Extremes
https://doi.org/10.1007/510687-020-00399-8

®

Check for
updates

On the rate of concentration of maxima
in Gaussian arrays

Rafail Kartsioukas' - Zheng Gao' - Stilian Stoev’

Received: 10 October 2019 / Revised: 8 October 2020 / Accepted: 6 November 2020 /
Published online: 19 November 2020
© Springer Science+Business Media, LLC, part of Springer Nature 2020

Abstract

Recently in Gao and Stoev (2020) it was established that the concentration of maxima
phenomenon is the key to solving the exact sparse support recovery problem in high
dimensions. This phenomenon, known also as relative stability, has been little studied
in the context of dependence. Here, we obtain bounds on the rate of concentration of
maxima in Gaussian triangular arrays. These results are used to establish sufficient
conditions for the uniform relative stability of functions of Gaussian arrays, leading
to new models that exhibit phase transitions in the exact support recovery problem.
Finally, the optimal rate of concentration for Gaussian arrays is studied under general
assumptions implied by the classic condition of Berman (1964).

Keywords Rate of relative stability - Concentration of maxima -
Exact support recovery - Phase transitions - Functions of Gaussian arrays
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1 Introduction

Let Z;, i = 1,2, ... be independent and identically distributed (iid) standard Nor-
mal random variables. It is well known that their maxima under affine normalization
converge to the Gumbel extreme value distribution. If, however, one chooses to
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standardize the maxima by only dividing by a sequence of positive numbers, then the
only possible limits are constants. Specifically, for all a, ~ \/2log(p), we have

— max Z; ﬂ, 1, asp— oo, (1.1)
ap ielp]
where [p] := {1,---, p} and in fact the convergence is valid almost surely. This

property, known as relative stability, dates back to the seminal work of Gnedenko
(1943) who has characterized it in terms of rapid variation of the law of the Z;’s (see
Section 2.2 below, as well as Barndorff-Nielsen 1963; Resnick and Tomkins 1973;
Kinoshita and Resnick 1991).

In contrast, if the Z;’s are iid and heavy-tailed, i.e., P[Z; > x] o x~¢, for some
a > 0,witha, pl/“, we have

1
—maxZ; 4, £, (1.2)
apicipl

where £ is a random variable with the «-Fréchet distribution.

Comparing (1.1) and (1.2), we see that the maxima have fundamentally different
asymptotic behavior relative to rescaling with constant sequences. In the light-tailed
regime, they concentrate around a constant in the sense of (1.1), whereas in the
heavy-tailed regime they disperse according to a probability distribution viz (1.2).

Although this concentration of maxima phenomenon may be well-known under
independence, we found that it is virtually unexplored under dependence. In this
paper, we will focus on Gaussian sequences, and in fact, more generally, Gaussian
triangular arrays & = {€,(i), i € [p], p € N}, where the €,(i)’s are marginally
standard Normal but possibly dependent. Let u ), be the (1 — 1/p)-th quantile of the
standard Normal distribution, i.e., pa(up) =p (1 — @(up)) = 1. We say that the
array & is uniformly relatively stable (URS), if

maxe, (i) —> 1, as|S,| — oo, (1.3)
u|sp|ieS,,

for every choice of growing subsets S, C {1, ---, p}. Note thatu, ~ /2log(p) (see
e.g. Lemma 3.1). Certainly, the relative stability property shows that all iid Gaussian
arrays are trivially URS. The notion of uniform relative stability, however, is far from
automatic or trivial under dependence. In the recent work of Gao and Stoev (2020), it
was found that URS is the key to establishing the fundamental limits in sparse-signal
support estimation in high-dimensions. Specifically, under URS, a phase-transition
phenomenon was shown to take place in the support recovery problem. For more
details, see Section 2.1 below.

Theorem 3.1 in Gao and Stoev (2020) gives a surprisingly simple necessary and
sufficient condition for a Gaussian array & to be URS. As an illustration, in the
special case where €,(i) = Z;, i € N form a stationary Gaussian time series, the
array & is URS if and only if the auto-covariance vanishes, i.e.,

Cov(Zy, Zg) — 0, ask — oo. (1.4)
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Thatis, (1.1) holds (with a,, ~ /2 log(p)), for any stationary Gaussian time series
Z = {Z;} with vanishing auto-covariance, no matter the rate of decay. The “if” part
of Eq. 1.4 appeared in Theorem 4.1 in Berman (1964).

Condition (1.4) should be contrasted with the classic Berman condition,

1
Cov(Zi, Zg) =0 —— |, ask — oo,
log(k)

which entails distributional convergence under affine normalization. Here, our focus
is not on distributional limits but on merely the concentration of maxima under
rescaling, which can take place under much more severe dependence. In fact, unlike
Berman, here we are not limited to the time-series setting. For a complete statement
of the characterization of URS, see Section 2.2, below.

While Gao and Stoev (2020) characterized the conditions under which the conver-
gence (1.3) takes place, the rate of this convergence remained an open question. In
this paper, our goal is to establish bounds on the rate of concentration for maxima of
Gaussian arrays. Specifically, we establish results of the type

i

where §, — 0 decays at a certain rate. The rate of the sequence §, is quantified
explicitly in terms of the covariance structure of the array. More precisely, the pack-
ing numbers N (7) associated with the UDD condition introduced in Gao and Stoev
(2020) will play a key role. These packing numbers arise from a Sudakov-Fernique
type construction, which appear to be close to optimal, although at this point we do
not know if the so obtained bounds on the rates can be improved (cf Conjecture 1,
below). After completing this work, we became aware of the important results of
Tanguy (2015), which are closely related to ours in the special case of stationary time
series. Our approach, however, is technically different and yields explicit rates for the
general case of Gaussian triangular arrays. For more details, see Remark 5.2, below.

Our general results are illustrated with several models, where explicit bounds on
the rates of concentration are derived. In Section 3, we study the optimal rate of
concentration and show that under rather broad dependence conditions (including the
iid setting), Eq. 1.5 holds if and only if §, > 1/log(p). Somewhat curiously, the

1
— maxe€,(i) — 1
Up i€lpl

>5p] — 0, (1.5)

constant u, matters and the popular choice of u, := \/2log(p) leads to the slower
rates of log(log(p))/ log(p).

Our bounds on the rate of concentration find important application in the study of
uniform relative stability for functions of Gaussian arrays. Specifically, let 1, (i) =
f(ep(i)), where & = {ep(i), ielpl, pe N} is a Gaussian triangular array and
f 1is a given deterministic function. In Section 4.2, using our results on the rate
of concentration for the array &, we establish conditions which imply the uniform
relative stability of the array 5 = {n,(i), i € [p], p € N}. Consequently, we
establish that many dependent log-normal and x2-arrays are URS, and hence obey
the phase-transition result of Gao and Stoev (2020).

The paper is structured as follows. In Section 2, we review the statistical inference
problem motivating the study of the concentration of maxima phenomenon. Recalled
is the notion of uniform decreasing dependence involved in the characterization of

@ Springer



R. Kartsioukas et al.

uniform relative stability for Gaussian arrays. A brief discussion on the optimal rate
of concentration is given in Section 3. Section 4 contains the statement of the main
result as well as some examples and applications. Section 5 contains proofs and
technical results, which may be of independent interest.

2 Concentration of maxima and high-dimensional inference

In this section, we start with the statistical inference problem that motivated us to
study the concentration of maxima phenomenon. Readers who are convinced that
this is a phenomenon of independent interest can skip to Section 2.2, where concrete
definitions and notions are reviewed.

2.1 Fundamental limits of support recovery in high dimensions

Our main motivation to study the relative stability or concentration of maxima
under dependence is the fundamental role it plays in recent developments on high-
dimensional statistical inference, which we briefly review next. Consider the classic
signal plus noise model

Xp(A) = ppi) + (@), i€[pl

where u, = (up(i)) € RP is an unknown high-dimensional ‘signal’ observed
with additive noise. The noise is modeled with a triangular array & = {€,(i), i €
[p], p € N}, where for concreteness, all €,(i)’s are standardized to have the same
marginal distribution F. However, this noise can have arbitrary dependence structure,
in principle.

One popular and important high-dimensional inference context, is the one where
the dimension p grows to infinity and the signal is sparse. Namely, the signal support
set S, :={i € [p] : up(i) # O} is of smaller order than its dimension:

1S, ~ p'=P, for some B € (0, 1).

The parameter 8 controls the degree of sparsity; if 8 is larger, the signal is more
sparse, i.e., has fewer non-zero components. In this context, many natural ques-
tions arise such as the detection of the presence of non-zero signal or the estimation
of its support set (see, e.g., Ingster 1998; Donoho and Jin 2004; Ji and Jin 2012;
Arias-Castro and Chen 2017). Here, as in Gao and Stoev (2020), we focus on the fun-
damental support recovery problem. Particularly, under what conditions on the signal
magnitude we can have exact support recovery in the sense that

P[S, =S,] —> 1, as p — oc.

Gao and Stoev (2020) showed that a natural solution to this problem can be obtained
using the concentration of maxima phenomenon. Specifically, consider the class of
all thresholding support estimators:

S, =1{j elpl : x,(j) > t,(x)}, @2.1)
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where 7,(x) is possibly data-dependent threshold. For simplicity of exposition,
suppose also that the signal magnitude is parametrized as follows

up(i) =+/2rlog(p), i€ Sp,

where r > 0. Consider also the function

g(B) =1+ /1-p)>

Theorems 2.1 and 2.2 of Gao and Stoev (2020) entail that if & is URS (see Definition
2.2 below), then we have the phase-transition:

1, if r > g(B) for suitable S, as in Eq. 2.1

PLSp = Sp] — {0, ifr < g(p) forall S as in Eq. 2.1 7

as p — oo.

That is, for signal magnitudes above the boundary, thresholding (Bonferonni-type)
estimators recover the support perfectly, as p — o0o; whereas for signals below the
boundary, no thresholding estimators can recover the support with positive probabil-
ity. Further, as shown in Gao and Stoev (2020), thresholding estimators are optimal
in the iid Gaussian setting and hence the above phase-transition applies to all possi-
ble support estimators leading to minimax-type results. Interestingly, both Gaussian
and non-Gaussian noise arrays are addressed equally well, provided that they satisfy
the uniform relative stability property. While URS is a very mild condition, except
for the Gaussian case addressed in Gao and Stoev (2020), little is known in general.
Here, we will fill this gap for a class of functions of Gaussian arrays (see Section 4.2),
using our new results on the rates of concentration.

2.2 Concentration of maxima

In this section, we recall some definitions and a characterization of URS in Gao and
Stoev (2020). We start by presenting the notion of relative stability.

Definition 2.1 (Relative stability) Let €, = (€,(j ))?z | be a sequence of random
variables with identical marginal distributions F. Define the sequence (u p);’,o:l to be
the (1 — 1/p)-th quantile of F,i.e.,

up=F~(1—-1/p). 2.2)
The triangular array & = {€,, p € N} is said to have relatively stable (RS) maxima if
1 1 P
—M),:=— max €,() — 1, 2.3)
Up Up i=l,...,p

as p — 0.

Note that by Proposition 1.1 of Gao and Stoev (2020), we have for the standard
Normal distribution, that

up=>(1—1/p) ~ /2log(p). 2.4)

While relative stability is not directly used in this paper, it is a natural prerequisite to
introducing the following generalization.
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Definition 2.2 (Uniform Relative Stability (URS)) Under the notations established
in Definition 2.1, the triangular array & = {e p@), i €] p]} is said to have uniform

relatively stable (URS) maxima if for every sequence of subsets S, C {I,..., p}
such that |S,| — oo, we have
1 1 . P
s, = maxe,(i) — 1, asp — oo. 2.5)
M|Sp‘ M|Sp| lESP

Definition 2.3 (Uniformly Decreasing Dependence (UDD)) A Gaussian triangular
array & with standard normal marginals is said to be uniformly decreasingly depen-
dent (UDD) if for every T > 0 there exists a finite Ng(7) < oo, such that for every
ie{l,...,p},and p € N, we have

{kef{l,...,p}:Cov(ep(k), ep(i)) > 7} < Ng(tr), forallt > 0. (2.6)

That is, for any coordinate j, the number of coordinates which are more than t-
correlated with €, (j) does not exceed N (7).

The next result provides the equivalence between uniform relative stability and
uniformly decreasing dependence.

Theorem 2.1 (Theorem 3.2 in Gao and Stoev (2020)) Let & be a Gaussian trian-
gular array with standard Normal marginals. The array & is URS if and only if it is
UDD.

Theorem 2.1 is the starting point of the rate investigations in our paper. Our main
result, Theorem 4.1, below, extends the former by providing upper bounds on the rate
of concentration. Before that, though, in Section 3 we study cases where the optimal
rate can be formally established.

Remark 2.1 (On the use of the term “upper bound”) Fix a positive sequence 8; J 0.
We refer to 47, as an upper bound on the rate of concentration when Eq. 1.5 holds
for any sequence &, > &7,. Further, for two positive sequences «, and ), we write
ap =< B if

%p

Bp

Let 8; be an upper bound on the rate of concentration and 6, > 8;. Then,

.. ap
0 < ¢; <liminf|—
p—>00

< limsup
p—>00

< () < 00.

p

naturally, Eq. 1.5 holds with §, replaced by 8, for any §,, < 8.

3 On the optimal rate of concentration

In this section, we provide some general comments on the fastest possible rates of
concentration for maxima of Gaussian variables. Somewhat surprisingly, the rate
depends on the choice of the normalizing sequence u . As it turns out poor choices
of normalizing sequences can lead to arbitrarily slow rates. On the other hand, for a
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wide range of dependence structures (including the iid case), the best possible rate
will be shown to be 1/log(p). The question of whether the maxima of dependent
Gaussian arrays can concentrate faster than that rate, however unlikely this may be,
is open, to the best of our knowledge (cf Conjecture 1, below).
Consider a Gaussian array & = {€,(i), i € [p]} with standard Normal marginal.
We shall assume that & is (uniformly) relatively stable, so that in particular,
Lmaxep(i) =: % i> 1,
Up i€[p] Up
as p — oo, where u, := ®~1(1 — 1/p) is the (1/p)-th tail quantile of the standard
Normal distribution.
We consider the iid case first and, for clarity, let M;‘; denote the maximum of p
independent standard Normal random variables. Suppose that for some a, > 0 and
ap, b, € R, we have

Q(a;lx +bp)? — A(x) :==exp{—e "}, asp— oo,
for all x € R. That is, we have
ap(M:—bp) 5 ¢, as p— oo, G.1)

where ¢ has the standard Gumbel distribution A. The next result is well-known. We
give it here since it summarizes and clarifies the possible choices of the normalizing
constants a, and b, for Eq. 3.1 to hold.

Lemma 3.1 (i) We have that
B, 1) -5 ¢ ifandonlyif  pd(,) — 1, (3.2)

as p — oo. In this case, it,, ~ /21log(p) and more precisely

V2log(p) () — u;‘,) — 0, asp— oo, (3.3)
where
% . _ log(log(p)) + log(4x)
Uy, = v2log(p) (1 2log(p) ) . 3.4

(i1) Relation (3.1) holds if and only if

a, ~+/2log(p) and pdP(b,) — 1.
In particular, by part (i), we have that Eq. 3.1 holds with a,, := b, and Eq. 3.3
holds with i, := b,

Proof Part (i). Observe that by the Mill’s ratio (cf Lemma 5.1), p5(ﬁp) — 1lis
equivalently expressed as follows:
¢ (U )p)

Up

p®@,) ~ p — 1, asp— oo,
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where ¢(x) = exp{—x?/2}/+/2m is the standard Normal density. By taking
logarithms, the above asymptotic relation is equivalent to having

~2
u - 1
log(p) — % — log(ii ) — 3 log(2m) — 0. (3.5)

We first prove the ‘if” direction of part (i). Suppose that pE(ﬁp) — 1, or equiva-
lently, Eq. 3.5 holds. Then, one necessarily has i, — oo. It is easy to see that Eq. 3.1
holds with a, := 1, and b,, := U, provided that, for all x € R,

P
® <ﬁ,, + %) S A(x), asp — oo. (3.6)
P

The latter, upon taking logarithms and using the fact that log(1 4+ z) ~ z, as z — O,
is equivalent to having

Pr <ﬁ,, + %) — —log(A(x)) = e, 3.7
p

To prove that Eq. 3.7 holds, as argued above, using the Mill’s ratio, it is equivalent to
verify that

| ~ ~ ~ 1
Ap i=log(p) — 3 (up +x/up)2 — log (up +x/up) - Elog(2n) — —X,

as p — oo. Note that, upon expanding the square and manipulating the logarithm,
we obtain

_ @2 ~ 1 2 1 nr=2 ~2
Ap = log(p) = L= —log i) — 7 log(2m) — x — x*/(2iT%) — log(1 +x /i),

In view of Eq. 3.5 and the fact that I/T[; — 00, we obtain that A, — —x, which yields
Eq. 3.7 and completes the proof of the ‘if” direction of part (i).

Now, to show the ‘only if” direction of part (i), suppose that Eq. 3.1 holds with
a, = b, := U, or, equivalently (3.6) holds. By letting x = 0 in Relation (3.6),
we see that i1, — 00, and then, upon taking logarithms, necessarily p®(i,) — 1,
which completes the proof of Eq. 3.2.

We now show Eq. 3.3. First, one can directly verify that Eq. 3.5 holds with u,
replaced by 7, in Eq. 3.4. This, as argued above, is equivalent to p@(u;) — 1.

Suppose now that, for another sequence i, we have p5(ﬁp) — 1. Then, by the
shown equivalence in Eq. 3.2,

WM —ut) S ¢ and (M-, S ¢

Thus, the convergence of types theorem (see, e.g.,Theorem 14.2 in Billingsley 1995)
yields
u, ~up and w,(u, —iup) — 0.
The last convergence implies the claim of part (ii) since in view of Eq. 3.4, we have
uj, ~ /2log(p).
Part (ii) is a direct consequence of the convergence to types theorem, as argued in
the proof of part (i). O
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The following result characterizes the optimal rate of concentration under an
additional distributional convergence assumption, which holds under the Berman
condition for e.g. the case of stationary time series.

Proposition 3.1 Suppose that & is a dependent triangular Gaussian array, such that

¢pi=ap(My —bp) i) ¢, asp— oo, 3.8)

for some non-degenerate random variable ¢, with the same constants as in the iid
case (3.1). Suppose also that P ({ < x) > 0and P (¢ > x) > Oforall x € R.

Let now the sequence 8, — 0, be an upper bound on the rate of concentration,
i.e., we have

M
P ( —£ 1
ap
The following two statements hold.

> 8p> — 0, p— oo 3.9

(@)  Whenlimsup,_, aplb, —ap| < 00, Relation (3.9) holds if and only if

1 |b
8p > — + —”—1‘ =: 8" (3.10)
ap ap

(b)  Whenlimsup,,_, , aplbp — ap| = 00, Relation (3.9) holds if and only if

8
liminf|:80—1;t— 1} (14 aplby —apl) = oco. (3.11)
p

[7—)00

Proof (a) We will start with the “if”” direction. Relation (3.8) implies that

1 b
;—A4p== §§'+';£.
p P 4

Since by assumption the constants a, and b, are the same as in the iid case
(3.1), Lemma 3.1 entails that b, ~ a, ~ /2log(p). Hence

1 b

—Mp—1=§—’2’+<—”_1>—>0, (3.12)
ap ap ap

which shows that the distributional limit in Eq. 3.8 entails concentration of the

maxima M /a, to 1. Relations (3.10) and (3.12), however imply that

M

p
— —1| = 8p),
a, ’ op( p)

which entails (3.9) by Slutsky (or also Lemma 3.2, below.)
Now, for the converse direction, suppose that Eq. 3.9 holds for some §, »

8)7". This means that we can find a subsequence p(n) so that 8, < c -
8% Vn e N, for a positive constant ¢ that does not depend on n. In view of

p(n)’

Eqg. 3.9, this would mean that
M

0, ;:]P( ﬂ—l‘ >c80’(7;)> — 0, n— oo
ap(n) i
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Moreover, since limsup,,_, , aplb, — ap| < o0, and a;, > 0, the sequence
(aplbp — ap|);’f’:l is bounded. Namely, there exists M > 0, such that 0 <
aplb, —ap| < M, for all p € N. However, we have that
bp(n) 1 ‘
Ap(n)

(o) e (g
Ap(n) Ay 4ro %p(n)

P (Epen) + apimyBpon — apmy) = clapm Bpmy — apm)| > ¢)
P (&) — (¢ + Dapmbpmy — apm > ¢)
P (¢peny > ¢ + (¢ + Dapambpmy) — apml)

Py > c+ (c+DM)
P& >c+ (c+1)M) > 0,

On

v

vy

where the last convergence holds because ¢p ) < ¢. This is a contradiction
and the proof is complete.
(b) We have that

M
P(—P—l

ap

> 5p> = IP’(al, |Mp —ap| > (Spalz,)
= IP’(|§‘,, +ap(by, — a,,)| > (Spa?,)
= ]P’({I, < —SPaIZ, —ap(by —ap))

+P <§p > (Spa[z, —ap(bp — a[,))
=: A(p) + B(p).

Note, however, that Eq. 3.9 entails that both A(p) and B(p) vanish to 0, as
p — oo. This in turn means that

liminf(8 ,a> —a,(bp —ap)) = 0o and 1})rggf(5,,af,+a,,(b,,—a,,))=oo,

p—>00

(3.13)
because of the distributional convergence (3.8). We will work with B(p).
The result for A(p) can be obtained by similar arguments. At first, for B(p)
to vanish to 0, we do need & paf, > ap(b, — ap) eventually. Suppose that

liminfp_)oo(épaf, —ap(by, —ap)) = ¢ < 00, where ¢ > 0. This would mean
that there is a subsequence p(n) such that

8p) @iy = apm) (Bpn) = pmy) = ¢, p = 0.
But then,

B(P(”)) =P <§p(n) > ‘sp(n)alz;(n) - ap(n)(bp(n) - ap(n))) —- P >c¢) >0,

which contradicts the fact that B(p) — 0, as p — o0.
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Finally, note that Eq. 3.13 is equivalent to lim infp%oo(Spalz7 —aplby, —ay|) =

oo, which with straightforward algebra can be expressed as Eq. 3.11. Indeed,

b
apai_ap|bp_ap| :ag I:(Sp— a—p—l’]:ai[sp_azpt]_,rl
p
1)
_ ,2q0pt 14
= a,d)p [W_li|+l
p

b
= [5;[ - 1} (L+aplby, —apl) + 1,
p

which completes the proof.
O

Remark 3.1 (On the optimality of the rate §;”') The rate 87 can be viewed as “the”
optimal rate of concentration in Eq. 3.9 in the sense of Egs. 3.10 and 3.11. As pointed
out by an anonymous referee, the distributional convergence in Eq. 3.8 (whenever it
takes place) is much more informative than a simple concentration of maxima type
convergence. Specifically, by Lemma 3.1 (ii), one can take u, = a, = b, and in this
case Relation (3.12) implies that 1 /a% o 1/log(p) is both an upper and lower bound
on the rate of concentration. That is, the rate 6;’,’7 =1 /a% x 1/log(p) cannot be
improved and in this sense is the optimal rate at which the maxima can concentrate.
The rate of concentration, though, does depend on the choice of the normalization
sequence u . We elaborate on this point next.

Therole of the sequence up It is well-known that under quite substantial dependence,
the convergence in distribution (3.8) holds, with the same constants as in the inde-
pendent case. For example, suppose that €,,(i) = Z(i), i € Z come from a stationary
Gaussian time series, which satisfies the so-called Berman condition (Berman 1964):

Cov(Z(k), Z(0)) =0 < ) , ask — oo.

log(k)

Notice, by Lemma 3.1 (ii), however, we also have Ep =b,(Mp —bp) i) ¢, and

1 I 1
—M,-1=2=¢ . 3.14
by " 2= F <log(p)> G149

Compare Relations (3.12) and (3.14). Since a, ~ b, ~ \/2log(p), from Eq. 3.14,
we have that the rate of concentration of M, relative to the sequence b, is 1/ log(p).
On the other hand, while the first term in the right-hand side of Eq. 3.12 is of order
1/log(p) the presence of the second term can only make the rate of concentration
therein slower. Indeed, this is formally established in Lemma 3.2. To gain some more
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intuition that the poor choice of a sequence a, can lead to a slower rate of concentra-
tion, suppose that a, = b,/(1 + g(p)), for an arbitrary sequence g(p) > —1, such
that g(p) — 0. Then, by Eq. 3.12,

1 4
—M,—1=2=2+¢(p).
ap (1])

One can take g(p) — O arbitrarily slow. Finally, as a more concrete example, one
typically uses b, := u;‘) = /2log(p)(1 — (log(log(p)) + log(4mr))/41og(p)) and

ap = +/2log(p). Itis easily seen that b, = a, (1 + g(p)), where
log(log(p)) + log(4rm)  log(log(p))
g(p)=— e
4log(p) log(p)
This shows that, in particular, in the case of iid maxima (as well as in the general case

where Eq. 3.8 holds) the normalization /2 log(p) does not lead to the optimal rate,
since

1 M1 log(log(p))

V2log(p) 7 e log(p)

where &, ocp 1, means that §,,/n, — c in probability, for some positive constant c.

The optimal rate is 1/1log(p) and it is obtained by normalizing with any sequence
bp such that p® (b p) — 1. This follows from the next simple result, which shows that
the rate of concentration in Eq. 3.12 is the slower of the rates 1 /af, and (b, —ap)/ap.

. d
Lemma 3.2 Suppose that for some random variables ¢, we have £, — ¢, as p —
00, where ¢ is a non-constant random variable. Then, for all sequences o, and B,
we have

P
aplp+pBp —0 = lapl+I|Bpl — 0.
That is, the rate of aplp + Bp is always the slower of the rates of {a),} and {B)}.

Proof The ‘<’ direction follows from Slutsky. To prove ‘=>’, it is enough to show
that for every p(n) — oo, there is a further sub-sequence g(n) — oo, {g(n)} C
{p(n)}, such that
|aq(n)| + |,Bq(n)| — 0.

In view of Skorokhod’s representation theorem (Theorem 6.7, page 70 in Billingsley
2013), we may suppose that ;;‘ — ¢*, with probability one, where g‘[’f 4 ¢p and
c* 4 . Also, assuming that o p(n);;;(n) + Bpmy — 0, in probability, implies that
there is a further sub-sequence g(n) — oo, such that

aq(n)gg‘(n)(a)) + Bymy = 0, asg(n) — oo, (3.15)

for P-almost all w. Since also g“;( n) (w) = *(w), for P-almost all w, and since ¢* is
non-constant, we have ;;(n)(a),-) — *(w;), i = 1,2 for some ¢*(w1) # ¢*(wn).

Thus, by subtracting two instances of Relation (3.15) corresponding to w = w1
and w = wy, we obtain

g (§g ) (@1) = &y (@2)) = 0,
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which since ({(}"(n)(wl) — {;"(n)(wz)) — *(w1) — £ (w2) # 0, implies ag(y — 0.
This, in view of Eq. 3.15 yields B,(,) — 0, and completes the proof.

Remark 3.2 The above considerations establish the optimal rate of concentration of
the maxima M, = max;¢[p] €, (i), whenever the limit in distribution (3.8) holds.
We have shown that this optimal rate is 1/log(p) and is in fact obtained, when con-
sidering M, /u, for pE(up) ~ 1. The rate of concentration of M,/\/2log(p) is
log(log(p))/ log(p), which is only slightly sub-optimal.

On the other hand, as we know by Theorem 2.1, uniform relative stability is equiv-
alent to UDD and hence the concentration of maxima phenomenon takes place even
if Eq. 3.8 fails to hold. At this point, we do not know what is the optimal rate in gen-
eral. In Section 4, we provide upper bounds on this rate. We conjecture, however, the
presence of more severe dependence can only lead to slower rates of concentration
and in particular the optimal rate of concentration for UDD arrays cannot be faster
than 1/ log(p)—the one for independent maxima.

Conjecture 1 Let & be a Gaussian URS array. Relation (4.3) implies 5, >
1/1log(p).

4 Rates of uniform relative stability
4.1 Gaussian arrays

Throughout Sections 4 and 5, & = {€,(i), i € [p]} will be a Gaussian array
with standard Normal marginals, unless stated otherwise. We shall also assume
that & is URS. For simplicity of notation and without loss of generality we will
work with §, = [p] (see Remark 4.2). We will obtain upper bounds on the rate,
i.e., sufficient conditions on the dependence structure of &, which ensure certain
rates. These results are of independent interest and will find concrete applications in
Section 4.2, where conditions ensuring the URS of functions of Gaussian arrays are
established.

The following definition is an ancillary tool for the comparison of the rates of two
vanishing sequences and introduces some notation for this purpose.

Definition 4.1 Let (« p);": , and (B p);’f: | be two positive sequences converging to
0. We will say that «, is of lower order than 8, (or slower than 8,) , denoted by
ap > Bp.if Bp/ap — 0,as p — o0, ie., B, = oap).

The next theorem constitutes the main result of this paper.
Theorem 4.1 Consider a UDD Gaussian triangular array & = {€,(i), i € [p]} with
standard Normal marginals and let Ng(t) be as in Definition 2.3. Let t(p) — 0 be

such that

a(p) := log Ng(t(p))/log(p) — 0, as p — oo. @1
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Then, for all 5, > 0 such that

1
5p > a(p)+(p) + ——, 42)
p log(p)
we have .
p(w_l >5,,>+o, as p — oo, .3)
Up

Here u, is defined as in BEq. 2.2 taking F = ®, the cumulative distribution function
of standard Normal distribution.

The proof of Theorem 4.1 depends on a number of technical results, which will be
presented and proved in Section 5. In order to make the proof easier for the reader to
follow, we postpone its demonstration until Section 5. We proceed next with several
comments and examples.

Remark 4.1 Note that in Theorem 4.1 the covariance structure of & appears only
through Ng (7). The collection {Ng(t), T € (0, 1)} constitutes a collection of uni-
form upper bounds on the number of covariances in each row of the triangular array
& that exceed the threshold 7. This means that the ordering of the p random variables
in each row of & is irrelevant.

Remark 4.2 The support recovery results of Gao and Stoev (2020) require URS in
the sense of Eq. 2.5 for a subsequence S, C [p], with [S,| — ooc. By the previous
remark, upon relabelling the triangular array &, Theorem 4.1 applies in this setting
with p replaced by |S,|, and entails rates on the convergence in Eq. 2.5.

The preceding Theorem 4.1 gives us an upper bound on the rate at which the con-
vergence in Eq. 2.5 takes place for a UDD Gaussian array &. Observe that this bound
depends crucially on the covariance structure of & through N« (7). This dependence
will be illustrated in the following examples, where the upper bound stated in Eq. 4.2
is obtained for three specific covariance structures.

Example 4.1 The iid case and optimality of the rate bounds.

Suppose that all €,,(j)’s are iid. Then, we can pick 7(p) = 0 or T < 1 vanishing to
0 arbitrarily fast, and we would have that Ng(7) = 1, because of the strict inequality
in Eq. 2.6. This implies that «(p) = log(Ng(t))/log(p) = 0. Thus, in this case, the
upper bound in Eq. 4.2 becomes 1/ log(p). Observe that this rate matches the optimal
rate in Conjecture 1.

Example 4.2 Power-law covariance decay.
Consider, first, the simple case where & comes from a stationary Gaussian time
series, €, (k) = €(«), with auto-covariance

p(k) = Cov(e(k),e(0) xk™7, y>0. “4.4)

Then, the classic Berman condition p(k) = o(1/log(x)) holds and as shown in the
discussion after Proposition 3.1, the optimal rate in Eq. 2.5 is 1/log(p).
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In this example, we will demonstrate that our result [Theorem 4.1] leads to the
nearly optimal rate log(log(p))/log(p). As in the previous remark, we see that this
is in fact the optimal rate if u, in Eq. 2.5 is replaced by ,/21og(p). (See Section 3).
Note, however, that our arguments apply in greater generality and do not depend on
the stationarity assumption. Indeed, assume that & is a general Gaussian triangular
array such that (UDD’) of Gao and Stoev (2020) holds, i.e.,

|Cov(ep (i), ()| < ¢ |mp@@) — ()| (4.5)

for suitable permutations 7, of {1, ..., p}, where ¢ does not depend on p. (Note that
Eq. 4.5 entails Eq. 4.4 for 7, = id, where id is the identity permutation.) Then, one
can readily show that Ne(t) = &(z~/7), as t — 0. Thus,

() = 10EWs(@)  og(x™117) log(7)

o(p) = = — .
log(p) log(p) y log(p)

Using this a(p), the upper bound on the rate in Theorem 4.1 becomes

log(log(p)) log(7) 1 log(7)
x — +1(p)+ = =

log(p) log(p) log(p) log(p)
This is minimized by taking 7(p) = 1/log(p) in Eq. 4.6 and the upper bound on the

rate becomes

a(p)+7(p)+ +7(p). (4.6)

I log(og(p)) 1 log(log(p))
2(p) log(p) log(p) ~  log(p)

Recall that in the case when & has iid components, the optimal rate of concentration
of the maxima is 1/log(p) and in fact it becomes log(log(p))/log(p) when one
uses the normalization /2 log(p) in place of u . Therefore, this example shows that
under mild power-law type covariance decay conditions, Gaussian triangular arrays
continue to concentrate at the nearly optimal rates for the iid setting.

a(p) + t(p) +1
(0]

Example 4.3 Logarithmic covariance decay.
Following suit from Example 4.2, we consider first the case where the errors come
from a stationary time series with auto-covariance

p(k) = Cov(e(k), €(0)) o (log(k))™", ask — o0, 4.7

for some v > 0. Note that for 0 < v < 1, the Berman condition p (k) = o(1/log(x))
is no longer satisfied and the results from Section 3 cannot be applied to establish the
optimal rate in Eq. 2.5. Using Theorem 4.1, we will see that an upper bound on this
rate is 8; = (log(p))fv%l.

Indeed, consider the more general case where & is a Gaussian triangular array,
such that (UDD’) of Gao and Stoev (2020) holds, i.e.,

|Cov(ep (i), €,(j))| < ¢ (log (|7p (i) — 7p(D])) ", (4.8)
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for suitable permutations 7, of {1, ..., p} and ¢ does not depend on p. Again, note
that Eq. 4.8 implies Eq. 4.7 for the identity permutation. One can show that in this

case Ng(t) = O (e’fl/u), as T — 0 and thus,

—1/v
log(Ng(v)) _ log (ff’ ) 1
a(p) = (% sy , asp — oo.
log(p) log(p) t/Vlog(p)
To find the best bound on the rate in the context of Eq. 4.2 we minimize
1

a(p) +7(p) + log(p) T log(p)  *  log(p)’

with respect to t. Considering p fixed, basic calculus gives us that the r.h.s. is mini-

v

mized for t(p) = (vlog(p))~ »+1. With this choice of t the fastest upper bound from
Theorem 4.1 becomes

V771 7] - (log(p)) 77T + o (log(p)) 1.

log(p)
It only remains to show that the choice of t actually allows us to pick Ng(t) =
% (ef_l/”) . A sufficient condition would be p > ¢ - e " fora suitably chosen

v

constant ¢ not depending on either p or 7. Substituting t = (vlog(p))™ v+T, we
equivalently need

1
p > elognrt

It is readily checked, by taking logarithms in both sides, that this holds for p suffi-
ciently large and thus, the fastest upper bound for this kind of dependence structure
is (log(p)) 7T,

Observe that as v — oo this upper bound approaches asymptotically the optimal
rate 1/log(p) achieved under the Berman condition (see Section 3). Our results yield,
however, an upper bound on the rate of concentration in Eq. 2.5 for the case 0 < v <
1, where the Berman condition does not hold.

4.2 Functions of Gaussian arrays

The main motivation behind the work in this section is to determine when the concen-
tration of maxima property is preserved under transformations. Specifically, consider
the triangular array

A = {np(j) = f(ep())), j €lpl, peN}, 4.9)

where & = {ep (), jelpl, pe N} is a Gaussian triangular array with standard
Normal marginals.

Given that Eq. 4.3 holds, our goal is to find bounds on a sequence d,, | 0, such
that )

max
P(‘M—1’>dp>—>0, as p — 0, (4.10)
Up

where v, = f(up) and u, is as in Eq. 2.2. We first address the case of monotone
non-decreasing transformations.
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Proposition 4.1 Asssume that f is a non-decreasing differentiable and eventually
strictly increasing function, with limy_, , f(x) # 0 and the derivative f'(x) is either
eventually increasing or eventually decreasing as x — oo. If Eq. 4.3 holds with
some &, > 0, then Eq. 4.10 holds provided that

“pap max {lf/(up(l - 8p)|, |f/(“p(1 + 5p)|}

d d* = . 4.11
r=d )l @10

Proof Since u, 1 oo, by the monotonicity of f and the fact that it is eventually
strictly increasing, one can show that f(u,) = v, = F,f(l — 1/p), for p large
enough. We start by noticing that

max;e(p) 1p(Jj) 1‘ _ ‘maxje[p] flep() — flup)
fup)
£ (maxjerp) €p () = £ up)
fup)
where the second equality follows by the monotonicity of f.

Now recall that f is differentiable. By the Mean Value Theorem, there exists a
possibly random 6, between u,, and max j¢[p] €, (), such that

Up

, (4.12)

f (max;epp €p(j)) = fup) ‘ | ( . )‘
= 6 — . (413
fup) f(up)f( p) \ max €, (j) —up (4.13)

Combining Eqs. 4.12 and 4.13, we obtain

P( w . dp> _ ]P’( upf'(6)) . ‘mane[p] () 1‘ > dp)
Up S up) “p
_ P( maxjerpep() | M)
0 uplf'©Op)1)

where the second equality follows from the fact that f'(6,) # 0 over the event of
interest, since d, > 0. This shows that for any non-negative sequence §,, vanishing
to 0, such that Eq. 4.3 holds, we have that
p (| M@ elp] np(J) 1
Up

> c?p> —~ 0, asp— oo, (4.14)

where
d~ L up8p|f/(9p)|
P TN
[f (up)l.
Now, we know by Eq. 4.3 that

(4.15)

|6p —up| < < updp

max €,(j) —up
J€lp]

with probability going to 1, as p — oo. This implies that
P(up(1—38p) <0p <up(1+6,) —> 1, asp— oo,

@ Springer



R. Kartsioukas et al.

In turn, by the eventual monotonicity of f”, the last convergence implies that
P (| f'©p)| < max {|f'(up(1 —3,)

and equivalently

El

flu, +5p))|}) — 1, asp— oo,

IP’(a?p < d;) — 1, asp — oo. (4.16)

By Eqgs. 4.15 and 4.16 we conclude that Eq. 4.14 holds with c?p substituted by d7. This
shows that d; is an upper bound of the optimal rate of concentration, i.e., Eq. 4.11
implies Eq. 4.10. O

A typical and very important case where Proposition 4.1 applies is when the array
& undergoes an exponential transformation, illustrated in the following example.

Example 4.4 Let & be as in Proposition 4.1 and consider

Hi = {np() = 2P, j elp). p e}, *.17)

which is a triangular array with lognormal marginal distributions. This is sometimes
referred to as the multivariate lognormal model (Halliwell 2015). Let §,, be such that
Eq. 4.3 holds. Then, an immediate application of Proposition 4.1 shows that as long
as u,6, — 0, an upper bound on the rate of convergence in Eq. 4.10 is

d% = up8pe"r’r ~ ups), ~ 8,y/210g(p).
That is, lognormal arrays can have relatively stable maxima, provided that the

underlying maxima of the Gaussian array concentrate at a rate §,, = o0 (1 /+/1og( p)) .

Popular models like the ones with x12 marginals can be obtained from Proposi-
tion 4.1 with the monotone transformation f(x) := F~!(®(x)), where F is the
cdf of the desired distribution. The classic multivariate X12' models, however, are
obtained by squaring the elements of the Gaussian array, i.e., via the non-monotone
transformation f(x) = x2. Such models are addressed in the next result.

Corollary 4.1 Let all the assumptions of Proposition 4.1 hold and let d}; be defined
as before. Assume now that f is an even (f(x) = f(—x)) differentiable and even-
tually strictly increasing function, with limy o f(x) # 0. Assume also that f is
monotone non-decreasing on (0, 00). Then, the conclusion Eq. 4.11 still holds.

Proof We start by observing that

P (‘maxje[p] np(J) _ 1‘ - dp) —p (‘max,ie[p] Sep(j)) — fup)
Sup) Sup)

- IE”(‘ S (minjep) €,(j))— f(up) —d )—HP’(‘ S(maxjepy€p(j))— f(up)

= fup) g fup)

> dp>
>dp>,

(4.18)
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because the symmetry and monotonicity of f on (0,00) imply that
maxje[p] f(€p(j)) equals either f (maxje[p] ep(j)) or f (minje[p] ep(j)).

By Proposition 4.1 we can readily obtain that for d, > d}, the second term of
Eq. 4.18 converges to 0. Now, we handle the first term of Eq. 4.18. By the symmetry
of f we have that

min €,(j)) = f(— min €,(j)) = f(max(—e,(j)).
f(je[p] () = f( Imin p() f(je[p]( p ()
Notice that by verifying the equality of the covariance structures, we have
. . d . .
{—en(i). jelpl} ={ep(), jelpl}.

Hence maxe[pj(—€,(j)) 4 maxje(p] €p(j), and again by Proposition 4.1 we get
that for d, > dj, the first term of Eq. 4.18 also converges to 0. This completes the
proof. O

Using Corollary 4.1 we can now treat the multivariate x> model introduced in
Dasgupta and Spurrier (1997).

Example 4.5 Let & be as in Proposition 4.1 and consider
e = {np() =30, jelpl pen],

a triangular array with X12 marginal distributions. Let §, be as in Eq. 4.3. Then, a
simple application of Corollary 4.1 implies Eq. 4.10, provided

dp > df =28,(1+8,) ~ 28,

In contrast to Example 4.4, taking squares does not lead to a slower rate of conver-
gence. Indeed, in Example 4.4 our estimate of the rate is slowed down by a factor of

Jlog(p), while in the x? case it remains Sp.

We shall now see that the rate of convergence is not slowed down by any power
transformation x — x*, for any A > 0.

Example 4.6 Power-Law Transformations.

Let once again & be as in Proposition 4.1 and consider the power transformations
f(x) = x*, A > 0. In the cases where A ¢ N, we use the functions fl’\(x) = |x|*
or f(x) = x=*> = sign(x) - |x|*. Note that differentiability at 0 is not needed in
any of the proofs, so using flA does not violate any of the assumptions. Let also §,
be as in Eq. 4.3, i.e., a rate sequence for the convergence in Eq. 2.5. Then, a suitable
application of Proposition 4.1 or Corollary 4.1, shows that an upper bound on the rate
of convergence in Eq. 4.10 is

dy =28 (1+8,)" "1~ 28, or  dy=28,(1=8,)""" ~ 21,

In view of Examples 4.1, 4.2 and 4.3, we now show how the rate d; ~ Ad) is
affected under different correlation structures of the underlying Gaussian array &
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Recall that in the iid case of Example 4.1 we have that the optimal rate is 6, >

(Sgpt = 1/1og(p). This implies that an upper bound on the rate of concentration is

d* ~ A8 .
b P> log(p)

Moreover, for the power-law covariance decay covariance structure (Example 4.2),
we observe that compared to the iid case, the rate of concentration §, is scaled by
a factor of log(log(p)). Namely, for the power-law transformations we get that the
upper bound is
Alog(log(p))

log(p)

Finally, we examine the logarithmic covariance decay (Example 4.3). Remember
that in this case the rate we have for & is §, = (log( p))fﬁ . This implies that the
upper bound of the rate of concentration for the power-law transformations is

A
(log(p)) >+
Observe that in this case, d; is a valid upper bound aside from the value of v. We

will see in the following Example 4.7, that the same is not true for the exponential
power-law transformations.

dy ~ 35y ~

iy ~ 18 ~

In the last example of this section, we explore exponential power transformations
and how they affect our bounds on the rate of convergence.

Example 4.7 Exponential Power-Law Transformations.

Let & be as in Proposition 4.1 and consider the exponential power transformations
fx) = e"k, A > 0, A # 1. (Note that A = 1 is the lognormal case which we have
alredy seen in Example 4.4). In the cases where A ¢ N, we use the functions fl)‘ x) =
e or ) = e = sl Similarly to Example 4.6, differentiability
at 0 is not needed in any of the proofs, so using fl’\ does not violate any of the
assumptions. Let also 6, be as in Eq. 4.3. Then, suitable applications of Proposition
4.1 or Corollary 4.1 show that as long as ui;é p — 0, an upper bound on the rate of
convergence in Eq. 4.10 is

dsy = hasd, (14 8, e[+ =iy >
and . R
dy = hais,(1— 8, el 0= =10 ipg <4 < 1,
In both cases we have d; ~ Adp(2 log(p))’\/z, as p — oo. As a generalization
of the lognormal case (A = 1), we see that the iid rate §, is scaled by a factor of
)

(,/log(p)) . This means that this kind of arrays would still have relatively stable
maxima, provided that the underlying maxima of the Gaussian array concentrate at a
rate §, = o (1/(10g(p)))‘/2) .

At this point, we examine how the rate d; ~ Adp(2log( p)))‘/ z adjusts under the
varying covariance structures of & in Examples 4.1, 4.2 and 4.3. In an analogous
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manner to Example 4.6, we get that for the iid case, an upper bound on the rate of
concentration is

N A A_
dy ~ 18puly > 275 (log(p)) 1",

while for the power-law covariance decay covariance structure we obtain
* A A
s ~ A8y ~ 27 (log(p)) 2~ log(log(p)).

In the previous two instances we notice that the covariance structure does not
impose any restrictions on the values of A, in order to guarantee concentration of
maxima for the transformed triangular array. This is not the case for the logarithmic
covariance decay, since the upper bound becomes

dl ~ A8 pu’s ~ 252 (log(p)) 37T .

The aforementioned dl*, is a a sensible upper bound for the rate of concentration in
A
PRV
imply that in the lognormal case (A = 1), v > % guarantees that the transformed

array is relatively stable.

this case, only if d; — 0, as p — oo. This is so, when v > Thus, our results

Remark 4.3 In Conjecture 1, we posit that the fastest rate of convergence for a UDD
Gaussian array is bounded above by 1/log(p). Nevertheless, from Example 4.1 for
the iid case, our bound in Eq. 4.2 is again 1/ log(p). Since u,, ~ /2log(p), we see
that we can get an upper bound on the rate of f(x) = e only for 0 < A < 2.
The range A € (0, 2) is also natural, because one can show that the transformation
fx) = e"l, for A > 2, leads to heavy power-law distributed variables 1, (j). Heavy-
tailed random variables no longer have relatively stable maxima, which makes the
question about the rate of concentration of maxima meaningless.

We will end this section with a corollary, readily obtained by the discussion in the
end of Example 4.7.

Corollary 4.2 Suppose that 7€ := {77,, (), jelpl, pe N} is a multivariate log-
normal array as in Eq. 4.17. Suppose that

1
(log(I7, (j) — 7, (K)D)"

for some v > 1/3, permutations 7wy of {1, ..., p} and a constant c independent of p.
Then the array ¢ is URS.

|Cov (n,(j), np(®)| < c- (4.19)

Proof Let & = {ep(j), jelpl, pe N} be the underlying Gaussian array. Then,
we have that ,(j) = e/ for every j € [p]. Thus,

Cov(np (/). 1p () = Cov (D), e+ ®)
—E <e6p<j>+ep(k)> ) (eep(j)> E (eep(ia) C420)
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Recall that the moment generating function for a Normal random variable X ~
N(u,0%)isM(t) =E (e’x) — M+ )2 Since €p (i) follow the standard Normal
distribution, we have €,(j) + €,(k) ~ N(0,2 + 2Cov(e,(j), €5 (k))), and hence
Eq. 4.20 becomes

Cov(n,(j), np(k)) = e - (eC°V<€»<f'>’€n<k>> - 1) . 421

In turn, Eq. 4.21 along with Eq. 4.19 implies that

o (eCrerer® )| < 2. ! - (422
e (log(lmy(j) — mp(k)D)

Using the inequality |x|] < ele® — 1], x € [—1,1] in Eq. 4.22, since

\Cov(ep (), €p (k))| < 1, we finally obtain that

c 1
Cov(ep(j), epk))| = — - , :
[Covtep(i en®0} = 2 (log(I7y () — 7, (k))"
The last relation implies that & has a logarithmic covariance decay covariance struc-
ture (see Example 4.3). Combined with the discussion in the end of Example 4.7, the
proof is complete. U

5 Technical proofs

In this section we present the proof of the capstone Theorem 4.1. Recall that we desire
to find an upper bound on the rate of positive vanishing sequences §, such that

P <‘max,~e[p] 6p(i) 1
Up

>8p>—>0, as p —> o0.

To this end, let

1
= —maxe€,(i), 5.1
&p u p () 5.1
where & = {e,,(i), i€ [p]} is a URS Gaussian array with standard Normal

marginals. Observe that

PE, =11 > 68p) = P&, > 1+68,) +P(E, <1-6)
=: 1(8,) + 11(5,). (5.2)

Thus, to obtain the desired rate we need to recover a bound on the rate of 1(5,,) and
I1(8,,). Note that in our endeavor to secure upper bound on the term II(5,) we will
use the expectation of &,. The integrability of &, is ensured by Appendix A.2 of
Chatterjee (2014), or Pickands (1968) in conjunction with Eq. 1.3.

Term I(8p) In the following proposition, we find an upper bound on the rate of §,, in
1(8,) of Eq. 5.2. Interestingly, the following result does not involve the dependence
structure of the array &.
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Proposition 5.1 Let & = {€,(i), i € [pl} be an arbitrary Gaussian triangular
array, where the marginal distributions are standard Normal and let &), be defined as
in Bq. 5.1. If 6, — 0 is a positive sequence such that

8p > (5.3)
"7 log(p)
then, regardless of the dependence structure of &, we have
. —1 _
Jim (5p E(, — 1)+) -0, (5.4)

and consequently P(§, > 1 +6,) — 0, as p — oo.

We need the following simple bound for the Mill’s ratio (see also (1.2.2) or (2.1.1)
in Adler and Taylor, 2009).

Lemma 5.1 Forallu > 0, we have
L _dw
Ivuz = ¢)/u ~

where ¢ (1) = e’“z/z/m and ®(u) = [ ¢ (x)dx.

Proof We have
6 o0 o0 X2*142
w _ / ¢@Mx:u/ e~ 7 dx
¢)/u  du) Jy u
0 24u)2—u2 S ;
= u/ ef(~+ > dz = / eiéuef'“dz = E[eiEz/(z"z)],
0 0

where E is an exponentially distributed random variable with unit mean, and we used
the change of variables z := x — u. Observing that 1 — x < e ™™ < 1, forall x > 0,
we get

2
1= £ ey o
2u? -
The result follows upon taking expectation and recalling that E[E2] = 2. O

Proof (Proposition 5.1) Note first that Eq. 5.4 implies P(§, > 1+§,) — 0. Indeed,
this follows from the Markov inequality:

P, — 1> 8,) = P((5p — Dy > 8) <38,'EE, — Dy
Now, we focus on proving Eq. 5.4. We can write

1 |
—E¢, -1y = —/ P&, — 1> z)dz
8p dp Jo

foop(g,, > 14 8,x)dx =1 J(8,), (5.5)
0
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where in the last integral we used the change of variables z = §,x.
Recalling that &, = u;l max;e([p] €p (i), by the union bound, for the last integrand
we have that

Dup(l+8px))

P, > 1+ 8,x) < p@u,(l +8,x)) = — (5.6)
D(up)
By Lemma 5.1, we further obtain that
Pup(l+8,x) _ 1 Plup(l+5,x))
E(up) - 1—1/(1Vu%) (14 8,x)p(up)
1 ”%7 2
=1-1a ) eXp{ - 7(“ +opx)T = 1>}
< B exp{—ui(Sl,x}, 5.7

where B, := (1 —1/(1\/14%))_1 — 1,as p — 00, s a constant independent of x > 0
and in the last inequality we also used the simple bound (1 + § ,,)c)2 —1>25,x.

Condition (5.3) means that there is a sequence y (p) diverging to infinity slower
than log(p) such that

5(p) = 1)/(p) _

og(p)
Thus, by Relation (5.7) and the facts that uf} ~ 2log(p) and B, ~ 1,as p — o0, we
obtain

Dup(l +8px)) <2
D(up)
for all sufficiently large p. Since y(p) — oo, Relation (5.6) and the Dominated
Convergence Theorem applied to Eq. 5.5, implies

; ; X5, =2y (P)X gy —
pli)n;OJ(Sp) <limp_ oo fo 2e dx = 0.

This completes the proof of Eq. 5.7. O

. e_z)/(p)x’

TermlI(8p) Handling term II of Eq. 5.2 is more involved and this is where the depen-
dence structure of the array plays a role. We start by presenting a more careful
reformulation of Lemma B.1 in Gao and Stoev (2020).

Lemma 5.2 Let (X i)le be p iid random variables with distribution F and density
f, such that
E(X;)- = E(max{—X;, 0}) < oo.

Denote the maximum of the X;’s as M, = max;=1 .. p X;. Suppose that f is
eventually decreasing, i.e., there exists a Coy such that f(x1) > f(x2) whenever
Co < x1 < x2, then

EM E[X (/X1 <C

P > (1 — FP(Cp)) + M

Up+1 Up+1

where upy 1 = F~ (1 —1/(p+1)).

FP(Co),
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Proof For the proof, refer to the proof of Lemma B.1 in Gao and Stoev (2020). [

Recall that a Gaussian triangular array & = {ep( j)}f=1 with standard Normal
marginals is said to be UDD if for every T > 0,

Ne(t) :=sup max |{x € [p]: Cov(e,(i), €,(k)) > t}| < 0. (5.8)
peN’:L“‘sP
That is, for every p and i € [p], there are at most Ng(7) indices «, such that the
covariance between €, (i) and €, (k) exceeds 7.

The function Ng(t) encodes certain aspects of the dependence structure of the
array &. It will play a key role in the derivation of the upper bound on the rate of
concentration of maxima. The next result is an extension of Proposition A.1 in Gao
and Stoev (2020) tailored to our needs. For the benefit of the reader, we reproduce the
key argument involving a packing construction and the Sudakov-Fernique bounds,
which may be of independent interest.

Proposition 5.2 For every UDD Gaussian array &, and any subset S, C {1, ..., p}
with q = |Sp|, and T € (0, 1), we have that

max €, (j)
€Sy Ug/Ng(@)+1 1 2/m 1
E > VA - — ) 59
Ug B Ug 24/Ne(®) Ug/Ne(t)+1 24/Ne(T) (.9)

=1-Ry, (5.10)
where Ng(t) is given in Eq. 5.8.

Remark 5.1 Note that without loss of generality we can assume S, = {I,..., p}.
We prove a slightly more general result, but the only application in this paper will be
forg = p.

Proof Define the canonical (pseudo) metric on S),,

d(i, j) = \JE(e(@) — €(j))*.

This metric takes values between 0 and 2, since €,(i), i = 1,..., p, have zero
means and unit variances. Fix t € (0, 1), take y = +/2(1 — 1) and let I" be a y-
packing of §),. That is, let I" be a subset of S, such that forany i, j € I', i # j, we
have d(i, j) > vy, i.e.,

i, j) =2(1 - 2,6, ) =y =20 - 1),

or equivalently, ¥,(i, j) < 7. We claim that we can find a y-packing I" whose
number of elements is at least

r= 2.

Ng(T)

.11
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Indeed, I" can be constructed iteratively as follows:

Step 1:  Set SI(,O) :=S8pand I' := {1}, where j; € SI(,O) is an arbitrary element. Set
k:=1.
Step 2:  Set S(k) S(k b \ By (jix), where

By, (i) :=1{i € Sp 1 d(, jx) <y}
Step 3: If Sl(jk) # (), pick an arbitrary jii € S(k), set I := I' U {jk+1}, and
k :=k 4+ 1, go to Step 2; otherwise stop.
By the definition of UDD, there are at most Ng(t) coordinates whose covariance
with €,(j) exceed t. Therefore, at each iteration, | B, (jx)| < Ng(t), and hence
1SO1 = [S$D = B, (jo)| = g — kN (7).

The construction can continue for at least g/Ng(t) iterations, which implies
Eq.5.11.
Now, we define on this y-packing I" an independent Gaussian process {n(j)}jer,

LY
=2 7). jer,
n(j) 7 (). J€

where the Z(j)’s are iid standard Normal random variables. The increments of the
new process are smaller than that of the original in the following sense,

E(m@) — n(j)? = y? <d*, j) = E(ep(i) — €,(j)%

forall i # j, i,j € I'. Applying the Sudakov-Fernique inequality (see, e.g.,
Theorem 2.2.3 in Adler and Taylor 2009) to {n(j)} jer and {€,(j)}jer, we have

E [rJnealzc(n(j))} <E _Ijnea;((ep(j))} <E [%%i(ep(j))} .

This implies
1 M1
E|: maxep(])} E max n(j)] CArt
Ug JESy LU|r|+1 Jjer uq
“\I‘H-l -A/1 IE|: max Z(J)i|
Ug Uir|+1 jer

Now, the application of Lemma 5.2 to the standard Normal distribution for Cy = 0
entails that,

E[maxjer Z()] _ 1 2/m 1
Ui+ T 2w 27
Since |I'| > q/Ng(t) the desired lower bound in Eq. 5.9 is obtained. O]

We are now interested in the rate at which the lower bound in Eq. 5.9 converges to
1. Equivalently, we desire to find the rate of decay of R,. This rate is obtained in the
following Lemma.
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Lemma 5.3 Let R;, a(q) be defined as in Eqs. 5.10 and 4.1 respectively. Then

=< al(g) +1(g) + 271 g q — o0. (5.12)

Proof Note that by definition R; — 0, as ¢ — oo. This implies that R; ~ log(1 —
Ry), as g — 00, so we just need the rate of

o 4/Ne(0)+1 2/x 1
log(1-R,) = lo ( V1=1(q)- ( Zq/Ne(T) Uy /N1 2q/NE(T)>>
u . 1
— log (M)+§log<1—r(q)>

Uq
e (1  V2m
S\ TN T w2080 )

Now, the facts that a(g) = log(Ng(7))/log(g) and u, ~ /2log(g) imply that

Ug/Ngo+1 \/2log<1+q1—a<q>>N \/1og<q1 “D _ e

Uy 2log(q) log(q)

where we used the relation

g~ @ = Jog@—logWee) — _9__ (5.13)
Ng(7)

However, since o(q) = log(Ng(t(g))/log(g) — 0 and 7(g) — 0, we have
log(1 —a(q)) = —alg) + o(a(q)),
log(1 —7(q)) = —7(q) +o(z(q)),

and by Eq. 5.13

2/ 1
log| 1 — —%— — CSTN
24/Ne(T) Ug/Ne(t)+1 24/Ne(T)

= log <1 _ 2_ql—tx(q) _ 2/ ] 2_q1—a(q>>
uq/Ne(f)"rl

. 2_ql—a<q) To (2_(/1—&(4))

As a result, we have

Ry = alg) +og) +270 " o (max fa(@). 1. 27" |) . 519)

which completes the proof. O

Proof of Theorem 4.1 We are now in position to complete the proof of Theorem 4.1,
which consists of a combination of the results that have already been established in
Section 5.
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Proof Recall the definition of &), in Eq. 5.1 and that
P&y — 11 > 8p) =106p) +11(5,),

where I(8,,) and II(3 ) are defined as in Eq. 5.2. We shall show that both terms vanish.

Proposition 5.1, along with Eq. 4.2, imply that 1(§,) = P(§, > 1+6,) — 0, as
p — oo. Observe that the term I(§,) = P(§, > 1 + §,,) vanishes, regardless of the
dependence structure of the array &. The dependence plays a key role in the rate of

the term II(5,).
We now steer our focus towards term II(8,). The Markov inequality yields
EE, —1)-
G, =PE, <1-6p) < M.
8p
Since E(§, — 1)— < E(§, — D4 + |E(§p — 1)|, we have

1
16p) < 5 (B — D+ + [EE, — D))
p

1
=5 (Ep — D+ + [EGEp — DI+ +[EEp — DI-)
p
1
=5 (2EEp — D+ + [E(p — D1-), (5.15)
p

where the last inequality follows from the fact that [E(§, — D]y < E(, — D+.

Proposition 5.1 and Eq. 4.2 imply that the term 5;1151(51, — 1)y in Eq. 5.15
vanishes. Moreover, Proposition 5.2 entails

[E¢p — D]- = max{0, —E(, — D} < R,
Thus, the term 1I(§,,) vanishes, provided that R, /5, — 0. This follows, however,
from Lemma 5.3 and Eq. 4.2, since for a(p) — 0, we have
1 _pl-ap)
log(p)

and the proof is complete. O

, asp— o0

Remark 5.2 After we completed and submitted this paper, we became aware of the
important work of Tanguy (2015). According to their paper, in the stationary case, the
upper bound of Theorem 4.1 above partially follows from their Theorem 3. However,
our work is in the general setting of triangular arrays and does not require stationar-
ity. The result in Theorem 5 of Tanguy (2015), could in principle, be used to derive
bounds on rates of concentration of maxima for non-stationary arrays. This, however,
requires verifying two technical conditions. Our approach, based on the UDD condi-
tion yields rates that can be explicitly related to the covariance structure of the array.
The in-depth comparison of the two approaches merits an independent study beyond
the scope of the present work.
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