properties that will be useful in
our proof. We gather them together in Appendix [Al
We first show that g, (v) concentrates around its expectation, which is the following proposition.
Its proof will be given in Appendix
Proposition 8: There exists ¢ > 0, s.t. for any € > 0,
P ( sup |gp(v) — Eg,(v)] > 8) < c—al’e_flpmin{%’a}. (35)
vE[—2,2] £
The next result shows that Eg,(v) is essentially a quadratic function in the large p limit.

Proposition 9: For any v € [—2,2],

1, 166,
'Egp(v) - §APU @7 (36)
where A, is defined in (21).
Proof: First we introduce the following auxiliary functions:
(=) A - 9~ 2
Q0 win IATZy VG (37)

xe[—1,1]P 2p
where a ~ N (0, I,,), independent of A, w. Clearly, the original problem (2)) is the special case

when 6 = 0. For notational convenience, we also define the expectation of Q,(6) as:

Q,(0) £ EQ,(9)

= 1IE maxu’Vla — L(u), (38)
p u

where L(u) is given in (33). Note that the connection between Q,(¢) and Eg,(v) is:

-0,

i.e., Eg,(v) can be approximated by the derivative of Q,(6) at # = 0. To make this intuition

Egy,(v) =

rigorous, we need to study the analytical properties of Q,(e).
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First, we show that Q),,(#) is differentiable on [0, c0) and @;(9) is Lipschitz continuous. Indeed,

from (33) and (38),

— 10 -
_ T _
o(0) = 00 [E max u Vioa L('u,)]
10 1
- - — T TAT - 2 204720
paHIEmgx <HA ully + BTATu + 2||'u,|| +4/0 + o2u 'w) (40)
@) Ew g

Q_ == 9 (41)

2p\/0 + o2 ’
where w ~ N (0,1I,) and g corresponds to the optimal solution of @Q). In step (a), we use

dominated convergence theorem (DCT) to interchange derivative and expectation. By the same

argument of (77) in Appendix [Al we have for any b, ¢ > 0,

i, — ]| < |\Jo+ 02— \Jet o2 )] 42)
On the other hand, for any 6 > 0,
Jaoll = _min 1Az — (AB+ [0+ 03] < /o + o3l . @)
Combining (41J), and (43)), for any b > ¢ > 0, we can get
Q) - a0 < 2 (44)

p
Therefore, @;(h) is i—’g—Lipschitz.
P

Now we are ready to analyze Eg,(v). By the mean value theorem, we get from (39) that

[ Kpv?
Bgy(v) = @), (222) 2, (45)
where £, € [0, 1]. From @4) and (3], we deduce that
— 45 160
Eg,(v) — Q. (0 2‘ <l% 2% 46
gp(U) Qp( ),U — O,IQJp — UIQJP ( )
On the other hand, from @I,
— Ew'u, EwTu*
Q,(0) = - =- , (47)
»(0) 202p 202p

It can be checked from (13) that u* = Ax* — y. Combining (46) and ({7), we get (36). [ |
Remark 3: It will be shown later [c.f. (59)] that A, > C0,, for some constant C' > 0.

Therefore, we know from (36) that the quadratic approximation of Eg,(v) is accurate for large

—1/2 c

. We will prove that, when o, < NI for some constant ¢, perfect recovery

p,if o, > p
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~1/2

is achieved with high probability. This means that o, > p already covers the regime where

1
logp*

Proposition [8] and 0] immediately implies the first part of Proposition 2] i.e., (20). Next we

we are most interested in. In the following, we will take o, >

show A, converges to A7 in the high-dimensional limit. From @1,
Ay = 2Q,(0). (48)

Hence, it boils down to analyzing @;(9) and its limit, which can be done as follows.
1) Convergence of (),(0): The CGMT framework in [13], [33] can be readily applied to
computing the limit of (),(#) in high dimensions.

Lemma 1: There exists ¢ > 0, s.t., for any ¢ > 0 and 6 € [0, 1],

[
—pmin 5 e (/c
ce p

P (1Qp(0) — Qp(0)] > ¢) < ==———= (49)
mm{g, g}
where
* 1 : 2 2
Q;(0) = 5 [Elggl Fy(r:0 + o2, 5p)] , (50)
with F}, defined in (7). Also for any v > 2, there exists ¢ > 0 such that
s @Q,(0) = Q(0)] < ep/. (51)

0el0,1

Remark 4: The proof of Lemma [I] will be given in Appendix [Dl We can find @Q;(0) = f—f,
where f;, is defined in (8). This can be understood from (37) and [#9), since (07;(¢) is the limiting
value of the squared fitting error when the noise variance is 6 + Uf,.

2) Smoothness of Qy(0):

Lemma 2: Q;(@) is twice differentiable over 6 > 0, with

Q'(0) = 2

and Q; ") < C, for all § > 0, where C' is some constant.
Proof: Note that Q% (6) is a composition of R,(t) and t(6) = 640>, where R,(t) is defined
in Appendix [Bl By chain rule, Q;(0) is twice differentiable, with Q; '(0) = 2’% and

(52)

Q,"(0) = R, (D)t (0) + R, ()t"(0)

p

— RY(0+0%). (53)

Then together with bound (84) shown in Appendix Bl we know there exists C' > 0, s.t., Q7 "(0) <
C, for all 6 > 0. ]
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3) Convergence of A, to A;: Now we can show the convergence of the curvature A, which
also implies the simple limiting form of g,(v).

Lemma 3: There exists ¢ > 0 such that
A, — As| < cpm /D (54)

Proof: For v > 2, there exists C' > 0, s.t. for § € (0, 1],

Qp(0)-Q,(0)  Q3(0)-Q;(0)
0 0

@
4, — 4] < 2| (0) - LOLO

+2

Qp(0)—Q5(0 *
p( )9 p( ) _Q 1(0)‘

() 5
<C 9‘5”+ 6””7+9 , (55)

where in step (a), we use (22), (48) and (52) and in step (b), we use @4), (31) and Lemma [2
1
Therefore, taking 6 = p 27 and using Assumptions [(A.4)] and [(A.5)] we can get (34). [ |

B. Proof of Proposition [3]

Proposition 2] indicates that the original scalar problem (34) can be well approximated by
1
min -~ A,(r — 8)* + a’u*(z — B), (56)
z€l-1,1] 2
which has an explicit optimal solution:
5 a’u*
= PI'OX[_Ll] (6 - A ) . (57)

P

Note that the difference between & and Z should be small, as implied by @23), (57) and (34). In

fact, we can directly prove x — z* without considering . The reason for us to introduce this
intermediate variable is to achieve a better convergence rate in our proof.

The first lemma below shows that the objective function of (56), i.e.,

0(x) = S A, (2 — B + a™u'(z — ) (58)

2
is strongly convex.

Lemma 4: There exists K > 0, s.t., A, > K¢, for all p large enough. Therefore, Z,,(m) is
Ko,-strongly convex.

Proof: By (8) and the definition of A;, we have

1 1 o2 1 [™ 2\ 2 1 1
* — = _ _ P _ - > - - )
Ap 5 <5p 2) + 27_2 + = 5 /2 (x Tp) O (dx) > 5 <5p 2) (59)
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Then from assumption and (54), we know there exists K > 0 s.t. A, > K¢, > 0 and
0,(x) is K§,-strongly convex. u
Then together with uniform convergence proved in Proposition 2] we can show z* — .

Lemma 5: There exists ¢ > 0 s.t., for € € (0,1),
P(jo* — | > e) < —e#<"/e. (60)
€

Proof: Since @,(:c) is Kd,-strongly convex,

~ ~

C(x%) — £, (3) > %K@,(x* — )2 (61)

Let /,(z) be the objective function in (I9). From (20) we know there exists ¢ > 0, s.t., for
€ (0,1), [0y(z*) = Ly(z*)| < 6,e and |0,(&) — £,(#)| < §,e with probability greater than

1— fe‘paz/c. This indicates

Up(x") — £,(Z) < [lp(27) + \/gg] — [6(2) — \/gg] < 20,¢. (62)
From (61) and (62), we can get there exists ¢ > 0 s.t. for all ¢ € (0,1), P (|a* — Z| > /&) <
ge_p€2/ ¢, Then changing /¢ to ¢ in the above, we get (60). [ |

Furthermore, using (34) we can also show & — 7.

Lemma 6: For ~y > 2, there exists ¢ > 0, s.t., for € € (0, 1),

1

~ C ~
P(t—7|>¢) < ge—PW/C.

Proof: By the non-expansiveness of proximal operator Prox;_; 1)(-), from (23) and (57) we
know there exists C' > 0, s.t.,

1 1

- C _ 1
|z — 2] < 1 laTu®| < ﬁ|aTU*|p 2, (63)
p P p

where we have used (54) and (39). Recall that u* = Ax* — y, so similar to and (103),
. . o .

we obtain that there exists ¢ > 0, s.t., for all ¢ > 0, P < > 6) < #e‘pg/c. Since

a and u* are independent, then from (63)) it is not hard to show there exists ¢ > 0, s.t., for all

e€(0,1), P(|z - 7| >¢) < Ce e, m

lurll
VP fp

Lemma [3] and [6] imply Proposition [3] based on which we can now prove Proposition 4l
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C. Proof of Proposition

Our strategy is to show that P(3 # ) is small, which implies P(N, # N.) is small and so
is dTV(Ne, N.). Recall that Ne and NV, are in the same probability space, and we have assumed

B; = —1, for any i € [p|. Then the following simple relation holds:
~ R 1 . 11
{@7&@'}C{|fi—$?|>P_5}U{l"i€[—p 5,p 5]} (64)

Z\L+1‘ < U. Then

Since Z; = Proxp_q (ﬁi o “) for U € (—-1,1), |7 < U &
1 1

1
letting b; = Ay(—1+p75) and A(-1—p5), k =1and ¢ = p 5 in @28), we can show

1

P(|z;| <p75) < ®(—1/7,)p" 5 polylog p, similar to (126) shown in Appendix [El On the other
1

hand, letting ¢ = p~5 in @4), P(|af — 2| > p 5) < p5e —p'/"*/e These together with (64)

indicate

~ . 1
P(B; # B8i) < ®(—1/7,)p™ 5 polylog p. (65)
By union bound,

P(B # B) < Z (B: # ) < A3 polylogp.
=1

Since drv(N,, N,) < P(N, # N.) < P(8 # 3), we obtain

IV. ASYMPTOTIC DISTRIBUTIONS

This is another technical section. Our main goal here is to derive the asymptotic distribution

of {Z;} and that of N,.

A. Proof of Proposition 3

By the exchangeability of {a}uil} we just need to consider the joint distribution of

i€[p]’

{a]u], }ie[k], i.e., the first & coordinates. A key result we are going to establish is that {a]us, }ie[k}
are approximately independent, provided that % is not too large.

Let ui[,ﬂ be the optimal solution of
. 1
min [| A ully +wT Ay By + 5 [lu]® + ulw, (66)

where A,y is the matrix formed by removing the first £ columns of A and 3,y is defined in
the same way. In other words, u{};, is the leave-k-out solution of min,, L(wu). Also define

_ a4t VP pU i

gy Y (67)
W
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Since a; "~ N (0,1,/p), i=1,2,...,k and wp is independent of {a;}, ;. with fixed norm

/D[y, the joint distribution of {a u\ k]}le[k is:

]
(GIU\W ayu\ - alﬂ\[k]) ~ N0, fo1). (68)

Our proof of approximate independence of {a]uil} consists of two steps:

1€[k]

1) Show the joint distribution of {a}uil} is closed to that of {a}uim }Z This is proved

ic[k) €lk]’

in Lemma

is closed to that of {a (O k]} which are

e T %
2) Show the joint distribution of {ai u\[,ﬂ}i ik

€lk]
mutually independent. This is proved in Lemma

Details of the proof can be found in Appendix [El

B. The Limiting Poisson Law of ]ve

Before presenting the actual proof, it would help to first show some heuristic derivations.

We employ the following general inclusion-exclusion principle [34, p.106]: for any k € [p], the

probability P, that exactly k£ among p events A, ..., A, occur is
p
_ m m—k
Py = % (k)<—1> S (69)
where
1 m =0,
Sm = (70)
Zl§i1<---<im§pp (ﬂ;nﬂ Aij> 1<m<p.
In our setting, 4; = {f; # 3;},i =1,2,...,p and P, = P(N, = k).

By the exchangeability of {ﬁi}ie[p], we have S, = (ﬁb) Sim}, » With Spy) = P <Bz %+ Bi,i € [m]) )
From Proposition [6] for large enough p and “reasonably large” m, Sj,) = ®™ (—i), SO

Tp

1Sim AT
S = _ D, L (71)
ml(p—m)!  m!
where ), is defined in (9). Then combining (69) and (7I)), we have
p—k
~ kE+m
P (Ne - k) = ( . )(_1)m5k+m
m=0
LSl B
= mlkl (k4 m)!
)\k
~ e, (72)
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which implies that the PMF of N, is approximately Poisson with rate \,.

We now quantitatively analyze the error of approximation in (Z2)). First, we approximate the
right-hand side of by a truncated sum: Y-, (7)(~1)""*S,,, with L < p. The reason
for this operation is that S, ~ ®™ (_T_l,,> may not be accurate for large m, since we only
have approximate finite event independence. We then need to control the error caused by the
truncation. Accordingly, we can apply Bonferroni’s inequality [34, p.110], stated as follows.

Under the same setting as (69), for k£ + 1 < L < p, we have
1) If L — k is odd,

~

—1
(7]’;) (—1)"kS,,.. (73)

L
m=k k

(7) v s, < ns

3
I

2) If L — k is even,

f (7]’;) (—1)"*8,, < Py < ; (7]’;) (—1)" "3, (74)

m=k

Therefore, we need to choose a reasonably large L to attain a good trade-off between the
approximation error of and the truncation error of and (Z4)), such that they are both
properly bounded. Our proof of Proposition [7] follows this idea. The details can be found in
Appendix

V. CONCLUSION

In this paper, we have presented an exact performance characterization of the box-relaxation
decoder in high dimensions. We show that, under certain scalings of the sampling ratio and the
noise variance, the number of incorrectly-decoded bits has a limiting Poisson distribution. In
addition, a phase transition from nonperfect to perfect recovery takes place at a well-defined
critical threshold. Numerical simulations show that the actual performance of the algorithm is
well captured by our theoretical predictions. Finally, it is worth mentioning that, although we
have assumed that the sensing matrix has i.1.d. normal entries, the results on the limiting Poisson
law should hold under more general matrix ensembles. We leave this as an interesting line of

work for future investigation.

APPENDIX
A. Properties of G,(s) and g,(v)

Lemma 7: For any A and y, it holds that:
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1) G,(s) is convex and differentiable in R", with
VG,(s) = uy —u’, (75)

def
where v} = argmax sTu — L(u).

2) VG,(s) is 1-Lipschitz continuous, i.e., Vr,s € R
IVGp(r) = VGu(s)|| < [lr — s (76)

or equivalently,

[y — gl < flr = s]. 7
3) g,(v) is convex and differentiable with

|9,(v)] < 2[la]?, (78)

Proof: Let L*(s) ' max, sTu — L(w), which is the conjugate function of L(u). We

know VG,(s) = VL*(s) — u*. Since L(u) is closed and 1-strongly convex, L*(s) is convex
and differentiable with VL*(s) = u} and VL*(s) is 1-Lipschitz continuous [35, Chapter X].
Therefore, from (33) we know G,(s) is convex. Since VG, (r) — VG,(s) = VL*(r) — VL*(s),
we get (73) and (76).

Since g,(v) = G,(av), g,(v) is also convex and differentiable with g/ (v) = a’VG,(av). From
(3 and (Z6), we know ||VG,(av)| < |lal/v. Therefore, ([Z8) follows from Cauchy-Schwartz
inequality and the fact that |v| < 2. n

B. Properties of the Optimization Problem ((8))

In this section, we collect some useful properties of the one-dimensional optimization (8)),

which was first studied in [[13]. For our purpose, we consider a slightly more general setting:

fp(t) = ri’l;{)l Fp(ﬂ t 5p)

cmin s (6, - L)+ LT [T 22<;t>(d) (79)
T2\ 2 or "2 \'TF v
where ¢ > 0 is a parameter. Note that (8]) and the inline optimization of (5Q) are the cases where
. . def f2(t)
t =02 and t = (1+6)%c7, respectively. Also we define the squared loss function: R,(t) = -

2

and evidently, R, [(1 + 0)%02] = Q;(6), where Q;(6) is defined in (30).
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1) Uniqueness of Optimal Solution: Let 7(t) be the minimizer of (79), which is the solution

of stationary equation:
e 1 > 4 t
h(r) €6, - - +/ (x2 - —) ®(dx) — — = 0. (80)
2

By direct differentiation of h(7) above, we can show 1/(7) = [5° 5®(dz) + % > 0, so it is
a strictly increasing function. Also lim,_,oh(7) = —oo and lim, .. h(7) = J, > 0. This also
establishes that the strict convexity of f,(¢). Therefore, 7(¢) is unique for any ¢ > 0. Besides,

we can directly check that 7(¢) is differentiable with

) ()
m(t) = 8f2/ ® O (dx) + 2t >0, @1

so 7(t) is strictly increasing.
2) Upper and Lower Bounds of 7(t): Since h(1 /é) < =3+ [5 #*®(dx) <0, by h(0F) <
0, h(co) > 0 and uniqueness of 7(t), we have 7(t) > 1/i. Similarly, we can get 7(t) <

min{ t1/2> 45—*:} and 7(t) > ,/m, where v, = fb , with b, = 2,/% _1/2

and evidently, v, < 1/2. Therefore, 7(¢) can be bounded as:

\/ 51, < 7(f) < min {\/ 7 \/46—?}. (82)

3) Properties of f,(t): From (19 we get f,(t) > 0, f;(t) = 575 > Oand f7/(t) = —505 <0,

so f,(t) is nonnegative, strictly increasing and concave. On the other hand, letting 7 = , /3 in

(9) we can get f,(t) < C(—”;(SP + 1), where C' is some constant.

4) Properties of R,(t): By the chain rule, R (t) = ’;(t and Ry(t) = (ngT/“z j¢(zz))+2t)
2/7(t

Therefore, R,(t) is strictly increasing and convex. From (80), we can show R;( ) is bounded:

, 1 o0 5
Ri(t) = 5 [5,,— 5 +/2 ® — 5 0(de )] <5 (83)
o)

On the other hand, R)(t) satisfies: R)(t) < W, where ¢(x) is the PDF of standard
Gaussian. Then using (82) and Assumption we know there exists C' > 0, s.t., for t > 0,

— _26,-1/2) 3
Peo™ 2

R)(t) <y/gzem t t2<C. (84)

C. Proof of Proposition

We first prove the pointwise convergence of g,(v) to Eg,(v): there exists ¢ > 0, s.t., for any

ve0,2] and € > 0,

N

£

P(|gp(v) — Eg,(v)| > ¢) < ce_flpmin{g’e}_ (85)
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Recall that g,(v) = G, (av), so it is equivalent to prove |G,(av) — EG,(av)| — 0. We first
control the moment generating function of G,(av) — EG,(av). Let b be an i.i.d. copy of a. For

all || < ﬁ, we can apply Theorem 2.2 of [36, p.176] to get

Elexp A(G,(av) — EG,(av))] < EeT ®v)VGr(av)

(2) 22242
™ lal?

< IEA,wIEae P

n 4N27?
= exp —§log 1— 7

) (46p>\27r2 )
< exp .
p

In step (a), we take expectation over b and use |v| < 2 and ||VG,(av)| < 2|/a||, as implied by

[Z6); In step (b), we use the inequality log(1 + x) > for x > —1 and the condition that

1+x

A < ﬁ. As a result, for any ¢ > 0 and \ € [0, W}’

2.2
45,,A

P (g,(v) — Eg,(v) >¢) < e F (86)

After minimizing the exponent on the RHS of (86) over A € [ N ] we can get for any ¢ €

pe?
0, /88,1, P g,(0) — Egy(v) > 2) < ¢ T for any = > Vs, P (gy(v) — gylv) > &) <
pe

e 4v2r The other direction also holds by the same reasoning. Thus,

—Lmin és
P (|g,(v) — Egy(v)] > ) < 2¢ o2 "5), (87)

To show uniform convergence (33)), it suffices to prove the Lipschitz continuity of g,(v) and

Eg,(v). From Lemma 1 of [37], we have for all = > 0, IP’(HCLH2 > 0p+ 2 \/{pw + 2—:”> < exp(—x).
Let x = n(y/y+1 — 1), we have for y > 2, P (”a” —1> y) < exp (—™). Therefore, by
taking y = K/J,, we get for any K > 2/,

P(lla]* > K) < P(|la]* - 6, > K/2) < exp(~1F). (88)

Combining it with (78], we know for K > 20,, g,(v) is 2K-Lipschitz with probability greater

than 1 — exp(—2%). From (78), we can also get }dEg”(” < 20,, so Eg,(v) is 24,-Lipschitz

continuous over v € [0,2]. Combining the Lipschitz continuity of g,(v) and Eg,(v) with (83)),
we can obtain (33)) by a standard epsilon-net argument as follows. We need to consider different

values of ¢:
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1) If € > §,, we construct an epsilon-net of [0,2] formed by the following points: v;, = %,
k=1,2,...,8. For any v € [0, 2], denote v* as the closest point to v in the above epsilon-

net. By construction, |v — v*| < é. If g,(v) is 2K-Lipschitz, then for any v € [0, 2,

9(0) = Egy(0)] < lgp(e) — ()] + (%) — By (07)| + By (%) — By (0)
< 2 b lg(v) ~ Eg (o) + 5 (89

where we have used the Lipschitz continuity of g,(v) and Eg,(v), as well as € > §,. Then
SUDye(0.9 19p(v) — Egp(v)| > 2¢, only if at least one of following holds: (i) K > 2e > 24,
(ii) there exists a k € {1,2,...,8}, s.t., |gp(vr) — Egy(vg)| > . Combining (87) and (88))
and applying the union bound, we get for ¢ > J,,
B( sup 19,(v) ~ Egy(v)] 2 22) < 18¢7T67. (90)
vell,

2) If ¢ < §,, we construct an epsilon-net of [0,2] formed by the following points: v, =
2]{:/(%1, kE=12..., [%1. In this case, for any v € [0,2], we have |v — v*| < 5
Then similar as previous argument, we have sup,c(o o |9,(v) —Eg,(v)| > 2¢, only if at least
one of following holds: (i) g,(v) is not 44,-Lipschitz, (ii) there exists a k < [%1, s.t.,
|gp(vi) — Egp(vg)| > €. Combining (87) and (88) and applying the union bound, we get:

165, —-=

B( sup |g,(v) — Egy(v)] > 2¢) < —2e T, o1

v€(0,2] £

Combining (90) and (@1), together with symmetry and the union bound, we directly get (33).

D. Proof of Lemma (Il

The proof follows the CGMT framework [12]], [13]. The optimization in (37) is equivalent to

. x— Vol ul?
f) =p 2 min maxu' A —w — , 92

where w ~ N(0, I,,). The corresponding auxiliary problem (AO) of (92) is
[wm \/W]  Juf?

Qrop(f) = min max —\/L_ﬂ”Q +04 02 L 4 lul

ze[-1,1]p u P P p VP P /P 2p
0'2 2
“( min \/uw O 1 g1 g2 Lol 4 Waep) | hovoios) 93)
ze[—1,1]P PP VP N

where (2); & max{z,0}, g ~ N(0,1,),h ~ N(0,1,), hy ~ N(0,1) and they are mutually

independent.
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Now we analyze the inline optimization problem of (93)), which can be simplified as:

= lz—8|2 |, 0+02] llgl , hT(z—B) , hoy/0+0}
¢(9’9’h)_meﬁmﬁpi2ﬁf[ LBl o) Lol g Mleh) L BV (g4
p
T 9p h 0+02
= inf |22+ 521 130 (hir g) + ST 95)
=1
F(r0,9,h)

where in (O3) we make a change of variable: — 7 and the parametric function v (h; 7, g)

.
Vo

is defined as:

0 h >0,
def
v(hiT,9) = —pn? he [ o), (96)
Lo —2|g]|
2(Lok 1) h< gl

Denote 75, (6) as the optimal solution in (O3)). From (94) and the fact that we did a change of

variable in (93), it can be seen 73, (0) = \/”m AP ng% Therefore, for 6 € [0, 1], Tx5(0) €

Q(op,0,) , Where Q(o,,0,) = o [\;_ ”\5;_02] Note that this is consistent with (82).

We now show objective function F(7;6, g, h) in (O3) converges to F'(7;6) o Fy(1:0+02,0,)

with high probability over 7 € Q(0,,d,). The first and third term in RHS of (93)) is relatively

ho

, there exists ¢ S.t.,
vp > 0,

easy to deal with. By the concentration of % (e.g. [38, p.44]) and
for any € > 0 and 7 € Q(0,,9,),

(%12
il

0'2 .
Here in (97), we have used the fact that for 7 € Q(0y,d,), % + 9;” < C\/@, where C is
) def 37 v(hisT.g)

— ‘ f5)<cexp (—ne?/c) o7

<&

and

ho A/ 9—}-0’3

VP

> &?) < cexp(—pe?/c). (98)

some constant. For the second term, define the following function: V' (h; 7, g

9

p
where v (h; 7, g) is given in (96). We now show there exists ¢ > 0, s.t., for any £ > 0,
P(|V(h;7,g) — f(7)| > ¢) < cexp(—pe?/c), (99)
where
FE e /2 (1)) (100)
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First, note that for any fixed g, v (h; 7, g) is 2-Lipschitz continuous, so V (h; 7, g) is ~=-Lipschitz

VP
continuous w.r.t. h. Also we can verify that E,v(h; 7,g9) = f(74), with 7, o ﬁ. Then using
Theorem 2.1 in [36 p.176], we have for any g and ¢ > 0,

P(V(hiT,g) = f(75)| > €) < 2exp(—£). (101)

It can be checked that f(t) in (I00) satisfies f(¢) € [—1,0] for any ¢ > 0. Combining this with
({100) and (101}, we know (99) holds for £ > % On the other hand, by a direct differentiation,
we have f'(t) = —7 + 3 [, (#* — ) ®(dz). It is not hard to verify |f'(t)] < 1/4, for all
t > 0. Therefore, for any ¢ € (0,1/2), on the event E. = {

”i\/g — 1‘ < 5}, which happens with
probability P(E.) > 1 — ce "/ there exists ¢ > 0, s.t., |7g — 7| < ce. As a result, there exists
¢ >0, s.t., for e € (0,1/2), P(|f(1y) — f(7)| > &) < ce™"<*/°. This together with (I0I) implies
there exists ¢ > 0, s.t., for ¢ € (0,1/2), inequality (Q9) still holds.
Combining (@7) and (@9), we get that there exists ¢ > 0, s.t., for any € > 0, 7 € Q(0,,d,)
and 6 € [0, 1],
P(|F(r:6,g,h) — F(1:0)] > ¢) < ce /°, (102)

On the other hand, it can be verified from definition that there exists C' > 0, s.t., F/(7;0,g,h)
and F'(7;0) are both C',-Lipschitz over 7 € {)(o,,0,). Then by a similar epsilon-net argument

as in the proof of Proposition [8, we can get:

P( sup |F(r:6,9.h) — F(r; )| > &) < Yorer?le (103)

TEQ(op,0p)

Since ¢( ' 9, ) minTEQ(Up,ap) F(T7 97 g, h’) and \/ 2@;(‘9) = minTEQ(Up,ap) F(T7 9), from m

we know there exists ¢ > 0, s.t., for any € > 0,
P (16(6.9.h) —/205(60)] > €) < e (104)
Since /2Qa0,(0) = max{¢(0, g, h),0}, from we have
i <|\/2QAop \/QQ )| > g> < Vo pete (105)

Taking into account the fact Q0%(6) < C9, (as shown in Appendix B), we can further obtain the

following Bernstein’s type inequality: there exists ¢ > 0, s.t., for any £ > 0 and 0 € [0, 1],

P (|Qrop(0) — Q4(0)] > &) < —. (106)
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Then by CGMT (e.g., [33, Corollary 5.1]), (I06) implies that there exists ¢ > 0, s.t.,

6—p mln{ 5, a}/c

_mln{(S ,\/7}

Finally, from (I07) we know there exists ¢ > 0, s.t., for any > 0 and 6 € [0, 1],

BIQ,(6) - Q(0)| = [ P (10,(6) - Q0) = )

o) pt2
S\/(Tpﬁ—i-/ —Le ey dt+/ \/—e %t (108)
\/57 51)77

T
25, ((erritle  em\/owpn/e

<o+ —2 + .

Vo p ( U Vi

Then for v > 2, letting n = p~'/7 in (I09) and taking into account Assumption we can

P (|Qp(0) — Q5(0)] > ¢) (107)

(109)

get E|Q,(0) — Q;(0)| < cp~'/7 for some ¢ > 0 and all the sufficiently large p. As a result,

[Q,(0) — Q0] < E|Q,(6) — Qu0)] < ep7.

Since the constant ¢ above does not depend on 6, we get (31).

E. Approximate k-wise Independence

d .
1) {aTu*.}ie = {a}ui[k]}ie[k}: We first prove that the joint distribution of {a}uii}ie[k] is

close to {ajul,;}, .- To prove this, we can show ajul; = ajuiy,, for any i € [k] and use the

Sk
fact that a] uy; and a] uy, are in the same probability space.

Lemma 8: There exists ¢ > 0, s.t.,, forany e >0and:=1,2,...,p—1,

P (Ja] (uly — )| > Vo) < e Pl (110)

Proof: To lighten notation, define Ay, def Ul — Uiy q)- Denote the objective function in

(66) as L\j;)(w), (with k replaced by i here). By strong convexity of L;(u), we have
Ly (wli ) — Ly (ulg) > 5018 |° (111)
and
L\[i}(ui[i—l—l]) - L\[i](ui[z‘}) = |aiT+1,u’<[i+1]| - |a}+1u§m| - A[Ti}azﬂrlﬂiﬂ
+ Ly (Wl iqy) — Loy (wlgy)
< —sl2@l* + 2041 - @il (112)
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where we use the fact |3;| = 1 and Cauchy-Schwartz inequality in the last step. From and
(12), we can get ||Ap]| < 2[|@;41||. Therefore, there exists ¢ > 0, s.t., for any €, D > 0,

P (Jal Ayl > Voye ) <P (lalagl > vae () 12g] < D) + P (|ag] > D)
Tat| > Vae) + P (llaiall > )

<P (|al;

D
-1
2o > (113)

pope —C p(
<e 207 4 ce

where () &of max{z, 0}. Then by choosing D = /5, for small ¢ and D = /4, for large ¢,

we can get (I10). [ |
Lemma 9: There exists ¢ > 0, s.t., for any b, e R, 2 =1,2,...,k and € > 0,

k . L
’ (ﬂ el < bi}> =F <m {dmm <bi— \/@g}> —ck?e pm‘“{kQ’

i=1

i)

} (114)

and

k k 1 . i =)
’ (ﬂ {alu < bJ) <P (ﬂ {aTuiy <b.+ fg}) caec B s
i=1 =1

Proof: From Lemma [§] for any %k € [p], there exists ¢ > 0, s.t., for any £ > 0,

k—

1
. " Ope
P (\al(u\l — )| fﬁ) <2 P ( af (uly) — wljy)| > —*,Q )
1

1=
cflpmin{ﬁ é}
- 2

< cke Kk

By the exchangeability of {a}uii, a}ui[k}}l i we have for any ¢ € [k], it holds that

—c~ pmln{e— 2}
P(‘a}(u{i—u\[k | > \/75> < cke k2

Therefore, we have for any € > 0,

k k
P (ﬂ{alutz < bz'}) =P | [ {aluwy < b —a](uf, - ui[k})}>
i=1 i=1
k k
<P m{azui[k] < b+ \/57175}) + P (U{‘ag(uii - Ui[/ﬂ)‘ > \/@d’)
i=1 i=1

K —c’lpmin{ﬁ é}
<P m{aiTui[k] <b;, + \/57,5}) + ck?e RRS
i=1

which is . The other direction (I13) can be obtained in the same way. u
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d o oo o :
2) {awlyy}icpy = {@lUym b,y Next we show the joint distribution of {a]u{;,}, , is

ClOSC to {a 'U_,\ k]} G[k FiI‘St we ShOW ”u\\/[i,:]l' ~ Hu\ fp

Lemma 10: When k < £, there exist C, ¢ > 0, s.t. for any € > 0,

) ( 7;1,1(57%)1

||u\[k]|| b
> /6, 5) < s (116)
max{s—%,ni}
p
Proof: By the definition of u{},), We can get

||u'<[k]” _ 1 3
V= U e, A — (A By + w)

_ 0y mingep gk [[Ayg — (AypgByy + W)l a1
Op,\[K] p—Fk ’

_n_
p—k’

Ky 2
and w NN( ,%:]%LJ. Define

where 0\ = i.e., the sampling ratio after removing k predictors, E\[k] N (O, ;ﬁ)

S:(5) &2 min F, ( 7‘5;’ ,5), (118)
where [}, is defined in (7). Similar to (104), we can get for k < £, Jc > 0, s.t., Ve > 0,
fuipl o B et
P (™l - 5r | >¢) < Vo o~ p-R?e (119)
def 4
where Sp\k] S (51,,\[14).

On the other hand, [S;,, — f»| can be bounded as follows. From (L18), we can show when

< \/07 [0, Op\1)- Since f, = S»(6,) and
S;\[k] = S;((Sp \[])» by the mean Value theorem, we can get for k < %, there exists C' > 0, s.t.,

k< g, there exists C > 0, s.t.,

. Ckr/5,
o — fol < f (120)
Now combining (119) , (120) and the condition k£ < p/2, we can obtain (I16). [ |

Based on Lemma [I0l we can now show aju{;,; & a/u\j, if & is not too large.

Lemma 11: 1f k < ,/p, then there exists ¢ > 0, s.t., for any € > 0 and ¢ € k],

P (| (i — @ogw)| > Vae) < cpte Vel (121)

Proof: Using (I16) and following the similar steps as (I13)), we can get:

~ _pe?
P (|a] (wiyy — )| > V/O,2) < Cem07 + € . (122)
max % }



30

1 .
where C' is some constant. Setting D = p4e2 in (I22), we can obtain (I21). [ |

Using Lemma [T1l we can show that the joint distributions of {a}ut[k]}ie[k} and {a]u\ [ }icp
are similar.

Lemma 12: 1f k < ,/p, there exists ¢ > 0, s.t., for any b; € R, i =1,2,...,p and € > 0,

1
P(ajulyy < bi,i € [k]) <P (a! Uy < bi+/0pe i € [k]) +ckp2e VPEle (123)

and
1
P(ajuly < bi,i € [k]) =P (a!’&\[k] <b—/oeie [k]) —ckp2e Ve (124)
Proof: The proof is similar to Lemma [9] and is omitted here. [ |

3) Proof of Proposition[3: The proof follows directly Lemma [9] and Lemma
4) Proof of Proposition |6 Letting b; = —A* in (28], we have

P(ﬁ {6.#8}) =0 (—m) — A (125)

i=1

*
2 TPAp

k
> gk (_}) {1 _ M} — Ay, (126)

where h(z) = gtg is the so-called inverse Mills ratio. By (39), (126) and (132) given in

Appendix [F, there exists ¢ > 0, s.t., for any k < /P and small enough ¢ > 0,
k

(Vi Aa}) 20 (-2) (- %) - om

i=1
On the other hand, we can also get the similar bounds as (I23]) and (I27)) for the other direction.

1 ) _1 )
Now consider the case k < p8. Accordingly, we set ¢ = p~ 4. Then there exists ¢, ¢’ > 0, s.t.,
5 /
Ay < dpse M < et e (128)

1
As a result, from (59), (123) and (128)), if & < p8, there exists ¢ > 0, s.t.,

k 1
IP’( A {5 # Bz} ) > <I>k( - ”Tﬁ) —ce e, (129)
. 2 c
Meanwhile, we can also get for o, > Tog?p’
k ~ (a) 1 4
p(N{Aza}) -0 (-3) =~ [@k (%) kp~ polylogp + " /C}
Qb (—1) |2y T volvl v
> e (=3) [l polvlogp + G5

© 1
> ok (—%) kp~1 polylog p, (130)
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where in step (a), we use (127)), in step (b), we use ([82) and step (c) follows from inequality
1
(I31) and conditions k < p8 and o >

derived similarly, which lead to (29) and B0).

F. Gaussian Tail Bounds

Here we gather some properties of the Gaussian tail bounds that will be used in our proof.
Let ®(z) and ¢(x) be the CDF and PDF of the standard Gaussian distribution, respectively. It
is well known that (see [38, p.14] for a proof), for any = > 0,

Lol (131)

where m(z) & ;{;E:j))

defined as h(z) = /m(z). This provides us a way to approximate the tail probability ®(—xz)

is known as the Mills ratio. Correspondingly, the inverse Mills ratio is

by ¢(x), which has an explicit form. In view of (82) and (I31)), there exists M > 1, s.t., for all

€ [-1/2,1/2],
H_ngh(_ﬂ) < M) (132)

Tp Tp - Tp

Meanwhile, from (82) and (I32)), for all n € [—1/2,1/2],

)2 (6p—1/2)

1+ 1 o2 1 T E—
(-12) < 5 lme (133

and
- . 2 _(1+n)2(6p51/2+vp>
N /] 1  /Zp_1_ 20
(I)( 7 ) = M+ \/ 3, Var © ! ) (134)
where v, = fb , with b, = 2, /2=2/2,

P

G. An Auxiliary Result

Proposition 10: As p — oo, it holds that

~ 1, liminf, , a, > 1,
lim P(N, = 0) = ey (135)

pP—00 .
0, limsup, . a, <1

Proof: When liminf, . a, > 1, for large enough p. Combining (29) and

(I33) in Appendix [F gives us

1/2 —1g

EN, < Cp® <—1Tip"> + cpe VP

C 1—ap[l+o
< 12 [pteslieet) (136)
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1
where n = —cp~ 4 and C' is some constant. Therefore, from (I36) and Markov’s inequality,
lim,, o P(N, > 1) = 0.

When limsup,_, ., @, < 1, then o, > IOL for large enough p and we have

~ (@
EN, > pd ( ) (1 —p 4 polylogp)

1
(b) 2 (1—p7 4 polylog p) vp log? p

T (137

where step (a) follows from (30Q) and step (b) follows from in Appendix [El In addition, it
. . e*bz%/?(b +2)2 2/6p—1/2

can be checked that v, as defined in (82) satisfies v, < ———*——, where b, = —— - If
o € [3.1), b, > \/2%. Hence, there exists C' > 0, such that for large enough p, v, < p%.
Then from (I37) we can get lim, .o EN, = oo. If a, < %, since 7, is strictly increasing with
respect to af, as shown in (8I), by step (a) above, it still holds that lim,_, E]Ve =00

We now prove that lim,_,. P(Ne = 0) = 0, when lim,_, EN, = oo. The key lies in the
approximate independence established in (30Q). First,

p
Var(N,) =) Var (15.5) + > _ Cov (]lgﬁéﬁi’ ]léﬁéﬁj)
i=1 i

p
< _P(aluf; < -4))

i=1

+Y |P(aJul; < —A% alul; < —A7) — Plalul, < —A))P(aluf; < — A7)

i#j
@  ~ 1 ~ 1
<EN. <1 +p 4 polylogp) + (EN,)*p™ 1 polylog p, (138)
where in step (a), we have used (3Q), with k¥ = 1,2 and also (I36). Let IP’ =0)=1-— g,
€ [0,1]. For any p, E (Ne | N, > O) = Eq—]? and hence E (Ne2 | N, > O) ( ) , which
indicates that ¢, > #‘Q;(M). This combined with ~(E3EI) and lim,_, EN, = oo leads to:
lim,_,~ ¢, = 1. Therefore, we conclude that lim, ,., P(N, = 0) = 0. [ |

H. Proof of Proposition [/
1 ~ 1
If v, > 2, from (136) and (133)), we know there exists ¢ > 0, s.t., A, < c¢p 2 and EN, < ¢p™ 2.
Hence, dTV(]Ve, Z,,) can be bounded as:

~ 1 ~ 1 ~ 1 1
drv(Ne, Py,) < 3 ‘IP’ (Ne = O) —e M|+ §IP) (Ne > 1) + 5 (1 — e_)"’) < 2cp 2.
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On the other hand, if a,, < 2, then for large enough p, it holds that o, > @. Choose L in (Z3)
to be L = |5logp|. Without loss of generality, assume L — k is odd (otherwise we add L by
1). Then from Bonferroni’s inequality (Z3)), for k£ < |logp|,

L-1-k

P( ) Z (kl lpm+kS[m+k]

@ L—1—k L—1—k prtkpmetk (_ 1 )
—_1)ym T —
< E (km)” PR (_ 1) I 2 : A/ 1/4Lp

© A\ log p

< ore {1 + ( S ) +p‘1/5Lp} . (139)
Here, L, is the shorthand notation for a term of order O(polylogp) and C' is some constant,
step (a) follows from (3Q), in step (b) we use Taylor approximation and inequality n! > e (g)"

and step (c) follows from conditions L = |5logp], k < [logp| and limsup,_, % < 00. In

a similar manner, for the other direction, we can also obtain

~ NE logp
PN, = k) = e [1 - (%) —p‘”%} - (140)
By (139) and (140), for k£ < |logp],
k
P (N.=k) = 5re| < e oL, (141)

Then drv(N,, 2(),)) can be bounded as:

[log p| oo 00
~ ~ )\kef)\p ~ )\kef)\p
COSCORDWIESUEE S IR S LRI
k=0 k=|logp]+1 k=|logp]+1
(a) pfl/sL \_logpj )\kefkp 1 \_10ng )\kefkp _l s )\kefkp
S T Z b Z TG (L=p75ly)| + Z o
k=0 k=0 k=|logp|+1
(b)
< p—1/5Lp’

where in step (a) we use (I41), in step (b) we use Chernoff’s bound for the tail probability of
Poisson random variables [38 p.20]: for X ~ Z(\),k > X\, P(X > k) < e (%)k and the

condition that limsup,, , \/W < 00.
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