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Abstract
We investigate a metric structure on the Thurston boundary of Teichmüller space. To do this,
we develop tools in sup metrics and apply Minsky’s theorem.
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1 Introduction

In geometric topology and geometric group theory, the study of boundaries at infinity
has repeatedly provided crucial tools in establishing dynamical results, often with surpris-
ing geometric and algebraic consequences. Negatively curved spaces enjoy an extremely
rich boundary theory through Gromov’s visual boundary, constructed through geodesics or
quasigeodesics. Unfortunately, visual boundaries are much less well-behaved outside of the
negative curvature setting, even in nonpositively curved spaces. Still, boundaries for metric
spaces sometimes exhibit points called hyperbolic pointswith some of the properties enjoyed
by boundary points in hyperbolic spaces, such as so-called “visibility” properties that describe
which pairs of boundary points can be connected by geodesics. For any bordification of a
metric space, a construction of Anders Karlsson induces extra structure on the boundary by
breaking it down into subsets called stars [7]. The star of a boundary point ξ is built through
a purely metric definition, and contains other boundary points that are in a certain sense
metrically indistinguishable: as we will define below, the star of ξ (denoted S(ξ)) consists
of those boundary points which cannot be separated from ξ by halfspaces. When the star is
a single point, the direction has hyperbolic features.

Teichmüller space has been a nexus of attention in topology and group theory. The
Teichmüller space T (S) parametrizes geometric structures on the topological surface S, and
it carries its own geometries which are well-studied in their own right, especially the Teich-

Data sharing not applicable to this article as no datasets were generated or analyzed during the current study.
MD is partially supported by NSF Grant DMS-2005512..

B Nate Fisher
nathan.fisher@tufts.edu

Moon Duchin
moon.duchin@tufts.edu

1 Tufts University, Medford, MA, USA

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10711-021-00596-0&domain=pdf
http://orcid.org/0000-0003-4498-4067
http://orcid.org/0000-0002-6816-9190


532 Geometriae Dedicata (2021) 213:531–545

müller metric, a complete geodesic Finsler metric with a very nice interpretation in terms
of flat structures on S. Much attention has been paid to the Thurston boundary PMF(S)

of the Teichmüller space T (S) for a surface S = Sg,n of finite type. Its elements, called
projective measured foliations, can be regarded as completing the simple closed curves on S
with respect to a natural topology. Where h = 6g − 6 + 2n, Thurston established that this
boundary is a sphere of dimension h − 1 compactifying T (S), which itself is topologically a
ball of dimension h. Unfortunately, the boundary lacks some of the nice geometric properties
present in boundaries of hyperbolic spaces: its correspondence with the visual boundary
is basepoint-dependent [9], it has limited visibility (not every two points on the boundary
can be connected by a geodesic) [3], and indeed some Teichmüller geodesics have large
accumulation sets on the boundary [11], while others are not approached by geodesics [14].
Karlsson asked how halfspaces in the Teichmüller metric separate points in the Thurston
boundary PMF , and he predicted that it lines up with intersection of foliations [7]. That is,
Karlsson conjectured that disjoint foliations are precisely the ones that can’t be separated. If
we denote by Z(F) the zero-set of the foliation F , i.e., all other foliations disjoint from F ,
then we can write the conjecture succinctly.

Conjecture 1 (Karlsson) S(F) = Z(F) for all F ∈ PMF .

He proved part of that in his original paper.

Theorem (Karlsson, [7] Thm44)Forminimal foliations, only those with the same underlying
topology can belong to a given star: S(F) ⊆ Z(F) for all F ∈ MIN .

In this paper, we study the stars in the Thurston boundary, addressing Karlsson’s conjec-
ture. We show that the hyperbolic points in the boundary are precisely the uniquely ergodic
foliations, a well-studied subset of PMF that coincides with its Poisson boundary, as estab-
lished by Kaimanovich–Masur [6].

Theorem A (Stars contain zero-sets) Non-intersecting foliations always belong to the same
star: Z(F) ⊆ S(F) for all F ∈ PMF .

Corollary B S(F) = {F} ⇐⇒ F ∈ UE .

Furthermore, the star structure on PMF induces a metric on the set of simple closed
curves S(S). We develop tools in the hope of relating this star metric to the metric coming
from the curve graph C(S).

Conjecture 2 The star metric d� and the curve complex distance dC are isometric on the set
of simple closed curves S ⊂ PMF .

Thiswould tell us that the distance function induced by disjointness is the same as the distance
function induced by star-membership: you can use Teichmüller distance alone to see a copy
of the curve complex in the boundary.

The main ingredient in the proof of Theorem A is Minsky’s theorem that the regions of
Teichmüller space where some curves are very short (the “thin parts”) are additively well-
approximated by sup metrics. We will deduce the desired conclusions from establishing that
stars in sup metrics are suitably large.

Along the way we establish three results that may be of independent interest for the study
of boundaries and random walks. Lemma C gives a necessary and sufficient condition for
η ∈ S(ξ) in terms of sequences and a metric inequality. For vector spaces with sup metrics,
Theorem D describes the horofunctions explicitly in terms of a family of geodesics and
derives a topology on the boundary; Theorem E constructs the stars in that horoboundary.
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2 Background and basic properties

Recall Thurston’s main tools to understand Teichmüller geometry on S, the simple closed
curves S and the measured foliations MF , which can be related with an intersection form
i(·, ·). In the intervening years, the combinatorics of the set of simple closed curves S(S) has
been mined very productively: the curve complex declares two curves to be adjacent if they
are disjointly realizable, and we define a distance function as the length metric on the graph.
In the 1980s, Bonahon showed how to interpret i(·, ·) as a continuous bilinear form on the
larger space of geodesic currents, and how to view T (S) and PMF(S) as sitting compatibly
inside currents [1], with the Thurston compactification showing up as directly analogous to
the sphere at infinity for a hyperboloid in Lorentz geometry. Closed curves and measured
foliations also embed in the space of currents. Let us define the zero-set of a foliation to be
all the foliations that miss it:

Z(F) := {G ∈ PMF : i(F,G) = 0}.
We can designate sub-classes of foliations

UE ⊂ MIN ⊂ PMF,

where minimal foliations (MIN ) are those for which every leaf is topologically dense in
S, and uniquely ergodic foliations (UE) are minimal foliations that carry a unique transverse
measure. Then, since every transverse measure is a convex combination of finitely many
mutually singular ergodic measures, these zero-sets can be thought of as polyhedra in the
boundary, and we have

Z(F) = {F} ⇐⇒ F ∈ UE .

Next,we review the general theory of halfspaces and stars at infinity developed byKarlsson
in [7]. The definitions serve in a more general setting, but here we assume X is a complete
proper geodesic metric space and fix a basepoint x0 ∈ X . For a subsetW ⊂ X and a constant
C ≥ 0, define the halfspace H(W ,C) by

H(W ,C) = Hx0(W ,C) := {z : d(z,W ) ≤ d(z, x0) + C}.
Note that if W is equal to a point y and C = 0, then H({y}, 0) defines a standard halfspace.

We let X be any bordification of X , i.e., there is an embedding of X into a Hausdorff
space X so that the image is open and dense, and denote the boundary ∂X = X − X . Two
examples of bordifications frequently seen in the setting of geometric group theory include
the visual boundary ∂∞(X), the set equivalence classes of basepointed geodesic rays, and the
horofunction boundary ∂h(X) obtained by embedding X into the space C(X) of real-valued
continuous functions on X . To be precise, fix a point x0 in X , and embed X into C(X) via
the map

� : z 
→ d(z, ·) − d(z, x0).

Define thehorofunction boundary to be ∂h(X) = �(X)\�(X).Asequence xn in X converges
to a point in the boundary if and only if the sequence of functions d(xn, ·) − d(xn, x0)
converges uniformly on compact sets to a function not in the image of �. We note that
earlier work of several authors [13,16,17] has studied the horofunction boundaries for various
popular metrics on Teichmüller space.

To relate the visual boundary to the horofunction boundary, when γ is a geodesic ray
based at x0 in X , then it is a simple exercise to show that �(γ (t)) converges as t → ∞ to
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a horofunction in the boundary. This class of horofunctions coming from geodesic rays are
called Busemann functions.

Returning to the general setting, we assume X is a bordification, and we let Vξ denote the
collection of open neighborhoods in X of a boundary point ξ ∈ ∂X . The star based at x0 of
ξ is

Sx0(ξ) :=
⋂

V∈Vξ

H(V , 0),

where closures are taken in X . A priori, this definition could depend on the basepoint x0, so
the star of ξ is defined to be

S(ξ) :=
⋃

C≥0

⋂

V∈Vξ

H(V ,C).

The combinatorially defined star-distance on ∂X is given by setting d� to be the maximal
distance function satisfying

d�(ξ, η) = 0 ⇐⇒ ξ = η,

d�(ξ, η) = 1 ⇐⇒ η ∈ S(ξ) or ξ ∈ S(η).

Examples

1. If X = H
n , then S(ξ) = {ξ} for all ξ ∈ ∂∞(X) ∼= ∂h(X) ∼= Sn−1. Let us call points

whose star is a singleton the star hyperbolic points of the boundary. In this case, as in
every boundary with all hyperbolic points, the star-diameter is infinite.

2. The stars in ∂∞(Rn) ∼= ∂h(R
n) ∼= Sn−1 are closed hemispheres centered at ξ . Here the

star-diameter is two.
3. As Karlsson shows, the stars in CAT(0) spaces are the balls of radius π/2 in the Tits

angular metric on ∂∞X . (Note that this generalizes both of the previous examples.)

The generality of the construction of stars makes them a powerful tool; stars are defined in
such a way as to make them basepoint independent for any bordification of a complete metric
space. The cost of this generality is difficulty deriving properties. For instance, symmetry
of star-membership has been an open question until recently. In a new preprint [5], Jones
and Kelsey settle the question negatively by exhibiting points α and β in the horofunction
boundary of aDiestel-Leader graph such thatβ ∈ S(α), butα /∈ S(β). Jones–Kelsey also give
a sufficient condition for star membership. We strengthen that to a necessary and sufficient
condition as follows.

Lemma C (Sequence criterion) Suppose X = X ∪ ∂X is compact and first countable. Then
η ∈ S(ξ) if and only if for every neighborhood U of η in X, there are sequences xn → ξ ,
yn → U and a constant C ≥ 0 such that

d(yn, xn) ≤ d(yn, x0) + C . (�)

In particular, if there exist C ≥ 0 and sequences xn → ξ and yn → η as in (�), then
η ∈ S(ξ).

Proof Let Wk be a neighborhood basis of ξ . Then η ∈ S(ξ) is equivalent to the existence of
a sequence of points in the boundary ηi → η and associated constants Ci so that

ηi ∈
⋂

k

Hx0(Wk,Ci ),
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So for all k, ηi ∈ Hx0(Wk,Ci ), which means that for each k there is a sequence yi,n,k ∈
Hx0(Wk,Ci ) with yi,n,k → ηi as n → ∞. But that means that for every k there is a point
xi,n,k ∈ Wk such that

d(yi,n,k , xi,n,k) ≤ d(yi,n,k , x0) + Ci .

Given a neighborhood U of η, choose and fix a sufficiently large value of i so that ηi ∈ U .
Then let xn = xi,n,n and yn = yi,n,n . By construction, xn → ξ , yn → U , and d(yn, xn) ≤
d(yn, x0) + C for C = Ci .

For the other direction, let us assume sequences exist as above and prove that η ∈ S(ξ).
Again, let Wk be a neighborhood basis at ξ and let Ui be a neighborhood basis at η. The
hypothesis says that for every i , there are sequences yn,i → Ui , xn,i → ξ , and there is a
constant Ci such that yn,i ∈ Hx0(xn,i ,Ci ) for all n. Observe that for any fixed i , as n → ∞,
yn,i must go to infinity, i.e., leave all bounded sets in X . Indeed, if yn,i were bounded,
the distance d(yn,i , x0) would be bounded above by a number Mi > 0, and, therefore,
d(yn,i , xn,i ) would also be bounded above by Mi +Ci . We know, however, that as n → ∞,
the sequence xn,i → ξ ∈ ∂X , resulting in a contradiction.

Since X is compact, for a fixed i , the sequence yn,i must have a limit point in Ui . In
particular, since the sequence leaves all bounded sets, yn,i has a subsequence that converges
to a point in ∂X ∩Ui . Pass to this subsequence, and call this limit point ηi . For any k and for
n sufficiently large, we have xn,i ∈ Wk . So for n large enough, yn,i ∈ Hx0(xn,i ,Ci ) implies
that yn,i ∈ Hx0(Wk,Ci ). Therefore we have ηi ∈ Hx0(Wk,Ci ) for all k. This is true for
arbitrary Ui , so we can find a sequence of points ηi ∈ ∂X such that

{ηi } ⊆
⋃

C≥0

⋂

k

Hx0(Wk,C).

There is a subsequence of {ηi } which converges to η by construction, and so we have

η ∈ S(ξ) =
⋃

C≥0

⋂

k

Hx0(Wk,C).

��

Lemma 1 (Semicontinuity of stars) Suppose the bordification X = X ∪ ∂X is a metrizable
space. If ηn ∈ S(ξn) and ηn → η, ξn → ξ , then η ∈ S(ξ).

Proof First, pass to a subsequence of ηn , relabeling indices as needed, such that ηn ∈ B1/n(η)

for all n > 0. Let Un
k be a neighborhood basis for ηn . In particular, take Un

k to be the metric
balls B1/k(ηn). Then since ηn ∈ S(ξn), we know by LemmaC that for fixed n and any k, there
is a Ck ≥ 0 and sequences xi,n,k and yi,n,k , tending to ξn and Un

k respectively as i → ∞,
satisfying

d(yi,n,k , xi,n,k) ≤ d(yi,n,k , x0) + Ck .

For every neighborhood U of η, there is a radius R > 0 such that BR(η) ⊆ U . Note that
by the triangle inequalityUn

k = B 1
k
(ηn) ⊆ B 1

n + 1
k
(η). Therefore, there exist constants N and

K satisfying 1
N + 1

K < R for which n ≥ N , k ≥ K �⇒ Un
k ⊂ U . Now let xn = xn,n,K and

yn = yn,n,K . We have xn → ξ and yn → U , while d(yn, xn) ≤ d(yn, x0) +C for C = CK .
��
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z0

z1

z2

Fig. 1 To the left, a northerly sequence. Such a sequence can be linearly interpolated to form a northerly
geodesic. To the right, the northerly geodesics αNE2 and αNW3

3 Stars in supmetrics

In this section, we will take a digression into the geometry of sup metrics, which appear
in the thin parts of Teichmüller space, to be described below. In particular, we will study
the horofunction boundary of X = (R2, sup). In doing so, we will recover the results of
Gutierrez [4] on the horofunction boundary, but through a more geometric proof. We will
then explore the stars in this sup metric, which are of independent interest but also provide
intuition for the proof of the main theorem on stars in Teichmüller space.

3.1 Directional sequences and geodesics

Here, we will use the term geodesic ray in a metric space X to refer either to isometric maps
[0,∞) → X or to the image of such a map in the space X , which are characterized by the
betweenness relation: for any three points p, q, r in order along the curve, d(p, q)+d(q, r) =
d(p, r). Since the sup metric on R

2 is translation-invariant, to understand all geodesics, it
suffices to describe geodesic rays based at the origin. It quickly follows from the betweenness
description that sup geodesics are parametrized by arclength by either their x coordinate, y
coordinate, or the negative of one of these. Accordingly, a (unit-speed) northerly geodesic
can be written in the form (x(t), t), and similarly for easterly, southerly, and westerly, which
covers all possibilities.

We can define a northerly sequence {zn = (xn, yn)} of points in R
2 by the property that

yn > yn−1 and

yn+1 − yn ≥ |xn+1 − xn |,
or in other words, the the northward displacement dominates the east and west displacement.
(See Fig. 1.) Note that northerly geodesics are characterized by all exiting sequences being
northerly sequences, and that every northerly sequence can be interpolated to a northerly
geodesic. Calling a curve of one of these four types directional, we have observed that every
sup geodesic is directional.

We now define several families of geodesics that we will use below. For m ≥ 0, let

αNE
m (t) = (max(0, t − m), t).

123



Geometriae Dedicata (2021) 213:531–545 537

These first travel north form units, then diagonally northeast. There are eight families defined
similarly, each starting in an axial direction (N/S/E/W) form ≥ 0 units, then turning π/4 and
continuing. (So for instance, αEN

3 is an easterly geodesic, and αEN
0 = αNE

0 is both easterly
and northerly.) Besides these, we also define the pure axial geodesics αN, αS, αE, αW, which
can be thought of as m → ∞ limits from the other families.

3.2 Boundaries of supmetrics

Recall that the visual boundary of a geodesic space is the set of geodesic rays originating
from a basepoint, up to the equivalence relation identifying any two rays with bounded
Hausdorff distance. The boundary is equipped with the compact-open topology. In CAT(0)
spaces, we can drop the dependence on basepoint, but in general that is more delicate. It turns
out that the visual boundary is not very suitable for sup metrics, as it is easily seen to have
a collapsed topology: in particular, it is not Hausdorff. Indeed, the rays αNE

m and αEN
m are

all mutually equivalent to the straight straight northeast geodesic αNE
0 , but converge to αN

and αE respectively as m → ∞. This means that any open neighborhood of North contains
Northwest, and with similar constructions one deduces that the topology on the boundary is
trivial. (See [10] for a similar argument in the visual boundary of Z2.)

The horofunction boundary is often a better choice formetric spaces outside of the negative
curvature setting. It is defined by using the distance function to embed a metric space in the
space of continuous functions up to constants, then passing to the topological boundary.
One way to make this precise is to declare that a sequence of points zn in a metric space X
converges to a horofunction h via the formula

h(z) = lim
n→∞ d(zn, z) − d(zn, z0),

if that limit exists. One easily verifies, via the triangle inequality, that a sequence of points
following a geodesic always converges to a horofunction. Such horofunctions are called
Busemann functions, or Busemann points in the boundary. Denote by h∗ and h∗

m the horo-
functions which are the limits of the families of geodesics α∗ and α∗

m , respectively, defined
above. In the other direction, it is not always the case that every horofunction is induced in
this way. In the case of the sup metric, a result of Karlsson, Metz, and Noskov [8] tells us
that all horofunctions in ∂h(X) are Busemann functions. We will give a complete description
of the boundary in terms of the representative geodesics defined in the last section. We note
that our description of the horofunction boundary agrees with that given by Gutierrez in [4].

Theorem D The horofunction boundary of (R2, sup) is homeomorphic to the circle S1, and
parametrized by the normal forms α∗ for and α∗

m for m ≥ 0, as shown in Fig. 2.

Proof Suppose that {zn = (xn, yn)} is a northerly geodesic sequence. For each of the other
directions, similar arguments apply. Since zn is northerly, yn ≥ |xn | for all n, and so there
are two possible scenarios. As n → ∞, either (1) the difference yn − |xn | is unbounded, or
(2) there exists m ≥ 0 such that yn − |xn | < m for all n.

Case 1: Suppose yn − |xn | is unbounded, and let z = (x, y) be a point in R
2. If the limit

exists, the horofunction corresponding to the sequence {(xn, yn)} is
h(z) = lim

n→∞ sup(|x − xn |, |y − yn |) − sup(|xn |, |yn |).
No matter what the input values x and y are, since yn − |xn | is unbounded, we get

h(z) = lim
n→∞ |y − yn | − |yn | = −y,
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max(−x, −y)max(x, −y)

max(−x, y)max(x, y)

−y

y

−xx

max(−x − m, −y)max(x − m, −y)

max(−x, −y − m)

max(−x, y − m)

max(x, −y − m)

max(x, y − m)

max(−x − m, y)max(x − m, y)

Fig. 2 Every horofunction of (R2, sup) is of one of these types, for some m > 0. Representative geodesics
are shown in blue

which is the horofunction hN(z) coming from the north geodesic αN.
Case 2: Suppose yn − |xn | is bounded, and let m = sup{yn − |xn |} = lim(yn − |xn |).

Since the difference yn − |xn | increases monotonically, the sup and limit are equal. Observe
that the boundedness implies that for sufficiently large n either zn is in the first quadrant
or the second quadrant. Indeed, going back and forth between quadrants would necessarily
increase the value of m. Assume zn eventually stays in the first quadrant, so eventually
yn − |xn | = yn − xn → m.

As n → ∞ both xn and yn are growing arbitrarily large, so

h(z) = lim
n→∞ sup(|x − xn |, |y − yn |) − sup(|xn |, |yn |) = lim

n→∞ sup(xn − x, yn − y) − yn .

If y ≥ x+m, we see h(z) = lim
n→∞ xn−x− yn = −x−m. On the other hand, if y < x+m,

the sup picks out yn − y, and h(z) = −y. Thus,

h(z) = lim
n→∞

{
−x − m, y ≥ x + m

−y, y < x + m
= max(−x − m,−y).

This is exactly equal to the horofunction hNEm (z) coming from the geodesic αNE
m .

Because the topology is inherited from the compact-open topology on continuous func-
tions C(X), the α∗

m interpolate between the diagonal and axial directions as m varies from 0
to ∞. (Note from the explicit expression for h∗

m that two horofunctions in the same sector
with m perturbed by ε gives output that differs by no more than ε on the whole space.) Thus
the horofunction boundary is homeomorphic to S1. ��
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p

p

Fig. 3 In the first figure, the locus of points equidistant from the origin and the point p contains two rays and
a line segment, drawn here with heavy lines. In the second case, the locus of points equidistant from the origin
and p = (b, 0) contains a segment and two infinite cones as pictured. The dotted squares in both cases are
metric spheres centered at 0 and p. The strict halfspaces H(p, 0) in (R2, sup) are shown in pink.

3.3 Stars in supmetrics

To understand stars, first consider halfspaces in (R2, sup). As shown in Fig. 3, the halfspaces
separating two points along most straight rays contain half of that circle, while the those
separating points in the four axial directions contain three-quarters of that circle. We’ll see
that this phenomenon of “being able to see more” from axial directions extends to stars.

Lemma 2 For nonaxial directions, a sequence zn = (xn, yn) converges to h∗
m, m ≥ 0 if and

only if the sequence converges to the geodesic α∗
m.

For example, xn → hNEm if and only if xn, yn → ∞ and yn − xn → m.

Proof Without loss of generality, we will examine the αNE
m case. Suppose a sequence zn =

(xn, yn) converges to hNEm . Then

lim
n→∞ d(zn, z) − d(zn, z0) = lim

n→∞ sup(|xn − x |, |yn − y|) − sup(|xn |, |yn |)

= hNEm (x) =
{

−x − m, y ≥ x + m

−y, y < x + m.

To obtain these signs for x and y in the limit, we first need xn, yn → ∞. Furthermore, −x
appears in the limit iff y ≥ x + m, which occurs iff the first sup in the difference picks out
|xn − x |. We have

|xn − x | = xn − x ≥ yn − y = |yn − y|,
which can be rewritten y ≥ x + (yn − xn) and is equivalent to y ≥ x + m. Therefore,
(yn − xn) → m. ��
Theorem E The stars of axial boundary points h∗ are closed hemispheres, while stars of
nonaxial boundary points h∗

m are closed axial quadrants.

For example,

S(hE) = {hN, hNEm , hENm , hE, hESm , hSEm , hS | m ≥ 0}
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and for any m ≥ 0,

S(hNEm ) = {hN, hNE� , hEN� , hE | � ≥ 0}.
Proof Without loss of generality, we will find the stars of hE and then hNEm Let z0 = (0, 0).
First, we show that for all m ≥ 0, hENm and hNEm are in S(hE). Fix the eastern sequence
zn = (n, 0), east-north sequencewn = (n, n−m), and north-east sequencew′

n = (n−m, n).
Then d(wn, z0) = d(w′

n, z0) = n. We have

d(wn, zn) = n − m ≤ n and d(w′
n, zn) = n ≤ n.

By the sequence criterion, hENm and hNEm are in S(hE), and since stars are closed, we get
hN ∈ S(hE) by sending m → ∞. Symmetry also gives us the corresponding east-south,
south-east, and southern horofunctions.

Now to show that no other boundary points are contained in S(hE), it suffices to show
that hNWm /∈ S(hE) for any m > 0. Let zn = (xn, yn) be a sequence converging to hE. That
is, xn → +∞ and xn − |yn | is unbounded. Define the neighborhood U = {(x, y) | y >

2m,−x + m − 1 < y < −x + m + 1} of hNWm , and suppose wn = (un, vn) → U . For any
C > 0, wemust show that for n large enough d(wn, zn) > d(wn, z0)+C . Clearly ifwn stays
in a bounded set, this is true, so assume wn leaves all bounded sets. Then the coordinates of
wn satisfy −un +m − 1 < vn < −un +m + 1, and d(wn, z0) < vn < −un +m + 1. For n
large enough, d(wn, zn) = xn − un , and as xn → ∞,

d(wn, zn) = −un + xn > −un + m + 1 + C > d(wn, z0) + C .

Now we find the star of hNEm . Consider zn = (n −m, n) converging to hNEm and sequences
wn = (n − �, n) and w′

n = (n, n − �) converging to hNE� and hEN� , respectively. Clearly
d(wn, z0) = d(w′

n, z0) = n, and both d(wn, zn) and d(w′
n, zn) are finite for all n. Thus

S(hNEm ) contains the northern, north-east, east-north, and eastern horofunctions.
To show there is nothing else in the star, it suffices to show hNW� is not contained in

S(hNEm ) for any � > 0. Let C > 0. As above, consider the neighborhood U = {(x, y) | y >

2�,−x + � − 1 < y < −x + � + 1} of hNW� , and assume wn leaves all bounded sets. Again
we have d(wn, z0) < vn < −un + m + 1, and Lemma 2 ensures that for large enough n,
d(wn, zn) = sup(|xn − un |, |yn − vn |) = xn − un . As xn → ∞,

d(wn, zn) = −un + xn > −un + m + 1 + C > d(wn, z0) + C .

��
In particular, we observe that the star of hE contains hN, and vice versa, which is what is

needed to make the necessary arguments for Teichmüller space below.

3.4 Generalizing to supmetrics inRn

It is not difficult to see how these results generalize to R
n . Indeed, the horofunction bound-

ary of Rn with the sup metric is homeomorphic to Sn−1. The functions in the boundary
can be parametrized in the following way. Let ε = (ε1, . . . , εn) ∈ {−1, 1}n , and let
m = (m1, . . . ,mn) ∈ [0,∞]n , where at least one of the mi is equal to 0. Then there is
a horofunction h in the boundary

h(x1, . . . , xn) = max
i

{εi xi − mi } ,
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yx

z

max(x − �, y − m, z), � ≥ mmax(x − �, y − m, z), � ≤ m

max(x − �, y, z − n), � ≥ nmax(x, y − m, z − n), m ≥ n

max(x, y − m, z − n), m ≤ n max(x − �, y, z − n), � ≤ n

max(y, z)max(x, z)

max(x, y)

max(x, y, z)

Fig. 4 The simplex in the horofunction boundary ofR3 with the supmetric. The full boundary is an octahedron
with eight such faces

where we use the convention that, for instance, max(x1 − ∞,−x2 − 3, x3) = max(−x2 −
3, x3). The figure below shows the horofunctions reached by sequences which eventually
stay in the negative orthant of R3, corresponding to ε = (+1,+1,+1).

This gives the sphere boundary a simplicial structure, which helps in identifying stars
of boundary points. We have parametrized the boundary ∂h(R

n, sup) as an orthoplex (i.e.,
co-cube) with 2n simplex faces. If h is a function in the boundary, let σ(h) be the simplex of
minimal dimension containing h. Then the star of h is the simplicial star of σ(h), that is, the
collection of simplices which have σ(h) as a face.

4 Teichmüller stars

We will show that the star-diameter of zero sets it is at most one; that is, Z(F) ⊆ S(F).
The crucial element is Minsky’s theorem identifying the metric on the thin parts of T (S):

Minsky finds sup metrics inside of these thin parts, and that will be enough for us bound the
star-diameter.

To make this precise, let � be a set of disjoint curves on S, i.e., a multicurve. Let a thin
part ε-Thin� be the subset of T (S) consisting of points for which the hyperbolic length of
every curve in � is less than ε. Recall that T (S) has so-called Fenchel-Nielsen coordinates:
a position in T (S) is described by length and twist parameters for any maximal multicurve
[2]. Let

ε- Prod� = (
T (S′) ×

∏

γ∈�

H
ε
γ , sup

)
,

where H
ε
γ is the metric horoball in H

2 defined by {z = x + iy ∈ C | y > 1/ε}, thought
of as parametrizing the length and twist �, τ for γ via y = 1/� and x = τ . Here, y > 1/ε
corresponds to � < ε, i.e., to the curve staying short.
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Theorem 1 (Minsky, [15]) The Teichmüller metric on any thin part of T (S), where some
multicurve is short, is additively close to a product metric on lower-complexity pieces: the
metrics differ only by an additive constant, with no multiplicative distortion.

That is, for sufficiently small ε, there is a constant c such that ε-Thin� is (1, c)-
quasiisometric to ε-Prod� .

From now on we fix ε to be as short as is required in this theorem, and we write simply
Thin� and Prod� .

Theorem 2 If A, B are disjoint multicurves, then B ∈ S(A).

Let � = {γ1, . . . , γn} be the multicurve A ∪ B. The orthants of (Rn, sup) isometrically
embed in Prod� , so they embed with only additive distortion in Thin� . Since stars are large
in sup metrics, we will conclude that they are large in Teichmüller space. We first write the
case of simple closed curves.

Proposition 1 (The curve case) For disjoint simple closed curves α and β,

β ∈ S(α).

Proof Let S′ = Sα,β be the subsurface of S obtained by cutting open S along α and β. Let
σ be an arbitrary basepoint in T (S′).

Let k be a constant chosen large enough that x ′
0 := (σ, ki, ki) is in Prod{α,β}. We let

x ′
n = (σ, eni, ki) and let y′

n = (σ, ki, eni). Then the corresponding points xn, yn in T (S)

move through Thin{α,β} along paths that pinch α and β, respectively, while leaving other
Fenchel-Nielsen coordinates fixed. But then xn → α ∈ PMF , yn → β ∈ PMF .

d(x ′
n, y

′
n) = d(y′

n, x
′
0) �⇒ d(xn, yn) ≤ d(yn, x0) + 2c.

Now the sequence criterion (Lemma C) completes the proof. ��
Proof of Theorem 2 Similarly let k be large enough that (σ, ki, . . . , ki) ∈ Prod� , and x ′

n have
eni in the factors corresponding to curves from A while y′

n has eni in the (not necessarily
distinct) factors corresponding to curves from B. The rest of the proof is the same. ��

A result of Lenzhen and Masur gives a very useful description of zero-sets for minimal
foliations.

Theorem 3 (Lenzhen-Masur, [12]) Suppose F and G are minimal foliations with i(F,G) =
0. Then there exists a simultaneous approximation by multicurves: there is a sequence of
maximal multicurves {Pn} and there exist weight vectors an, bn ∈ R

k such that an ·Pn → F
in PMF, while bn ·Pn → G.

The idea of their proof is that minimal foliations describe geodesics whose projections
to moduli space diverge (leave every compact set); thus some curve is very short at every
sufficiently large time. These short curves decompose S into pairs of subsurfaces dividing
the support of F and G with more and more concentration.

The following proposition is then a direct corollary of the Lenzhen-Masur theorem.

Proposition 2 (Simultaneous approximations)Foranypair of foliations F,Gwith i(F,G) =
0, there is a simultaneous approximation by multicurves.
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Proof Let � be the multicurve which is the union of all the closed curves in F and G. Every
leaf of F is either closed or it is minimal on some subsurface of S; let S1, . . . , Sr be the
collection of all supporting subsurfaces for the non-closed leaves of F and G, and let Fk
and Gk be the projections of F and G, respectively, to Sk . Then for every k, the foliations
Fk and Gk are either empty or minimal on Sk , and i(Fk,Gk) = 0. Then the multicurve
approximation to F and G simultaneously is built by the approximating multicurves on Sk
which are obtained by Theorem 3 along with the curves of �, with appropriate weights. ��
Proof of Theorem A To show Z(F) ⊆ S(F), we assume that G ∈ Z(F) and must prove
that G ∈ S(F). By Proposition 2, there is a sequence of pants decompositions {Pn} which
approach F with one sequence of weights andG with another. But we have bn·Pn ∈ S(an·Pn)
because they are disjoint (Theorem 2), so by semicontinuity of stars (Lemma 1), this tells us
that G ∈ S(F). ��

5 Future questions in Teichmüller geometry

Let S be the set of simple closed curves on the surface S, and consider the star metric d�

restricted to S ⊂ PMF . Recall that d� is defined combinatorially as the minimal metric
such that

d�(ξ, η) = 0 ⇐⇒ ξ = η,

d�(ξ, η) = 1 ⇐⇒ η ∈ S(ξ) or ξ ∈ S(η).

Our goal in this section is to compare this metric on S to the metric dC coming from the
curve graph C. Proposition 1 gave us star membership for disjoint curves, which says that
dC(α, β) = 1 �⇒ d�(α, β) = 1. This implies that

dC(α, β) ≥ d�(α, β)

for arbitrary curves, i.e., the identity map from (S, dC) to (S, d�) is Lipschitz. In this section,
we introduce some ideas toward the conjecture that dC = d� on S.

The intuition for stars is that boundary points in the same star are “hard to separate” with
half-spaces. On this intuition, it seems natural that points at the opposite ends of a geodesic
should be separable, so in disjoint stars. A sufficient condition for this kind of separability is
a mild hyperbolicity-like condition on geodesics.

Proposition 3 Consider a metric space X with bordification X and a geodesic γ with end-
points γ ± ∈ ∂X. The following are equivalent.

(SG1) There exists a compact set K ⊂ X such that for all sequences xn → γ + and yn → γ −,
the segments xn yn intersect K for sufficiently large n.

(SG2) There exists a compact set K ⊂ X and open neighborhoods V of γ + and W of γ −
such that any geodesic from W to V intersects K .

Proof (SG2) �⇒ (SG1) is clear because the sequences xn, yn eventually enter the neigh-
borhoods V ,W .

Now suppose γ does not satisfy (SG2). Then for all neighborhoods V of ξ and W of η

and for any compact K , there are points x ∈ V and y ∈ W such that xy ∩ K = ∅. Let {Vi }
be a countable neighborhood basis of ξ and {Wi } a countable neighborhood basis of η, and
fix a compact set K . For each i , we can find points xi ∈ Vi and yi ∈ Wi such that xi yi does
not intersect K . But then we have sequences xi → ξ and yi → η such that xi yi does not
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yn

γ−

W
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K

Fig. 5 Visualizations of the two definitions of sticky geodesics

intersect K for any i . We chose K arbitrarily, so this is true for all compact K . Thus γ does
not satisfy (SG1). ��

Ageodesic satisfying these conditions will be called a sticky geodesic (see Fig. 5), because
certain long segments stay close to a basepoint in the middle. Note that with respect to, say,
visual boundaries, Euclidean space does not have any sticky geodesics (because parallel
geodesics can have the same endpoints without getting close), while all hyperbolic geodesics
are sticky.

Proposition 4 If γ is a sticky geodesic, then its endpoints are separable by stars: γ − /∈ S(γ +)

and vice versa. That is, the endpoints have star-distance at least two.

Proof By taking the contrapositive of the sequence criterion, we have γ − /∈ S(γ +) if and
only if there exists a neighborhood U of γ − such that for all sequences xn → γ + and
yn → U and for all C ≥ 0, we have d(yn, xn) > d(yn, x0) + C for all n sufficiently large.

Choose neighborhoods V andW of γ ±, respectively, and compact K as in (SG2). Choose
any basepoint x0 ∈ K . Let xn → γ + and yn → W . For n sufficiently large, we know that
d(yn, xn) > d(yn, K ) + d(xn, K ) because xn yn hits K . We also know that d(yn, x0) <

d(yn, K ) + diam(K ). Therefore we have that

d(yn, xn) − d(yn, x0) > d(xn, K ) − diam(K ).

As n → ∞, the right-hand side of this inequality grows larger than any C ≥ 0. Hence,
γ − /∈ S(γ +). ��

Because this is a hyperbolic-like property, it is reasonable to expect for it to hold for thick
geodesics and reasonable to hope that it holds for geodesics with “nice” endpoints.

Conjecture 3 Teichmüller geodesics with curve endpoints are sticky.

In the Teichmüller metric, recall that the condition on which two foliations are joined by a
geodesic is that they jointly fill, by a result of Gardiner–Masur [3]. Also note that two simple
closed curves jointly fill iff their curve-complex distance is at least three. (Curves at distance
two have a third curve disjoint from each.) Thus, if geodesics with curve endpoints are sticky,
we can conclude that

dC(α, β) ≥ 3 �⇒ d�(α, β) ≥ 2.
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This would tell us that d�(α, β) = 1 �⇒ dC(α, β) ≤ 2, which would establish a (2, 0)-
quasiisometry between the two metrics.

Conjecture 4 Suppose dC(α, β) = 2, so that α and β jointly fill a proper subsurface of S.
Given sequences xn → α and yn → β, the distance d(xn, yn) grows faster than d(xn, x0)
for any fixed x0.

Together, these would give us the full result identifying the two metrics (at least for
basepointed stars):

Conjecture 5 The star metric d� and the curve complex distance dC are isometric on the set
of simple closed curves S ⊂ PMF .
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