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Householder Dice: A Matrix-Free Algorithm for
Simulating Dynamics on Gaussian and Random

Orthogonal Ensembles
Yue M. Lu

Abstract—This paper proposes a new algorithm, named House-
holder Dice (HD), for simulating dynamics on dense random
matrix ensembles with rotational invariance. Examples include
the Gaussian ensemble, the Haar-distributed random orthogonal
ensemble, and their complex-valued counterparts. A “direct”
approach to the simulation, where one first generates a dense
n×n matrix from the ensemble, requires at least O(n2) resource
in space and time. The HD algorithm overcomes this O(n2)
bottleneck by using the principle of deferred decisions: rather
than fixing the entire random matrix in advance, it lets the
randomness unfold with the dynamics. At the heart of this
matrix-free algorithm is an adaptive and recursive construction of
(random) Householder reflectors. These orthogonal transforma-
tions exploit the group symmetry of the matrix ensembles, while
simultaneously maintaining the statistical correlations induced
by the dynamics. The memory and computation costs of the HD
algorithm are O(nT ) and O(nT 2), respectively, with T being the
number of iterations. When T � n, which is nearly always the
case in practice, the new algorithm leads to significant reductions
in runtime and memory footprint. Numerical results demonstrate
the promise of the HD algorithm as a new computational tool in
the study of high-dimensional random systems.

Index Terms—Dynamics, message passing, Haar measure,
Householder reflection, random matrices

I. INTRODUCTION

To do research involving large random systems, one must
make a habit of experimenting on the computer. Indeed, com-
puter simulations help verify theoretical results and provide
new insights, not to mention that they can also be incredibly
fun. For many problems in statistical learning, random ma-
trix theory, and statistical physics, the simulations that one
encounters are often given as an iterative process in the form
of

xt+1 = ft(M txt,xt,xt−1, . . . ,xt−d), for 1 ≤ t ≤ T.
(1)

Here, M t is either Q or QT, where Q is a random matrix;
ft(·) denotes some general vector-valued function that maps
M txt and a few previous iteration vectors {xt−i}0≤i≤d to
the next one xt+1; and T is the total number of iterations.
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With suitable definitions of the mappings ft(·), the formula-
tion in (1) includes many well-known algorithms as its special
cases. A classical example is to use iterative methods [1] to
compute the extremal eigenvalues/eigenvectors of a (spiked)
random matrix [2], [3]. Other examples include approximate
message passing on dense random graphs [4]–[8], and gra-
dient descent algorithms for solving learning and estimation
problems with random design [9], [10]. In this paper, we show
that all of these algorithms can be simulated by an efficient
matrix-free scheme, if the random matrix Q is drawn from an
ensemble with rotational invariance. Examples of such ensem-
bles include the i.i.d. Gaussian (i.e. the rectangular Ginibre)
ensemble, the Haar-distributed random orthogonal ensemble,
the Gaussian orthogonal ensemble, and their complex-valued
counterparts.

What is wrong with the standard way of simulating (1),
where we first draw a sample Q from the matrix ensemble
and then carry through the iterations? This direct approach
is straightforward to implement, but it cannot handle large
dimensions. To see this, suppose that Q ∈ Rm×n with
m � n. We shall also assume that the computational cost
of the nonlinear mapping ft(·) is O(n). It follows that, at
each iteration of (1), most of the computation is spent on
the matrix-vector multiplication M txt, at a cost of O(n2)
work. It is not at all obvious that one can do much better:
Merely generating an n× n Gaussian matrix already requires
O(n2) resource in computation and storage. When n is large,
n2 is huge. In practice, this O(n2) bottleneck means that one
cannot simulate (1) at a dimension much larger than n = 104

on a standard computer (in a reasonable amount of time).
However, there are many occasions, especially in the study
of high-dimensional random systems, where one does wish
to simulate large random matrices. A common workaround
is to choose a moderate dimension (e.g., n = 1000), repeat
the simulation over many independent trials, and then average
the results to reduce statistical fluctuations. In addition to
having to spend extra time on the repeated trials, this strategy
can still suffer from strong finite size effects, making it a
poor approximation of the true high-dimensional behavior
of the underlying random systems. (An example is given in
Section II-B to illustrate this issue.)

In this paper, we propose a new algorithm, named House-
holder Dice (HD), for simulating the dynamics in (1) on the
Gaussian, Haar, and other related random matrix ensembles.
Our new approach is statistically-equivalent to the direct
approach discussed above, but the memory and computation
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costs of the HD algorithm are O(nT ) and O(nT 2), respec-
tively, where T is the number of iterations. In many problems,
T is much smaller than n. Typically, T = O(polylog(n)). In
such cases, the new algorithm leads to significant reductions in
runtime and memory footprint. In the numerical examples pre-
sented in Section II, we show that the crossover value of n at
which the HD algorithm outperforms the direct approach can
be as low as 500. The speedup becomes orders of magnitude
greater for n ≥ 104. Moreover, the HD algorithm expands the
limits of what could be done on standard computers by making
it tractable to perform dense random matrix experiments in
dimensions as large as n = 107.

The basic idea of the HD algorithm follows the so-called
principle of deferred decisions [11]. Intuitively, each iteration
of (1) only probes Q in a one-dimensional space spanned
by xt. Thus, if the total number of iterations T � n, we
only need to expose the randomness of Q over a few low-
dimensional subspaces. It is then clearly wasteful to fix and
store in memory the full matrix in advance. The situation is
analogous to that of simulating a simple random walk for T
steps. We can let the random choices gradually unfold with
the progress of the walk, fixing only the randomness that must
be revealed at any given step. The challenge in our problem
though is that the dynamics in (1) can create a complicated
dependence structure between the random matrix Q and the
iteration vectors xt,xt−1 . . . ,x0. Nevertheless, we show that
this dependence structure can be exactly accounted for by an
adaptive and recursive construction of (random) Householder
reflectors [12], [13] which exploit the inherent group symmetry
of the matrix ensembles.

Using Householder reflectors to speed up random matrix
experiments is not a new idea. It is well-known [14], [15] that
a Haar-distributed random orthogonal matrix can be factorized
as a product of Householder reflectors. This leads to an
efficient way of generating a random orthogonal matrix with
O(n2) operations (rather than the O(n3) cost associated with
a full QR decomposition on a Gaussian matrix). Householder
reflectors have also been applied to reduce a Gaussian matrix
to a particularly simple random bidiagonal form [16], [17].
This clever factorization leads to an O(n2) algorithm for
simulating the spectrum densities of Gaussian and Wishart
matrices. (Recall that a standard eigenvalue decomposition on
a dense matrix requires O(n3) work in practice.) The proposed
HD algorithm differs from the previous work in that it is a truly
matrix-free construction. With the progress of the dynamics,
it gradually builds a recursive set of (random) Householder
reflectors based on the current iteration vector xt and the
history of the iterations up to this point. This adaptive, “on-the-
fly” construction is essential for us to capture the correlation
structures generated by the dynamics without fixing the matrix
in advance.

The rest of the paper is organized as follows. We first
present in Section II a few motivating examples to showcase
the applications of the HD algorithm. Section III contains
the main technical results of this paper. After a brief review
of the basic properties of the Haar measure (on classical
matrix groups) and Householder reflectors, we present the
construction of the proposed algorithm for the Gaussian and

random orthogonal ensembles. Theorems 1 and 2 establish
the statistical equivalence of the HD algorithm and the direct
approach to simulating (1). Generalizations to complex-valued
and other related ensembles are discussed in Section III-D. We
conclude the paper in Section IV.

II. NUMERICAL EXAMPLES

Before delving into technical details, it is helpful to go
through a few motivating applications that show how the HD
algorithm can significantly speed up the simulation tasks.1

A. Lasso with Random Designs

In the first example, we consider the simulation of the lasso
estimator widely used in statistics and machine learning. The
goal is to estimate a sparse vector β∗ ∈ Rn from its noisy
linear observation given by

y = Qβ∗ +w,

where Q ∈ Rm×n is a design (or covariate) matrix, and
w ∼ N (0, σ2

wI) denotes the noise in y. The lasso estimator
is formulated as an optimization problem

β̂ = argmin
β

1

2
‖y −Qβ‖2 + λ‖β‖1 , (2)

where β̂ is an estimate of β∗ and λ > 0 is a regularization
parameter.

A popular method for solving (2) is the iterative soft-
thresholding algorithm (ISTA) [19]:

xt+1 = ηλτ [xt + τQT(y −Qxt)], 0 ≤ t < T, (3)

where τ > 0 denotes the step size and ηλτ (x) =
sign(x)max

{
|x| − λτ, 0

}
is an element-wise soft-

thresholding operator. In many theoretical studies of
lasso, one assumes that the design matrix is random with
i.i.d. normal entries, i.e. Qij

i.i.d.∼ N (0, 1
m ). In this case,

ISTA is an iterative process on a Gaussian matrix Q and its
transpose. With some change of variables, we can rewrite (3)
as a special case of the general dynamics given in (1), with
one iteration of (3) mapped to two iterations of (1).

We simulate the ISTA dynamics using both the proposed
HD algorithm and the direct simulation approach that fixes the
Gaussian matrix Q in advance. In our experiments, the target
sparse vector β∗ has i.i.d. entries drawn from the Bernoulli-
Gaussian prior

β∗i ∼ ρδ(β) + (1− ρ) 1√
2πσ2

s

exp
{
− β2

2σ2
s

}
,

where 0 < ρ < 1 and σs > 0 are two constants. The design
matrix Q is of size m× n with m = bn/2c.

Figure 1(a) shows the mean-squared error (MSE) e(t) def
=

1
n

∥∥xt − β∗∥∥2 at each iteration of the dynamics, obtained by
averaging over 105 independent trials. The dimension here is
n = 1000. The results from the HD algorithm (the red circles

1All of the numerical experiments presented in this section have been done
in Julia [18]. The source code implementing the HD algorithm is available
online at https://github.com/yuelusip/HouseholderDice.

https://github.com/yuelusip/HouseholderDice
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Fig. 1. Simulating the ISTA dynamics (3) using two approaches: the
standard approach where the random matrix Q is generated in advance, and
the proposed HD algorithm. (a) The time-varying MSE averaged over 105

independent trials, with the results from the two approaches matching. (b)
Runtime versus the matrix dimension n, shown in log-log scale. In all the
experiments, the parameters are set to T = 50, λ = 2, τ = 0.3, ρ = 0.2,
σs = 2 and σw = 0.1.

in the figure) match those from the standard approach (the blue
line). This is expected, since Householder Dice is designed to
be statistically equivalent to the direct approach. However, the
two simulation approaches behave very differently in runtime
and memory footprint, as shown in Figure 1(b). When we
increase the dimension n, the runtime of the standard approach
exhibits a quadratic growth rate O(n2), whereas the runtime
of the HD algorithm scales linearly with n. For comparison,
we also plot in the figure the runtime for merely generating
an i.i.d. Gaussian matrix Q of size m× n.

For small dimensions (250 ≤ n < 500), the HD algorithm
takes slightly more time than the direct approach, likely due to
the additional overhead in implementing the former. Starting
from n ≥ 500, it becomes the more efficient choice. In fact,
for n ≥ 2500, the HD algorithm can simulate the ISTA
dynamics (for 50 iterations) in less time than it takes to
generate the Gaussian matrix. For dimensions beyond n =
105, Householder Dice becomes the only feasible method, as
implementing the direct approach would require more memory
than available on the test computer (equipped with 32 GB of
RAM). Finally, for n = 107, the runtime for the HD algorithm
is 92 seconds, whereas by extrapolation the direct approach
would have taken 7.7× 106 seconds (approximately 89 days).
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Fig. 2. Simulating the spectral method given in (4) and comparing the
empirical results against the asymptotic predictions given in [24]. The result
for n = 103 shows strong statistical fluctuations. This can be reduced by
averaging over multiple independent trials, but the average curve still suffers
from strong finite size effects, especially near the phase transition point. At
n = 105, the match between the empirical results and the theoretical curve
is nearly perfect in any (typical) trial.

B. Spectral Method for Generalized Linear Models

In the second example, we consider a spectral method [20]–
[23] with applications in signal estimation and exploratory data
analysis. Let ξ be an unknown vector in Rn and {ai}1≤i≤m
a set of sensing vectors. We seek to estimate ξ from a number
of generalized linear measurements

{
yi = f(aTi ξ)

}
1≤i≤m,

where f(·) is some function modeling the acquisition process.
The spectral method works as follows. Let

D
def
=

1

m
Adiag {y1, . . . , ym}AT, (4)

where A = [a1,a2, . . . ,am] is a matrix whose columns are
the sensing vectors. Denote by x1 a normalized eigenvector
associated with the largest eigenvalue of D. This vector x1 is
then our estimate of ξ, up to a scaling factor. The performance
of the spectral method is usually given in terms of the squared
cosine similarity ρ(ξ,x1) =

(ξTx1)
2

‖ξ‖2‖x1‖2
.

Asymptotic limits of ρ(ξ,x1) have been derived for the
cases where A is an i.i.d. Gaussian matrix [22], [23] or a
subsampled random orthogonal matrix [24]. In our experiment,
we consider the latter setting. Assume m = bαnc for some
α > 1. We can write

A =
[
In 0n×(m−n)

]
Q,

where Q ∈ Rm×m is a random orthogonal matrix drawn from
the Haar distribution.

We simulate the spectral method and compare its empir-
ical performance with the asymptotic limit given in [24].
In our experiment, the measurement model is set to be
yi = tanh

(∣∣aTi ξ∣∣ ). We compute the leading eigenvector
x1 by using the Krylov-Schur algorithm [1]. Just like the
standard power method, this algorithm involves the repeated
multiplication of D with some vectors, but it typically needs
fewer iterations to achieve the same accuracy. With the forms
of D and A given above, the algorithm can again be regarded
as a special case of the general dynamics in (1). We use the HD
algorithm for the simulation and show the results in Figure 2
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for two different matrix dimensions: n = 103 and n = 105.
Observe that, at n = 103, there is still noticeable fluctuations
between the actual performance of the spectral method (shown
as green dots in the figure) and the theoretical prediction
(the blue line). To get a better match, the standard practice
is to do many independent trials (2000 in our experiment)
and average the results. This gives us the green curve in the
figure. Averaging can indeed reduce statistical fluctuations, but
there are still strong finite size effects, especially near the
phase transition point. This is a case where the capability of
the proposed HD algorithm to handle large matrices becomes
particularly attractive: when we increase the dimension to
n = 105, the empirical results match the theoretical curve
very closely in any (typical) trial, with no need for averaging
over repeated simulations. In terms of runtime, it takes the HD
algorithm less than 4 seconds on average to obtain an extremal
eigenvalue/eigenvector of D for n = 105.

III. MAIN RESULTS

Notation: In what follows, ei denotes the ith natural basis
vector, and Zi

def
= I − eieTi . For i ≤ j, we use Zi:j as a

shorthand notation for
∏
i≤k≤j Zk. The dimension of Zi and

Zi:j is either m×m or n×n, which will be made clear from
the context. For any v ∈ Rn, the “slicing” operation that takes
a subset of v is denoted by

v[i : j]
def
= [vi, vi+1, . . . , vj ]

T,

where 1 ≤ i ≤ j ≤ n. Block diagonal matrices will be written
as [

A1

A2

]
,

where the zero entries in the off-diagonal blocks are omitted.
We use

O(n)
def
= {M ∈ Rn×n :MMT = In}

to denote the set of n × n orthogonal matrices, and U(n) def
=

{M ∈ Cn×n :MM∗ = In} its complex-valued counterpart.
We will be mainly focusing on two real-valued random matrix
ensembles: Ginibre(m,n) represents the ensemble of m × n
matrices with i.i.d. standard normal entries, and Haar(n)
represents the ensemble of random orthogonal matrices drawn
from the Haar measure on O(n). The generalizations to the
complex-valued cases and other closely related ensembles will
be discussed in Section III-D.

A. Preliminaries

The ensembles Ginibre(m,n) and O(n) share an important
property: they are both invariant with respect to multiplica-
tions by orthogonal matrices. For example, for any G drawn
from Ginibre(m,n), it is easy to verify that

G ∼ Ginibre(m,n) =⇒ UGV ∼ Ginibre(m,n), (5)

where U ∈ O(m),V ∈ O(n) are any two deterministic or
random orthogonal matrices independent of G.

Rotational-invariant (or more precisely, group translation-
invariant) properties similar to (5) are actually what defines

the Haar measure. We call a probability measure µ on O(n)
a Haar measure if

µ(A) = µ(U ◦ A) = µ(A ◦U) (6)

for any measurable subsetA ⊂ O(n) and any fixedU ∈ O(n).
Here, U ◦A def

= {UV : V ∈ A} and A◦U is defined similarly.
It is a classical result (see, e.g., [25, Theorem 5.14]) that there
is one, and only one, translation-invariant probability measure
in the sense of (6) on O(n). In fact, the theorem holds in
much greater generality. For example, it remains true for any
compact Lie group, which includes O(n) [and U(n)] as its
special case.

An additional property of O(n), U(n) (and compact Lie
groups in general) is that left-invariance [the first equality in
(6)] implies right-invariance (the second equality), and vice
versa. This then allows us to have a simplified characterization
of the Haar measure on O(n). Specifically, to show that a
random orthogonal matrix Q ∼ Haar(n), it is sufficient to
verify that

Q
d
= UQ

for any fixed U ∈ O(n), where d
= means that two random

variables have the same distribution. We will use this conve-
nient characterization in Section III-C, when we establish the
statistical equivalence between the proposed HD algorithm and
the direct simulation of (1).

Finally, we recall the construction of Householder reflectors
[12], [13] from numerical linear algebra, as they will play
important roles in our subsequent discussions. Given a vector
v ∈ Rn, how can we build an orthogonal matrix H such
that Hv =‖v‖ e1? This is exactly the problem addressed by
Householder reflectors, defined here as

H(v)
def
= − sign(v1)

(
I − 2

uuT

uTu

)
, (7)

where u = v + sign(v1)‖v‖ e1, and sign(v1) = 1 if v1 ≥ 0
and −1 otherwise. The choice of the sign in (7) helps improve
numerical stability by making sure that the denominator uTu
stays bounded away from zero. (See [13, Lecture 10] for
details.)

By construction, H(v) is a symmetric matrix whose eigen-
values are equal to ±1. It follows that H(v) ∈ O(n).
Moreover, we can verify from direct calculations that

H(v)e1 = v/‖v‖ and H(v)v =‖v‖ e1. (8)

Geometrically, H(v) represents a reflection across the ex-
terior (or interior) angle bisector of v/‖v‖ and e1. It is
widely used in numerical linear algebra thanks to its low
memory/computational costs. The matrix H(v) itself can be
efficiently represented with O(n) space, and matrix-vector
multiplications involving H(v) only require O(n) work.

For any p ∈ Rn and 1 ≤ k ≤ n, we define a generalized
Householder reflector as

Hk(p)
def
=

[
Ik−1

H(p[k : n])

]
, (9)

where H(·) is the reflector defined in (7), and p[k : n] denotes
a subvector obtained by removing the first k − 1 elements of
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p. The construction in (7) requires that the reflecting vector
p[k : n] be nonzero. In order for (9) to be always well-defined,
we set Hk(p) = In if p[k : n] = 0. Recall the notation Z1:k

introduced at the beginning of the section. It is easy to verify
that

Z1:kHk(p)p = 0, (10)

which means that the orthogonal transformation Hk(p) can
turn the last n−k entries of p to zero. We will use this property
in the construction of the HD algorithm.

B. Gaussian Random Matrices

We start by considering the case where the random matrix
Q in the dynamics (1) has i.i.d. Gaussian entries, i.e., Q ∼
Ginibre(m,n). In addition, we shall always assume that Q is
independent of the initial condition {x1,x0, . . . ,x1−d}.

Suppose that the first step of (1) is in the form of x2 =
f1(Qx1,x1, . . . ,x1−d), i.e., M1 = Q. How do we simulate
this step without generating the entire Gaussian matrix Q?
This can be achieved by a simple observation:

Q
d
= g1e

T
1 +G1Z1

d
= (g1e

T
1 +G1Z1)R1 ∼ Ginibre(m,n),

(11)
where Z1 = I − e1eT1 , R1

def
= H1(x1) is a (generalized)

Householder reflector defined in (9), g1 ∼ Ginibre(m, 1) is
a Gaussian vector, and G1 ∼ Ginibre(m,n) is an indepen-
dent Gaussian matrix. Here and subsequently, whenever we
generate new random vectors and matrices, they are always
independent of each other and of the σ-algebra generated by
all the other random variables constructed up to that point. For
example, g1 and G1 in (11) are understood to be independent
of the initial condition {x1,x0, . . . ,x1−d}. In (11), the first
equality (in distribution) is obvious, and the second equality
is due to the rotational invariance of the Ginibre ensemble.
(Recall (5) and the fact that R1 is an orthogonal matrix.)

The new representation

Q(1) = (g1e
T
1 +G1Z1)R1 (12)

looks like a rather convoluted way of writing an i.i.d. Gaussian
matrix, but it turns out to be the right choice for efficient simu-
lations. To see this, we use the property of the Householder re-
flector [see (8)] which gives usR1x1 =H1(x1)x1 =‖x1‖ e1
and thus Z1R1x1 = 0. It follows that

Q(1)x1 =‖x1‖ g1.

Thus, to simulate the first step of the dynamics, we only
need to generate a Gaussian vector g1. The more expensive
Gaussian matrix G1 does not need to be revealed (yet), as it
is invisible to x1.

It is helpful to consider two more iterations to see how
this idea can be applied recursively. Suppose that the second
iteration takes the form of x3 = f2(Qx2,x2, . . . ,x2−d).
In general, x2 will have a nonzero component in the space
orthogonal to x1, and thus the Gaussian matrix G1 in (12)
is no longer invisible to x2, meaning that G1Z1R1x2 6= 0.
However, we can use the trick in (11) again by writing

G1
d
= (g2e

T
2 +G2Z2)R2 ∼ Ginibre(m,n), (13)

where g2 ∼ Ginibre(m, 1), G2 ∼ Ginibre(m,n), and R2
def
=

H2(R1x2) is again a generalized Householder reflector in (9).
The subscript in H2 should not be overlooked, as it signifies
the precise way the matrix is constructed. (Recall (9) for the
notation convention we use.)

Observe that R2 commutes with Z1. Substituting (13) into
(12) then allows us to write

Q(2) = u1v
T
1 + u2v

T
2 +G2Z1:2R2R1 ∼ Ginibre(m,n),

(14)
where u1

def
= g1, u2

def
= g2, v1

def
= R1e1, and v2

def
= R1R2e2.

Just like what happens in (12), there is again no need to explic-
itly generate the dense Gaussian matrixG2 in (14). To see this,
we note that Z1:2R2R1x2 = Z1:2H2(R1x2)R1x2 = 0,
where the second equality is due to (10). It follows that

Q(2)x2 = (vT1x2)u1 + (vT2x2)u2.

So far we have only been considering the case where
we access Q from the right. For the third iteration, let
us suppose that we access Q from the left, i.e., x4 =
f3(Q

Tx3,x3, . . . ,x3−d). The idea is similar. Let

G2 = L1(e1g
T
3 +Z1G3) ∼ Ginibre(m,n), (15)

where L1
def
= H1(x3), g3 ∼ Ginibre(n, 1), and G3 ∼

Ginibre(m,n). Substituting (15) into (14) gives us

Q(3) =
∑

1≤i≤3 uiv
T
i+L1Z1G3Z1:2R2R1 ∼ Ginibre(m,n),

where u3
def
= L1e1 and v3

def
= R1R2Z1:2g3. Moreover,

[Q(3)]Tx3 =
∑
i≤3(u

T
i x3)vi.

The general idea should now be clear. Rather than fixing the
entire Gaussian matrix in advance, we let the random choices
gradually unfold as the iteration goes on, generating only the
randomness that must be revealed at each step. Continuing
this process for T steps, we reach the HD algorithm for the
Ginibre ensemble, summarized in Algorithm 1. Its memory
and computational costs can be determined as follows.

During its operation, Algorithm 1 keeps track of 2T vectors
{ut ∈ Rm,vt ∈ Rn}t≤T and T Householder reflectors{

Li ∈ Rm×m
}
i≤`T

and
{
Ri ∈ Rn×n

}
i≤rT

,

where `T (resp. rT ) records the number of times we have used
QT (resp. Q) in the T iterations of the dynamics. Clearly, rT+
`T = T . Thanks to the structures of the Householder reflectors
in (7), the total memory footprint of Algorithm 1 is O((m+
n)T ). At each iteration, computations mainly take place in
lines 6–9 (or lines 13–16 if M t = QT). Since the matrices
used there are always products of Householder reflectors, these
steps require O((m + n)t) operations. As t ranges from 1
to T , the computational complexity of Algorithm 1 is thus
O((m+ n)T 2).

Remark 1. In line 6 and line 13, Algorithm 1 recursively con-
structs two products of (generalized) Householder reflectors.
Readers familiar with numerical linear algebra will recognize
that this process is essentially the Householder algorithm for
QR factorization [13, Lecture 10]. Special data structures have
been developed (see, e.g., [26]) to efficiently represent and
operate on such products of reflectors.
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Algorithm 1 Simulating (1) on Ginibre(m,n) using House-
holder Dice
Require: The initial condition {x1,x0, . . . ,x1−d}, and the

number of iterations T ≤ min {m,n}
1: Set r = 0, ` = 0, L0 = Im, and R0 = In.
2: for t = 1, . . . , T do
3: if M t = Q then
4: r ← r + 1
5: Generate gt ∼ Ginibre(m, 1)
6: Rr =Hr(Rr−1 . . .R1R0xt)
7: ut = L0L1 . . .L`Z1:`gt
8: vt = R0R1 . . .Rrer
9: yt =

∑
i≤t(v

T
i xt)ui

10: else
11: `← `+ 1
12: Generate gt ∼ Ginibre(n, 1)
13: L` =H`(L`−1 . . .L1L0xt)
14: ut = L0L1 . . .L`e`
15: vt = R0R1 . . .RrZ1:rgt
16: yt =

∑
i≤t(u

T
i xt)vi

17: end if
18: xt+1 = ft(yt,xt,xt−1, . . . ,xt−d)
19: end for

We can now exhibit the statistical equivalence of the HD
algorithm and the direct simulation approach.

Theorem 1. Fix T ≤ min {m,n}, and let
{xt : 1− d ≤ t ≤ T + 1} be a sequence of vectors generated
by Algorithm 1. Let {x̃t : 1− d ≤ t ≤ T + 1} be another
sequence obtained by the direct approach to simulating (1),
where we use the same initial condition (i.e. x̃t = xt for
1− d ≤ t ≤ 1) but generate a full matrix Q ∼ Ginibre(m,n)
in advance. The joint probability distribution of {xt} is
equivalent to that of {x̃t}.

Proof. We start by describing the general structure of the algo-
rithm. At the t-th iteration, the algorithm keeps the following
representation of the matrix Q:

Q(t) =
∑
i≤t uiv

T
i

+L0L1 . . .L`t︸ ︷︷ ︸
Householder

Z1:`tGtZ1:rt Rrt . . .R1R0︸ ︷︷ ︸
Householder

, (16)

where Gt ∼ Ginibre(m,n) is a Gaussian matrix independent
of the σ-algebra generated by all the other random variables
constructed up to this point, and `t (resp. rt) denotes the
number of times we have used QT (resp. Q) in the first t
iterations of the dynamics. To lighten the notation, we will
omit the subscript in the remainder of the proof and simply
write them as ` and r.

The vectors {ui,vi} and the Householder reflectors {Li},
{Ri} in (16) are constructed recursively, as follows. We start
with L0 = Im and R0 = In. At the t-th iteration (for 1 ≤
t ≤ T ), if M t = Q (i.e. if we need to compute Qxt), we add
a new Householder reflector

Rr =Hr(Rr−1 . . .R1R0xt)

and two new “basis” vectors

ut = L0L1 . . .L`Z1:`gt and vt = R0R1 . . .Rrer,

where gt ∼ Ginibre(m, 1). The procedure for the case of
M t = QT is completely analogous: we add a new House-
holder reflector L` (on the left) and construct the basis vectors
ut,vt accordingly.

It is important to note that the Gaussian matrix Gt in (16) is
never explicitly constructed in the algorithm. Assume without
loss of generality that M t = Q. Let p = Rr−1 . . .R1R0xt.
We then have

Z1:rRr . . .R1R0xt = Z1:rHr(p)p = 0,

where the second equality is due to (10). Consequently, Gt

remains invisible to xt, and

Q(t)xt =
∑
i≤t(v

T
i xt)ui.

To prove the assertion of the theorem, it suffices to show
that, for all 1 ≤ t ≤ T , Q(t) has the correct distribution,
namely Q(t) ∼ Ginibre(m,n) and Q(t) is independent of the
initial condition {x1,x0, . . . ,x1−d}. This is clearly true for
t = 1, based on our discussions around (12). Now suppose that
the condition on the distribution has been verified for Q(t) for
some t ≥ 1, . To go to t+1, we rewrite the Gaussian matrixGt

in (16) by using a decomposition similar to (13). Specifically,
if M t = Q, we write

Gt
d
= (gt+1e

T
r+1+Gt+1Zr+1)Rr+1 ∼ Ginibre(m,n), (17)

where gt+1 ∼ Ginibre(m, 1), Gt+1 ∼ Ginibre(m,n), and
Rr+1

def
= Hr+1(Rr . . . ,R1R0xt+1). (The decomposition for

the case where M t = Q
T is completely analogous.)

That the new representation on the right-hand side of (17)
has the same distribution as Gt is due to the rotational
invariance of the Ginibre ensemble [see (5)]. Substituting (17)
into (16) allows us to conclude that the matrix∑

i≤t uiv
T
i

+L0 . . .L`Z1:`(gt+1e
T
r+1 +Gt+1Zr+1)Rr+1Z1:rRr . . .R0

(18)
satisfies the required condition on its distribution. By con-
struction,Rr+1 commutes with Z1:r. [Recall (9).] This simple
observation allows us to check that the matrix in (18) is exactly
Q(t+1). By induction on t from 1 to T , we then complete the
proof.

C. Haar-Distributed Random Orthogonal Matrices

We now turn to the case where Q is a Haar-distributed ran-
dom orthogonal matrix. The construction of the HD algorithm
relies on the following factorization of the Haar measure on
O(n).

Lemma 1. Let g ∼ Ginibre(n, 1), Qn−1 ∼ Haar(n− 1), and
v ∈ Rn, all of which are independent. Then

H1(g)

[
1
Qn−1

]
H1(v) ∼ Haar(n). (19)

Proof. Let M denote the left-hand side of (19). It is sufficient
to show that M d

= UM for any fixed U ∈ O(n). The
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statement of the lemma then follows from the fact that the
Haar measure is the unique (left) translation-invariant measure
on O(n).

For any nonzero vector x ∈ Rn, we denote by B(x) ∈
Rn×(n−1) the submatrix consisting of the last n− 1 columns
of H1(x). It is also useful to notice that the first column
of H1(x) is x/‖x‖. Thus, H1(x) =

[
x
‖x‖ | B(x)

]
. The

following observation is easy to verify. For any fixed U ∈
O(n), there exists some R ∈ O(n− 1) such that

UB(x) = B(Ux)R.

Applying this to B(g) [in H1(g)] then allows us to write

UM =H1(Ug)

[
1
RQn−1

]
H1(v),

where R is an orthogonal matrix independent of Qn−1 and
v. Since the joint distribution of (Ug,RQn−1,v) is equal to
that of (g,Qn−1,v) in (19), we must have M d

= UM .

The HD algorithm exploits the factorization in (19) to speed
up the simulation of Haar random matrices. Before presenting
the algorithm in its full generality, we first illustrate how it
unfolds in the first two iterations of (1). For simplicity, we
assume that M1 = M2 = Q. For the first iteration, we use
(19) to write Q as

Q(1) = L1

[
1
Qn−1

]
R1 ∼ Haar(n), (20)

where R1 = H1(x1), L1 = H1(g1), g1 ∼ Ginibre(n, 1)
and Qn−1 ∼ Haar(n− 1). Using the property of Householder
reflectors given in (8), we have

Q(1)x1 =‖x1‖H1(g1)e1 =
‖x1‖
‖g1‖

g1.

Notice that only a Gaussian vector g1 is needed here, and that
the matrix Qn−1 is invisible.

To simulate the second iteration, we apply the factorization
(19) recursively to write Qn−1 as

Qn−1 =H1(g2[2 : n])

[
1
Qn−2

]
H1(p[2 : n])

∼ Haar(n− 1),

(21)

where g2 ∼ Ginibre(n, 1), Qn−2 ∼ Haar(n − 2), and p =
R1x2. Substituting (21) into (20) then gives us

Q(2) = L1L2

[
I2

Qn−2

]
R2R1, (22)

where L2 = H2(g2) and R2 = H2(p). By construction,
the vector R2R1x2 has nonzero entries only in the first two
coordinates. It follows that

Q(2)x2 = L1L2R2R1x2,

with Qn−2 in (22) remaining invisible.
Continuing this process, we see a simple pattern emerging.

We summarize it in Algorithm 2. In general, the algorithm
recursively constructs two sequences of Householder reflectors

Algorithm 2 Simulating (1) on Haar(n) using Householder
Dice
Require: The initial condition {x1,x0, . . . ,x1−d}, and the

number of iterations T ≤ n
1: Set L0 = In, and R0 = In.
2: for t = 1, . . . , T do
3: Generate gt ∼ Ginibre(n, 1)
4: if M t = Q then
5: pt = Rt−1 . . .R1R0xt
6: Rt =Ht(pt)
7: Lt =Ht(gt)
8: yt = L1 . . .LtRtpt
9: else

10: pt = Lt−1 . . .L1L0xt
11: Lt =Ht(pt)
12: Rt =Ht(gt)
13: yt = R1 . . .RtLtpt
14: end if
15: xt+1 = ft(yt,xt,xt−1, . . . ,xt−d)
16: end for

{Lt,Rt}t≤T , starting from L0 = R0 = In. At the t-
th iteration, we first generate a new Gaussian vector g ∼
Ginibre(n, 1). Suppose M t = Q, we compute

pt = Rt−1 . . .R1R0xt (23)

and add two reflectors Rt = Ht(pt) and Lt = Ht(gt).
The algorithm then proceeds to the next iteration by letting
xt+1 = ft(yt,xt, . . . ,xt−d), where yt = L1 . . .LtRtpt. The
steps the algorithm takes if M = QT are exactly symmetric,
with the roles of {Ri} and {Li} switched. The computational
and memory complexity of Algorithm 2 is similar to that of
Algorithm 1. Specifically, the Householder reflectors can be
efficiently represented by the corresponding reflection vectors,
at a cost of O(nT ) space. At each iteration, the matrix-vector
multiplications in lines 5, 8, 10 and 13 can all be implemented
in O(nt) operations (thanks to the Householder structure).
Therefore, the total computational complexity is O(nT 2).

Finally, we establish the statistical “correctness” of Algo-
rithm 2 in the following theorem.

Theorem 2. Fix T ≤ n, and let {xt : 1− d ≤ t ≤ T + 1}
be a sequence of vectors generated by Algorithm 2. Let
{x̃t : 1− d ≤ t ≤ T + 1} be another sequence obtained by
the direct approach to simulating (1), where we use the same
initial condition (i.e. x̃t = xt for 1− d ≤ t ≤ 1) but generate
a random orthogonal matrix Q ∼ Haar(n) in advance. The
joint probability distribution of {xt} is equivalent to that of
{x̃t}.

Proof. The proof is very similar to that of Theorem 1. At the
t-th iteration, the algorithm has constructed a representation
of the random orthogonal matrix Q as

Q(t) = L1L2 . . .Lt

[
It

Qn−t

]
Rt . . .R2R1, (24)

where {Li,Ri}i≤t is a collection of Householder reflectors,
and Qn−t ∼ Haar(n − t) is an (n − t) × (n − t) random
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orthogonal matrix independent of the σ-algebra generated by
all the other random variables constructed up to this point. We
shall have established the theorem if we prove the following
two claims for 1 ≤ t ≤ T : (a) Q(t) ∼ Haar(n) and Q(t)

is independent of the initial condition {xt}1−d≤t≤1; (b) If
M t = Q in (1), then

Q(t)xt = L1 . . .LtRtpt, (25)

where pt is as defined in (23). If M t = Q
T, then [Q(t)]Txt =

R1R2 . . .RtLt . . .L2L1xt.
Claim (a) can be proved by induction. We have already

established its correctness for t = 1. [See (20).] To propagate
the claim from iteration t to t+1, we simply apply Lemma 1
to rewrite Qn−t in (24) as

Qn−t
d
=H1(gt+1[t+ 1 : n])

[
1
Qn−t−1

]
H1(pt+1[t+ 1 : n])

∼ Haar(n− t),

where gt+1 ∼ Ginibre(n, 1), Qn−t−1 ∼ Haar(n − t − 1),
and pt+1 = Rt . . .R2R1xt+1. (This is for the case of
M t+1 = Q, but the treatment for the case of M t+1 = QT is
completely analogous.) Substituting this equivalent represen-
tation into (24) gives us Q(t+1).

To establish Claim (b), we again assume without loss of
generality that M t = Q. By the definition of pt in (23) and
that of Rt, we have

Q(t)xt = L1L2 . . .Lt

[
It

Qn−t

]
Ht(pt)pt.

Using (10), we can then verify the expression given in (25).

D. Other Random Matrix Ensembles

The Gaussian and Haar ensembles studied above can serve
as building blocks for simulating other related random ma-
trix ensembles. For example, consider the classical Gaussian
orthogonal ensemble (GOE). A symmetric n × n matrix G
is drawn from GOE(n) if {Gij}1≤i≤j≤n are independent
random variables, with Gii ∼ N (0, 2) and Gij ∼ N (0, 1)
for i < j. Clearly,

Q ∼ Ginibre(n, n) =⇒ 1√
2
(Q+QT) ∼ GOE(n).

It follows that a single matrix-vector multiplication involving
G ∼ GOE(n) can be simulated via two matrix-vector multi-
plications involving a nonsymmetric Gaussian matrix, i.e.,

y = Gx =⇒ ŷ = Qx and y = (QTx+ ŷ)/
√
2.

As a second example, we consider random matrices in the
form of

Q = UΣV , (26)

where U ∼ Haar(m) and V ∼ Haar(n) are two independent
random orthogonal matrices, and Σ ∈ Rm×n is a rectangular
diagonal matrix independent of U ,V . Matrices like these of-
ten appear in the study of free probability theory [27]. They are
also used as a convenient model for matrices whose singular
vectors are generic [6]–[8]. Strictly speaking, Theorem 2 only

applies to the case where the dynamics operates on a single
random orthogonal matrix. However, it is obvious from the
proof that the idea applies to more general dynamics involving
a finite number of independent random orthogonal matrices.
Thus, Algorithm 2 can be easily adapted to handle the matrix
ensemble given in (26).

Finally, we note that the constructions of the HD algorithm
can be generalized to the complex-valued cases, with the ran-
dom matrices drawn from the complex Ginibre ensemble, the
Haar ensemble on the unitary group U(n), and the Gaussian
unitary ensemble, respectively. We avoid repetitions, as most
changes in such generalizations are straightforward (such as
replacing MT by M∗). In what follows, we only present the
formula for a complex version of the Householder reflector,
as it might be less well-known.

Let v ∈ Cn be a nonzero vector. Write v1/‖v‖ = reiθ,
where r is a nonnegative real number. (When v1 = 0, we
have r = 0 and set θ = 0.) We define a unitary reflector [28,
pp. 48–49] as

H(v) = (−e−iθ)
[
In −

(v/‖v‖+ eiθe1)(v/‖v‖+ eiθe1)
∗

1 + r

]
.

(27)
It is easy to check that H(v) is a unitary matrix such that
H(v)v = ‖v‖ e1 and H∗(v)e1 = v/‖v‖. Moreover, if v is
real, then (27) reduces to the Householder reflector given in
(7).

IV. CONCLUSION

We proposed a new algorithm called Householder Dice
for simulating dynamics on several dense random matrix
ensembles with rotational invariance. Rather than fixing the
entire random matrix in advance, the new algorithm is matrix-
free, generating only the randomness that must be revealed at
any given step of the dynamics. The name of the algorithm
highlights the central role played by an adaptive and recur-
sive construction of (random) Householder reflectors. These
orthogonal transformations exploit the group symmetry of
the matrix ensembles, while simultaneously maintaining the
statistical correlations induced by the dynamics. Numerical
results demonstrate the promise of the HD algorithm as a new
computational tool in the study of high-dimensional random
systems.
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