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Phase Transitions in Transfer Learning for

High-Dimensional Perceptrons
Oussama Dhifallah and Yue M. Lu

Abstract

Transfer learning seeks to improve the generalization performance of a target task by exploiting the knowledge

learned from a related source task. Central questions include deciding what information one should transfer and

when transfer can be beneficial. The latter question is related to the so-called negative transfer phenomenon, where

the transferred source information actually reduces the generalization performance of the target task. This happens

when the two tasks are sufficiently dissimilar. In this paper, we present a theoretical analysis of transfer learning

by studying a pair of related perceptron learning tasks. Despite the simplicity of our model, it reproduces several

key phenomena observed in practice. Specifically, our asymptotic analysis reveals a phase transition from negative

transfer to positive transfer as the similarity of the two tasks moves past a well-defined threshold.

I. INTRODUCTION

Transfer learning [1]–[5] is a promising approach to improving the performance of machine learning tasks. It

does so by exploiting the knowledge gained from a previously-learned model, referred to as the source task, to

improve the generalization performance of a related learning problem, referred to as the target task. One particular

challenge in transfer learning is to avoid the so-called negative transfer [6]–[9], where the transferred source

information reduces the generalization performance of the target task. Recent literature [6]–[9] shows that negative

transfer is closely related to the similarity between the source and target tasks. Transfer learning may hurt the

generalization performance if the tasks are sufficiently dissimilar.

In this paper, we present a theoretical analysis of transfer learning by studying a pair of related perceptron

learning tasks. Despite the simplicity of our model, it reproduces several key phenomena observed in practice.

Specifically, the model reveals a sharp phase transition from negative transfer to positive transfer (i.e. when transfer

becomes helpful) as a function of the model similarity.

A. Models and Learning Formulations

We start by describing the models for our theoretical study. We assume that the source task has a collection

of training data {(as,i, ys,i)}ns

i=1, where as,i ∈ R
p is the source feature vector and ys,i ∈ R denotes the label

corresponding to as,i. Following the standard teacher-student paradigm, we shall assume that the labels {ys,i}ns

i=1

are generated according to the following model

ys,i = ϕ(a⊤
s,iξs), ∀ i ∈ {1, . . . , ns}, (1)

where ϕ(·) is a scalar deterministic or probabilistic function and ξs ∈ R
p is an unknown source teacher vector.

Similar to the source task, the target task has access to a different collection of training data {(at,i, yt,i)}nt

i=1,

generated according to

yt,i = ϕ(a⊤
t,iξt), ∀ i ∈ {1, . . . , nt}. (2)

Here, ξt ∈ R
p is an unknown target teacher vector. We measure the (dis)similarity of the two tasks by

ρ
def
=

ξ⊤t ξs
‖ξt‖‖ξs‖

,
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with ρ = 0 indicating two uncorrelated tasks, whereas ρ = 1 means that the tasks are perfectly aligned.

For the source task, we learn the optimal weight vector ŵs by solving a convex optimization problem

ŵs = argmin
w∈Rp

1

p

ns∑

i=1

ℓ
(
ys,i;a

⊤
s,iw

)
+
λ

2
‖w‖2 . (3)

Here, λ ≥ 0 is a regularization parameter, and ℓ(.; .) denotes some general loss function that can take one of the

following two forms
{
ℓ (y;x) = ℓ̂(y − x), for regression task

ℓ (y;x) = ℓ̂(yx), for classification task,
(4)

where ℓ̂(.) is a convex function.

In this paper, we consider a common strategy in transfer learning [4] which consists of transferring the optimal

source vector, i.e. ŵs, to the target task. One popular approach is to fix a (random) subset of the target weights to

values of the corresponding optimal weights learned during the source training process [10]. In our learning model,

this amounts to the following target learning formulation:

ŵt =argmin
w∈Rp

1

p

nt∑

i=1

ℓ
(
yt,i;a

⊤
t,iw

)
+
λ

2
‖w‖2 (5)

s.t. Qw = Qŵs. (6)

Here, ŵs is the optimal solution of the source learning problem, and Q ∈ R
p×p is a diagonal matrix with diagonal

entries drawn independently from a Bernoulli distribution with probability δ ≤ 1. Thus, on average, we are retaining

δp number of entries from the source optimal vector ŵs. In addition to possible improvement to the generalization

performance, this approach can considerably lower the computational complexity of the target learning task by

reducing the number of free optimization variables. In what follows, we refer to δ as the transfer rate and call (5)

the hard transfer formulation.

Another popular approach in transfer learning is to search for target weight vectors in the vicinity of the optimal

source weight vector ŵs. This can be achieved by adding a regularization term to the target formulation [11], [12],

which in our model becomes

ŵt = argmin
w∈Rp

1

p

nt∑

i=1

ℓ
(
yt,i;a

⊤
t,iw

)
+
λ

2
‖w‖2 + 1

2

∥∥Σ(w − ŵs)
∥∥2 , (7)

with Σ ∈ R
p×p denoting some weighting matrix. In what follows, we refer to (7) as the soft transfer formulation,

since it relaxes the strict equality in (5). In fact, the hard transfer in (5) is just a special case of the soft transfer

formulation, if we set Σ to be a diagonal matrix whose diagonal entries are either +∞ (with probability δ) or 0
(with probability 1− δ).

To measure the performance of the transfer learning methods, we use the generalization error of the target task.

Given a new data sample (at,new, yt,new) with yt,new = ϕ(ξ⊤t at,new), we assume that the target task predicts the

corresponding label as

ŷt,new = ϕ̂[ŵ⊤
t at,new], (8)

where ϕ̂(·) is a pre-defined scalar function that might be different from ϕ(·). We then calculate the generalization

error of the target task as

Etest =
1

4υ
E

[(
yt,new − ϕ̂(ŵ⊤

t at,new)
)2]

, (9)

where the expectation is taken with respect to the new data (at,new, yt,new). The variable υ allows us to write a

more compact formula: υ is taken to be 0 for a regression problem and υ = 1 for a binary classification problem.

Finally, we use the training error

Etrain =
1

p

nt∑

i=1

ℓ
(
yt,i;a

⊤
t,iŵt

)
+

1

2

∥∥Σ(ŵt − ŵs)
∥∥2 ,

to quantify the performance of the training process.
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Fig. 1. Theoretical predictions v.s. numerical simulations obtained by averaging over 100 independent Monte Carlo trials with dimension

p = 2500. (a) Binary classification with logistic loss. We take αs = 10αt, λ = 0.3, Σ = Ip/
√

5 and ρ = 0.85, where αs = ns/p and

αt = nt/p. The functions ϕ(·) and ϕ̂(·) are both the sign function. For hard transfer, we set the transfer rate to be δ = 0.5. Full source

transfer corresponds to δ = 1.0, whereas no transfer corresponds to δ = 0. (b) Nonlinear regression using quadratic loss, where ϕ(·) is the

ReLu function and ϕ̂(·) is the identity function. Soft identity, beta and uniform matrices refer to different choices of the weighting matrix in

(7). They correspond to setting Σ to be an identity matrix, and a random matrix with diagonal elements drawn from the beta and uniform

distributions, respectively. We scale all diagonal elements of Σ to have the same mean. We also take αs = 10αt, λ = 0.1, and ρ = 0.8.

B. Main Contributions

The main contributions of this paper are two-fold, as summarized below:

1) Precise Asymptotic Analysis: We present a precise asymptotic analysis of the transfer learning approaches

introduced in (5) and (7) for Gaussian feature vectors. Specifically, we show that, as the dimensions p, ns, nt grow

to infinity with the ratios αs = ns/p, αt = nt/p fixed, the generalization errors of the hard and soft formulations

can be exactly characterized by the solutions of two low-dimensional deterministic optimization problems. (See

Theorem 1 and Corollary 1 for details.) Our asymptotic predictions hold for any convex loss functions used in the

training process, including the squared loss for regression problems and logistic loss commonly used for binary

classification problems.

As illustrated in Figure 1, our theoretical predictions (drawn as solid lines in the figures) reach excellent agreement

with the actual performance (shown as circles) of the transfer learning problem. Figure 1(a) considers a binary

classification setting with logistic loss, and we plot the generalization errors of different transfer approaches as a

function of the target data/dimension ratio αt = nt/p. We can see that the hard transfer formulation (5) is only

useful when αt is small. In fact, we encounter negative transfer (i.e. hard transfer performing worse than no transfer)

when αt becomes sufficiently large. Moreover, the soft transfer formulation (7) seems to achieve more favorable

generalization errors as compared to the hard formulation. In Figure 1(b), we consider a regression setting with a

squared loss, and explore the impact of different weighting schemes on the performance of the soft formulation.

We can see that the soft formulation indeed considerably improves the generalization performance of the standard

learning method (i.e. learning the target task without any knowledge transfer).

2) Phase Transitions: Our asymptotic characterizations reveal a phase transition phenomenon in the hard transfer

formulation. Let

δ⋆ = argmin
0≤δ≤1

Etest(δ),

be the optimal transfer rate that minimizes the generalization error of the target task. Clearly, δ⋆ = 0 corresponds to

the negative transfer regime, where transferring the knowledge of the source task will actually hurt the performance

of the target task. In contract, δ⋆ > 0 signifies that we have entered the positive transfer regime, where transfer

becomes helpful.

Figure 2(a) illustrates the phase transition from negative to positive transfer regimes in a binary classification

setting, as the similarity ρ between the two tasks moves past a critical threshold. Similar phase transition phenomena
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Fig. 2. Phase transitions of the hard transfer formulation. When the similarity ρ between the two tasks is small, we are in the negative

transfer regime, where we should not transfer the knowledge from the source task. However, as ρ moves past a critical threshold, we enter

the positive transfer regime. (a) Binary classification with squared loss, with parameters αt = 2, αs = 2αt and λ = 0. Both ϕ(·) and ϕ̂(·)
are the sign function. (b) Nonlinear regression with squared loss, with parameters αt = 2, αs = 2αt, and λ = 0. ϕ(.) is the ReLu function

and ϕ̂(.) is the identity function.

also appear in nonlinear regression, as shown in Figure 2(b). Interestingly, for this setting the optimal transfer rate

jumps from δ⋆ = 0 to δ⋆ = 1 at the transition threshold.

For general loss functions, the exact locations of the phase transitions can only be found numerically by solving

the deterministic optimization problems in our asymptotic characterizations. For the special case of squared loss

with no regularization, however, we are able to obtain the following simple analytical characterization for the phase

transition threshold: We are in the positive transfer regime if and only if

ρ > ρc(αs, αt) = 1− E[ϕ2(z)] − E
2[zϕ(z)]

2E2[zϕ(z)]

( 1

αt − 1
− 1

αs − 1

)
, (10)

where z is a standard Gaussian random variable. This result is shown in Proposition 1.

By the Cauchy-Schwarz inequality, E[ϕ2(z)] ≥ E
2[zϕ(z)]. It follows that ρc(αs, αt) is an increasing function of

αt and a decreasing function of αs. This property is consistent with our intuition: As we increase αt, the target task

has more training data to work with, and thus we should set a higher bar in terms of when to transfer knowledge;

As we increase αs, the quality of the optimal source vector becomes better, in which case we can start doing the

transfer at a lower similarity level. In particular, when αt > αs, we have ρc(αs, αt) > 1 and thus the inequality

in (10) is never satisfied (because |ρ| ≤ 1 by definition). This indicates that no transfer should be done when the

target task has more training data than the source task.

C. Related Work

The idea of transferring informaton between different domains or different tasks was first proposed in [1] and

further developed in [2]. It has been attracting significant interest in recent literature [4]–[9], [11], [12]. While most

work focuses on the practical aspects of transfer learning, there have been several studies (e.g., [13], [14]) that seek

to provide analytical understandings of transfer learning in simplified models. Our work is particularly related to

[14], which considers a transfer learning model similar to ours, but for the special case of linear regression. The

analysis in this paper is more general as it considers arbitrary convex loss functions. We would also like to mention

an interesting recent work that studies a different but related setting referred to as knowledge distillation [15].

In term of technical tools, our asymptotic predictions are derived using the convex Gaussian min-max theorem

(CGMT). The CGMT is first introduced in [16] and further developed in [17]. It extends a Gaussian comparison

inequality first introduced in [18]. It particularly uses convexity properties to show the equivalence between two

Gaussian processes. The CGMT has been successfully used to analyze convex regression formulations [17], [19],

[20] and convex classification formulations [21]–[24].
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D. Organization

The rest of this paper is organized as follows. Section II states the technical assumptions under which our results

are obtained. Section III provides an asymptotic characterization of the soft transfer formulation. The precise analysis

of the hard transfer formulation is presented in Section IV. Our theoretical predictions hold for general convex loss

functions. We specialize these results to the settings of nonlinear regression and binary classification in Section V,

where we also provide additional numerical results to validate our predictions. Section VI provides the detailed

proof of the technical statements introduced in Sections III and IV. Section VII concludes the paper. The Appendix

provides additional technical details.

II. TECHNICAL ASSUMPTIONS

The theoretical analysis of this paper is carried out under the following assumptions.

Assumption 1 (Gaussian Feature Vectors): The feature vectors {as,i}ns

i=1 and {at,i}nt

i=1 are drawn independently

from a standard Gaussian distribution. The vector ξs ∈ R
p can be expressed as ξs = ρξt +

√
1− ρ2ξr, where the

vectors ξt ∈ R
p and ξr ∈ R

p are independent from the feature vectors, and they are generated independently from

a uniform distribution on the unit sphere.

Define m as the number of transferred entries in (5). Our results are valid in the high-dimensional asymptotic

setting where the dimensions p, ns, nt and m grow to infinity at fixed ratios.

Assumption 2 (High-dimensional Asymptotic): The number of samples and the number of transferred components

in hard transfer satisfy ns = ns(p), nt = nt(p) and m = m(p) with αs,p = ns(p)/p → αs > 0, αt,p = nt(p)/p →
αt > 0 and δp = m(p)/p→ δ > 0 as p→ ∞.

Assumption 3 (Loss Function): The loss function ℓ(y; .) defined in (4) is a proper convex function in R. Moreover,

define a random function L(x) =
∑nt

i=1 ℓ(yi;xi), where yi∼ϕ(zi), with {zi} being a collection of independent

standard normal random variables. Denote by ∂L the sub-differential set of L(x). Then there exists a universal

constant C > 0 such that

P

(
sup

‖v‖≤C
√
nt

sup
s∈∂L(v)

‖s‖ ≤ C
√
nt

)
p→∞−−−→ 1.

Furthermore, we consider the following assumption to guarantee that the generalization error defined in (9) con-

centrates in the large system limit.

Assumption 4 (Regularity Conditions): The data generating function ϕ(.) is independent from the feature vectors.

Moreover, the following conditions are satisfied.

• ϕ(·) and ϕ̂(·) are continuous almost everywhere in R. For every h > 0 and z ∼ N (0, h), we have 0 <
E[ϕ2(z)] < +∞ and 0 < E[ϕ̂2(z)] < +∞.

• For any compact interval [c, C], there exists a function g(·) such that

sup
h∈[c,C]

∣∣ϕ̂(hx)
∣∣2 ≤ g(x) for all x ∈ R.

Additionally, the function g(·) satisfies E[g2(z)] < +∞, where z ∼ N (0, 1).

Finally, we introduce the following assumption to guarantee that the training and generalization errors of the soft

formulation can be asymptotically characterized by deterministic optimization problems.

Assumption 5 (Weighting Matrix): Let Λ = Σ
⊤
Σ where Σ is the weighting matrix in the soft transfer formulation.

Let σmax(Λ) denote its largest eigenvalue, and let σmin,1(Λ) and σmin,2(Λ) denote its two smallest eigenvalues. There

exist two constants µmin ≥ 0 and µmax ≥ 0 such that




P(σmax(Λ) ≤ µmax)
n→∞−−−→ 1

σmin,1(Λ)
p−−−→ µmin∣∣σmin,1(Λ)− σmin,2(Λ)

∣∣ p−−−→ 0.

(11)

Moreover, we assume that the empirical distribution of the eigenvalues of the matrix Λ converges weakly to a

probability distribution Pµ(.) supported in [µmin µmax].
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III. SHARP ASYMPTOTIC ANALYSIS OF THE SOFT TRANSFER FORMULATION

In this section, we study the asymptotic properties of the soft transfer formulation. Specifically, we provide a

precise characterization of the training and generalization errors corresponding to (7).

The asymptotic performance of the source formulation defined in (3) has been studied in the literature [24]. In

particular, it has been shown that the asymptotic limit of the source formulation in (3) can be quantified by the

following deterministic optimization problem:

min
qs,rs≥0

sup
σ>0

αsE

[
Mℓ(Ys,.)

(
rsHs + qsSs;

rs
σ

)]
− rsσ

2
+
λ

2
(q2s + r2s). (12)

Here, Ys = ϕ(Ss), and Hs and Ss are two independent standard Gaussian random variables. Furthermore, the

function Mℓ(Ys,.) introduced in the scalar optimization problem (12) is the Moreau envelope function defined as

Mℓ(y,.)(a; b) = min
c∈R

ℓ(y; c) +
1

2b
(c− a)2. (13)

The expectation in (12) is taken over the random variables Hs, Ss.

In our work, we focus on the target problem with soft transfer, as formulated in (7). It turns out that the asymptotic

performance of the target problem can also be characterized by a deterministic optimization problem:

min
qt,rt≥0

sup
σ>−µmin

−σr
2
t

2
+

1

2

(
(1− ρ2)(q⋆s)

2 + (r⋆s)
2
)
T2(σ)

+ αtE

[
Mℓ(Yt,.)

(
rtHt + qtSt;T1(σ)

)]
+
λ

2
(q2t + r2t )

− 1

2

(
qt − ρq⋆s

)2 (
σ − 1/T1(σ)

)
. (14)

Here, Yt = ϕ(St), and Ht and St are independent standard Gaussian random variables. Additionally, µmin represents

the minimum value of the random variable with distribution Pµ(.) as defined in Assumption 5. In the formulation

(14), the constants q⋆s and r⋆s are the optimal solutions of the asymptotic formulation given in (12). Moreover, the

functions T1(.) and T2(.) are defined as follows:

T1(σ) = Eµ[1/(µ + σ)], T2(σ) = Eµ

[
µσ/(µ+ σ)

]
,

where the expectations are taken over the probability distribution Pµ(.) defined in Assumption 5.

Theorem 1 (Precise Analysis of the Soft Transfer): Suppose that the Assumptions 1, 2, 3, 4, and 5 are satisfied.

Then, the training error corresponding to the soft transfer formulation in (7) converges in probability as follows

Etrain
p→∞−−−→ C⋆

t − λ

2

(
(q⋆t )

2 + (r⋆t )
2
)
, (15)

where C⋆
t , q⋆t and r⋆t are the optimal objective value and the optimal solution of the scalar formulation in (14),

respectively. Moreover, the generalization error introduced in (9) corresponding to the soft transfer formulation

converges in probability as follows

Etest
p→∞−−−→ 1

4υ
E

[(
ϕ(ν1)− ϕ̂(ν2)

)2]
, (16)

where ν1 and ν2 are two jointly Gaussian random variables with zero mean and a covariance matrix given by
[
1 q⋆t
q⋆t (q⋆t )

2 + (r⋆t )
2

]
.

The proof of Theorem 1 is based on the CGMT framework [17, Theorem 6.1]. The detailed proof is provided

in Section VI-C. The statements in Theorem 1 are valid for a general convex loss function and general learning

models that can be expressed as in (1) and (2). The analysis in Section VI-C shows that the deterministic problems

in (12) and (14) are the asymptotic limits of the source and target formulations given in (3) and (7), respectively.

Moreover, it shows that the deterministic problems (12) and (14) are strictly convex in the minimization variables

and concave in the maximization variables. This implies the uniqueness of the optimal solutions of the minimization

problems.
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Remark 1: The results of the theorem show that the training and generalization errors corresponding to the

soft transfer formulation can be fully characterized using the optimal solutions of the scalar formulation in (14).

Moreover, from its definition, (14) depends on the optimal solutions of the scalar formulation in (12) of the source

task. This shows that the precise asymptotic performance of the soft transfer formulation can be characterized after

solving two scalar deterministic problems.

IV. SHARP ASYMPTOTIC ANALYSIS OF HARD TRANSFER FORMULATION

In this section, we study the asymptotic properties of the hard transfer formulation. We then use these predictions

to rigorously prove the existence of phase transitions from negative to positive transfer.

A. Asymptotic Predictions

As mentioned earlier, the hard transfer formulation can be recovered from (7) as a special case where the

eigenvalues of the matrix Λ are +∞ with probability δ and 0 otherwise. Thus, we obtain the following result as

a simple consequence of Theorem 1.

Corollary 1: Suppose that the Assumptions 1, 2, 3 and 4 are satisfied. Then, the asymptotic limit of the hard

formulation defined in (5) is given by the following deterministic formulation

min
qt,rt≥0

sup
σ>0

λ

2
(q2t + r2t ) +

σδ

2

[
(1− ρ2)(q⋆s)

2 + (r⋆s)
2
]

+ αtE

[
Mℓ(Yt,.)

(
rtHt + qtSt;

1− δ

σ

)]
− σr2t

2

+
σδ

2(1− δ)

(
qt − ρq⋆s

)2
. (17)

Additionally, the training and generalization errors associated with the hard formulation converge in probability to

the limits given in (15) and (16), respectively.

B. Phase Transitions

As illustrated in Figure 2, there is a phase transition phenomenon in the hard transfer formulation, where the

problem moves from negative transfer to positive transfer as the similarity of the source and target tasks increases.

For general loss functions, the exact location of the phase transition boundary can only be determined by numerically

solving the scalar optimization problem in (17).

For the special case of squared loss, however, we are able to obtain analytical expressions. For the rest of this

section, we restrict our discussions to the following special settings:

(a) The loss function ℓ(·, ·) in (3) and (5) is the squared loss, i.e. ℓ(y, x) = 1
2(y − x)2.

(b) The regularization strength λ = 0 in the source and target formulations (3) and (5).

(c) The data/dimension ratios αs and αt satisfy αs > 1 and αt > 1.

We first consider a nonlinear regression task, where the function ϕ(·) in the generative models (1) and (2) can

be arbitrary, and the function ϕ̂(·) in (8) is the identity function.

Proposition 1 (Regression Phase Transition): In addition to the conditions (a)–(c) introduced above, assume that

the pre-defined function ϕ̂(·) in (8) is the identity function. Let δ⋆ be the optimal transfer rate that leads to the

lowest generalization error in the hard formulation (5). Then,

δ⋆ =

{
0 if ρ < ρc(αs, αt)

1 if ρ > ρc(αs, αt),
(18)

where ρc(αs, αt) is defined in (10).

The result of Proposition 1, whose proof can be found in Section VI-D1, shows that ρc(αs, αt) is the phase

transition boundary separating the negative transfer regime from the positive transfer regime. When the similarity

metric ρ < ρc(αs, αt), the optimal transfer ratio δ⋆ = 0, indicating that we should not transfer any source knowledge.

Transfer becomes helpful only when ρ moves past the threshold. Note that for this particular model, there is also
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an interesting feature that the optimal δ⋆ jumps to 1 in the positive transfer phase, meaning that we should fully

copy the source weight vector.

Next, we consider a binary classification task, where the nonlinear functions ϕ(·) and ϕ̂(·) are both the sign

function. We first define a function

g(αt, αs) = 1− (1− 2
π
)αt(αs − αt)

(αs − 1)
[
4
π
(αt − 1)αt + 2(1 − 2

π
)(αt − 1)

] . (19)

Proposition 2 (Classification): Assume that the conditions (a)-(c) introduced above hold, and both ϕ(·) and ϕ̂(·)
are the sign function. Then

δ⋆ > 0 if ρ > g(αt, αs). (20)

We prove this result at the end of Section VI. Unlike (18), the result in (20) only provides a sufficient condition

for when the hard transfer is beneficial. Nevertheless, our numerical simulations show that the sufficient condition

in (20) is actually the correct phase transition boundary for the majority of parameter settings for αt, αs.

V. ADDITIONAL SIMULATION RESULTS

In this section, we provide additional simulation examples to confirm our asymptotic analysis and illustrate the

phase transition phenomenon. In our experiments, we focus on the regression and classification models.

A. Model Assumptions

For the regression model, we assume that the source, target and test data are generated according to

yi = max(a⊤
i ξ, 0), ∀i ∈ {1, . . . , n}. (21)

The data {(ai, yi)}ni=1 can be the training data of the source or target tasks. In this regression model, we assume

that the function ϕ̂(.) is the identity function, i.e. ϕ̂(x) = x. Then, the generalization error corresponding to the

soft formulation converges in probability as follows

Etest
p→∞−−−→ v − 2cq⋆t + ((q⋆t )

2 + (r⋆t )
2),

where c and v are defined as follows

c = E[zmax(z, 0)], v = E[max(z, 0)2].

Here, z is a standard Gaussian random variable and q⋆t and r⋆t are defined in Theorem 1. Additionally, the asymptotic

limit of the generalization error corresponding to the hard formulation can be expressed in a similar fashion.

For the binary classification model, we assume that the source, target and test data labels are binary and generated

as follows:

yi = sign(a⊤
i ξ), ∀i ∈ {1, . . . , n}. (22)

Here, the data {(ai, yi)}ni=1 can be the training data of the source and target tasks. In this classification model,

the objective is to predict the correct sign of any unseen sample ynew. Then, we fix the function ϕ̂(.) to be the

sign function. Following Theorem 1, it can be easily shown that the generalization error corresponding to the soft

formulation given in (7) converges in probability as follows

Etest
p→∞−−−→ 1

π
cos−1

( q⋆t√
(q⋆t )

2 + (r⋆t )
2

)
.

Here, q⋆t and r⋆t are the optimal solutions of the target scalar formulation given in (14). The generalization error

corresponding to the hard formulation given in (5) can be expressed in a similar fashion.
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Fig. 3. Additional illustrations of the phase transition phenomenon. (a) Regression (squared loss, αt = 0.5, and αs = 3αt) (b) Regression

(squared loss, αt = 2, and αs = 2αt) (c) Binary classification (squared loss, αt = 1.5, and αs = 3αt) (d) Binary classification (hinge loss,

αt = 1.5, and αs = 3αt). In all the experiments, we set the regularization strength to be λ = 0.1. The blue line represents our theoretical

predictions of the optimal transfer rate obtained by solving our asymptotic results in Section IV for multiple values of δ. The empirical

results are averaged over 100 independent Monte Carlo trials with p = 2500.

B. Phase Transitions in the Hard Formulation

In Section IV, we have presented analytical formulas for the phase transition phenomenon, but only for the

special case of squared loss with no regularization. The main purpose of this experiment, shown in Figure 3, is

to demonstrate that the phase transition phenomenon still takes place in more general settings with different loss

functions and regularization strengths.

In all the cases shown in Figure 3, the transition from negative to positive transfer is a discontinuous jump from

standard learning (i.e. no transfer) to full source transfer. Additionally, Figures 3(c) and 3(d) show that the loss

function has a small effect on the phase transition boundary.

C. Soft Transfer: Impact of the Weighting Matrix and Regularization Strength

In this experiment, we empirically explore the impact of the weighting matrix Σ on the generalization error

corresponding to the soft formulation. We focus on the binary classification problem with logistic loss. The weighting

matrix in (7) takes the following form

Σ =
√
βtV , (23)



10

1 2 3 4 5
0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

(a)

0 0.5 1 1.5 2
0.18

0.2

0.22

0.24

0.26

0.28

(b)

Fig. 4. Continuous line: Theoretical predictions. Circles: numerical simulations. (a) αs = 6αt, λ = 0.1, βt = 1/10 and ρ = 0.9. (b)

αt = 1, αs = 5αt, λ = 0.3 and ρ = 0.75. In all the experiments, we consider the binary classification problem with the logistic loss

function. The empirical results are averaged over 50 independent Monte Carlo trials and we set p = 1000.

where V is a diagonal matrix generated in three different ways. (1) Soft Identity: V is an identity matrix; (2) Soft

Uniform: the diagonal entries of V are drawn independently from the uniform distribution and then scaled to have

their mean equal to 1; (3): Soft Beta: similar to (2), but with the diagonal entries drawn from the beta distribution,

followed by rescaling to unit mean.

Figure 4(a) shows that the considered weighting matrix choices have similar generalization performance, with

the identity matrix being slightly better than the other alternatives. Moreover, Figure 4(b) illustrates the effects of

the parameter βt in (23) on the generalization performance. It points to the interesting possibility of “designing”

the optimal weight matrix to minimize the generalization error.

D. Soft and Hard Transfer Comparison

In the last simulation example, we consider the regression model and compare the performance of the hard and

soft transfer formulations as a function of αt and ρ.

Figure 5(a) shows that the soft formulation provides the best generalization performance for all values of αt.

Moreover, we can see that the hard transfer formulation is only useful for small values αt. Figure 5(b) shows that

the performance of the soft and hard transfer formulations depend on the similarity between the source and target

tasks. Specifically, the generalization performances of different transfer approaches all improve as we increase the

similarity measure ρ. We can also see that the full source transfer approach provides the lowest generalization

error when the similarity measure is close to 1, while the soft transfer method leads to the best generalization

performance at moderate values of the similarity measure. At very small values of ρ, which means that the two

tasks share little resemblance, the standard learning method (i.e. no transfer) is the best scheme one should use.

VI. TECHNICAL DETAILS

In this section, we provide a detailed proof of Theorem 1, Corollary 1 and Proportions 1 and 2. Specifically, we

focus on analyzing the generalized formulation in (7) using the CGMT framework introduced in the following part.

A. Technical Tool: Convex Gaussian Min-Max Theorem

The CGMT provides an asymptotic equivalent formulation of primary optimization (PO) problems of the following

form

Φp(G) = min
w∈Sw

max
u∈Su

u⊤Gw + ψ(w,u). (24)
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Fig. 5. Continuous line: Theoretical predictions. Circles: numerical simulations. (a) αs = 12αt, λ = 0.2 and ρ = 0.75. (b) αt = 1.5,

αs = 8αt and λ = 0.4. In all the experiments, we consider the regression setting with a squared loss. The hard transfer formulation uses

δ = 0.5, and the soft transfer formulation uses an identity weighting matrix. The empirical results are averaged over 50 independent Monte

Carlo trials and we set p = 1000.

Specifically, the CGMT shows that the PO given in (24) is asymptotically equivalent to the following formulation

φp(g,h) = min
w∈Sw

max
u∈Su

‖u‖g⊤w +‖w‖h⊤u+ ψ(w,u),

referred to as the auxiliary optimization (AO) problem. Before showing the equivalence between the PO and AO,

the CGMT assumes that G ∈ R
n×p, g ∈ R

p and h ∈ R
n, all have i.i.d standard normal entries, the feasibility sets

Sw ⊂ R
p and Su ⊂ R

n are convex and compact, and the function ψ(., .) : Rp × R
n → R is continuous convex-

concave on Sw ×Su. Moreover, the function ψ(., .) is independent of the matrix G. Under these assumptions, the

CGMT [17, Theorem 6.1] shows that for any χ ∈ R and ζ > 0, it holds

P

(∣∣Φp(B)− χ
∣∣ > ζ

)
≤ 2P

(∣∣φp(g,h)− χ
∣∣ > ζ

)
. (25)

Additionally, the CGMT [17, Theorem 6.1] provides the following conditions under which the optimal solutions

of the PO and AO concentrates around the same set.

Theorem 2 (CGMT Framework): Consider an open set Sp,ǫ. Moreover, define the set Sc
p,ǫ = Sw \ Sp,ǫ. Let φp

and φcp be the optimal cost values of the AO formulation in (25) with feasibility sets Sw and Sc
p,ǫ, respectively.

Assume that the following properties are all satisfied

(1) There exists a constant φ such that the optimal cost φp converges in probability to φ as p goes to +∞.

(2) There exists a positive constant ζ > 0 such that φcp ≥ φ+ ζ with probability going to 1 as p→ +∞, for any

fixed ǫ > 0.

Then, the following convergence in probability holds
∣∣Φp − φp

∣∣ p−→ 0, and P(ŵp ∈ Sp,ǫ)
p→∞−→ 1,

for any fixed ǫ > 0, where Φp and ŵp are the optimal cost and the optimal solution of the PO formulation in (24).

Theorem 2 allows us to analyze the generally easy AO problem to infer asymptotic properties of the generally hard

PO problem. Next, we use the CGMT to rigorously prove the technical results presented in Theorem 1.
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B. Precise Analysis of the Source Formulation

The source formulation defined in (3) is well–studied in recent literature [25]. Specifically, it has been rigorously

proved that the performance of the source formulation can be fully characterized after solving the following scalar

formulation

min
qs,rs≥0

sup
σ>0

αsE

[
Mℓ(Ys,.)

(
rsHs + qsSs;

rs
σ

)]

− rsσ

2
+
λ

2
(q2s + r2s). (26)

Here, Ys = ϕ(Ss), and Hs and Ss are two independent standard Gaussian random variables. The expectation in

(26) is taken over the random variables Hs and Ss. Furthermore, the function Mℓ(Ys,.) introduced in the scalar

optimization problem (26) is the Moreau envelope function defined in (13).

C. Precise Analysis of the Soft Transfer Approach

In this part, we provide a precise asymptotic analysis of the generalized transfer formulation given in (7).

Specifically, we focus on analyzing the following formulation

min
w∈Rp

1

p

nt∑

i=1

ℓ
(
yi;a

⊤
i w

)
+
λ

2
‖w‖2 + 1

2

∥∥Σ(w − ŵs)
∥∥2 ,

where ŵs is the optimal solution of the source formulation given in (3). Note that the vector ŵs is independent

of the training data of the target task. For simplicity of notation, we denote by {(ai, yi)}nt

i=1, the training data of

the target task. Here, we use the CGMT framework introduced in Section VI-A to precisely analyze the above

formulation.

1) Formulating the Auxiliary Optimization Problem: Our first objective is to rewrite the generalized formulation

in the form of the PO problem given in (24). To this end, we introduce additional optimization variables. Specifically,

the generalized formulation can be equivalently formulated as follows

min
w∈Rp

max
u∈Rnt

1

p
u⊤Aw − 1

p

nt∑

i=1

ℓ⋆ (yi;ui) +
λ

2
‖w‖2

+
1

2

∥∥Σ(w − ŵs)
∥∥2 . (27)

Here, the optimization vector u ∈ R
nt is formed as u = [u1, . . . , unt

]⊤, the data matrix A ∈ R
nt×p is given

by A = [a1, . . . ,am]⊤. Additionally, the function ℓ⋆(y; .) denotes the convex conjugate function of the loss

function ℓ(y; .). First, observe that the CGMT framework assumes that the feasibility sets of the minimization and

maximization problems are compact. Then, our next step is to show that the formulation given in (27) satisfies this

assumption.

Lemma 1 (Primal–Dual Compactness): Assume that ŵ and û are the optimal solutions of the optimization

problem in (27). Then, there exist two constants Cw > 0 and Cu > 0 such that the following convergence in

probability holds

P(‖ŵ‖ ≤ Cw)
p−−→ 1, P(‖û‖ /√nt ≤ Cu)

p−−→ 1. (28)

The proof of Lemma 1 is omitted since it follows the same steps of the results presented in [20, Lemma 1] and [20,

Lemma 2]. The proof of the above result follows using Assumption 3, Assumption 5 and the asymptotic results

in [26, Theorem 2.1] to prove the compactness of the optimal solution ŵ. Then, use the result in [27, Proposition

11.3] and Assumption 3 to show the compactness of the optimal dual vector û.

The theoretical result in Lemma 1 shows that the optimization problem in (27) can be equivalently formulated

with compact feasibility sets on events with probability going to one. Then, it suffices to study the constrained

version of (27). Note that the data labels {yi}nt

i=1 depend on the data matrix A. Then, one can decompose the

matrix A as follows

A = AP ξt
+AP⊥

ξ = Aξtξ
⊤
t +AP⊥

ξ .
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Here, the matrix P ξt
∈ R

p×p denotes the projection matrix onto the space spanned by the vector ξt, and the matrix

P⊥
ξ = Ip−ξtξ

⊤
t denotes the projection matrix onto the orthogonal complement of the space spanned by the vector

ξt. Note that we can express A as follows without changing its statistics

A = stξ
⊤
t +GP⊥

ξ , (29)

where st ∼ N (0, Int
) and the components of the matrix G ∈ R

nt×p are drawn independently from a standard

Gaussian distribution and where st and G are independent. This means that the formulation in (27) can be expressed

as follows

min
‖w‖≤Cw

max
u∈Ct

1

p
u⊤GP⊥

ξ w +
1

p
u⊤stξ

⊤
t w +

λ

2
‖w‖2

− 1

p

nt∑

i=1

ℓ⋆ (yi;ui) +
1

2

∥∥Σ(w − ŵs)
∥∥2 , (30)

where the set Ct = {u :‖u‖/√nt ≤ Cu}. Note that the formulation in (30) is in the form of the primary formulation

given in (24). Here, the function ψ(., .) is defined as follows

ψ(w,u) =
1

p
u⊤stξ

⊤
t w +

λ

2
‖w‖2 − 1

p

nt∑

i=1

ℓ⋆ (yi;ui)

+
1

2

∥∥Σ(w − ŵs)
∥∥2 . (31)

One can easily see that the optimization problem in (30) has compact convex feasibility sets. Moreover, the function

ψ(., .) is continuous, convex–concave and independent of the Gaussian matrix G. This shows that the assumptions

of the CGMT are all satisfied by the primary formulation in (30). Then, following the CGMT framework, the

auxiliary formulation corresponding to our primary problem in (30) can be expressed as follows

min
‖w‖≤Cw

max
u∈Ct

‖u‖
p

g⊤P⊥
ξ w +

1

p
u⊤stξ

⊤
t w +

h⊤u
p

∥∥∥P⊥
ξ w

∥∥∥

+
λ

2
‖w‖2 − 1

p

nt∑

i=1

ℓ⋆ (yi;ui) +
1

2

∥∥Σ(w − ŵs)
∥∥2 , (32)

where g ∈ R
p and h ∈ R

nt are two independent standard Gaussian vectors. The rest of the proof focuses on

simplifying the obtained AO formulation and study its asymptotic properties.

2) Simplifying the AO Problem of the Target Task: Here, we focus on simplifying the auxiliary formulation

corresponding to the target task. We start our analysis by decomposing the target optimization vector w ∈ R
p as

follows

w = (ξ⊤t w)ξt +B⊥
ξt
rt. (33)

Here, rt ∈ R
p−1 is a free vector, B⊥

ξt
∈ R

p×(p−1) is formed by an orthonormal basis orthogonal to the vector ξt.

Now, define the variable qt as follows qt = ξ⊤t w. Based on the result in Lemma 1 and the decomposition in (33),

there exists Cqt > 0, Cr > 0 and Cu > 0 such that our auxiliary formulation can be asymptotically expressed in

terms of the variables qt and rt as follows

min
(qt,rt)∈T1

max
u∈Ct

‖u‖
p

g⊤B⊥
ξ
t
rt +

‖rt‖
p

h⊤u+
qt
p
u⊤st +

λ

2
q2t

+
λ

2
‖rt‖2 −

1

p

nt∑

i=1

ℓ⋆ (yi;ui) +
1

2
q2t Vp,t − qtVp,ts

+
1

2
r⊤t (B

⊥
ξ
t
)⊤ΛB⊥

ξ
t
rt + qtξ

⊤
t ΛB⊥

ξ
t
rt − r⊤t (B

⊥
ξ
t
)⊤Λŵs,

Here, we drop terms independent of the optimization variables and the matrix Λ ∈ R
p×p is defined as Λ = Σ

⊤
Σ.

Additionally, the feasibility set T1 is defined as follows

T1 =
{
(qt, rt) : |qt| ≤ Cqt ,‖rt‖ ≤ Cr

}
. (34)
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Here, the sequence of random variables Vt,n and Vts,n are defined as follows

Vp,t = ξ⊤t Λξt, Vp,ts = ξ⊤t Λŵs. (35)

Next, we focus on simplifying the obtained auxiliary formulation. Our strategy is to solve over the direction of the

optimization vector r ∈ R
p−1. This step requires the interchange of a non–convex minimization and a non–concave

maximization. We can easily justify the interchange using the theoretical result in [17, Lemma A.3]. The main

argument is that the strong convexity of the primary formulation in (30) allows us to perform such interchange

in the corresponding auxiliary formulation. The optimization problem over the vector rt with fixed norm, i.e.

‖rt‖ = rt, can be formulated as follows

C⋆
p = min

rt∈Rp−1

b⊤p rt +
1

2
r⊤t Λ

⊥rt, s.t. ‖rt‖ = rt, (36)

Here, we ignore constant terms independent of rt, the matrix Λ
⊥ ∈ R

(p−1)×(p−1) and the vector bp ∈ R
p−1 can

be expressed as follows

Λ
⊥ = (B⊥

ξt
)⊤ΛB⊥

ξt
, bp =

‖u‖
p

(B⊥
ξt
)⊤g + qt(B

⊥
ξt
)⊤Λξ⊤t

− (B⊥
ξt
)⊤Λŵs.

The optimization problem in (36) is non–convex given the norm equality constraint. It is well–studied in the

literature [28] and is known as the trust region subproblem. Using the same analysis in [20], the optimal cost value

of the optimization problem (36) can be expressed in terms of a one-dimensional optimization problem as follows

C⋆
p = sup

σ>−µp

{
−1

2
b⊤p [Λ

⊥ + σIp−1]
−1bp −

σr2t
2

}
, (37)

where µp is the minimum eigenvalue of the matrix Λ
⊥, denoted by σmin(Λ

⊥). This result can be seen by equivalently

formulating the non–convex problem in (36) as follows

C⋆
p = min

rt∈Rp−1

max
σ∈R

b⊤p rt +
1

2
r⊤t Λ

⊥rt +
σ

2

(
‖rt‖2 − r2t

)
.

Then, show that the optimal σ satisfies a constraint that preserves the convexity over w. This allows us to interchange

the maximization and minimization and solve over the vector w. The above analysis shows that the AO formulation

corresponding to our primary problem can be expressed as follows

min
(qt,rt)∈T2

max
u∈Ct

sup
σ>−µp

rt
p
h⊤u+

qt
p
u⊤st +

λ

2
q2t +

λ

2
r2t

− 1

p

nt∑

i=1

ℓ⋆ (yi;ui) +
1

2
q2t Vp,t − qtVp,ts −

‖u‖2
2p

Tp,g(σ)

− σr2t
2

− 1

2
q2t Tp,t(σ)−

1

2
Tp,s(σ) + qtTp,ts(σ). (38)

Here, the set T2 has the same definition as the set T1 except that we replace ‖rt‖ by rt. Here, the sequence of

random functions Tp,g(.), Tp,t(.), Tp,s(.) and Tp,ts(.) can be expressed as follows




Tp,g(σ) =
1
p
g⊤B⊥

ξt
[Λ⊥ + σIp−1]

−1(B⊥
ξt
)⊤g

Tp,t(σ) = ξ⊤t ΛB⊥
ξ
t
[Λ⊥ + σIp−1]

−1(B⊥
ξ
t
)⊤Λξt

Tp,s(σ) = ŵ⊤
s ΛB⊥

ξt
[Λ⊥ + σIp−1]

−1(B⊥
ξt
)⊤Λŵs

Tp,ts(σ) = ξ⊤t ΛB⊥
ξt
[Λ⊥ + σIp−1]

−1(B⊥
ξt
)⊤Λŵs.

Note that the formulation in (38) is obtained after dropping terms that converge in probability to zero. This

simplification can be justified using a similar analysis as in [20, Lemma 3]. The main idea is to show that both

loss functions converge uniformly to the same limit.
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Next, the objective is to simplify the obtained AO formulation over the optimization vector u ∈ R
nt . Based on

the property stated in [20, Lemma 4], the optimization over the vector u can be expressed as follows

I⋆p = max
u∈Ct

rth
⊤u+ qtu

⊤st −
nt∑

i=1

ℓ⋆ (yi;ui)−
‖u‖2
2

Tp,g(σ)

=

nt∑

i=1

Mℓ(yi,.)

(
rthi + qtst,i;Tp,g(σ)

)
.

This result is valid on events with probability going to one as p goes to +∞. Here, the function Mℓ(yi,.) is the

Moreau envelope function defined in (13). The proof of this property is omitted since it follows the same ideas of

[20, Lemma 4]. The main idea is to use Assumption 3 to show that the optimal solution of the unconstrained version

of the maximization problem is bounded asymptotically. Then, use the property introduced in [27, Example 11.26]

to complete the proof. Now, our auxiliary formulation can be asymptotically simplified to a scalar optimization

problem as follows

min
(qt,rt)∈T2

sup
σ>−µp

λ

2
(q2t + r2t ) +

1

2
q2t Vp,t − qtVp,ts −

σr2t
2

+
1

p

nt∑

i=1

Mℓ(yi,.)

(
rthi + qtst,i;Tp,g(σ)

)
− 1

2
q2t Tp,t(σ)

− 1

2
Tp,s(σ) + qtTp,ts(σ). (39)

Note that the auxiliary formulation in (39) has now scalar optimization variables. Then, it remains to study its

asymptotic properties. We refer to this problem as the target scalar formulation.

3) Asymptotic Analysis of the Target Scalar Formulation: In this part, we study the asymptotic properties of the

scalar formulation expressed in (39). We start our analysis by studying the asymptotic properties of the sequence of

random variables Vp,t and Vp,ts and the sequence of random functions Tp,g(.), Tp,t(.), Tp,s(.) and Tp,ts(.) as given

in the following Lemma.

Lemma 2 (Asymptotic Properties): Define V as follows V = Eµ[µ], where the expectation is over the probability

distribution Pµ(.) defined in Assumption 5. First, the random variable µp converges in probability to µmin, where

µmin is defined in Assumption 5. For any fixed σ > 0, the following convergence in probability holds true




Vp,t
p→ V, Vp,ts

p→ Vts = ρq⋆sV

Tp,t(σ − µp)
p→ Tt(σ − µmin)

Tp,ts(σ − µp)
p→ Tts(σ − µmin)

Tp,s(σ − µp)
p→ Ts(σ − µmin)

Tp,g(σ − µp)
p→ T1(σ − µmin).

Here, the deterministic functions Tt(.), Tts(.), Ts(.), T1(.) and T3(.) are defined as follows




Tt(σ) = V + σ − 1/T1(σ), Tts(σ) = ρq⋆sTt(σ)

Ts(σ) = ((1− ρ2)(q⋆s)
2 + (r⋆s)

2)T3(σ) + (ρq⋆s)
2Tt(σ)

T1(σ) = Eµ

[
1/(µ + σ)

]
, T3(σ) = Eµ

[
µ2/(µ + σ)

]
.

Moreover, the constants q⋆s and r⋆s are the optimal solutions of the source asymptotic formulation defined in (26).

The detailed proof of Lemma 2 is provided in Appendix VIII. Now that we obtained the asymptotic properties of

the sequence of random variables, it remains to study the asymptotic properties of the optimal cost and optimal
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solution set of the scalar formulation in (39). To state our first asymptotic result, we define the following deterministic

optimization problem

min
(qt,rt)∈T2

sup
σ>−µmin

λ

2
(q2t + r2t ) +

1

2
q2t V − qtVts −

σr2t
2

+ αtE

[
Mℓ(Yt,.)

(
rtHt + qtSt;Tg(σ)

)]
− 1

2
Ts(σ)

+ qtTts(σ)−
1

2
q2t Tt(σ), (40)

where Ht and St are two independent standard Gaussian random variables and Yt = ϕ(St). Here, the function

Mℓ(Yt,.) denotes the Moreau envelope function defined in (13) and the expectation is take over the random variables

Ht, St and the possibly random function ϕ(.). Now, we are ready to state our asymptotic property of the cost function

of (39).

Lemma 3 (Cost Function of the Traget AO Formulation): Define Op,t(.) as the loss function of the target scalar

optimization problem given in (39). Additionally, define Ot(.) as the cost function of the deterministic formulation

in (40). Then, the following convergence in probability holds true.

Op,t(qt, rt, σ − µp)
p→ Ot(qt, rt, σ − µmin), (41)

for any fixed feasible qt, rt and σ > 0.

The proof of the asymptotic property stated in Lemma 3 uses the asymptotic results stated in Lemma 2. Moreover,

it uses the weak law of large numbers to show that the empirical mean of the Moreau envelope concentrates around

its expected value. Based on Assumption 3, one can see that the following pointwise convergence is valid

1

p

nt∑

i=1

Mℓ(yi,.)

(
rthi + qtst,i;x

) p→ E
[
Mℓ(Y,.)

(
rtH + qtS;x

)]
.

Here H and S are independent standard Gaussian random variables and Y = ϕ(S). The above property is valid for

any x > 0, rt ≥ 0 and qt. Based on [27, Theorem 2.26], the Moreau envelope function is convex and continuously

differentiable with respect x > 0. Combining this with [29, Theorem 7.46], the above asymptotic function is

continuous in x > 0. Then, using Lemma 2, the uniform convergence and the continuity property, we conclude that

the empirical average of the Moreau envelope converges in probability to the following function

E
[
Mℓ(Y,.)

(
rtH + qtS;Tg(σ − µmin)

)]
, (42)

for any fixed feasible qt, rt and σ > 0. This completes the proof of Lemma 3. The analysis in [20, Lemma 6] can

also be applied here to show that the formulation in (40) is strictly concave in the maximization variable σ for

fixed feasible (qt, rt). Define the following function

(qt, rt) → sup
σ>−µmin

Ot(qt, rt, σ), (43)

where Ot(.) denotes the cost function of the deterministic formulation in (40). The analysis in [20, Lemma 6] can

also be used here to show that the function defined in (43) is strongly convex in (qt, rt) with a strong convexity

parameter λ.

Now, we use these properties to show that the optimal solution set of the formulation in (39) converges in

probability to the optimal solution set of the formulation in (40).

Lemma 4 (Consistency of the Target AO Formulation): Define Pp,t and Pt as the optimal set of (qt, rt) of the

optimization problems formulated in (39) and (40), respectively. Moreover, define O⋆
p,t and O⋆

t as the optimal cost

values of the optimization problems formulated in (39) and (40), respectively. Then, the following converges in

probability holds true

O⋆
p,t

p→ O⋆
t , D(Pp,t,Pt)

p→ 0, (44)

where D(A,B) denotes the deviation between the sets A and B and is defined as D(A,B) = supc1∈A infc2∈B‖c1 − c2‖.
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The stated result can be proved by first observing that the loss function Ot(.) corresponding to the deterministic

formulation in (40) satisfies the following

lim
σ→+∞

Ot(qt, rt, σ − µmin) = −∞. (45)

For any rt > 0 and any fixed qt. Combining this with the convergence result in Lemma 3, [17, Lemma B.1] and

[17, Lemma B.2], we obtain the following asymptotic result

sup
σ>0

Op,t(qt, rt, σ − µp)
p→ sup

σ>0
Ot(qt, rt, σ − µmin).

Note that if rt = 0, the supremum in the above convergence result occurs at σ → +∞. However, it can be checked

that the above convergence result still hold. Based on [20, Lemma 6], the cost function of the minimization problem

in (40) is strongly convex in (qt, rt). Then, based on [30, Theorem II.1] and [31, Theorem 2.1], we obtain the

convergence result in Lemma 4. Now that we obtained the asymptotic problem, it remains to study the asymptotic

properties of the training and generalization errors corresponding to the target formulation in (7).

4) Specialization to the Hard Formulation: Before starting the analysis of the generalization error, we specialize

our general analysis to the hard transfer formulation. To obtain the asymptotic limit of the hard formulation, we

specialize the general results in (40) to the following probability distribution

Pp(µ) = (1− δ)d(µ) + δd(µ − p), (46)

where the function x→ d(x− a) is the dirac delta function defined at a. Then, we study the obtained asymptotic

results when p goes to +∞. Note that the probability distribution in (46) satisfies Assumption 5. Then, the asymptotic

limit of the soft formulation corresponding to the probability distribution Pµ(.), defined in (46), can be expressed

as follows

min
(qt,rt)∈T2

sup
σ>0

λ

2
(q2t + r2t ) +

T2(σ)

2

(
(1− ρ2)(q⋆s)

2 + (r⋆s)
2
)

+ αtE

[
Mℓ(Yt,.)

(
rtHt + qtSt;T1(σ)

)]
− σr2t

2

− 1

2

(
qt − ρq⋆s

)2 (
σ − 1/T1(σ)

)
, (47)

where the functions T1(.) and T2(.) are defined as follows
{
T1(σ) = (1− δ)/σ + δ/(p + σ)

T2(σ) = δpσ/(p + σ).
(48)

First, one can see that the loss function of (47), denoted by hp(.), converges as follows

lim
p→+∞

hp(qt, rt, σ) = h(qt, rt, σ), (49)

for any fixed qt, rt and σ in the feasibility set of the formulation (47). Here, the function h(.) is defined as follows

h(qt, rt, σ) =
λ

2
(q2t + r2t ) +

σδ

2

(
(1− ρ2)(q⋆s)

2 + (r⋆s)
2
)

+ αtE

[
Mℓ(Yt,.)

(
rtHt + qtSt;

1− δ

σ

)]
− σr2t

2

+
σδ

2(1 − δ)

(
qt − ρq⋆s

)2
, (50)

for any fixed qt, rt and σ in the feasibility set of the formulation (47). Based on the analysis in [20, Lemma 6],

one can see that the formulation in (47) and the function in (50) are strictly convex in the minimization variables
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and strictly concave in the maximization variable. Then, based on the analysis in Section VI-C2 and [31, Theorem

2.1], the asymptotic limit of the soft formulation defined in (47) simplifies to the following formulation

min
(qt,rt)∈T2

sup
σ>0

λ

2
(q2t + r2t ) +

σδ

2

(
(1− ρ2)(q⋆s)

2 + (r⋆s)
2
)

+ αtE

[
Mℓ(Yt,.)

(
rtHt + qtSt;

1− δ

σ

)]
− σr2t

2

+
σδ

2(1 − δ)

(
qt − ρq⋆s

)2
. (51)

This shows that the asymptotic limit of the hard formulation is the deterministic problem (51).

5) Asymptotic Analysis of the Training and Generalization Errors: First, the generalization error corresponding

to the target task is given by

Etest =
1

4υ
E

[(
ϕ(a⊤

t,newξt)− ϕ̂(ŵ⊤
t at,new)

)2
]
, (52)

where at,new is an unseen target feature vector. Now, consider the following two random variables

ν1 = a⊤
t,newξt, and ν2 = ŵ⊤

t at,new.

Given ŵt and ξt, the random variables ν1 and ν2 have a bivaraite Gaussian distribution with zero mean vector and

covariance matrix given as follows

Cp =

[
‖ξt‖2 ξ⊤t ŵt

ξ⊤t ŵt ‖ŵt‖2
]
. (53)

To precisely analyze the asymptotic behavior of the generalization error, it suffices to analyze the properties of the

covariance matrix Cp. Define the random variables q̂⋆p,t and r̂⋆p,t for the target task as follows

q̂⋆p,t = ξ⊤t ŵt, and r̂⋆p,t =
∥∥∥(B⊥

ξ
t
)⊤ŵt

∥∥∥ , (54)

where B⊥
ξt

is defined in Section VI-C2. Then, the covariance matrix Cp given in (53) can be expressed as follows

[
1 q̂⋆p,t
q̂⋆p,t (q̂⋆p,t)

2 + (r̂⋆p,t)
2

]
.

Hence, to study the asymptotic properties of the generalization error, it suffices to study the asymptotic properties

of the random quantities q̂⋆p,t and r̂⋆p,t.
Lemma 5 (Consistency of the Target Formulation): The random quantities q̂⋆p,t and r̂⋆p,t satisfy the following

asymptotic properties

q̂⋆p,t
p−→ q⋆t , and r̂⋆p,t

p−→ r⋆t ,

where q⋆t and r⋆t are the optimal solutions of the deterministic formulation stated in (40).

To prove the above asymptotic result, we define q̃⋆p,t and r̃⋆p,t as follows

q̃⋆p,t = ξ⊤t w̃t, and r̃⋆p,t =
∥∥∥(B⊥

ξt
)⊤w̃t

∥∥∥ , (55)

where w̃t is the optimal solution of the auxiliary formulation in (32). Given the result in Lemma 4 and the analysis

in Sections VI-C2 and VI-C3, the convergence result in Lemma 4 is also satisfied by our auxiliary formulation in

(32), i.e.

q̃⋆p,t
p−→ q⋆t , and r̃⋆p,t

p−→ r⋆t .

The rest of the proof of the convergence result stated in Lemma 5 is based on the CGMT framework, i.e. Theorem

2. Specifically, it follows after showing that the assumptions in Theorem 2 are all satisfied. Note that the cost

function of the problem (40) is strongly convex in the minimization variables. Then, based on [30, Theorem II.1],

the cost function of the optimization problem in (39) converges uniformly to the cost function of (40). Combine
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this with the compactness of the feasibility sets to see that the conditions in Theorem 2 are all satisfied. Then, the

convergence result in Lemma 5 follows.

Note that the CGMT framework applied to prove Lemma 5 also shows that the optimal cost value of the soft

target formulation in (7) converges in probability to the optimal cost value of the deterministic formulation given

in (40). Combining this with the result in Lemma 5 shows the convergence property of the training error stated in

(15). Now, it remains to show the convergence of the generalization error. It suffices to show that the generalization

error defined in (52) is continuous in the quantities q̂⋆p,t and r̂⋆p,t. This follows based on Assumption 4 and the

continuity under integral sign property [32]. This shows the convergence result in (16) which completes the proof

of Theorem 1 and Corollary 1. Note that the above analysis of the soft target formulation in (7) is valid for any

choice of Cqt and Cr that satisfy the result in Lemma 1. One can ignore these bounds given the convexity properties

of the deterministic formulation in (40). This leads to the scalar formulations introduced in (14) and (17).

D. Phase Transitions in the Hard formulation

In this part, we provide a rigorous proof of Proposition 1 and Proposition 2. Here, we consider the squared–loss

function. In this case, the deterministic source formulation given in (12) can be simplified as follows

min
qs,rs≥0

1

2
max

{
− rs +

√
αs(q

2
s + r2s + vs − 2qscs)

1

2 , 0
}2

+
λ

2
(q2s + r2s). (56)

The constants vs and cs are defined as vs = E[Y 2
s ] and cs = E[SsYs], where Ys = ϕ(Ss) and Ss is a standard

Gaussian random variable. Additionally, the target scalar formulation given in (14) can be simplified as follows

min
qt,rt≥0

sup
σ>0

λ

2
(q2t + r2t ) +

σδ

2

(
(1− ρ2)(q⋆s)

2 + (r⋆s)
2
)

+
αtσ

2(1 − δ) + 2σ
(r2t + q2t + vt − 2qtct)−

σr2t
2

+
σδ

2(1 − δ)

(
qt − ρq⋆s

)2
. (57)

Here, the constants vt and ct are defined as vt = E[Y 2
t ] and ct = E[YtSt], where Yt = ϕ(St) and St is a standard

Gaussian random variable. Under the conditions stated in Proposition 1 and Proposition 2, the source deterministic

formulation given in (56) can be simplified as follows

min
qs,rs≥0

− rs +
√
αs(q

2
s + r2s + vs − 2qscs)

1

2 . (58)

Note that one can easily solve over the variables qs and rs. Specifically, the optimal solutions of (58) can be

expressed as follows

q⋆s = cs, and r⋆s =
√
vs − c2s/

√
αs − 1. (59)

Moreover, the target deterministic formulation given in (57) can be expressed as follows

min
qt,rt≥0

sup
σ>0

σδ

2
β2 +

αtσ

2(1 − δ) + 2σ
(r2t + q2t + vt − 2qtct)

− σr2t
2

+
σδ

2(1 − δ)
(qt − β1)

2 , (60)

where β1 and β2 are given by

β1 = ρq⋆s , β2 =
(
(1− ρ2)(q⋆s)

2 + (r⋆s)
2
)
. (61)

Before solving the optimization problem in (60), we consider the following change of variable

x2t = r2t − δβ2 −
δ

1− δ
(qt − β1)

2. (62)



20

Note that the above change of variable is valid since the formulation in (60) requires the right hand side of (62) to

be positive. Therefore, the formulation in (60) can be expressed in terms of xt instead of rt as follows

min
qt,xt≥0

sup
σ>0

αtσ

2(1 − δ) + 2σ

(
x2t + δβ2 +

δ

1− δ
(qt − β1)

2

+ q2t + vt − 2qtct
)
− σx2t

2
. (63)

Now, it can be easily checked that the above optimization problem can be solved over the variable σ to give the

following formulation

min
qt,xt≥0

1

2
max

{
− xt

√
1− δ +

√
αt

(
x2t + δβ2

+
δ

1− δ
(qt − β1)

2 + q2t + vt − 2qtct
) 1

2 , 0
}2
.

It is now clear that one can solve the problem in (63) in closed form. Moreover, it can be easily checked that the

optimal solutions of the optimization problem (60) can be expressed as follows




q⋆t = (1− δ)ct + δβ1

(r⋆t )
2 = 1−δ

αt+δ−1

(
(δ − 1)c2t + δβ21 + δβ2 + vt − 2δβ1ct

)

+ δβ2 + δ(1− δ)(ct − β1)
2.

Then, the asymptotic limit of the generalization error corresponding to the hard formulation can be determined in

closed–form. Since the source and target models given in (1) and (2) use the same data generating function, the

constants vt, ct, vs and cs are all equal. We express them as v and c in the rest of the proof.

1) Regression Model: In this part, we assume that the function ϕ̂(.) is the identity function. Based on the

asymptotic result stated in Corollary 1, the asymptotic limit of the generalization error corresponding to the hard

formulation can be expressed as follows

Etest = v − 2cq⋆t + (q⋆t )
2 + (r⋆t )

2.

It can be easily checked that the generalization error can be express as follows

Etest =
αt

αt + δ − 1

(
δ{(c − β1)

2 + β2}+ (v − c2)
)
. (64)

Note that the the generalization error obtained above depends explicitly on δ. Now, it suffices to study the derivative

of Etest to find the properties of the optimal transfer rate δ that minimizes the generalization error. Note that the

derivative can be expressed as follows

E ′
test(δ) =

(αt − 1){(c − β1)
2 + β2} − (v − c2)

(αt + δ − 1)2
. (65)

This shows that the derivative of the generalization error has the same sign as the numerator. This means that the

optimal transfer rate satisfies the following

δ⋆ =





1 if Zt < 0

0 if Zt > 0

[0 1] otherwise,

(66)

where Zt is given by

Zt = (αt − 1){(c − β1)
2 + β2} − (v − c2). (67)

It can be easily shown that the condition in (66) can be expressed as the one given in (18). This completes the

proof of Proposition 1.
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2) Classification Model: In this part, we assume that the function ϕ̂(.) is the sign function. Based on the

asymptotic result stated in Corollary 1, the asymptotic limit of the generalization error corresponding to the hard

formulation can be expressed as follows

Etest =
1

π
acos

( q⋆t√
(q⋆t )

2 + (r⋆t )
2

)
. (68)

Given the closed-form expressions of the solutions, the generalization error can be expressed in terms of the transfer

rate δ as follows

Etest(δ) =
1

π
acos

((aδ + c)
√
δ + αt − 1√

T1δ2 + T2δ + T3

)
.

Here, the constant terms a, T1, T2 and T3 are independent of the transfer rate δ and are given by

a = ρc− c, T1 = −2c2 + 2c2ρ

T2 = αt(v − c2)/(αs − 1) + 4c2 − 2c2ρ− v

T3 = (αt − 2)c2 + v.

Given that the acos(.) function is strictly decreasing, it suffices to find the maximum of the following function

g(δ) =
(aδ + c)

√
δ + αt − 1√

T1δ2 + T2δ + T3
, (69)

to determine the properties of the optimal transfer rate δ⋆ that gives the lowest generalization error. It can be

easily checked that the derivative of the function g(.) with respect to δ can be fully characterized by analyzing the

following third degree polynomial

h(δ) = Z1δ
3 + Z2δ

2 + Z3δ + Z4. (70)

Here, Z1, Z2, Z3 and Z4 are independent of δ and can be expressed as follows

Z1 = aT1, Z2 = 2aT2 − cT1,

Z3 = 3aT3 + a(αt − 1)T2 − 2c(αt − 1)T1

Z4 = (2(αt − 1)a+ c)T3 − c(αt − 1)T2.

We can see that the function g(.) is increasing at δ = 0 when Z4 > 0. This means that the function Etest(.) is

decreasing at δ = 0 when Z4 > 0. This means that there exists δp > 0 such that the hard transfer with δp is better

than the standard transfer in this case. It can be easily checked that this is equivalent to the condition provided in

Proposition 2. This completes the proof of the theoretical statement in Proposition 2.

VII. CONCLUSION

In this paper, we presented a precise characterization of the asymptotic properties of two simple transfer learning

formulations. Specifically, our results show that the training and generalization errors corresponding to the considered

transfer formulations converge to deterministic functions. These functions can be explicitly found by combining

the solutions of two deterministic scalar optimization problems. Our simulation results validate our theoretical

predictions and reveal the existence of a phase transition phenomenon in the hard transfer formulation. Specifically,

it shows that the hard transfer formulation moves from negative transfer to positive transfer when the similarity of

the source and target tasks move past a well-defined critical threshold.

VIII. APPENDIX: PROOF OF LEMMA 2

To prove the convergence properties stated in Lemma 2, we show first that they are valid for the auxiliary

formulation corresponding to the source problem.
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A. Auxiliary Convergence

Note that the analysis present in Section VI is also valid for the source problem. This is because the formulation

in (7) is equivalent to the source problem in (3) if Σ is the all zero matrix and we use the source training data. Then,

we can see that the optimal solution of the auxiliary formulation corresponding to the source problem, denoted by

w̃s, can be expressed as follows

w̃s = q⋆p,sξs −
r⋆p,s
‖g̃s‖

B⊥
ξs
g̃s, (71)

where g̃s = (B⊥
ξs
)⊤gs and gs has independent standard Gaussian components. Here, B⊥

ξs
∈ R

p×(p−1) is formed by

an orthonormal basis orthogonal to the vector ξs. Additionally, our analysis in Section VI shows that the following

convergence in probability holds

qp,s
p−→ q⋆s and r⋆p,s

p−→ r⋆s . (72)

Here, q⋆s and r⋆s are the optimal solutions of asymptotic limit of the source formulation defined in (12).

Based on Assumption 5, the random variable µp converges in probability to µmin, where µmin is defined in

Assumption 5. Using [33, Proposition 3], Assumptions 1 and 5, the sequence of random variables Vp,t converges

pointwisely in probability to the constant V = Eµ[µ], where the expectation is taken over the probability distribution

Pµ(.) defined in Assumption 5. Now, we study the properties of the remaining functions using the optimal solution

of the auxiliary formulation defined in (71), i.e. w̃s, instead of ŵs. For instance, we first study the random sequence

Ṽp,ts = ξ⊤t Λw̃s to infer the asymptotic properties of Vp,ts.

Exploiting the predictions stated in (71) and (72), the sequence of random variables Ṽp,ts converges in probability

to the following constant

Vts = q⋆sρV, (73)

First, fix σ > −µmin. Then, based on the convergence of µp and [33, Proposition 3], the sequence of random

functions Tp,g(.) converges in probability as follows

Tp,g(σ)
p→ Tg(σ) = Eµ

[
1/(µ + σ)

]
. (74)

Now, we express σ as σ = σ′ − x, where σ′ > 0. This means that the following convergence in probability holds

true

Tp,g(σ
′ − x)

p→ Tg(σ
′ − x), (75)

for any x < σ′ + µmin. Note that the functions Tp,g(.) and Tg(.) are both convex and continuous in the variable x
in the set [0, σ′ + µmin[. Then, based on [30, Theorem II.1], the convergence in (75) is uniform in the variable x
in the compact set [0, σ′/2 + µmin]. Now, note that µp converges in probability to µmin. Therefore, we obtain the

following convergence in probability

Tp,g(σ
′ − µp)

p→ Tg(σ
′ − µmin), (76)

valid for any fixed σ′ > 0. Using the block matrix inversion lemma, the function Tp,t(.) can be expressed as follows

Tp,t(σ) = ξ⊤t ΛB⊥
ξt
[(B⊥

ξt
)⊤ΛB⊥

ξt
+ σIp−1]

−1(B⊥
ξt
)⊤Λξt

= ξ⊤t Λξt + σ − 1

ξ⊤t [Λ+ σIp]−1ξt
. (77)

Then, using the theoretical results stated in [33, Proposition 3], the functions Tp,t(.) converges in probability as

follows

Tp,t(σ)
p→ Tt(σ) = V + σ − 1

Eµ

[
1/(µ + σ)

] . (78)

Combine this with the above analysis to obtain the following convergence in probability

Tp,t(σ
′ − µp)

p→ Tt(σ
′ − µmin), (79)
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valid for any σ′ > 0. Based on the result in (71), the sequence of random functions T̃p,ts(.) converges in probability

to the following function

Tts(σ) = q⋆sρTt(σ). (80)

Combine this with the above analysis to obtain the following convergence in probability

T̃p,ts(σ
′ − µp)

p→ Tts(σ
′ − µmin), (81)

valid for any σ′ > 0. Using the same analysis and based on (71) and (72), one can see that the sequence of random

functions T̃p,s(.) converges in probability to the following function

T̃p,s(σ)
p→ Ts(σ) = (ρq⋆s)

2Tt(σ)

+
(
(1− ρ2)(q⋆s)

2 + (r⋆s)
2
)
Eµ

[
µ2/(µ + σ)

]
. (82)

Combine this with the above analysis to obtain the following convergence in probability

T̃p,s(σ
′ − µp)

p→ Ts(σ
′ − µmin), (83)

valid for any σ′ > 0. The above analysis shows that the asymptotic properties stated in Lemma 2 are valid for the

AO formulation corresponding to the source problem. Now, it remains to show that these properties also hold for

the primary formulation.

B. Primary Convergence

Now, we show that the convergence properties proved above are also valid for the primary problem. To this end,

we show that all the assumptions in Theorem 2 are satisfied. We start our proof by defining the following open set

Tǫ = {w ∈ R
p :

∣∣∣ξ⊤t Λw − Vts

∣∣∣ < ǫ}.

Now, we consider the feasibility set Dǫ = T1/Sǫ, where T1 is defined in (34). Based on the analysis of the

generalized target formulation in Section VI-C2, one can see that the AO formulation corresponding to the source

formulation with the set Dǫ can be asymptotically expressed as follows

Vp : min
(qs,rs)∈T2

min
rs∈D̃ǫ

max
u∈Cs

‖u‖
p

g⊤
s B

⊥
ξs
rs +

qs
p
u⊤ss

+
λ

2
(q2s +‖rs‖2) +

1

p
‖rs‖h⊤

s u− 1

p

ns∑

i=1

ℓ⋆
(
ys,i;ui

)
.

Here, the feasibility set T2 is defined in Section VI-C2 and the feasibility set D̃ǫ is given by
{
rs :

∣∣∣qsρVp,t + qs
√

1− ρ2Vp,r + ξ⊤t ΛB⊥
ξ
s
rs − Vts

∣∣∣ ≥ ǫ

,‖rs‖ = rs

}
.

This follows based on the decomposition in (33) and where Vp,t is defined in Section VI-C2 and Vp,r = ξ⊤t Λξr.

Note that the optimization problem given in Vp can be equivalently formulated as follows

Vp : min
(qs,rs)∈Ŝǫ

min
rs∈D̃ǫ

max
u∈Cs

‖u‖
p

g⊤
s B

⊥
ξ rs +

qs
p
u⊤ss

+
λ

2
(q2s +‖rs‖2) +

1

p
‖rs‖h⊤

s u− 1

p

ns∑

i=1

ℓ⋆
(
ys,i;ui

)
.

Here, we replace the feasibility set T2 by the feasibility set Ŝǫ defined as follows
{∣∣∣∣qsρVp,t + qs

√
1− ρ2Vp,r − rsξ

⊤
t ΛB⊥

ξs

g̃s

‖g̃s‖
− Vts

∣∣∣∣

≥ ǫ
}
∩ T2,
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where g̃s = (B⊥
ξs
)⊤gs. This follows since the first set in Ŝǫ satisfies the condition in the set D̃ǫ. Now, assume that

φ̂⋆p is the optimal cost value of the optimization problem Vp and define the function ĥp(.) as follows

ĥp(qs, rs) = min
rs∈D̃ǫ

max
u∈Cs

‖u‖
p

g⊤
s B

⊥
ξ
s
rs +

qsu
⊤ss
p

+
λ

2
(q2s + r2s) +

rs
p
h⊤
s u− 1

p

ns∑

i=1

ℓ⋆
(
ys,i;ui

)
,

in the set Ŝǫ. Based on the max–min inequality [34], the function ĥp(.) can be lower bounded by the following

function

h̃p(qs, rs) = max
u∈Cs

min
rs∈D̃ǫ

‖u‖
p

g⊤
s B

⊥
ξ
s
rs +

qsu
⊤ss
p

+
λ

2
(q2s + r2s) +

rs
p
h⊤
s u− 1

p

ns∑

i=1

ℓ⋆
(
ys,i;ui

)
.

This is valid for any (qs, rs) ∈ Ŝǫ. Moreover, note that the following inequality holds true

min
rs∈D̃ǫ

‖u‖
p

g⊤
s B

⊥
ξs
rs ≥ −‖u‖

p

∥∥∥(B⊥
ξs
)⊤gs

∥∥∥ rs, (84)

for any (qs, rs) ∈ Ŝǫ. Following the generalized analysis in Section VI-C2, one can see that the auxiliary problem

corresponding to the source formulation can be expressed as follows

min
(qs,rs)∈T2

sup
σ>0

1

ns

ns∑

i=1

Mℓ(ys,i,.)

(
rshs,i + qsss,i;

rs‖g̃s‖√
nsσ

)

− rsσ

2

‖g̃s‖√
ns

+
λ

2
(q2s + x2s), (85)

This means that the function h̃p(.) can be lower bounded by the cost function of the minimization problem formulated

in (85) denoted by ĝp(.), i.e.

ĝp(qs, rs) ≤ h̃p(qs, rs). (86)

Here, both functions are defined in the feasibility set Ŝǫ. Now, define φ⋆p as the optimal cost value of the auxiliary

optimization problem corresponding to the source formulation defined in Section VI-C1. Note that the loss function

ĝp(.) is strongly convex in the variables (qs, rs) with strong convexity parameter λ > 0. This means that for any

β ∈ [0, 1], (qs,1, rs,1) ∈ T2 and (qs,2, rs,2) ∈ T2, we have the following inequality

ĝp(βv1 + (1− β)v2) ≤ βĝp(v1)

+ (1− β)ĝp(v2)−
λ

2
β(1− β)‖v1 − v2‖2 , (87)

where v1 = [qs,1, rs,1] and v2 = [qs,2, rs,2]. Take v1 as v⋆
p which represents the optimal solution of the optimization

problem (85). Then, the inequality in (87) implies the following inequality

φ⋆p ≤ ĝp(v2)−
λ

2
β
∥∥∥v⋆

p − v2

∥∥∥
2
. (88)

This is valid for any v2 in the set T2. Now, taking β = 1/2 and the minimum over v2 in the set Ŝǫ in both sides,

we obtain the following inequality

φ⋆p +
λ

4
min
v∈Ŝǫ

∥∥∥v⋆
p − v

∥∥∥
2
≤ min

v∈Ŝǫ

ĝp(v).

Based on the above analysis, note that the following inequality also holds true

min
v∈Ŝǫ

ĝp(v) ≤ φ̂⋆p. (89)
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Then, to verify the assumption of [17, Theorem 6.1], it remains to show that there exists ǫ′ > 0 such that, the

following inequality holds

λ

4
min
v∈Ŝǫ

∥∥∥v⋆
p − v

∥∥∥
2
≥ ǫ′, (90)

with probability going to 1 as p→ ∞. Note that any element in the set Ŝǫ satisfies the following inequality

ǫ ≤
∣∣∣∣qsρVp,t + qs

√
1− ρ2Vp,r − rsξ

⊤
t ΛB⊥

ξ

g̃s

‖g̃s‖
− Vts

∣∣∣∣ ≤
∣∣qsρVp,t − Vts

∣∣+
∣∣∣qs

√
1− ρ2

∣∣∣
∣∣Vp,r

∣∣+|rs|
∣∣∣∣ξ

⊤
t ΛB⊥

ξ

g̃s

‖g̃s‖

∣∣∣∣ .

Based on the analysis in Section VIII-A, we have the following convergence in probability
∣∣qsρVp,t − Vts

∣∣ p→
∣∣qs − q⋆s

∣∣ ρV

|qs|
√

1− ρ2
∣∣Vp,r

∣∣ p→ 0, |rs|
∣∣∣∣ξ

⊤
t ΛB⊥

ξ

g̃s

‖g̃s‖

∣∣∣∣
p→ 0. (91)

This means that there exists ǫ′′ > 0 such that any elements in the set Ŝǫ satisfies the following inequality
∣∣qs − q⋆s

∣∣ ρV ≥ ǫ′′, (92)

with probability going to 1 as p→ ∞. Combining this with Assumption 5 and the consistency result stated in (72)

shows that there exists ǫ′ > 0 such that the following inequality holds

λ

4
min
v∈D̂ǫ

∥∥∥v⋆
p − v

∥∥∥
2
≥ ǫ′, (93)

with probability going to 1 as p → ∞. This also proves that there exists ǫ′ > 0 such that the following inequality

holds

φ̂⋆p ≥ φ⋆p + ǫ′, (94)

with probability going to 1 as p → ∞. This completes the verification of the assumptions in Theorem 2. This

means that the optimal solution of the primary problem belongs to the set Sǫ on events with probability going to

1 as p→ ∞. Since the choice of ǫ is arbitrary, we obtain the following asymptotic result

Vp,ts = ξ⊤t Λŵs
p→ q⋆sρV, (95)

where ŵs is the optimal solution of the source problem (3). Following the same analysis, one can also show the

remaining convergence properties stated in Lemma 2.
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