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Abstract
Recently in Gao and Stoev (2020) it was established that the concentration of maxima
phenomenon is the key to solving the exact sparse support recovery problem in high
dimensions. This phenomenon, known also as relative stability, has been little studied
in the context of dependence. Here, we obtain bounds on the rate of concentration of
maxima in Gaussian triangular arrays. These results are used to establish sufficient
conditions for the uniform relative stability of functions of Gaussian arrays, leading
to new models that exhibit phase transitions in the exact support recovery problem.
Finally, the optimal rate of concentration for Gaussian arrays is studied under general
assumptions implied by the classic condition of Berman (1964).

Keywords Rate of relative stability · Concentration of maxima ·
Exact support recovery · Phase transitions · Functions of Gaussian arrays
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1 Introduction

Let Zi, i = 1, 2, . . . be independent and identically distributed (iid) standard Nor-
mal random variables. It is well known that their maxima under affine normalization
converge to the Gumbel extreme value distribution. If, however, one chooses to
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standardize the maxima by only dividing by a sequence of positive numbers, then the
only possible limits are constants. Specifically, for all ap ∼ √

2 log(p), we have

1

ap

max
i∈[p] Zi

P−→ 1, as p → ∞, (1.1)

where [p] := {1, · · · , p} and in fact the convergence is valid almost surely. This
property, known as relative stability, dates back to the seminal work of Gnedenko
(1943) who has characterized it in terms of rapid variation of the law of the Zi’s (see
Section 2.2 below, as well as Barndorff-Nielsen 1963; Resnick and Tomkins 1973;
Kinoshita and Resnick 1991).

In contrast, if the Zi’s are iid and heavy-tailed, i.e., P[Zi > x] ∝ x−α , for some
α > 0, with ap ∝ p1/α , we have

1

ap

max
i∈[p]Zi

d−→ ξ, (1.2)

where ξ is a random variable with the α-Fréchet distribution.
Comparing (1.1) and (1.2), we see that the maxima have fundamentally different

asymptotic behavior relative to rescaling with constant sequences. In the light-tailed
regime, they concentrate around a constant in the sense of (1.1), whereas in the
heavy-tailed regime they disperse according to a probability distribution viz (1.2).

Although this concentration of maxima phenomenon may be well-known under
independence, we found that it is virtually unexplored under dependence. In this
paper, we will focus on Gaussian sequences, and in fact, more generally, Gaussian
triangular arrays E = {εp(i), i ∈ [p], p ∈ N}, where the εp(i)’s are marginally
standard Normal but possibly dependent. Let up be the (1 − 1/p)-th quantile of the
standard Normal distribution, i.e., p�(up) := p

(
1 − �(up)

) = 1. We say that the
array E is uniformly relatively stable (URS), if

1

u|Sp |
max
i∈Sp

εp(i)
P−→ 1, as |Sp| → ∞, (1.3)

for every choice of growing subsets Sp ⊂ {1, · · · , p}. Note that up ∼ √
2 log(p) (see

e.g. Lemma 3.1). Certainly, the relative stability property shows that all iid Gaussian
arrays are trivially URS. The notion of uniform relative stability, however, is far from
automatic or trivial under dependence. In the recent work of Gao and Stoev (2020), it
was found that URS is the key to establishing the fundamental limits in sparse-signal
support estimation in high-dimensions. Specifically, under URS, a phase-transition
phenomenon was shown to take place in the support recovery problem. For more
details, see Section 2.1 below.

Theorem 3.1 in Gao and Stoev (2020) gives a surprisingly simple necessary and
sufficient condition for a Gaussian array E to be URS. As an illustration, in the
special case where εp(i) ≡ Zi, i ∈ N form a stationary Gaussian time series, the
array E is URS if and only if the auto-covariance vanishes, i.e.,

Cov(Zk, Z0) −→ 0, as k → ∞. (1.4)
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That is, (1.1) holds (with ap ∼ √
2 log(p)), for any stationary Gaussian time series

Z = {Zi} with vanishing auto-covariance, no matter the rate of decay. The “if” part
of Eq. 1.4 appeared in Theorem 4.1 in Berman (1964).

Condition (1.4) should be contrasted with the classic Berman condition,

Cov(Zk, Z0) = o

(
1

log(k)

)
, as k → ∞,

which entails distributional convergence under affine normalization. Here, our focus
is not on distributional limits but on merely the concentration of maxima under
rescaling, which can take place under much more severe dependence. In fact, unlike
Berman, here we are not limited to the time-series setting. For a complete statement
of the characterization of URS, see Section 2.2, below.

While Gao and Stoev (2020) characterized the conditions under which the conver-
gence (1.3) takes place, the rate of this convergence remained an open question. In
this paper, our goal is to establish bounds on the rate of concentration for maxima of
Gaussian arrays. Specifically, we establish results of the type

P

[∣∣∣∣
1

up

max
i∈[p] εp(i) − 1

∣∣∣∣ > δp

]
−→ 0, (1.5)

where δp → 0 decays at a certain rate. The rate of the sequence δp is quantified
explicitly in terms of the covariance structure of the array. More precisely, the pack-
ing numbers N(τ) associated with the UDD condition introduced in Gao and Stoev
(2020) will play a key role. These packing numbers arise from a Sudakov-Fernique
type construction, which appear to be close to optimal, although at this point we do
not know if the so obtained bounds on the rates can be improved (cf Conjecture 1,
below). After completing this work, we became aware of the important results of
Tanguy (2015), which are closely related to ours in the special case of stationary time
series. Our approach, however, is technically different and yields explicit rates for the
general case of Gaussian triangular arrays. For more details, see Remark 5.2, below.

Our general results are illustrated with several models, where explicit bounds on
the rates of concentration are derived. In Section 3, we study the optimal rate of
concentration and show that under rather broad dependence conditions (including the
iid setting), Eq. 1.5 holds if and only if δp 	 1/ log(p). Somewhat curiously, the
constant up matters and the popular choice of up := √

2 log(p) leads to the slower
rates of log(log(p))/ log(p).

Our bounds on the rate of concentration find important application in the study of
uniform relative stability for functions of Gaussian arrays. Specifically, let ηp(i) =
f (εp(i)), where E = {

εp(i), i ∈ [p], p ∈ N
}
is a Gaussian triangular array and

f is a given deterministic function. In Section 4.2, using our results on the rate
of concentration for the array E , we establish conditions which imply the uniform
relative stability of the array H = {

ηp(i), i ∈ [p], p ∈ N
}
. Consequently, we

establish that many dependent log-normal and χ2-arrays are URS, and hence obey
the phase-transition result of Gao and Stoev (2020).

The paper is structured as follows. In Section 2, we review the statistical inference
problem motivating the study of the concentration of maxima phenomenon. Recalled
is the notion of uniform decreasing dependence involved in the characterization of
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uniform relative stability for Gaussian arrays. A brief discussion on the optimal rate
of concentration is given in Section 3. Section 4 contains the statement of the main
result as well as some examples and applications. Section 5 contains proofs and
technical results, which may be of independent interest.

2 Concentration of maxima and high-dimensional inference

In this section, we start with the statistical inference problem that motivated us to
study the concentration of maxima phenomenon. Readers who are convinced that
this is a phenomenon of independent interest can skip to Section 2.2, where concrete
definitions and notions are reviewed.

2.1 Fundamental limits of support recovery in high dimensions

Our main motivation to study the relative stability or concentration of maxima
under dependence is the fundamental role it plays in recent developments on high-
dimensional statistical inference, which we briefly review next. Consider the classic
signal plus noise model

xp(i) = μp(i) + εp(i), i ∈ [p],
where μp = (μp(i)) ∈ R

p is an unknown high-dimensional ‘signal’ observed
with additive noise. The noise is modeled with a triangular array E = {εp(i), i ∈
[p], p ∈ N}, where for concreteness, all εp(i)’s are standardized to have the same
marginal distribution F . However, this noise can have arbitrary dependence structure,
in principle.

One popular and important high-dimensional inference context, is the one where
the dimension p grows to infinity and the signal is sparse. Namely, the signal support
set Sp := {i ∈ [p] : μp(i) 
= 0} is of smaller order than its dimension:

|Sp| ∼ p1−β, for some β ∈ (0, 1).

The parameter β controls the degree of sparsity; if β is larger, the signal is more
sparse, i.e., has fewer non-zero components. In this context, many natural ques-
tions arise such as the detection of the presence of non-zero signal or the estimation
of its support set (see, e.g., Ingster 1998; Donoho and Jin 2004; Ji and Jin 2012;
Arias-Castro and Chen 2017). Here, as in Gao and Stoev (2020), we focus on the fun-
damental support recovery problem. Particularly, under what conditions on the signal
magnitude we can have exact support recovery in the sense that

P[Ŝp = Sp] −→ 1, as p → ∞.

Gao and Stoev (2020) showed that a natural solution to this problem can be obtained
using the concentration of maxima phenomenon. Specifically, consider the class of
all thresholding support estimators:

Ŝp := {j ∈ [p] : xp(j) > tp(x)}, (2.1)
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where tp(x) is possibly data-dependent threshold. For simplicity of exposition,
suppose also that the signal magnitude is parametrized as follows

μp(i) = √
2r log(p), i ∈ Sp,

where r > 0. Consider also the function

g(β) := (1 +√
1 − β)2.

Theorems 2.1 and 2.2 of Gao and Stoev (2020) entail that if E is URS (see Definition
2.2 below), then we have the phase-transition:

P[Ŝp = Sp] −→
{
1, if r > g(β) for suitable Ŝp as in Eq. 2.1
0, if r < g(β) for all Ŝp as in Eq. 2.1

, as p → ∞.

That is, for signal magnitudes above the boundary, thresholding (Bonferonni-type)
estimators recover the support perfectly, as p → ∞; whereas for signals below the
boundary, no thresholding estimators can recover the support with positive probabil-
ity. Further, as shown in Gao and Stoev (2020), thresholding estimators are optimal
in the iid Gaussian setting and hence the above phase-transition applies to all possi-
ble support estimators leading to minimax-type results. Interestingly, both Gaussian
and non-Gaussian noise arrays are addressed equally well, provided that they satisfy
the uniform relative stability property. While URS is a very mild condition, except
for the Gaussian case addressed in Gao and Stoev (2020), little is known in general.
Here, we will fill this gap for a class of functions of Gaussian arrays (see Section 4.2),
using our new results on the rates of concentration.

2.2 Concentration of maxima

In this section, we recall some definitions and a characterization of URS in Gao and
Stoev (2020). We start by presenting the notion of relative stability.

Definition 2.1 (Relative stability) Let εp = (εp(j))
p

j=1 be a sequence of random
variables with identical marginal distributions F . Define the sequence (up)∞p=1 to be
the (1 − 1/p)-th quantile of F , i.e.,

up = F←(1 − 1/p). (2.2)

The triangular array E = {εp, p ∈ N} is said to have relatively stable (RS) maxima if

1

up

Mp := 1

up

max
i=1,...,p

εp(i)
P→ 1, (2.3)

as p → ∞.

Note that by Proposition 1.1 of Gao and Stoev (2020), we have for the standard
Normal distribution, that

up = �←(1 − 1/p) ∼ √
2 log(p). (2.4)

While relative stability is not directly used in this paper, it is a natural prerequisite to
introducing the following generalization.
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Definition 2.2 (Uniform Relative Stability (URS)) Under the notations established
in Definition 2.1, the triangular array E = {

εp(i), i ∈ [p]} is said to have uniform
relatively stable (URS) maxima if for every sequence of subsets Sp ⊆ {1, . . . , p}
such that |Sp| → ∞, we have

1

u|Sp |
MSp := 1

u|Sp |
max
i∈Sp

εp(i)
P−→ 1, as p → ∞. (2.5)

Definition 2.3 (Uniformly Decreasing Dependence (UDD)) A Gaussian triangular
array E with standard normal marginals is said to be uniformly decreasingly depen-
dent (UDD) if for every τ > 0 there exists a finite NE (τ ) < ∞, such that for every
i ∈ {1, . . . , p}, and p ∈ N, we have

∣∣∣{k ∈ {1, . . . , p} : Cov(εp(k), εp(i)) > τ }
∣∣∣ ≤ NE (τ ), for all τ > 0. (2.6)

That is, for any coordinate j , the number of coordinates which are more than τ -
correlated with εp(j) does not exceed NE (τ ).

The next result provides the equivalence between uniform relative stability and
uniformly decreasing dependence.

Theorem 2.1 (Theorem 3.2 in Gao and Stoev (2020)) Let E be a Gaussian trian-
gular array with standard Normal marginals. The array E is URS if and only if it is
UDD.

Theorem 2.1 is the starting point of the rate investigations in our paper. Our main
result, Theorem 4.1, below, extends the former by providing upper bounds on the rate
of concentration. Before that, though, in Section 3 we study cases where the optimal
rate can be formally established.

Remark 2.1 (On the use of the term “upper bound”) Fix a positive sequence δ�
p ↓ 0.

We refer to δ�
p as an upper bound on the rate of concentration when Eq. 1.5 holds

for any sequence δp 	 δ�
p. Further, for two positive sequences αp and βp we write

αp � βp if

0 < c1 ≤ lim inf
p→∞

∣∣∣∣
αp

βp

∣∣∣∣ ≤ lim sup
p→∞

∣∣∣∣
αp

βp

∣∣∣∣ ≤ c2 < ∞.

Let δ�
p be an upper bound on the rate of concentration and δp 	 δ�

p. Then,

naturally, Eq. 1.5 holds with δp replaced by δ̃p, for any δ̃p � δp.

3 On the optimal rate of concentration

In this section, we provide some general comments on the fastest possible rates of
concentration for maxima of Gaussian variables. Somewhat surprisingly, the rate
depends on the choice of the normalizing sequence up. As it turns out poor choices
of normalizing sequences can lead to arbitrarily slow rates. On the other hand, for a
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wide range of dependence structures (including the iid case), the best possible rate
will be shown to be 1/ log(p). The question of whether the maxima of dependent
Gaussian arrays can concentrate faster than that rate, however unlikely this may be,
is open, to the best of our knowledge (cf Conjecture 1, below).

Consider a Gaussian array E = {εp(i), i ∈ [p]} with standard Normal marginal.
We shall assume that E is (uniformly) relatively stable, so that in particular,

1

up

max
i∈[p]εp(i) =: Mp

up

P−→ 1,

as p → ∞, where up := �−1(1 − 1/p) is the (1/p)-th tail quantile of the standard
Normal distribution.

We consider the iid case first and, for clarity, let M∗
p denote the maximum of p

independent standard Normal random variables. Suppose that for some ap > 0 and
ap, bp ∈ R, we have

�(a−1
p x + bp)p → �(x) := exp{−e−x}, as p → ∞,

for all x ∈ R. That is, we have

ap(M∗
p − bp)

d−→ ζ, as p → ∞, (3.1)

where ζ has the standard Gumbel distribution �. The next result is well-known. We
give it here since it summarizes and clarifies the possible choices of the normalizing
constants ap and bp for Eq. 3.1 to hold.

Lemma 3.1 (i) We have that

ũp(M∗
p − ũp)

d−→ ζ if and only if p�(̃up) → 1, (3.2)

as p → ∞. In this case, ũp ∼ √
2 log(p) and more precisely

√
2 log(p)(̃up − u∗

p) → 0, as p → ∞, (3.3)

where

u∗
p := √

2 log(p)

(
1 − log(log(p)) + log(4π)

4 log(p)

)
. (3.4)

(ii) Relation (3.1) holds if and only if

ap ∼ √
2 log(p) and p�(bp) → 1.

In particular, by part (i), we have that Eq. 3.1 holds with ap := bp and Eq. 3.3
holds with ũp := bp.

Proof Part (i). Observe that by the Mill’s ratio (cf Lemma 5.1), p�(̃up) → 1 is
equivalently expressed as follows:

p�(̃up) ∼ p
φ(̃up)

ũp

→ 1, as p → ∞,
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where φ(x) = exp{−x2/2}/√2π is the standard Normal density. By taking
logarithms, the above asymptotic relation is equivalent to having

log(p) − ũp
2

2
− log(̃up) − 1

2
log(2π) → 0. (3.5)

We first prove the ‘if’ direction of part (i). Suppose that p�(̃up) → 1, or equiva-
lently, Eq. 3.5 holds. Then, one necessarily has ũp → ∞. It is easy to see that Eq. 3.1
holds with ap := ũp and bp := ũp, provided that, for all x ∈ R,

�

(
ũp + x

ũp

)p

→ �(x), as p → ∞. (3.6)

The latter, upon taking logarithms and using the fact that log(1 + z) � z, as z → 0,
is equivalent to having

p�

(
ũp + x

ũp

)
→ − log(�(x)) = e−x . (3.7)

To prove that Eq. 3.7 holds, as argued above, using the Mill’s ratio, it is equivalent to
verify that

Ap := log(p) − 1

2

(
ũp + x/ũp

)2 − log
(
ũp + x/ũp

)− 1

2
log(2π) → −x,

as p → ∞. Note that, upon expanding the square and manipulating the logarithm,
we obtain

Ap = log(p) − ũp
2

2
− log(̃up) − 1

2
log(2π) − x − x2/(2ũp

2) − log(1 + x/ũp
2).

In view of Eq. 3.5 and the fact that ũp → ∞, we obtain that Ap → −x, which yields
Eq. 3.7 and completes the proof of the ‘if’ direction of part (i).

Now, to show the ‘only if’ direction of part (i), suppose that Eq. 3.1 holds with
ap = bp := ũp, or, equivalently (3.6) holds. By letting x = 0 in Relation (3.6),
we see that ũp → ∞, and then, upon taking logarithms, necessarily p�(̃up) → 1,
which completes the proof of Eq. 3.2.

We now show Eq. 3.3. First, one can directly verify that Eq. 3.5 holds with ũp

replaced by u∗
p in Eq. 3.4. This, as argued above, is equivalent to p�(u∗

p) → 1.

Suppose now that, for another sequence ũp, we have p�(̃up) → 1. Then, by the
shown equivalence in Eq. 3.2,

u∗
p(M∗

n − u∗
p)

d→ ζ and ũp(M∗
n − ũp)

d→ ζ .

Thus, the convergence of types theorem (see, e.g.,Theorem 14.2 in Billingsley 1995)
yields

u∗
p ∼ ũp and u∗

p(u∗
p − ũp) → 0.

The last convergence implies the claim of part (ii) since in view of Eq. 3.4, we have
u∗

p ∼ √
2 log(p).

Part (ii) is a direct consequence of the convergence to types theorem, as argued in
the proof of part (i).
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The following result characterizes the optimal rate of concentration under an
additional distributional convergence assumption, which holds under the Berman
condition for e.g. the case of stationary time series.

Proposition 3.1 Suppose that E is a dependent triangular Gaussian array, such that

ζp := ap(Mp − bp)
d−→ ζ, as p → ∞, (3.8)

for some non-degenerate random variable ζ , with the same constants as in the iid
case (3.1). Suppose also that P (ζ < x) > 0 and P (ζ > x) > 0 for all x ∈ R.

Let now the sequence δp → 0, be an upper bound on the rate of concentration,
i.e., we have

P

(∣∣∣∣
Mp

ap

− 1

∣∣∣∣ > δp

)
→ 0, p → ∞. (3.9)

The following two statements hold.

(a) When lim supp→∞ ap|bp − ap| < ∞, Relation (3.9) holds if and only if

δp 	 1

a2p
+
∣∣∣∣
bp

ap

− 1

∣∣∣∣ =: δ
opt
p . (3.10)

(b) When lim supp→∞ ap|bp − ap| = ∞, Relation (3.9) holds if and only if

lim inf
p→∞

[
δp

δ
opt
p

− 1

]

(1 + ap|bp − ap|) = ∞. (3.11)

Proof (a) We will start with the “if” direction. Relation (3.8) implies that

1

ap

Mp = ζp

a2p
+ bp

ap

.

Since by assumption the constants ap and bp are the same as in the iid case
(3.1), Lemma 3.1 entails that bp ∼ ap ∼ √

2 log(p). Hence

1

ap

Mp − 1 = ζp

a2p
+
(

bp

ap

− 1

)
→ 0, (3.12)

which shows that the distributional limit in Eq. 3.8 entails concentration of the
maxima Mp/ap to 1. Relations (3.10) and (3.12), however imply that

∣∣∣∣
Mp

ap

− 1

∣∣∣∣ = oP (δp),

which entails (3.9) by Slutsky (or also Lemma 3.2, below.)
Now, for the converse direction, suppose that Eq. 3.9 holds for some δp 
	

δ
opt
p . This means that we can find a subsequence p(n) so that δp(n) ≤ c ·

δ
opt

p(n), ∀n ∈ N, for a positive constant c that does not depend on n. In view of
Eq. 3.9, this would mean that

θn := P

(∣∣∣∣
Mp(n)

ap(n)

− 1

∣∣∣∣ > cδ
opt

p(n)

)
→ 0, n → ∞.
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Moreover, since lim supp→∞ ap|bp − ap| < ∞, and ap > 0, the sequence
(ap|bp − ap|)∞p=1 is bounded. Namely, there exists M > 0, such that 0 ≤
ap|bp − ap| ≤ M, for all p ∈ N. However, we have that

θn ≥ P

(
Mp(n)

ap(n)

−1>cδ
opt

p(n)

)
=P

(
ζp(n)

a2p(n)

+ bp(n)

ap(n)

−1>
c

a2p(n)

+c

∣∣∣∣
bp(n)

ap(n)

−1

∣∣∣∣

)

= P
(
ζp(n) + ap(n)(bp(n) − ap(n)) − c|ap(n)(bp(n) − ap(n))| > c

)

≥ P
(
ζp(n) − (c + 1)ap(n)|bp(n) − ap(n)| > c

)

≥ P
(
ζp(n) > c + (c + 1)ap(n)|bp(n) − ap(n)|

)

≥ P(ζp(n) > c + (c + 1)M)

→ P(ζ > c + (c + 1)M) > 0,

where the last convergence holds because ζp(n)
d→ ζ . This is a contradiction

and the proof is complete.
(b) We have that

P

(∣∣∣∣
Mp

ap

− 1

∣∣∣∣ > δp

)
= P

(
ap

∣∣Mp − ap

∣∣ > δpa2p

)

= P

(∣∣ζp + ap(bp − ap)
∣∣ > δpa2p

)

= P

(
ζp < −δpa2p − ap(bp − ap)

)

+P

(
ζp > δpa2p − ap(bp − ap)

)

=: A(p) + B(p).

Note, however, that Eq. 3.9 entails that both A(p) and B(p) vanish to 0, as
p → ∞. This in turn means that

lim inf
p→∞ (δpa2p − ap(bp − ap)) = ∞ and lim inf

p→∞ (δpa2p + ap(bp − ap)) = ∞,

(3.13)
because of the distributional convergence (3.8). We will work with B(p).
The result for A(p) can be obtained by similar arguments. At first, for B(p)

to vanish to 0, we do need δpa2p > ap(bp − ap) eventually. Suppose that

lim infp→∞(δpa2p − ap(bp − ap)) = c < ∞, where c ≥ 0. This would mean
that there is a subsequence p(n) such that

δp(n)a
2
p(n) − ap(n)(bp(n) − ap(n)) → c, p → ∞.

But then,

B(p(n)) = P

(
ζp(n) > δp(n)a

2
p(n) − ap(n)(bp(n) − ap(n))

)
→ P(ζ > c) > 0,

which contradicts the fact that B(p) → 0, as p → ∞.
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Finally, note that Eq. 3.13 is equivalent to lim infp→∞(δpa2p − ap|bp − ap|) =
∞, which with straightforward algebra can be expressed as Eq. 3.11. Indeed,

δpa2p − ap|bp − ap| = a2p

[
δp −

∣∣∣∣
bp

ap

− 1

∣∣∣∣

]
= a2p

[
δp − δ

opt
p

]
+ 1

= a2pδ
opt
p

[
δp

δ
opt
p

− 1

]

+ 1

=
[

δp

δ
opt
p

− 1

]
(
1 + ap|bp − ap|)+ 1,

which completes the proof.

Remark 3.1 (On the optimality of the rate δ
opt
p ) The rate δ

opt
p can be viewed as “the”

optimal rate of concentration in Eq. 3.9 in the sense of Eqs. 3.10 and 3.11. As pointed
out by an anonymous referee, the distributional convergence in Eq. 3.8 (whenever it
takes place) is much more informative than a simple concentration of maxima type
convergence. Specifically, by Lemma 3.1 (ii), one can take up = ap = bp, and in this
case Relation (3.12) implies that 1/a2p ∝ 1/ log(p) is both an upper and lower bound

on the rate of concentration. That is, the rate δ
opt
p = 1/a2p ∝ 1/ log(p) cannot be

improved and in this sense is the optimal rate at which the maxima can concentrate.
The rate of concentration, though, does depend on the choice of the normalization
sequence up. We elaborate on this point next.

The role of the sequenceup It is well-known that under quite substantial dependence,
the convergence in distribution (3.8) holds, with the same constants as in the inde-
pendent case. For example, suppose that εp(i) = Z(i), i ∈ Z come from a stationary
Gaussian time series, which satisfies the so-called Berman condition (Berman 1964):

Cov(Z(k), Z(0)) = o

(
1

log(k)

)
, as k → ∞.

Notice, by Lemma 3.1 (ii), however, we also have ζ̃p := bp(Mp − bp)
d→ ζ , and

1

bp

Mp − 1 = ζ̃p

b2p
= OP

(
1

log(p)

)
. (3.14)

Compare Relations (3.12) and (3.14). Since ap ∼ bp ∼ √
2 log(p), from Eq. 3.14,

we have that the rate of concentration of Mp relative to the sequence bp is 1/ log(p).
On the other hand, while the first term in the right-hand side of Eq. 3.12 is of order
1/ log(p) the presence of the second term can only make the rate of concentration
therein slower. Indeed, this is formally established in Lemma 3.2. To gain some more
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intuition that the poor choice of a sequence ap can lead to a slower rate of concentra-
tion, suppose that ap = bp/(1 + g(p)), for an arbitrary sequence g(p) > −1, such
that g(p) → 0. Then, by Eq. 3.12,

1

ap

Mp − 1 = ζp

a2p
+ g(p).

One can take g(p) → 0 arbitrarily slow. Finally, as a more concrete example, one
typically uses bp := u∗

p = √
2 log(p)(1 − (log(log(p)) + log(4π))/4 log(p)) and

ap := √
2 log(p). It is easily seen that bp = ap(1 + g(p)), where

g(p) = − log(log(p)) + log(4π)

4 log(p)
∝ log(log(p))

log(p)
.

This shows that, in particular, in the case of iid maxima (as well as in the general case
where Eq. 3.8 holds) the normalization

√
2 log(p) does not lead to the optimal rate,

since
1

√
2 log(p)

M∗
p − 1 ∝P

log(log(p))

log(p)
,

where ξp ∝P ηp means that ξp/ηp → c in probability, for some positive constant c.
The optimal rate is 1/ log(p) and it is obtained by normalizing with any sequence

bp such that p�(bp) → 1. This follows from the next simple result, which shows that
the rate of concentration in Eq. 3.12 is the slower of the rates 1/a2p and (bp −ap)/ap.

Lemma 3.2 Suppose that for some random variables ζp, we have ζp
d→ ζ , as p →

∞, where ζ is a non-constant random variable. Then, for all sequences αp and βp,
we have

αpζp + βp
P−→ 0 ⇐⇒ |αp| + |βp| −→ 0.

That is, the rate of αpζp + βp is always the slower of the rates of {αp} and {βp}.

Proof The ‘⇐’ direction follows from Slutsky. To prove ‘⇒’, it is enough to show
that for every p(n) → ∞, there is a further sub-sequence q(n) → ∞, {q(n)} ⊂
{p(n)}, such that

|αq(n)| + |βq(n)| −→ 0.

In view of Skorokhod’s representation theorem (Theorem 6.7, page 70 in Billingsley

2013), we may suppose that ζ ∗
p → ζ ∗, with probability one, where ζ ∗

p
d= ζp and

ζ ∗ d= ζ . Also, assuming that αp(n)ζ
∗
p(n) + βp(n) → 0, in probability, implies that

there is a further sub-sequence q(n) → ∞, such that

αq(n)ζ
∗
q(n)(ω) + βq(n) → 0, as q(n) → ∞, (3.15)

for P -almost all ω. Since also ζ ∗
q(n)(ω) → ζ ∗(ω), for P -almost all ω, and since ζ ∗ is

non-constant, we have ζ ∗
q(n)(ωi) → ζ ∗(ωi), i = 1, 2 for some ζ ∗(ω1) 
= ζ ∗(ω2).

Thus, by subtracting two instances of Relation (3.15) corresponding to ω = ω1
and ω = ω2, we obtain

αq(n)(ζ
∗
q(n)(ω1) − ζ ∗

q(n)(ω2)) → 0,
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which since (ζ ∗
q(n)(ω1) − ζ ∗

q(n)(ω2)) → ζ ∗(ω1) − ζ ∗(ω2) 
= 0, implies αq(n) → 0.
This, in view of Eq. 3.15 yields βq(n) → 0, and completes the proof.

Remark 3.2 The above considerations establish the optimal rate of concentration of
the maxima Mp = maxi∈[p] εp(i), whenever the limit in distribution (3.8) holds.
We have shown that this optimal rate is 1/ log(p) and is in fact obtained, when con-
sidering Mp/up, for p�(up) ∼ 1. The rate of concentration of Mp/

√
2 log(p) is

log(log(p))/ log(p), which is only slightly sub-optimal.
On the other hand, as we know by Theorem 2.1, uniform relative stability is equiv-

alent to UDD and hence the concentration of maxima phenomenon takes place even
if Eq. 3.8 fails to hold. At this point, we do not know what is the optimal rate in gen-
eral. In Section 4, we provide upper bounds on this rate. We conjecture, however, the
presence of more severe dependence can only lead to slower rates of concentration
and in particular the optimal rate of concentration for UDD arrays cannot be faster
than 1/ log(p)—the one for independent maxima.

Conjecture 1 Let E be a Gaussian URS array. Relation (4.3) implies δp 	
1/ log(p).

4 Rates of uniform relative stability

4.1 Gaussian arrays

Throughout Sections 4 and 5, E = {εp(i), i ∈ [p]} will be a Gaussian array
with standard Normal marginals, unless stated otherwise. We shall also assume
that E is URS. For simplicity of notation and without loss of generality we will
work with Sp = [p] (see Remark 4.2). We will obtain upper bounds on the rate,
i.e., sufficient conditions on the dependence structure of E , which ensure certain
rates. These results are of independent interest and will find concrete applications in
Section 4.2, where conditions ensuring the URS of functions of Gaussian arrays are
established.

The following definition is an ancillary tool for the comparison of the rates of two
vanishing sequences and introduces some notation for this purpose.

Definition 4.1 Let (αp)∞p=1 and (βp)∞p=1 be two positive sequences converging to
0. We will say that αp is of lower order than βp (or slower than βp) , denoted by
αp 	 βp, if βp/αp → 0, as p → ∞, i.e., βp = o(αp).

The next theorem constitutes the main result of this paper.

Theorem 4.1 Consider a UDDGaussian triangular array E = {εp(i), i ∈ [p]} with
standard Normal marginals and let NE (τ ) be as in Definition 2.3. Let τ(p) → 0 be
such that

α(p) := logNE (τ (p))/ log(p) → 0, as p → ∞. (4.1)
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Then, for all δp > 0 such that

δp 	 α(p) + τ(p) + 1

log(p)
, (4.2)

we have

P

(∣∣∣∣
maxi∈[p] εp(i)

up

− 1

∣∣∣∣ > δp

)
→ 0, as p → ∞. (4.3)

Here up is defined as in Eq. 2.2 taking F = �, the cumulative distribution function
of standard Normal distribution.

The proof of Theorem 4.1 depends on a number of technical results, which will be
presented and proved in Section 5. In order to make the proof easier for the reader to
follow, we postpone its demonstration until Section 5. We proceed next with several
comments and examples.

Remark 4.1 Note that in Theorem 4.1 the covariance structure of E appears only
through NE (τ ). The collection {NE (τ ), τ ∈ (0, 1)} constitutes a collection of uni-
form upper bounds on the number of covariances in each row of the triangular array
E that exceed the threshold τ . This means that the ordering of the p random variables
in each row of E is irrelevant.

Remark 4.2 The support recovery results of Gao and Stoev (2020) require URS in
the sense of Eq. 2.5 for a subsequence Sp ⊂ [p], with |Sp| → ∞. By the previous
remark, upon relabelling the triangular array E , Theorem 4.1 applies in this setting
with p replaced by |Sp|, and entails rates on the convergence in Eq. 2.5.

The preceding Theorem 4.1 gives us an upper bound on the rate at which the con-
vergence in Eq. 2.5 takes place for a UDD Gaussian array E . Observe that this bound
depends crucially on the covariance structure of E through NE (τ ). This dependence
will be illustrated in the following examples, where the upper bound stated in Eq. 4.2
is obtained for three specific covariance structures.

Example 4.1 The iid case and optimality of the rate bounds.
Suppose that all εp(j)’s are iid. Then, we can pick τ(p) = 0 or τ < 1 vanishing to

0 arbitrarily fast, and we would have that NE (τ ) = 1, because of the strict inequality
in Eq. 2.6. This implies that α(p) = log(NE (τ ))/ log(p) = 0. Thus, in this case, the
upper bound in Eq. 4.2 becomes 1/ log(p). Observe that this rate matches the optimal
rate in Conjecture 1.

Example 4.2 Power-law covariance decay.
Consider, first, the simple case where E comes from a stationary Gaussian time

series, εp(κ) = ε(κ), with auto-covariance

ρ(κ) = Cov(ε(κ), ε(0)) ∝ κ−γ , γ > 0. (4.4)

Then, the classic Berman condition ρ(κ) = o(1/ log(κ)) holds and as shown in the
discussion after Proposition 3.1, the optimal rate in Eq. 2.5 is 1/ log(p).



On the rate of concentration of maxima in Gaussian arrays

In this example, we will demonstrate that our result [Theorem 4.1] leads to the
nearly optimal rate log(log(p))/ log(p). As in the previous remark, we see that this
is in fact the optimal rate if up in Eq. 2.5 is replaced by

√
2 log(p). (See Section 3).

Note, however, that our arguments apply in greater generality and do not depend on
the stationarity assumption. Indeed, assume that E is a general Gaussian triangular
array such that (UDD′) of Gao and Stoev (2020) holds, i.e.,

∣∣Cov(εp(i), εp(j))
∣∣ ≤ c

∣∣πp(i) − πp(j)
∣∣−γ (4.5)

for suitable permutations πp of {1, . . . , p}, where c does not depend on p. (Note that
Eq. 4.5 entails Eq. 4.4 for πp = id , where id is the identity permutation.) Then, one
can readily show that NE (τ ) = O(τ−1/γ ), as τ → 0. Thus,

α(p) = log(NE (τ ))

log(p)
∝ log(τ−1/γ )

log(p)
= − log(τ )

γ log(p)
.

Using this α(p), the upper bound on the rate in Theorem 4.1 becomes

α(p)+τ(p)+ log(log(p))

log(p)
∝ − log(τ )

log(p)
+τ(p)+ 1

log(p)
� − log(τ )

log(p)
+τ(p). (4.6)

This is minimized by taking τ(p) = 1/ log(p) in Eq. 4.6 and the upper bound on the
rate becomes

α(p) + τ(p) + 1

log(p)
∝ log(log(p))

log(p)
+ 1

log(p)
� log(log(p))

log(p)
.

Recall that in the case when E has iid components, the optimal rate of concentration
of the maxima is 1/ log(p) and in fact it becomes log(log(p))/ log(p) when one
uses the normalization

√
2 log(p) in place of up. Therefore, this example shows that

under mild power-law type covariance decay conditions, Gaussian triangular arrays
continue to concentrate at the nearly optimal rates for the iid setting.

Example 4.3 Logarithmic covariance decay.
Following suit from Example 4.2, we consider first the case where the errors come

from a stationary time series with auto-covariance

ρ(κ) = Cov(ε(κ), ε(0)) ∝ (log(κ))−ν , as κ → ∞, (4.7)

for some ν > 0. Note that for 0 < ν < 1, the Berman condition ρ(κ) = o(1/ log(κ))

is no longer satisfied and the results from Section 3 cannot be applied to establish the
optimal rate in Eq. 2.5. Using Theorem 4.1, we will see that an upper bound on this
rate is δ�

p := (log(p))−
ν

ν+1 .
Indeed, consider the more general case where E is a Gaussian triangular array,

such that (UDD′) of Gao and Stoev (2020) holds, i.e.,

∣∣Cov(εp(i), εp(j))
∣∣ ≤ c

(
log
(∣∣πp(i) − πp(j)

∣∣))−ν
, (4.8)
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for suitable permutations πp of {1, . . . , p} and c does not depend on p. Again, note
that Eq. 4.8 implies Eq. 4.7 for the identity permutation. One can show that in this

case NE (τ ) = O
(
eτ−1/ν

)
, as τ → 0 and thus,

α(p) = log(NE (τ ))

log(p)
∝

log
(
eτ−1/ν

)

log(p)
= 1

τ 1/ν log(p)
, as p → ∞.

To find the best bound on the rate in the context of Eq. 4.2 we minimize

α(p) + τ(p) + 1

log(p)
∝ 1

τ 1/ν log(p)
+ τ + 1

log(p)
,

with respect to τ . Considering p fixed, basic calculus gives us that the r.h.s. is mini-
mized for τ(p) = (ν log(p))−

ν
ν+1 . With this choice of τ the fastest upper bound from

Theorem 4.1 becomes
[
ν− ν

ν+1 + ν− 1
ν+1

]
· (log(p))−

ν
ν+1 + 1

log(p)
∝ (log(p))−

ν
ν+1 .

It only remains to show that the choice of τ actually allows us to pick NE (τ ) =
O
(
eτ−1/ν

)
. A sufficient condition would be p ≥ c̃ · eτ−1/ν

for a suitably chosen

constant c̃ not depending on either p or τ . Substituting τ = (ν log(p))−
ν

ν+1 , we
equivalently need

p ≥ c̃ · e(ν log(p))
1

ν+1 .

It is readily checked, by taking logarithms in both sides, that this holds for p suffi-
ciently large and thus, the fastest upper bound for this kind of dependence structure
is (log(p))−

ν
ν+1 .

Observe that as ν → ∞ this upper bound approaches asymptotically the optimal
rate 1/ log(p) achieved under the Berman condition (see Section 3). Our results yield,
however, an upper bound on the rate of concentration in Eq. 2.5 for the case 0 < ν <

1, where the Berman condition does not hold.

4.2 Functions of Gaussian arrays

The main motivation behind the work in this section is to determine when the concen-
tration of maxima property is preserved under transformations. Specifically, consider
the triangular array

H = {
ηp(j) = f (εp(j)), j ∈ [p], p ∈ N

}
, (4.9)

where E = {
εp(j), j ∈ [p], p ∈ N

}
is a Gaussian triangular array with standard

Normal marginals.
Given that Eq. 4.3 holds, our goal is to find bounds on a sequence dp ↓ 0, such

that

P

(∣∣∣∣
maxj∈[p] ηp(j)

vp

− 1

∣∣∣∣ > dp

)
→ 0, as p → ∞, (4.10)

where vp = f (up) and up is as in Eq. 2.2. We first address the case of monotone
non-decreasing transformations.
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Proposition 4.1 Asssume that f is a non-decreasing differentiable and eventually
strictly increasing function, with limx→∞ f (x) 
= 0 and the derivative f ′(x) is either
eventually increasing or eventually decreasing as x → ∞. If Eq. 4.3 holds with
some δp > 0, then Eq. 4.10 holds provided that

dp ≥ d�
p := upδp max

{|f ′(up(1 − δp)|, |f ′(up(1 + δp)|}
|f (up)| . (4.11)

Proof Since up ↑ ∞, by the monotonicity of f and the fact that it is eventually
strictly increasing, one can show that f (up) = vp = F←

η (1 − 1/p), for p large
enough. We start by noticing that

∣∣∣∣
maxj∈[p] ηp(j)

vp

− 1

∣∣∣∣ =
∣∣∣∣
maxj∈[p] f (εp(j)) − f (up)

f (up)

∣∣∣∣

=
∣∣∣∣∣
f
(
maxj∈[p] εp(j)

)− f (up)

f (up)

∣∣∣∣∣
, (4.12)

where the second equality follows by the monotonicity of f .
Now recall that f is differentiable. By the Mean Value Theorem, there exists a

possibly random θp between up and maxj∈[p] εp(j), such that
∣∣∣∣∣
f
(
maxj∈[p] εp(j)

)− f (up)

f (up)

∣∣∣∣∣
=
∣∣∣∣

1

f (up)
f ′(θp)

(
max
j∈[p] εp(j) − up

)∣∣∣∣ . (4.13)

Combining Eqs. 4.12 and 4.13, we obtain

P

(∣∣∣∣
maxj∈[p] ηp(j)

vp

− 1

∣∣∣∣ > dp

)
= P

(∣∣∣∣
upf ′(θp)

f (up)

∣∣∣∣ ·
∣∣∣∣
maxj∈[p] εp(j)

up

− 1

∣∣∣∣ > dp

)

= P

(∣∣∣∣
maxj∈[p] εp(j)

up

− 1

∣∣∣∣ >
dp|f (up)|
up|f ′(θp)|

)
,

where the second equality follows from the fact that f ′(θp) 
= 0 over the event of
interest, since dp > 0. This shows that for any non-negative sequence δp vanishing
to 0, such that Eq. 4.3 holds, we have that

P

(∣∣∣∣
maxj∈[p] ηp(j)

vp

− 1

∣∣∣∣ > d̃p

)
→ 0, as p → ∞, (4.14)

where

d̃p := upδp|f ′(θp)|
|f (up)|. (4.15)

Now, we know by Eq. 4.3 that

∣∣θp − up

∣∣ ≤
∣∣∣∣max
j∈[p] εp(j) − up

∣∣∣∣ ≤ upδp

with probability going to 1, as p → ∞. This implies that

P
(
up(1 − δp) ≤ θp ≤ up(1 + δp)

) → 1, as p → ∞,
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In turn, by the eventual monotonicity of f ′, the last convergence implies that

P
(∣∣f ′(θp)

∣∣ ≤ max
{∣∣f ′(up(1 − δp))

∣∣ ,
∣∣f ′(up(1 + δp))

∣∣}) → 1, as p → ∞,

and equivalently

P

(
d̃p ≤ d�

p

)
→ 1, as p → ∞. (4.16)

By Eqs. 4.15 and 4.16 we conclude that Eq. 4.14 holds with d̃p substituted by d�
p. This

shows that d�
p is an upper bound of the optimal rate of concentration, i.e., Eq. 4.11

implies Eq. 4.10.

A typical and very important case where Proposition 4.1 applies is when the array
E undergoes an exponential transformation, illustrated in the following example.

Example 4.4 Let E be as in Proposition 4.1 and consider

HE =
{
ηp(j) := eεp(j), j ∈ [p], p ∈ N

}
, (4.17)

which is a triangular array with lognormal marginal distributions. This is sometimes
referred to as the multivariate lognormal model (Halliwell 2015). Let δp be such that
Eq. 4.3 holds. Then, an immediate application of Proposition 4.1 shows that as long
as upδp → 0, an upper bound on the rate of convergence in Eq. 4.10 is

d�
p = upδpeupδp ∼ upδp ∼ δp

√
2 log(p).

That is, lognormal arrays can have relatively stable maxima, provided that the

underlying maxima of the Gaussian array concentrate at a rate δp = o
(
1/
√
log(p)

)
.

Popular models like the ones with χ2
1 marginals can be obtained from Proposi-

tion 4.1 with the monotone transformation f (x) := F−1 (�(x)), where F is the
cdf of the desired distribution. The classic multivariate χ2

1 - models, however, are
obtained by squaring the elements of the Gaussian array, i.e., via the non-monotone
transformation f (x) = x2. Such models are addressed in the next result.

Corollary 4.1 Let all the assumptions of Proposition 4.1 hold and let d�
p be defined

as before. Assume now that f is an even (f (x) = f (−x)) differentiable and even-
tually strictly increasing function, with limx→∞ f (x) 
= 0. Assume also that f is
monotone non-decreasing on (0, ∞). Then, the conclusion Eq. 4.11 still holds.

Proof We start by observing that

P

(∣∣∣∣
maxj∈[p] ηp(j)

f (up)
− 1

∣∣∣∣ > dp

)
= P

(∣∣∣∣
maxj∈[p] f (εp(j)) − f (up)

f (up)

∣∣∣∣ > dp

)

≤ P

(∣∣∣∣
f (minj∈[p] εp(j))−f (up)

f (up)

∣∣∣∣>dp

)
+P

(∣∣∣∣
f (maxj∈[p] εp(j))−f (up)

f (up)

∣∣∣∣>dp

)
,

(4.18)
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because the symmetry and monotonicity of f on (0, ∞) imply that
maxj∈[p] f (εp(j)) equals either f

(
maxj∈[p] εp(j)

)
or f

(
minj∈[p] εp(j)

)
.

By Proposition 4.1 we can readily obtain that for dp ≥ d�
p the second term of

Eq. 4.18 converges to 0. Now, we handle the first term of Eq. 4.18. By the symmetry
of f we have that

f (min
j∈[p] εp(j)) = f (− min

j∈[p] εp(j)) = f (max
j∈[p](−εp(j)).

Notice that by verifying the equality of the covariance structures, we have

{−εp(j), j ∈ [p]} d= {
εp(j), j ∈ [p]} .

Hence maxj∈[p](−εp(j))
d= maxj∈[p] εp(j), and again by Proposition 4.1 we get

that for dp ≥ d�
p the first term of Eq. 4.18 also converges to 0. This completes the

proof.

Using Corollary 4.1 we can now treat the multivariate χ2 model introduced in
Dasgupta and Spurrier (1997).

Example 4.5 Let E be as in Proposition 4.1 and consider

HE =
{
ηp(j) := ε2p(j), j ∈ [p], p ∈ N

}
,

a triangular array with χ2
1 marginal distributions. Let δp be as in Eq. 4.3. Then, a

simple application of Corollary 4.1 implies Eq. 4.10, provided

dp ≥ d�
p = 2δp(1 + δp) ∼ 2δp.

In contrast to Example 4.4, taking squares does not lead to a slower rate of conver-
gence. Indeed, in Example 4.4 our estimate of the rate is slowed down by a factor of√
log(p), while in the χ2 case it remains δp.

We shall now see that the rate of convergence is not slowed down by any power
transformation x �→ xλ, for any λ > 0.

Example 4.6 Power-Law Transformations.
Let once again E be as in Proposition 4.1 and consider the power transformations

f (x) = xλ, λ > 0. In the cases where λ 
∈ N, we use the functions f λ
1 (x) = |x|λ

or f λ
2 (x) = x<λ> = sign(x) · |x|λ. Note that differentiability at 0 is not needed in

any of the proofs, so using f λ
1 does not violate any of the assumptions. Let also δp

be as in Eq. 4.3, i.e., a rate sequence for the convergence in Eq. 2.5. Then, a suitable
application of Proposition 4.1 or Corollary 4.1, shows that an upper bound on the rate
of convergence in Eq. 4.10 is

d�
p = λδp(1 + δp)λ−1 ∼ λδp or d�

p = λδp(1 − δp)λ−1 ∼ λδp.

In view of Examples 4.1, 4.2 and 4.3, we now show how the rate d�
p ∼ λδp is

affected under different correlation structures of the underlying Gaussian array E .
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Recall that in the iid case of Example 4.1 we have that the optimal rate is δp 	
δ
opt
p = 1/ log(p). This implies that an upper bound on the rate of concentration is

d�
p ∼ λδp 	 λ

log(p)
.

Moreover, for the power-law covariance decay covariance structure (Example 4.2),
we observe that compared to the iid case, the rate of concentration δp is scaled by
a factor of log(log(p)). Namely, for the power-law transformations we get that the
upper bound is

d�
p ∼ λδp ∼ λ log(log(p))

log(p)
.

Finally, we examine the logarithmic covariance decay (Example 4.3). Remember
that in this case the rate we have for E is δp = (log(p))−

ν
ν+1 . This implies that the

upper bound of the rate of concentration for the power-law transformations is

d�
p ∼ λδp ∼ λ

(log(p))
ν

ν+1
.

Observe that in this case, d�
p is a valid upper bound aside from the value of ν. We

will see in the following Example 4.7, that the same is not true for the exponential
power-law transformations.

In the last example of this section, we explore exponential power transformations
and how they affect our bounds on the rate of convergence.

Example 4.7 Exponential Power-Law Transformations.
Let E be as in Proposition 4.1 and consider the exponential power transformations

f (x) = exλ
, λ > 0, λ 
= 1. (Note that λ = 1 is the lognormal case which we have

alredy seen in Example 4.4). In the cases where λ 
∈ N,we use the functions f λ
1 (x) =

e|x|λ or f λ
2 (x) = ex<λ> = esign(x)·|x|λ . Similarly to Example 4.6, differentiability

at 0 is not needed in any of the proofs, so using f λ
1 does not violate any of the

assumptions. Let also δp be as in Eq. 4.3. Then, suitable applications of Proposition
4.1 or Corollary 4.1 show that as long as uλ

pδp → 0, an upper bound on the rate of
convergence in Eq. 4.10 is

d�
p = λuλ

pδp(1 + δp)λ−1euλ
p

[
(1+δp)λ−1

]
, if λ ≥ 1

and
d�
p = λuλ

pδp(1 − δp)λ−1euλ
p

[
(1−δp)λ−1

]
, if 0 < λ < 1.

In both cases we have d�
p ∼ λδp(2 log(p))λ/2, as p → ∞. As a generalization

of the lognormal case (λ = 1), we see that the iid rate δp is scaled by a factor of
(√

log(p)
)λ

. This means that this kind of arrays would still have relatively stable

maxima, provided that the underlying maxima of the Gaussian array concentrate at a
rate δp = o

(
1/(log(p))λ/2

)
.

At this point, we examine how the rate d�
p ∼ λδp(2 log(p))λ/2 adjusts under the

varying covariance structures of E in Examples 4.1, 4.2 and 4.3. In an analogous
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manner to Example 4.6, we get that for the iid case, an upper bound on the rate of
concentration is

d�
p ∼ λδpuλ

p 	 2
λ
2 λ (log(p))

λ
2−1 ,

while for the power-law covariance decay covariance structure we obtain

d�
p ∼ λδpuλ

p ∼ 2
λ
2 λ (log(p))

λ
2−1 log(log(p)).

In the previous two instances we notice that the covariance structure does not
impose any restrictions on the values of λ, in order to guarantee concentration of
maxima for the transformed triangular array. This is not the case for the logarithmic
covariance decay, since the upper bound becomes

d�
p ∼ λδpuλ

p ∼ 2
λ
2 λ (log(p))

λ
2− ν

ν+1 .

The aforementioned d�
p is a a sensible upper bound for the rate of concentration in

this case, only if d�
p → 0, as p → ∞. This is so, when ν > λ

2+λ
. Thus, our results

imply that in the lognormal case (λ = 1), ν > 1
3 guarantees that the transformed

array is relatively stable.

Remark 4.3 In Conjecture 1, we posit that the fastest rate of convergence for a UDD
Gaussian array is bounded above by 1/ log(p). Nevertheless, from Example 4.1 for
the iid case, our bound in Eq. 4.2 is again 1/ log(p). Since up ∼ √

2 log(p), we see

that we can get an upper bound on the rate of f (x) = exλ
only for 0 < λ < 2.

The range λ ∈ (0, 2) is also natural, because one can show that the transformation
f (x) = exλ

, for λ ≥ 2, leads to heavy power-law distributed variables ηp(j). Heavy-
tailed random variables no longer have relatively stable maxima, which makes the
question about the rate of concentration of maxima meaningless.

We will end this section with a corollary, readily obtained by the discussion in the
end of Example 4.7.

Corollary 4.2 Suppose that H := {
ηp(j), j ∈ [p], p ∈ N

}
is a multivariate log-

normal array as in Eq. 4.17. Suppose that

∣∣Cov
(
ηp(j), ηp(k)

)∣∣ ≤ c · 1
(
log(|πp(j) − πp(k)|))ν , (4.19)

for some ν > 1/3, permutations πp of {1, . . . , p} and a constant c independent of p.
Then the array H is URS.

Proof Let E = {
εp(j), j ∈ [p], p ∈ N

}
be the underlying Gaussian array. Then,

we have that ηp(j) = eεp(j) for every j ∈ [p]. Thus,
Cov(ηp(j), ηp(k)) = Cov

(
eεp(j), eεp(k)

)

= E

(
eεp(j)+εp(k)

)
− E

(
eεp(j)

)
E

(
eεp(k)

)
. (4.20)
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Recall that the moment generating function for a Normal random variable X ∼
N(μ, σ 2) is M(t) = E

(
etX
) = eμt+σ 2t2/2. Since εp(i) follow the standard Normal

distribution, we have εp(j) + εp(k) ∼ N(0, 2 + 2Cov(εp(j), εp(k))), and hence
Eq. 4.20 becomes

Cov(ηp(j), ηp(k)) = e ·
(
eCov(εp(j),εp(k)) − 1

)
. (4.21)

In turn, Eq. 4.21 along with Eq. 4.19 implies that
∣∣∣e ·

(
eCov(εp(j),εp(k)) − 1

)∣∣∣ ≤ c

e
· 1
(
log(|πp(j) − πp(k)|))ν . (4.22)

Using the inequality |x| ≤ e|ex − 1|, x ∈ [−1, 1] in Eq. 4.22, since∣∣Cov(εp(j), εp(k))
∣∣ ≤ 1, we finally obtain that

∣∣Cov(εp(j), εp(k))
∣∣ ≤ c

e
· 1
(
log(|πp(j) − πp(k)|))ν .

The last relation implies that E has a logarithmic covariance decay covariance struc-
ture (see Example 4.3). Combined with the discussion in the end of Example 4.7, the
proof is complete.

5 Technical proofs

In this section we present the proof of the capstone Theorem 4.1. Recall that we desire
to find an upper bound on the rate of positive vanishing sequences δp, such that

P

(∣∣∣∣
maxi∈[p] εp(i)

up

− 1

∣∣∣∣ > δp

)
→ 0, as p → ∞.

To this end, let

ξp := 1

up

max
i∈[p] εp(i), (5.1)

where E = {
εp(i), i ∈ [p]} is a URS Gaussian array with standard Normal

marginals. Observe that

P(|ξp − 1| > δp) = P(ξp > 1 + δp) + P(ξp < 1 − δp)

=: I(δp) + II(δp). (5.2)

Thus, to obtain the desired rate we need to recover a bound on the rate of I(δp) and
II(δp). Note that in our endeavor to secure upper bound on the term II(δp) we will
use the expectation of ξp. The integrability of ξp is ensured by Appendix A.2 of
Chatterjee (2014), or Pickands (1968) in conjunction with Eq. 1.3.

Term I(δp ) In the following proposition, we find an upper bound on the rate of δp in
I(δp) of Eq. 5.2. Interestingly, the following result does not involve the dependence
structure of the array E .
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Proposition 5.1 Let E = {εp(i), i ∈ [p]} be an arbitrary Gaussian triangular
array, where the marginal distributions are standard Normal and let ξp be defined as
in Eq. 5.1. If δp → 0 is a positive sequence such that

δp 	 1

log(p)
(5.3)

then, regardless of the dependence structure of E , we have

lim
p→∞

(
δ−1
p E(ξp − 1)+

)
= 0, (5.4)

and consequently P(ξp > 1 + δp) → 0, as p → ∞.

We need the following simple bound for the Mill’s ratio (see also (1.2.2) or (2.1.1)
in Adler and Taylor, 2009).

Lemma 5.1 For all u > 0, we have

1 − 1

1 ∨ u2
≤ �(u)

φ(u)/u
≤ 1,

where φ(u) = e−u2/2/
√
2π and �(u) = ∫∞

u
φ(x)dx.

Proof We have

�(u)

φ(u)/u
= u

φ(u)

∫ ∞

u

φ(x)dx = u

∫ ∞

u

e− x2−u2
2 dx

= u

∫ ∞

0
e− (z+u)2−u2

2 dz =
∫ ∞

0
e− z2

2 ue−uzdz = E[e−E2/(2u2)],
where E is an exponentially distributed random variable with unit mean, and we used
the change of variables z := x − u. Observing that 1 − x ≤ e−x ≤ 1, for all x ≥ 0,
we get

1 − E2

2u2
≤ e−E2/(2u2) ≤ 1.

The result follows upon taking expectation and recalling that E[E2] = 2.

Proof (Proposition 5.1) Note first that Eq. 5.4 implies P(ξp > 1+ δp) → 0. Indeed,
this follows from the Markov inequality:

P(ξp − 1 > δp) = P((ξp − 1)+ > δp) ≤ δ−1
p E(ξp − 1)+.

Now, we focus on proving Eq. 5.4. We can write

1

δp

E(ξp − 1)+ = 1

δp

∫ ∞

0
P(ξp − 1 > z)dz

=
∫ ∞

0
P(ξp > 1 + δpx)dx =: J(δp), (5.5)
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where in the last integral we used the change of variables z = δpx.
Recalling that ξp = u−1

p maxi∈[p] εp(i), by the union bound, for the last integrand
we have that

P(ξp > 1 + δpx) ≤ p�(up(1 + δpx)) = �(up(1 + δpx))

�(up)
. (5.6)

By Lemma 5.1, we further obtain that

�(up(1 + δpx))

�(up)
≤ 1

1 − 1/(1 ∨ u2p)
· φ(up(1 + δpx))

(1 + δpx)φ(up)

≤ 1

1 − 1/(1 ∨ u2p)
exp

{
− u2p

2

(
(1 + δpx)2 − 1

)}

≤ Bp exp{−u2pδpx}, (5.7)

where Bp := (1−1/(1∨u2p))−1 → 1, as p → ∞, is a constant independent of x ≥ 0

and in the last inequality we also used the simple bound (1 + δpx)2 − 1 ≥ 2δpx.
Condition (5.3) means that there is a sequence γ (p) diverging to infinity slower

than log(p) such that

δ(p) = γ (p)

log(p)
.

Thus, by Relation (5.7) and the facts that u2p ∼ 2 log(p) and Bp ∼ 1, as p → ∞, we
obtain

�(up(1 + δpx))

�(up)
≤ 2 · e−2γ (p)x,

for all sufficiently large p. Since γ (p) → ∞, Relation (5.6) and the Dominated
Convergence Theorem applied to Eq. 5.5, implies

lim
p→∞ J(δp) ≤ limp→∞

∫∞
0 2e−2γ (p)xdx = 0.

This completes the proof of Eq. 5.7.

Term II(δp ) Handling term II of Eq. 5.2 is more involved and this is where the depen-
dence structure of the array plays a role. We start by presenting a more careful
reformulation of Lemma B.1 in Gao and Stoev (2020).

Lemma 5.2 Let (Xi)
p

i=1 be p iid random variables with distribution F and density
f , such that

E(Xi)− ≡ E(max{−Xi, 0}) < ∞.

Denote the maximum of the Xi’s as Mp := maxi=1,...,p Xi . Suppose that f is
eventually decreasing, i.e., there exists a C0 such that f (x1) ≥ f (x2) whenever
C0 ≤ x1 ≤ x2, then

EMp

up+1
≥ (1 − Fp(C0)) + E[X1|X1 < C0]

up+1
Fp(C0),

where up+1 = F←(1 − 1/(p + 1)).
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Proof For the proof, refer to the proof of Lemma B.1 in Gao and Stoev (2020).

Recall that a Gaussian triangular array E = {
εp(j)

}p
j=1 with standard Normal

marginals is said to be UDD if for every τ > 0,

NE (τ ) := sup
p∈N

max
i=1,...,p

∣∣{κ ∈ [p] : Cov(εp(i), εp(κ)) > τ
}∣∣ < ∞. (5.8)

That is, for every p and i ∈ [p], there are at most NE (τ ) indices κ , such that the
covariance between εp(i) and εp(κ) exceeds τ .

The function NE (τ ) encodes certain aspects of the dependence structure of the
array E . It will play a key role in the derivation of the upper bound on the rate of
concentration of maxima. The next result is an extension of Proposition A.1 in Gao
and Stoev (2020) tailored to our needs. For the benefit of the reader, we reproduce the
key argument involving a packing construction and the Sudakov-Fernique bounds,
which may be of independent interest.

Proposition 5.2 For every UDD Gaussian array E , and any subset Sp ⊆ {1, . . . , p}
with q = |Sp|, and τ ∈ (0, 1), we have that

E

⎡

⎢
⎣

max εp(j)
j∈Sp

uq

⎤

⎥
⎦≥ uq/NE (τ )+1

uq

√
1−τ

(
1− 1

2q/Nε(τ)
−

√
2/π

uq/Nε(τ)+1
· 1

2q/Nε(τ)

)
(5.9)

:= 1 − Rq, (5.10)

where NE (τ ) is given in Eq. 5.8.

Remark 5.1 Note that without loss of generality we can assume Sp = {1, . . . , p}.
We prove a slightly more general result, but the only application in this paper will be
for q = p.

Proof Define the canonical (pseudo) metric on Sp,

d(i, j) =
√
E(ε(i) − ε(j))2.

This metric takes values between 0 and 2, since εp(i), i = 1, . . . , p, have zero
means and unit variances. Fix τ ∈ (0, 1), take γ = √

2(1 − τ) and let Γ be a γ -
packing of Sp. That is, let Γ be a subset of Sp, such that for any i, j ∈ Γ, i 
= j, we
have d(i, j) > γ, i.e.,

d(i, j) =
√
2
(
1 − �p(i, j)

) ≥ γ = √
2(1 − τ),

or equivalently, �p(i, j) ≤ τ . We claim that we can find a γ -packing Γ whose
number of elements is at least

|Γ | ≥ q

NE (τ )
. (5.11)
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Indeed, Γ can be constructed iteratively as follows:

Step 1: Set S(0)
p := Sp and Γ := {j1}, where j1 ∈ S

(0)
p is an arbitrary element. Set

k := 1.
Step 2: Set S(k)

p := S
(k−1)
p \ Bγ (jk), where

Bγ (jk) := {i ∈ Sp : d(i, jk) < γ }.
Step 3: If S

(k)
p 
= ∅, pick an arbitrary jk+1 ∈ S

(k)
p , set Γ := Γ ∪ {jk+1}, and

k := k + 1, go to Step 2; otherwise stop.

By the definition of UDD, there are at most NE (τ ) coordinates whose covariance
with εp(j) exceed τ . Therefore, at each iteration, |Bγ (jk)| ≤ NE (τ ), and hence

|S(k)
p | ≥ |S(k−1)

p | − |Bγ (jk)| ≥ q − kNE (τ ).

The construction can continue for at least q/NE (τ ) iterations, which implies
Eq. 5.11.

Now, we define on this γ -packing Γ an independent Gaussian process {η(j)}j∈Γ ,

η(j) = γ√
2
Z(j), j ∈ Γ,

where the Z(j)’s are iid standard Normal random variables. The increments of the
new process are smaller than that of the original in the following sense,

E(η(i) − η(j))2 = γ 2 ≤ d2(i, j) = E(εp(i) − εp(j))2,

for all i 
= j, i, j ∈ Γ . Applying the Sudakov-Fernique inequality (see, e.g.,
Theorem 2.2.3 in Adler and Taylor 2009) to {η(j)}j∈Γ and {εp(j)}j∈Γ , we have

E

[
max
j∈Γ

(η(j))

]
≤ E

[
max
j∈Γ

(εp(j))

]
≤ E

[
max
j∈Sp

(εp(j))

]
.

This implies

E

[
1

uq

max
j∈Sp

εp(j)

]
≥ E

[
1

u|Γ |+1
max
j∈Γ

η(j)

]
· u|Γ |+1

uq

≥ u|Γ |+1

uq

· √1 − τ · E
[

1

u|Γ |+1
max
j∈Γ

Z(j)

]
.

Now, the application of Lemma 5.2 to the standard Normal distribution for C0 = 0
entails that,

E
[
maxj∈Γ Z(j)

]

u|Γ |+1
≥ 1 − 1

2|Γ | −
√
2/π

u|Γ |+1
· 1

2|Γ | .

Since |Γ | ≥ q/NE (τ ) the desired lower bound in Eq. 5.9 is obtained.

We are now interested in the rate at which the lower bound in Eq. 5.9 converges to
1. Equivalently, we desire to find the rate of decay of Rq . This rate is obtained in the
following Lemma.
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Lemma 5.3 Let Rq, α(q) be defined as in Eqs. 5.10 and 4.1 respectively. Then

Rq � α(q) + τ(q) + 2−q1−α(q)

, as q → ∞. (5.12)

Proof Note that by definition Rq → 0, as q → ∞. This implies that Rq ∼ log(1 −
Rq), as q → ∞, so we just need the rate of

log(1−Rq) = log

(
uq/NE (τ )+1

uq

·√1−τ(q)·
(
1− 1

2q/Nε(τ)
−

√
2/π

uq/Nε(τ)+1
· 1

2q/Nε(τ)

))

= log

(
uq/NE (τ )+1

uq

)
+ 1

2
log(1 − τ(q))

+ log

(
1 − 1

2q/Nε(τ)
−

√
2/π

uq/Nε(τ)+1
· 1

2q/Nε(τ)

)
.

Now, the facts that α(q) = log(NE (τ ))/ log(q) and uq ∼ √
2 log(q) imply that

uq/NE (τ )+1

uq

∼
√
2 log(1 + q1−α(q))

2 log(q)
∼
√
log(q1−α(q))

log(q)
= √

1 − α(q),

where we used the relation

q1−α(q) = elog(q)−log(NE (τ )) = q

NE (τ )
. (5.13)

However, since α(q) = log(NE (τ (q))/ log(q) → 0 and τ(q) → 0, we have

log(1 − α(q)) = −α(q) + o(α(q)),

log(1 − τ(q)) = −τ(q) + o(τ(q)),

and by Eq. 5.13

log

(
1 − 1

2q/Nε(τ)
−

√
2/π

uq/Nε(τ)+1
· 1

2q/Nε(τ)

)

= log

(
1 − 2−q1−α(q) −

√
2/π

uq/Nε(τ)+1
· 2−q1−α(q)

)

= 2−q1−α(q) + o
(
2−q1−α(q)

)
.

As a result, we have

Rq � α(q) + τ(q) + 2−q1−α(q) + o
(
max

{
α(q), τ (q), 2−q1−α(q)

})
, (5.14)

which completes the proof.

Proof of Theorem 4.1 We are now in position to complete the proof of Theorem 4.1,
which consists of a combination of the results that have already been established in
Section 5.
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Proof Recall the definition of ξp in Eq. 5.1 and that

P(|ξp − 1| > δp) = I(δp) + II(δp),

where I(δp) and II(δp) are defined as in Eq. 5.2. We shall show that both terms vanish.
Proposition 5.1, along with Eq. 4.2, imply that I(δp) = P(ξp > 1 + δp) → 0, as

p → ∞. Observe that the term I(δp) = P(ξp > 1 + δp) vanishes, regardless of the
dependence structure of the array E . The dependence plays a key role in the rate of
the term II(δp).

We now steer our focus towards term II(δp). The Markov inequality yields

II(δp) = P(ξp < 1 − δp) ≤ E(ξp − 1)−
δp

.

Since E(ξp − 1)− ≤ E(ξp − 1)+ + ∣∣E(ξp − 1)
∣∣, we have

II(δp) ≤ 1

δp

(
E(ξp − 1)+ + ∣∣E(ξp − 1)

∣∣)

= 1

δp

(
E(ξp − 1)+ + [E(ξp − 1)]+ + [E(ξp − 1)]−

)

≤ 1

δp

(
2E(ξp − 1)+ + [E(ξp − 1)]−

)
, (5.15)

where the last inequality follows from the fact that [E(ξp − 1)]+ ≤ E(ξp − 1)+.
Proposition 5.1 and Eq. 4.2 imply that the term δ−1

p E(ξp − 1)+ in Eq. 5.15
vanishes. Moreover, Proposition 5.2 entails

[E(ξp − 1)]− = max{0, −E(ξp − 1)} ≤ |Rp|.
Thus, the term II(δp) vanishes, provided that Rp/δp → 0. This follows, however,
from Lemma 5.3 and Eq. 4.2, since for α(p) → 0, we have

1

log(p)
	 2−p1−α(p)

, as p → ∞
and the proof is complete.

Remark 5.2 After we completed and submitted this paper, we became aware of the
important work of Tanguy (2015). According to their paper, in the stationary case, the
upper bound of Theorem 4.1 above partially follows from their Theorem 3. However,
our work is in the general setting of triangular arrays and does not require stationar-
ity. The result in Theorem 5 of Tanguy (2015), could in principle, be used to derive
bounds on rates of concentration of maxima for non-stationary arrays. This, however,
requires verifying two technical conditions. Our approach, based on the UDD condi-
tion yields rates that can be explicitly related to the covariance structure of the array.
The in-depth comparison of the two approaches merits an independent study beyond
the scope of the present work.
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