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Preface

This text presents a collection of new results and recent developments on the phase
transition phenomena in sparse signal problems. The main theme is the study of
the fundamental limits in high-dimensional testing and inference. Since the seminal
works of Ingster (1998) and Donoho and Jin (2004), the subject has received a lot
of attention in the literature with important contributions from Ji and Jin (2012);
Genovese et al. (2012); Jin et al. (2014); Arias-Castro and Chen (2017); Butucea
et al. (2018). These works, among many others, have discovered some fundamental
limits in the so-called needle in haystack problems, where a sparse signal is observed
with high-dimensional additive noise. In this setting, two archetypal problems arise
– the signal detection and signal support recovery. The signal detection refers to a
global hypothesis testing problem that amounts to determining the presence of non-
zero signal in any of its dimensions. The support recovery, on the other hand, can
be seen either as a multiple testing problem where the presence of non-zero signal
is tested for each signal location of interest, or alternatively, as an inference problem
that aims to estimate the signal support, i.e., the locations of the non-zero signal
components. The fundamental limits of these problems are studied in the so-called
high-dimensional asymptotic regime where the dimension p of the underlying signal
grows to infinity, and the sample size n is either bounded or grows slowly relative to
p.

From a probabilistic perspective, these aforementioned fundamental limits are
stated as asymptotic zero-one type laws, as dimensionality diverges. Namely, con-
sider a sparse signal with support size on the order of p1�� for some parameter
� 2 (0, 1). Parameterize the non-zero signal amplitude by �(pr ), for some r > 0
and a suitable monotone non-decreasing function �(·). Then, for a broad range of er-
ror distributions and statistical problems, one encounters a sharp transition between
the regimes where the problem is solvable and unsolvable depending on the signal
magnitude r and signal sparsity �. More precisely, there exists a boundary function
f (�) such that if the signal magnitudes are above the boundary, r > f (�), then the
problem can be solved with vanishing loss as p! 1, with a suitable statistical pro-
cedure. On the other hand, if the signal is below that same boundary, i.e., r < f (�),
all statistical procedures fail to provide a solution with a vanishing loss, as p ! 1.
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Of course, depending on whether one considers the detection (testing) or support
recovery (inference) problems, di�erent loss functions quantify success and failure.
The choice of the loss functions is often guided by the applications, resulting in a
rich picture of phase-transitions (see e.g. Figure 3.2).

The contributions of this work. The fundamental limits of the classic detection
problem hinge of the analysis of the discrepancy between the null and alternative
hypotheses e.g., via Hellinger distance. Thus, perhaps for technical reasons, much
of the analysis in the existing literature has been done under the assumption that the
additive errors are independent and/or Gaussian, or using loss functions una�ected
by the dependence such as the Hamming loss. In this work, we demonstrate that the
support recovery problems, especially exact support recovery, are best understood
from the novel perspective of the concentration of maxima phenomenon in extreme
value theory. It turns out that under a very broad range of light-tailed error distribu-
tions and under a very broad range of error dependence structures, the maxima of the
errors, when rescaled (but not centered!) converge in probability to a positive con-
stant. This concentration property leads to a complete solution of the exact support
recovery problem for the broad family of thresholding procedures. Most if not all
existing support estimation procedures are types thresholding procedures (see Sec-
tion 2.2). That is, the signal support estimate comprises of all components exceeding
a suitable (potentially data-dependent) threshold. We show, by exploiting concen-
tration of maxima, that thresholding procedures obey a phase-transition, where if
the signal is above a certain boundary, asymptotically exact recovery is possible
while below the boundary all thresholding procedures fail, as p ! 1. Remarkably,
light-tailed maxima concentrate under very broad and strong dependence. This is
exemplified by our characterization of the concentration of maxima phenomenon for
Gaussian triangular arrays. For example, in the special case of stationary Gaussian
time series, vanishing auto-covariance is necessary and su�cient for the maxima to
concentrate in the same way as independent standard normal random variables. This
is in stark contrast with the behavior of sums, commonly studied under short- and
long-range dependence conditions (see e.g. Dedecker et al., 2007; Pipiras and Taqqu,
2017). Simply put, the notion of weak dependence that entails that the maxima of
dependent variables concentrate at the same rate as in the case of independence is
fundamentally weaker than the conventional mixing conditions widely used in the
study of sums.

Our probabilistic contributions may be of independent interest and extend classic
work of Berman (1964). Concentration of maxima is a type of super-concentration
phenomenon studied also in Chatterjee (2014) and Tanguy (2015a). The robustness
of the concentration of maxima phenomenon to dependence can perhaps explain the
universality of phase transitions in support recovery problems.

The use of concentration of maxima phenomenon highlights one core idea in our
work, which allows for a first of its kind comprehensive treatment of thresholding
procedures under very broad error-dependence conditions. The text involves also
a full spectrum of related results such as minimax-optimality and finite-sample
Bayes optimality in support estimation. Using di�erent type of loss functions and
type I error controls, we obtain a rich picture of the exact and approximate support
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recovery problems in high dimensions. Many of these phase transition results have
not appeared in previously published literature.

High-dimensional support recovery problems arise in many modern applications
ranging from cybersecurity, theoretical computer science, to statistical genetics.
Genome-wide association studies (GWAS) in genetics are particularly natural appli-
cations, where the asymptotic phase-transition results help explain and quantify a
previously observed empirical phenomenon of the so-called steep part of the power
curve. In the last chapter of this work, we detail this application and highlight future
theoretical and practical consequences of our work.

Target audience. The original research presented in this text originates from the
doctoral dissertation of the first author in the Statistics department at the University
of Michigan, Ann Arbor. The main goal of this text is to provide a comprehensive
treatment of the exact and approximate support recovery problems by utilizing
existing and newly developed probabilistic tools on concentration of maxima. The
text also provides a quick introduction to the state-of-the-art in the dynamic area
of phase-transitions in high-dimensional testing and inference. It is accessible to
doctoral students in Statistics with background in measure-theoretic probability and
statistics as well as to researchers in applied fields working with high-dimensional
data sets. The text can be used as a reference and a supplement to a special topics
course on high-dimensional inference.
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Chapter 1
Introduction and Guiding Examples

The proliferation of information technology has enabled us to collect and consume
huge volumes of data at unprecedented speeds and at very low costs. This convenient
access to data gave rise to a fundamentally di�erent way of pursuing scientific ques-
tions. In contrast with the traditional hypothesis–experiment–analysis cycle where
data are collected from the experiments, nowadays abundant data are often available
before specific questions are even formulated. Such data can be used for not just eval-
uating hypotheses, but also for generating, and selecting the hypotheses to pursue.
As a result, multiple testing — where a large number of hypotheses are formulated
and screened for their plausibility simultaneously — has become a staple of modern
data-driven studies.

An archetypal example of multiple testing problems is genetic association studies
(Bush and Moore, 2012). In these studies, scientists test hypotheses relating each of
the hundreds of thousands of genetic marker locations to phenotypic traits of interest.
For a phenotypic trait on which we have little prior knowledge, we cannot simply
test for association on one or a few specific genetic locations, as there are often not
enough empirical evidence or biological theory to pin point these genetic locations
in the first place. Rather, the goal here is to select the set of most promising genetic
markers from a large number of candidate locations for subsequent investigation.

Another example of multiple testing problems arise in cybersecurity, where mil-
lions of IP addresses are monitored in real time. In this engineering application,
statistics are collected and tests are performed for each IP address, in an attempt
to locate the IP addresses with anomalous network activities, so that and malicious
tra�c and volumetric attacks can be filtered to protect end users of network services
(Kallitsis et al., 2016). Similar to the genetic application above, we use data to search
over candidate IP addresses and identify locations of interest.

We are motivated very much by these examples to study high-dimensional multi-
ple testing problems where a large number of hypotheses are tested simultaneously.
In the rest of the introduction, we shall more review the main objectives of high-
dimensional multiple testing, and elaborate on these objectives with two classes of
data models in the context of various applications.

1



2 1 Introduction and Guiding Examples

1.1 The additive error model

Consider the canonical signal-plus-noise model where the observation x is a high-
dimensional vector in Rp ,

x(i) = µ(i) + ✏ (i), i = 1, . . . , p. (1.1)

The signal, µ = (µ(i))pi=1, is a vector with s non-zero components supported on the
set S = {i : µ(i) , 0}; the second term ✏ is a random error vector. The goal of
high-dimensional statistics is usually two-fold:

I. Signal detection: to detect the presence of non-zero components in µ. That is, to
test the global hypothesis µ = 0.

II. Support recovery: to estimate the support set S. This is also sometimes referred
to as the support estimation or signal identification problem.

To illustrate, in the engineering application of cybersecurity, Internet service
providers (ISP) routinely monitor a large number of network tra�c streams to deter-
mine if there are abnormal surges, blackouts, or other types of anomalies. The data
vector x could represent, for example, incoming tra�c volumes to each server node,
internet protocol (IP) address, or port that the ISP monitors. In this case, the vector µ
represents the average tra�c volumes in each of the streams under normal operating
conditions, and ✏’s – the fluctuations around these normal levels of tra�c. The signal
detection problem in this context is then equivalent to determining if there are any
anomalies among all data streams, and the support recovery problem is equivalent
to identifying the streams experiencing anomalies. Similar questions of signal detec-
tion and support recovery are pursued in large-scale microarray experiments (Dudoit
et al., 2003), brain imaging and fMRI analysis (Nichols and Hayasaka, 2003), and
numerous other anomaly detection applications.

A common theme in such applications is that the errors are correlated, and that
the signal vectors are believed to be sparse: the number of non-zero (or large) compo-
nents in µ is small compared to the number of tests performed. In the cybersecurity
context, while a very large number of data streams are monitored, typically only just
a few of them will be experiencing problems at any time, barring large-scale outages
or distributed denial of service attacks. Under such sparsity assumptions, it is natural
to ask if and when one can reliably (1) detect the signals, and (2) recover the support
set S. In this text, we explore both the detection and the support recovery problems.
More precisely, we are interested in the theoretical feasibility of both problems, and
seek minimal conditions under which these problems can be consistently solved in
large dimensions.

Model (1.1) is simple yet ubiquitous. Consider the linear model

Y = X µ + ⇠,



1.2 Genome-wide association studies and the chi-square model 3

where µ is a p-dimensional vector of regression coe�cients of interest to be inferred
from observations of X and Y . If the design matrix X is of full column rank1, then
the ordinary least squares (OLS) estimator of µ can be formed

Dµ =
�
X 0X

��1 X 0Y = µ + ✏, (1.2)

where ✏ := (X 0X )�1X 0⇠. Hence we recover the generic problem (1.1). Signal de-
tection is therefore equivalent to the problem of testing the global null model, and
support recovery problem corresponds to the fundamental problem of variable se-
lection.

Note that the components of the observation vector x (and equivalently, the noise
✏) in (1.1) need not be independent. In the linear regression example, even when
the components of the noise term ⇠ are independent, those of the OLS estimator
(1.2) need not be, except in the case of orthogonal designs. Indeed, in practice,
independence is the exception rather than the rule. Therefore, a general theory of
feasibility must address the role of the error dependence structure in such testing and
support estimation problems. It is also important to identify practical and/or optimal
procedures that attain the performance limits in independent as well as dependent
cases, as soon as the problems become theoretically feasible. We address both themes
in this text.

1.2 Genome-wide association studies and the chi-square model

The second data model we analyze is the high-dimensional chi-square model,

x(i) ⇠ �2
⌫ (�(i)) , i = 1, . . . , p, (1.3)

where the data x(i)’s follow independent (non-central) chi-square distributions with
⌫ degrees of freedom and non-centrality parameter �(i).

Model (1.3) is motivated by large-scale categorical variable screening problems,
typified by GWAS where millions of genetic factors are examined for their potential
influence on phenotypic traits.

In a GWAS with a case-control design, a total of n subjects are recruited, consisting
of n1 subjects possessing some defined traits, and n2 subjects without the traits
serving as controls. The genetic compositions of the subjects are then examined for
variations known as SNP at an array of p genomic marker locations, and compared
between the case and the control group. These physical traits are commonly referred
to as phenotypes, and the genetic variations are known as genotypes.

Focusing on one specific genomic location, the counts of observed genotypes, if
two variants are present, can be tabulated as follows. Researchers test for associations

1 This, of course, requires that we have more samples than dimensions, i.e., n > p. Nevertheless,
multiplicity of tests is still present when p itself is large – the multiple testing problem is by no
means exclusive to situations where p � n.
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Genotype
# Observations Variant 1 Variant 2 Total by phenotype

Cases O11 O12 n1
Controls O21 O22 n2

Table 1.1 Tabulated counts of genotype-phenotype combinations in a genetic association test.

between the genotypes and phenotypes using, for example, the Pearson chi-square
test with statistic

x =
2X

j=1

2X

k=1

(O jk � Ejk )2

Ejk
, (1.4)

where Ejk = (O j1 +O j2)(O1k +O2k )/n.
Under the mild assumption that the counts O jk’s follow a multinomial distribu-

tion (or a product-binomial distribution, if we decide to condition on one of the
marginals), the statistic x in (1.4) can be shown to have an approximate �2(�) dis-
tribution with ⌫ = 1 degree of freedom at large sample sizes (see, e.g., classical
results in Ferguson (2017) and Agresti (2018)). Independence between the geno-
types and phenotypes would imply a non-centrality parameter � value of zero; if
dependence exists, we would have a non-zero � where its value depends on the un-
derlying multinomial probabilities. More generally, if we have a J phenotypes and K
genetic variants, assuming a J ⇥ K multinomial distribution, the statistic will follow
approximately a �2

⌫ (�) distribution with ⌫ = (J � 1)(K � 1) degrees of freedom,
when sample sizes are large.

The same asymptotic distributional approximations also apply to the likelihood
ratio statistic, and many other statistics under slightly di�erent modeling assumptions
(Gao et al., 2019). These association tests are performed at each of the p SNP
marker locations throughout the whole genome, and we arrive at p statistics having
approximately (non-central) chi-square distributions, �2

⌫(i) (�(i)), for i = 1, . . . , p,
where � = (�(i))pi=1 is the p-dimensional non-centrality parameter.

Although the number of tested genomic locations p can sometimes exceed 105 or
even 106, it is often believed that only a small set of genetic locations have tangible
influences on the outcome of the disease or the trait of interest. Under the stylized
assumption of sparsity, � is assumed to have s non-zero components, with s being
much smaller than the problem dimension p. The goal of researchers is again two-
fold: (1) to test if �(i) = 0 for all i, and (2) to estimate the set S = {i : �(i) , 0}. In
other words, we look to first determine if there are any genetic variations associated
with the disease; and if there are associations, we want to locate them.

The chi-square model (1.3) also plays an important role in analyzing variable
screening problems under omnidirectional alternatives. A primary example is mul-
tiple testing under two-sided alternatives in the additive error model (1.1) where the
errors ✏ are assumed to have standard normal distributions.

Under two-sided alternatives, unbiased test procedures call for rejecting the hy-
pothesis µ(i) = 0 at locations where observations have large absolute values, or
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equivalently, large squared values. Taking squares on both sides of (1.1), and we
arrive at Model (1.3) with non-centrality parameters �(i) = µ2(i) and degree-of-
freedom parameter ⌫ = 1. In this case, the support recovery problem is equivalent
to locating the set of observations with mean shifts, S = {i : µ(i) , 0}, where the
mean shifts could take place in both directions.

Therefore, a theory for the chi-square model (1.3) naturally lends itself to the study
of two-sided alternatives in the Gaussian additive error model (1.1). In comparing
such results with existing theory on one-sided alternatives, we will be able to quantify
if, and how much of a price has to be paid for the additional uncertainty when we
have no prior knowledge on the direction of the signals.

1.3 Contents

Important notions and definitions in high-dimensional testing problems are recalled
in Chapter 2. We review related literature as well as key concepts and technical
results used in our subsequent analyses.

In Chapter 3 we study the sparse signal detection and support recovery prob-
lems for the additive error model (1.1) when components of the noise term ✏ are
independent standard Gaussian random variables. In particular, we point out several
new phase transitions in signal detection problems, and provide a unified account
of recently discovered phase transitions in support recovery problems. These result
show that as the dimension p! 1, the tasks of detecting the existence of signals, or
identifying the support set S are either doable or impossible depending on the spar-
sity and signal sizes of the problems. We also identify commonly used procedures
that attain the performance limits in both detection and support recovery problems.

Both the Gaussianity assumption and the independence assumption are relaxed in
Chapter 4. Established are the necessary and su�cient conditions for exact support
recovery in the high-dimensional asymptotic regime for the large class of threshold-
ing procedures. This is a major theoretical contribution of our approach, which solves
and expands on open problems in the recent literature (see Butucea et al. (2018); Gao
and Stoev (2020)). The analysis of support recovery problem is intimately related
to a concentration of maxima phenomena in the analysis of extremes. The latter
concept is key to understanding the role played by dependence in the phase transi-
tion phenomena of high-dimensional testing problems. In Chapter 5 we study the
universality of the phase-transition phenomenon in exact support recovery. We do so
by first establishing the finite-sample Bayes optimality and sub-optimality of thresh-
olding procedures. This, combined with the results from Chapter 4, culminates in
asymptotic minimax characterizations of the phase transition phenomenon in exact
support recovery across all procedures for a large class of dependence structures.

The dependence condition defined by the concentration of maxima concepts is
further demystified in Chapter 6 for Gaussian errors. We o�er a complete charac-
terization of the concentration of maxima phenomenon, known as uniform relative
stability, in terms of the covariance structures of the Gaussian arrays. This result
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may be of independent interest since it relates to the so-called superconcentration
phenomenon coined by Chatterjee (2014). See also, Gao and Stoev (2020) and
Kartsioukas et al. (2019).

Chapter 7 returns to high-dimensional multiple testing problems, and study the
chi-square model (1.3) inspired by the marginal association screening problems.
We establish four new phase-transition-type results in the chi-square model, and
illustrate their practical implications in the GWAS application. Our theory enables
us to explain the long-standing empirical observation that small perturbations in
the frequency and penetrance of genetic variations lead to drastic changes in the
discoverability in genetic association studies.



Chapter 2
Risks, Procedures, and Error Models

We establish the background necessary for the study of sparse signal detection and
support recovery problems in this chapter. Sections 2.1 and 2.2 provide a refresher
on the definitions of statistical risks and some commonly used statistical procedures.
Section 2.3 describes the asymptotic regime under which we analyze these proce-
dures, and reviews the related literature in high-dimensional statistics. We discuss in
Section 2.4 the connections among the risk metrics, and point out some common fal-
lacies. The remaining sections collect the technical preparations for this text. Section
2.5 defines an important class of error distributions which will be analyzed in detail
in later chapters. And finally, Section 2.6 introduces the concepts of concentration
of maxima, which plays a crucial role in the analysis of high-dimensional support
recovery problems. Finally, in Section 2.7 we gather well-known but indispensable
facts about Gaussian distributions.

2.1 Statistical risks

We define the statistical risk metrics for signal detection and signal support recovery
problems in this section. Formally, we denote a statistical procedure, i.e., measurable
function of the data, as R = R (x). In the testing context, a procedure R produces
a binary decision T that represents our judgment on the presence or absence of a
signal. In the support recovery problem, a procedure R produces an index set DS that
represents our estimate of the signal support. The statistical risks are then suitable
functionals of T and DS in respective contexts.

Signal detection. Recall that in sparse signal detection problems, our goal is to
come up with a procedure, R (x), such that the null hypothesis is rejected if the data
x is deemed incompatible with the null. In the additive error models context (1.1),
we wish to tell apart two hypotheses

H0 : µ(i) = 0, i = 1, . . . , p, v.s. H1 : µ(i) , 0, for some i 2 {1, . . . , p}, (2.1)

7
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based on the p-dimensional observation x. Similarly, in the chi-square model (1.3),
we look to test

H0 : �(i) = 0, i = 1, . . . , p, v.s. H1 : �(i) , 0, for some i 2 {1, . . . , p}. (2.2)

Since the decision is binary, we may write the outcome of the procedure in the form
of an indicator function, T (R (x)) 2 {0, 1}, where T = 1 if the null is to be rejected
in favor of the alternative, and 0 if we fail to reject the null. The Type I and Type
II errors of the procedure, i.e., the probability of wrong decisions under the null
hypothesisH0 and alternative hypothesisH1, respectively, are defined as

↵(R) := PH0 (T (R (x)) = 1) and �(R) := PH1 (T (R (x)) = 0) . (2.3)

The Neyman-Pearson framework of hypothesis testing then seeks tests that minimize
the Type II error of the test, while controlling the Type I error of the test at low levels.
We are particularly interested in the sum of the two errors,

riskD(R) := ↵(R) + �(R), (2.4)

which shall be referred to as the risk of signal detection (of the procedure R). It is
trivial that a small riskD would imply both small Type I and Type II errors of the
procedure.

Signal support recovery. Turning to support recovery problems, our goal is to
design a procedure that produces a set estimate DS(R (x)) of the true index set of
relevant variables S. For example, in the sparse additive error model (1.1) we aim
to estimate S = {i : µ(i) , 0}, while in the sparse chi-square model (1.3) the goal
is to estimate S = {i : �(i) , 0}. For simplicity of notation, we shall write DS for the
support estimator DS(R (x)).

For a given procedure R, its false discovery rate (FDR) and false non-discovery
rate (FNR) are defined, respectively, as

FDR(R) := E
2
6
6
6
6
4

|DS \ S |
max{|DS |, 1}

3
7
7
7
7
5

and FNR(R) := E
2
6
6
6
6
4

|S \ DS |
max{|S |, 1}

3
7
7
7
7
5

, (2.5)

where the maxima in the denominators resolve the possible division-by-0 problem.
Roughly speaking, FDR measures the expected fraction of false findings, while FNR
describes the proportion of Type II errors among the true signals, and reflects the
average marginal power of the procedure.

A more stringent criterion for false discovery is the family-wise error rate (FWER),
defined to be the probability of reporting at least one finding not contained in the
true index set. Correspondingly, a more stringent criterion for false non-discovery is
the family-wise non-discovery rate (FWNR), i.e., the probability of missing at least
one signal in the true index set. That is,

FWER(R) := 1 � P[DS ✓ S] and FWNR(R) := 1 � P[S ✓ DS]. (2.6)
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We introduce five di�erent statistical risk metrics, each having di�erent asymp-
totic limits in the support recovery problems as we will see in Chapter 3. Following
Arias-Castro and Chen (2017), we define the risk for approximate support recovery
as

riskA(R) := FDR(R) + FNR(R). (2.7)

Analogously, we define the risk for exact support recovery as

riskE(R) := FWER(R) + FWNR(R). (2.8)

Two closely related measures of success in the exact support recovery risk are the
probability of exact recovery,

P[DS = S] = 1 � P[DS , S], (2.9)

and the Hamming loss

H (DS, S) := �
�
�
DS4S�

�
�
=

pX

i=1

�
�
� DS (i) � S (i)�

�
�
. (2.10)

which counts the number of mismatches between the estimated and true support sets.
The relationship between probability of support recovery P[DS = S], exact support

recovery risk riskE, and the expected Hamming loss E[H (DS, S)] will be discussed in
Section 2.4 below.

Notice that all risk metrics introduced so far penalize false discoveries and missed
signals somewhat symmetrically — the approximate support recovery risk combines
proportions of errors, the exact support recovery risk combines probabilities of errors,
and the Hamming loss increments the risk by one regardless of the types of errors
made. In applications, however, attitudes towards false discoveries and missed signals
are often asymmetric. In the example of GWAS, where the number of candidate
locations p could be in the millions, and a class imbalance between the number of
nulls and signals exists, researchers are typically interested in the marginal (location-
wise) power of discovery, while exercising stringent (family-wise) false discovery
control. These types of asymmetric considerations, while important in applications,
have not been studied theoretically. For example, the GWAS application motivates
the exact-approximate support recovery risk, which weighs both the family-wise
error rate and the marginal power of discovery:

riskEA(R) := FWER(R) + FNR(R). (2.11)

The somewhat cumbersome name and notation are chosen to reflect the asymmetry
in dealing with the two types of errors in support recovery. Namely, when the risk
metric (2.11) vanishes, we have “exact false discovery control, and approximate false
non-discovery control” asymptotically.

Analogously, we consider the approximate-exact support recovery risk
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riskAE(R) := FDR(R) + FWNR(R), (2.12)

which places more emphasis on non-discovery control over false discovery.
Theoretical limits and performance of procedures in support recovery problems

will be studied in terms of the five risk metrics (2.7), (2.8), (2.9), (2.11) and (2.12),
in Chapters 3, 4, and 7. We are particularly interested in fundamental limits of signal
detection and support recovery problems in terms of these metrics, as well as the
optimality of commonly used procedures in high dimensional settings.

2.2 Statistical procedures

We review some popular procedures for signal detection and signal support recovery
tasks in this section.

Signal detection. One of the commonly used statistics in sparse signal detection
problems such as (2.1) and (2.2) are the Lq norms of the observations x,

Lq (x) = *

,

pX

i=1
|x(i) |q+

-

1/q

. (2.13)

Typical choices of q include q = 1, 2 and1, where L1(x) is interpreted as the limit
of Lq (x) norms as q ! 1, and is equivalent to maxi |x(i) |. Test procedures based
on (2.13) may then be written as T (R (x)) = (t,+1) (Lq (x)), where the cuto� t can
be chosen to control the Type I error at desired levels.

While (2.13) measures the deviation of the data from the origin in an omnidirec-
tional manner, statistics that are tailored to the alternatives can be used in the hopes
of power improvement if the directions of the alternatives are known. For example,
in the additive error model (1.1), suppose we want to test for positive mean shifts,
i.e., one-sided alternative

H1 : µ(i) > 0, for some i 2 {1, . . . , p}. (2.14)

Then, one might consider monitoring the sum (or equivalently, the arithmetic aver-
age) of the observations,

T (x) :=
pX

i=1
x(i), (2.15)

or the maximum of the observations,

M (x) := max
i=1,...,p

x(i). (2.16)

Other tests based on the empirical CDF are also available. Assuming the same
one-sided alternative, let
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q(i) = 1 � sup{Fi (y) : y < x(i)}, i = 1, . . . , p, (2.17)

be the p-values of the individual observations, where Fi is the CDF of the i-th
component x(i) underH0. We define empirical CDF of the p-values as

DFp (t) =
1
p

pX

i=1
[0,t](q(i)). (2.18)

Viewed as random elements in the space of càdlàg functions with the Skorohod J1
topology, the centered and scaled CDFs converge weakly to a Brownian bridge,

(p
p

⇣
DFp (t) � t

⌘)

t2[0,1]
=) {B(t)}t2[0,1] , as p! 1,

under the global null H0 and mild continuity assumptions on the Fi’s (Skorokhod,
1956). Therefore, goodness-of-fit statistics such as Kolmogorov-Smirnov distance
(Smirnov, 1948), Cramer-von Mises-type statistics (Cramér, 1928; Anderson and
Darling, 1952) that measure the departure from this limiting behavior can be used
for testingH0 againstH1. Of particular interest is the higher criticism (HC) statistic,
first proposed by Tukey (1976),

HC(x) = max
0t↵0

DFp (t) � t
p

t(1 � t)/p
. (2.19)

Each of the above statistics Lq , S, M , or HC, gives rise to a decision rule, whereby
the null hypothesis is rejected if the statistic exceeds a suitably calibrated threshold.
The choice of the threshold is typically determined based on large-sample limit
theorems. For example, as shown in Theorem 1.1 of Donoho and Jin (2004), under
the null hypothesis

HC(x)
p

2 log log(p)
�! 1, in probability,

as p ! 1. Thus, one decision rule is to reject H0, if HC(x) > t(p, ↵p), where
t(p, ↵p) =

p
2 log log(p)(1 + o(1)). As we will see, this yields an optimal signal

detection procedure (see also Theorem 1.2 in Donoho and Jin, 2004). The perfor-
mance of these statistics in high-dimensional sparse signal detection problems will
be reviewed in Section 2.3, and analyzed in Chapter 3.

Signal support recovery. In signal support recovery tasks, we shall study the
performance of five procedures, all of which belong to the broad class of thresholding
procedures.

Definition 2.1 (Thresholding procedures). A thresholding procedure for estimat-
ing the support S := {i : �(i) , 0} is one that takes on the form

DS = {i | x(i) � t(x)} , (2.20)
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where the threshold t(x) may depend on the data x.
Examples of thresholding procedures include ones that aim to control FWER

(2.6) — Bonferroni’s (Dunn, 1961), Sidák’s (äidák, 1967), Holm’s (Holm, 1979),
and Hochberg’s procedure (Hochberg, 1988) — as well as procedures that tar-
get FDR (2.5), such as the Benjamini-Hochberg Benjamini and Hochberg (1995)
and the Barber-Candès procedure (Barber and Candès, 2015). Indeed, the class of
thresholding procedures (2.20) is so general that it contains most (but not all) of the
statistical procedures in the multiple testing literature.

Under the assumption that the data x(i)’s under the null have a common marginal
distribution F, we review five thresholding procedures for support recovery, starting
with the well-known Bonferroni’s procedure which aims at controlling family-wise
error rates.
Definition 2.2 (Bonferroni’s procedure). Bonferroni’s procedure with level ↵ is
the thresholding procedure that uses the threshold

tp = F (1 � ↵/p). (2.21)

where F (u) = inf {x : F (x) � u} is the generalized inverse function.
The Bonferroni procedure is deterministic, i.e. non data-dependent, and only de-
pends on the dimension of the problem and the null distribution. A closely related
procedure is Sidák’s procedure (äidák, 1967), which is a more aggressive (and also
deterministic) thresholding procedure that uses the threshold

tp = F ((1 � ↵)1/p). (2.22)

The third procedure, strictly more powerful than Bonferroni’s, is the so-called
Holm’s procedure (Holm, 1979). On observing the data x, its coordinates can be
ordered from largest to smallest x(i1) � x(i2) � . . . � x(ip), where (i1, . . . , ip) is a
permutation of {1, . . . , p}. Denote these order statistics as x[1], x[2], . . . , x[p].
Definition 2.3 (Holm’s procedure). Let i⇤ be the largest index such that

F (x[i])  ↵/(p � i + 1), for all i  i⇤.

Holm’s procedure with level ↵ is the thresholding procedure with threshold

tp (x) = x[i⇤]. (2.23)

In contrast to the Bonferroni procedure, Holm’s procedure is data-dependent. A
closely related, more aggressive (and also data-dependent) thresholding procedure is
Hochberg’s procedure (Hochberg, 1988). It replaces the index i⇤ in Holm’s procedure
with the largest index such that

F (x[i])  ↵/(p � i + 1).

Notice that both Holm’s and Hochberg’s procedures compare p-values to the same
thresholds ↵/(p�i+1). However, Holm’s procedure only rejects the set of hypotheses
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whose p-values are all smaller than their respective thresholds. On the other hand,
Hochberg’s procedure rejects the set of hypotheses as long as the largest of their
p-values fall below its threshold, and therefore, can be more powerful than Holm’s
procedure.

It can be shown that both Bonferroni’s and Holm’s procedures control FWER at
their nominal levels, regardless of dependence in the data (Holm, 1979). In contrast,
Sidák’s and Hochberg’s procedures control FWER at nominal levels when data are
independent (äidák, 1967; Hochberg, 1988).

Last but not least, we review the BH procedure, which aims at controlling FDR
in (2.5), proposed by Benjamini and Hochberg (1995).

Recall the order statistics of our observations are: x[1] � x[2] � . . . � x[p].

Definition 2.4 (Benjamini-Hochberg’s procedure). Let i⇤ be the largest index such
that

F (x[i])  ↵i/p.

The Benjamini-Hochberg (BH) procedure with level ↵ is the thresholding procedure
with threshold

tp (x) = x[i⇤], (2.24)

The BH procedure is shown to control the FDR at level ↵ when the x(i)’s are
independent (Benjamini and Hochberg, 1995). Variations of this procedure have
been proposed to control the FDR under certain models of dependent observations
(Benjamini and Yekutieli, 2001).

The performance of these procedures in high-dimensional sparse signal support
recovery problems will be reviewed in Section 2.3, and analyzed in Chapters 3, 4,
and 7.

2.3 Related literature and our contributions

We look to derive useful asymptotic approximations for high-dimensional problems,
and analyze the afore-mentioned procedures in the regime where the dimensionality
of the observations diverge. Throughout this text, we consider triangular arrays of
observations as described in Models (1.1) and (1.3), and study the performance of
various procedures in the signal detection and support recovery tasks when

p! 1.

The criteria for success and failure in support recovery problems under this high-
dimensional asymptotic regime are defined as follows.

Definition 2.5. We say a sequence of procedures R = Rp succeeds asymptotically
in the detection problem (and respectively, exact, exact-approximate, approximate-
exact, and approximate support recovery problem) if

riskP(R) ! 0, as p! 1, (2.25)
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where P = D (respectively, E, EA, AE, A).
Conversely, we say the exact support recovery fails asymptotically in the detec-

tion problem (and respectively, exact, exact-approximate, approximate-exact, and
approximate support recovery problem) if

lim inf riskP(R) � 1, as p! 1, (2.26)

where P = D (respectively, E, EA, AE, A).

The choice of the constant 1 in the definition (2.26) allows us to declare failure for
trivial testing procedures. For example, trivial deterministic procedures that always
reject, and ones that always fail to reject, both have statistical risks 1 in either the
detection or the support recovery problem. Similarly, a trivial randomized procedure
that reject the nulls uniformly at random also has risk of 1, and is declared as a failure
in both problems.

Signal detection. The asymptotic behavior of the statistical risk in signal detection
problems (2.4) in high dimensions was first studied by Yuri Izmailovich Ingster in the
context of sparse additive models (1.1) with independent and Gaussian components.
Specifically, Ingster (1998) considered the behavior of the theoretically optimal
likelihood ratio (LR) test in the high-dimensional asymptotic regime, where the
dimension p grows to infinity. Then, under certain parameterization of the size and
sparsity of the signal µ, a dichotomy exists: either riskD (R) vanishes as p ! 1
where R is the LR test, or lim infp!1 riskD (R) = 1 for any procedure. The precise
signal size and sparsity parameterizations as well as the so-called detection boundary
discovered by Ingster are described in Chapter 3.

The LR test, unfortunately, relies on the knowledge of the signal sparsity and
signal sizes which are not available in practice. The sparsity-and-signal-size-agnostic
statistic HC in (2.19) was identified to attain such optimal performance limits in
sparse Gaussian models in Donoho and Jin (2004). A modified goodness-of-fit test
statistic in Zhang (2002), and two statistics based on thresholded-L1 and L2 norms
in Zhong et al. (2013) were also shown to be asymptotically optimal in the detection
problem. Recent studies have also focused on the behavior of detection risk (2.4)
in dense and scale mixture models Cai et al. (2011), under general distributional
assumptions (Cai and Wu, 2014; Arias-Castro and Wang, 2017), as well as when the
errors are dependent (Hall and Jin, 2010). A comprehensive review focusing on the
role of HC in detection problems can be found in Donoho and Jin (2015). The very
recent contribution of Li and Fithian (2020) shows exciting new developments on the
detection problem in a more realistic regime than the ones previously studied in the
literature. It shows that the max statistic begins to attain the optimal boundary and
is on par with HC (cf Table 1, therein). Notwithstanding the extensive literature on
the detection problem, the performances of simple statistics such as Lq norms (2.13)
and sums (2.15), to the best of our knowledge, have only been sparingly documented.
We gather relevant results in Chapter 3, and make several new contributions on the
performance of several statistics commonly used in practice.
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Exact support recovery. There is a wealth of literature on the so-called sparsis-
tency (i.e., P[DS = S]! 1 as p! 1) problem in the regression context. Sparsistency
problems were pursued, among many others, by Zhao and Yu (2006) and Wasserman
and Roeder (2009) in the high-dimensional regression setting (where the number of
samples n ⌧ p), and by Meinshausen and Bühlmann (2006) in graphical models.
Although there have been numerous studies on the su�cient conditions for sparsis-
tency, e�orts on necessary conditions have been scarce. Notable exceptions include
Wainwright (2009a,b) and Comminges and Dalalyan (2012) in regression problems.
We refer the reader to the recent book by Wainwright (2019) (and in particular, the
bibliographical sections of Chapters 7 and 15 therein) for a comprehensive review.

Elaborate asymptotic minimax optimality results under the Hamming loss were
derived for methods proposed in Ji and Jin (2012) and Jin et al. (2014) for regres-
sion problems. More recently, Butucea et al. (2018) also obtained similar minimax
optimality results for a specific procedure in the Gaussian additive error model (1.1)
in terms of the expected Hamming loss.

Nevertheless, two important questions remained unanswered. Namely, precise
phase-transition-type results for the exact support recovery risk (2.8) and for the
support recovery probability (2.9) have not been established. And secondly, perfor-
mance of commonly used statistical procedures reviewed in Section 2.2 in terms of
these risk metrics have not been studied. Some of our main contributions in this text
are the solutions to these problems, presented in Chapters 3 and 4 below. Specifically,
we show that the Bonferroni thresholding procedure (among others) is asymptotically
optimal for the exact support recovery problem in (1.1) under broad classes of error
distributions. Furthermore, a phase-transition in the exact support recovery problem
for thresholding procedures is established under broad dependence conditions on the
errors using the concentration of maxima phenomenon (Chapter 4). We also estab-
lish finite-sample Bayes optimality and sub-optimality results for these procedures
under independence, and by extension, arrive at minimax optimality results for the
exact support recovery problem (Chapter 5).

The landscape of the fundamental statistical limits in support estimation is yet to
be fully charted. We conjecture, however, that the general concentration of maxima
phenomenon will lead to its complete solution under very broad error dependence
scenarios.

Approximate support recovery. The performance limits of FDR-controlling
procedures in the support recovery problem have been actively studied in recent years.
The asymptotic optimality of the Benjamini-Hochberg procedure was analyzed under
decision theoretic frameworks in Genovese and Wasserman (2002); Bogdan et al.
(2011); Neuvial and Roquain (2012), with main focus on location/scale models.
In particular, these papers show that the statistical risks of the procedures come
close to that of the oracle procedures under suitable asymptotic regimes. Strategies
for dealing with multiple testing under general distributional assumptions can be
found in, e.g., Efron (2004), Storey (2007), and Sun and Cai (2007). The two-sided
alternative in the additive error model was featured as the primary example in Sun
and Cai (2007).
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In the additive error model (1.1) under independent Gaussian errors and one-sided
alternatives (2.14), Arias-Castro and Chen (2017) showed that a phase transition
exists for the approximate support recovery risk (2.7). The BH procedure (Ben-
jamini and Hochberg, 1995), and the Barber-Candès procedure (Barber and Candès,
2015) were identified to be asymptotically optimal. However, Arias-Castro and Chen
(2017), as all related work so far, assumed the non-nulls to follow a common alterna-
tive distribution. We derive a new phase transition result that relaxes this assumption
on the alternatives in Chapter 3.

Asymmetric statistical risks. Although weighted sums of false discovery and
non-discovery have been studied in the literature mentioned above, the case of simul-
taneous family-wise error control and marginal, location-wise power requirements,
has not been previously considered. As a result, asymmetric statistical risks such as
(2.11) and (2.12) have not been investigated. As argued in Section 2.1, the properties
of these asymmetric risks are of important practical concern in applications such as
GWAS. We study the asymptotic behavior of these risks in Chapters 3 and 7 of this
text.

Chi-square models and GWAS. The high-dimensional chi-square model (1.3)
seemed to have received little attention in the literature. While the sparse signal
detection problem in the chi-square model has been studied Donoho and Jin (2004),
to the best of our knowledge, asymptotic limits of the support recovery problems
have not been studied. The chi-squared model and the motivating GWAS application
are analyzed in Chapter 7. The results obtained therein help us explain a phenomenon
in GWAS where statistical power decays sharply as function of sample size when the
latter is in a small region known as the steep part of the power curve. This empirical
fact has long been observed by statistical geneticists but has not been mathematically
quantified. Gao et al. (2019) provide further details on the power and design in
GWAS as well as an accompanying interactive statistical software (Gao, 2019).

2.4 Relationships between the asymptotic risks

We now elaborate on the relationship between statistical risks, as promised in Section
2.1. The first lemma concerns the asymptotic relationship between the probability
of exact recovery (2.9) and the risk of exact support recovery (2.8).

Lemma 2.1. For any sequence of procedures for support recovery R = Rp , we have

P[DS = S]! 1 () riskE(R) ! 0, (2.27)

and
P[DS = S]! 0 =) lim inf riskE(R) � 1, (2.28)

as p! 1. Dependence on p and R was suppressed for notational convenience.
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Proof (Lemma 2.1). Notice that {DS = S} implies {DS ✓ S} \ {DS ◆ S}, therefore we
have for every fixed p,

riskE = 2 � P[DS ✓ S] � P[S ✓ DS]  2 � 2P[DS = S]. (2.29)

On the other hand, since {DS , S} implies {DS * S} [ {DS + S}, we have for every fixed
p,

1 � P[DS = S] = P[DS , S]  2 � P[DS ✓ S] � P[S ✓ DS] = riskE. (2.30)

Relation (2.27) follows from (2.29) and (2.30), and Relation (2.28) from (2.30). ut

By virtue of Lemma 2.1, it is su�cient to study the probability of exact support
recovery P[DS = S] in place of riskE, if we are interested in the asymptotic properties
of the risk in the sense of (2.25) and (2.26).

Keen readers must have noticed the asymmetry in Relation (2.28) when we
discussed the relationship between the exact support recovery risk (2.8) and the
probability of exact support recovery (2.9). While a trivial procedure that never
rejects and a procedure that always rejects both have riskE equal to 1, the converse
is not true. For example, it is possible that a procedure selects the true index set S
with probability 1/2, but otherwise makes one false inclusion and one false omission
simultaneously. In this case the procedure will have

riskE = 1, and P[DS = S] = 1/2,

showing that the converse of Relation (2.28) is in fact false.
The same argument applies to riskA: a procedure may select the true index set

S with probability 1/2, but makes enough false inclusions and omissions the rest
of the time, so that riskA is equal to one. Therefore, although the class of methods
with risks equal to or exceeding 1 certainly contains the trivial procedures that we
mentioned, they are not necessarily “useless” as some researchers have claimed (cf.
Remark 2 in Arias-Castro and Chen, 2017).

Upper and lower bounds for FDR and FNR can be immediately derived by
replacing the numerators in (2.5) with the Hamming loss,

E
2
6
6
6
6
4

H (DS, S)

max{|DS |, |S |, 1}

3
7
7
7
7
5

 FDR + FNR  E
2
6
6
6
6
4

H (DS, S)

max{min{|DS |, |S |}, 1}

3
7
7
7
7
5

. (2.31)

Therefore, it is su�cient, but not necessary, that the Hamming loss vanish in order
to have vanishing approximate support recovery risks (2.7).

Turning to the relationship between the probability of exact support recovery (2.9)
and Hamming loss (2.10), we point out a natural lower bound of the former using
the expectation of the latter,

P[DS = S] � 1 � E[H (DS, S)] = 1 �
pX

i=1
E �

�
� DS (i) � S (i)�

�
�
. (2.32)
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A key observation in Relation (2.32) is that the expected Hamming loss decouples
into p terms, and the dependence of the estimates DS (i) among the p locations no
longer plays any role in the sum. Therefore, studying support recovery problems
via the expected Hamming loss is not very informative especially under severe
dependence, as the bound (2.32) may become very loose. Vanishing Hamming loss
is again su�cient, but not necessary for P[DS = S] or the exact support recovery risk
to fo to zero.

2.5 The asymptotic generalized Gaussian (AGG) models

We introduce a fairly general class of distributions known as asymptotic generalized
Gaussians AGG. We also state some of their tail properties which play important
roles in the analysis of phase transitions of high-dimensional testing problems.

Definition 2.6. A distribution F is called asymptotic generalized Gaussian with
parameter ⌫ > 0 (denoted AGG(⌫)) if

1. F (x) 2 (0, 1) for all x 2 R, and
2. log F (x) ⇠ � 1

⌫ x⌫ and log F (�x) ⇠ � 1
⌫ (�x)⌫,

where F (x) = 1 � F (x) is the survival function, and a(x) ⇠ b(x) is taken to mean
limx!1 a(x)/b(x) = 1.

The AGG models include, for example, the standard Gaussian distribution (⌫ = 2)
and the Laplace distribution (⌫ = 1) as special cases. Since the requirement is only
placed on the tail behavior, this class encompasses a large variety of light-tailed
models. This class is commonly used in the literature on high-dimensional testing
(Cai et al., 2007; Arias-Castro and Chen, 2017).

Proposition 2.1. The (1/p)-th upper quantile of AGG(⌫) is

up := F (1 � 1/p) ⇠ �
⌫ log p

�1/⌫ , as p! 1, (2.33)

where F (q) = infx {x : F (x) � q}, q 2 (0, 1).

Proof (Proposition 2.1). By the definition of AGG, for any ✏ > 0, there is a constant
C = C(✏ ) such that for all x � C, we have

�1
⌫

x⌫ (1 + ✏ )  log F (x)  �1
⌫

x⌫ (1 � ✏ ).

Therefore, for all x < xl :=
⇣
(1 + ✏ )�1⌫ log p

⌘1/⌫
, we have

� log p = �1
⌫

x⌫l (1 + ✏ )  log F (xl)  log F (x), (2.34)
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and for all x > xu :=
⇣
(1 � ✏ )�1⌫ log p

⌘1/⌫
, we have

log F (x)  log F (xu)  �1
⌫

x⌫u (1 � ✏ ) = � log p. (2.35)

By definition of generalized inverse,

up := F (1 � 1/p) = inf{x : F (x)  1/p} = inf{x : log F (x)  � log p}.

We know from relations (2.34) and (2.35) that

[xu,+1) ✓ {x : log F (x)  � log p} ✓ [xl,+1),

and so xl  up  xu , and the expression for the quantiles follows. ut

2.6 Rapid variation and relative stability

The behavior of the maxima of identically distributed random variables has been
studied extensively in the extreme value theory literature (see, e.g., Leadbetter et al.,
1983; Resnick, 2013; Embrechts et al., 2013; De Haan and Ferreira, 2007, and the
references therein). The concept of rapid variation plays an important role in the
light-tailed case.

Definition 2.7 (Rapid variation). The survival function of a distribution, F (x) =
1 � F (x), is said to be rapidly varying if

lim
x!1

F (t x)
F (x)

=

8>>>>
<
>>>>
:

0, t > 1
1, t = 1
1, 0 < t < 1

. (2.36)

When F (x) < 1 for all finite x, Gnedenko (1943) showed that the distribution F
has rapidly varying tails if and only if the maxima of independent observations from
F are relatively stable in the following sense.

Definition 2.8 (Relative stability). Let ✏ p =
⇣
✏ p (i)

⌘p
i=1

be a sequence of random
variables with common marginal distribution F. Define the sequence (up)1p=1 to be
the (1 � 1/p)-th generalized quantile of F, i.e.,

up = F (1 � 1/p). (2.37)

The triangular array E = {✏ p, p 2 N} is said to have relatively stable (RS) maxima if

1
up

Mp :=
1

up
max

i=1,...,p
✏ p (i)

P�! 1, as p! 1. (2.38)
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In the case of independent and identically distributed ✏ p (i)’s, Barndor�-Nielsen
(1963) and Resnick and Tomkins (1973) obtained necessary and su�cient conditions
for the almost sure stability of maxima, where the convergence in (2.38) holds almost
surely. See also Klass (1984) for further sharp results on almost sure stability, and
Naveau (2003) for almost sure stability in stationary sequences. Here, we will only
need the weaker notion in (2.38) but extend our inquiry to the case of dependent
✏ p (i)’s.

While relative stability (and almost sure stability) is well-understood in the in-
dependent case, the role of dependence has not been fully explored. We start this
investigation with a small refinement of Theorem 2 in Gnedenko (1943) valid under
arbitrary dependence.

Proposition 2.2 (Rapid variation and relative stability). Assume that the array
E consists of identically distributed and possibly dependent random variables with
cumulative distribution function F, where F (x) < 1 for all finite x > 0.

1. If F has rapidly varying right tail in the sense of (2.36), then for all � > 0,

P

"
1

up
Mp  1 + �

#

� 1 �
F ((1 + �)up)

F (up)
! 1. (2.39)

2. If the array E has independent entries, then it is relatively stable if and only if F
has rapidly varying tail, i.e., (2.36) holds.

Proof (Proposition 2.2). By the union bound and the fact that pF (up)  1, we have

P[Mp > (1 + �)up]  pF ((1 + �)up) 
F ((1 + �)up)

F (up)
. (2.40)

In view of (2.36) (rapid variation) and the fact that up ! 1, as p ! 1, the right-
hand side of (2.40) vanishes as p ! 1, for all � > 0. This completes the proof of
(2.39). Part 2 is a re-statement of a classic result dating back to Gnedenko (1943).
ut

Remark 2.1. Part (1) of Proposition 2.2 is equivalent to

P

"
1

up
Mp > 1 + �p

#

�! 0, as p! 1, (2.41)

for some positive sequence �p ! 0. Notice on the other hand that, if M⇤p is the
maximum of p iid variables with distribution F, the relative stability property entails
M⇤p/up ! 1, in probability, as p ! 1. Since the sequence 1 + �p ! 1, Relation
(2.41) means that the rate of growth of the maxima Mn in E cannot be faster than
that of the independent maxima M⇤p . This somewhat surprising fact holds regardless
of the dependence structure of E and is solely a consequence of the rapid variation
of F.
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We demonstrate next that the Gaussian, Exponential, Laplace, and Gamma dis-
tributions all have rapidly varying tails.

Example 2.1 (Generalized AGG). A distribution is said to have Generalized AGG
right tail, if log F is regularly varying,

log F (x) = �x⌫L(x), (2.42)

where ⌫ > 0 and L : (0,+1) ! (0,+1) is a slowly varying function. (A function
is said to be slowly varying if limx!1 L(t x)/L(x) = 1 for all t > 0.) Note that the
AGG(⌫) model corresponds to the special case where L(x) ! 1/⌫, as x ! 1.

Relation (2.39) holds for all arrays E with generalized AGG marginals; if the
entries are independent, the maxima are relatively stable. This follows directly from
Proposition 2.2, once we show that F has rapidly varying tail. Indeed, by (2.42), we
have

log
⇣
F (t x)

.
F (x)

⌘
= �L(x)x⌫

 
t⌫

L(t x)
L(x)

� 1
!
,

which converges to �1, 0, and +1, as x ! 1, when t > 1, t = 1, and t < 1,
respectively, since x⌫L(x) ! 1 as x ! 1 by definition of L.

The AGG class encompasses a wide variety of rapidly varying tail models such
as Gaussian and double exponential distributions. The larger class (2.42) is needed,
however, for the Gamma distribution.

More generally, distributions with heavier tails (e.g., log-normal) and lighter tails
(e.g., Gompertz) outside the generalized AGG class (2.42) may also possess rapidly
varying tails; heavy-tailed distributions like the Pareto and t-distributions, on the
other hand, do not. More details on these alternative classes of models can be found
in Chapter B.

2.7 Auxiliary facts about Gaussian distributions

We end this chapter with several facts about univariate and multivariate Gaussian
distributions that will be used in the rest of the manuscript.

Relative stability. We first state the relative stability of iid standard Gaussian
random variables. Since the standard Gaussian distribution falls in the class of
asymptotically generalized Gaussians (AGG; see Definition 2.6), by Example 2.1,
we know that the triangular array E = {(✏ p (i))pi=1, p 2 N} has relatively stable (RS)
maxima in the sense of (2.38), i.e.,

1
up

max
i=1,...,p

✏ p (i)
P�! 1, as p! 1, (2.43)

where up is the (1/p)-th upper quantile as defined in (2.33). Similarly, since the
array E has distributions symmetric around 0, it also has relatively stable minima
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1
up

min
i=1,...,p

✏ p (i)
P�! �1, as p! 1. (2.44)

The convergence in (2.43) also holds almost surely.

Mill’s ratio. We give next the well-known bounds for the Mill’s ratio of Gaussian
tails. Let � denote the CDF of the standard Gaussian distribution and � its density.
One can show that for all x > 0 we have

x
1 + x2 �(x)  �(x) = 1 � �(x)  1

x
�(x), (2.45)

using e.g., integration by parts. Note that this fact may be used to verify the rapid
variation of �, which entails the relative stability property above.

Stochastic monotonicity. The third fact is the stochastic monotonicity of the
Gaussian location family. In fact, for all location families {F� (x)}� where F� (x) =
F (x � �), we have,

F�1 (t) � F�2 (t), for all t 2 R and all �1  �2. (2.46)

Relation (2.46) holds, of course, when F is the standard Gaussian distribution.

Slepian’s lemma and the Sudakov-Fernique inequality. The following two
results will be instrumental in our characterization of uniform relative stability for
Gaussian triangular arrays in Chapter 6. The first is the celebrated result due to
Slepian (1962).

Theorem 2.1 (Slepian’s lemma). Let ✏ = (✏ (i))pi=1 and ⌘ = (⌘(i))pi=1 be two multi-
variate normally distributed random vectors with zero means E[✏ (i)] = E[⌘(i)] = 0.

If for all i, j = 1, · · · , p, we have

E[✏ (i)2] = E[⌘(i)2], and Cov(✏ (i), ✏ ( j))  Cov(⌘(i), ⌘( j)),

then ✏
st
� ⌘, i.e.,

P[✏ (i)  xi, i = 1, · · · , p]  P[⌘(i)  xi, i = 1, · · · , p].

This result implies in particular that M✏ := maxi=1, · · · ,p ✏ (i) dominates stochasti-
cally M⌘ := maxi=1, · · · ,p ⌘(i) in the sense that

P[M⌘ > u]  P[M✏ > u], for all u 2 R. (2.47)

In this case, we shall write M⌘
d
 M✏ . This result shows, for example, that the

maximum of iid Gaussians is stochastically larger the maximum of any positively
correlated Gaussian vector with the same marginal distributions.
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Slepian’s lemma can be obtained as a corollary from the general Normal Com-
parison Lemma (see, e.g., Theorem 4.2.1 on page 81 in Leadbetter et al., 1983). See
also Ch. 2 in Adler and Taylor (2009).

The following result, known as the Sudakov-Fernique inequality, is similar in spirit
to Slepian’s lemma but it does not assume that the Gaussian vectors are centered and
yields a weaker conclusion – an inequality between expectations. For a proof, many
insights, and, in fact, a more general result, see e.g., Theorem 2.2.5 on page 61 in
Adler and Taylor (2009).

Theorem 2.2 (The Sudakov-Fernique inequality). Let ✏ = (✏ (i))pi=1 and ⌘ =
(⌘(i))pi=1 be two multivariate normally distributed random vectors.

If for all i, j = 1, · · · , p, we have

E[✏ (i)] = E[⌘(i)] and E[(⌘(i) � ⌘( j))2]  E[(✏ (i) � ✏ ( j))2],

then for M✏ = maxi=1, · · · ,p ✏ (i) and M⌘ = maxi=1, · · · ,p ⌘(i), we have

E[M⌘]  E[M✏ ].

With these conceptual and technical preparations, we are ready to discuss the
high-dimensional signal detection and support recovery problems in the next chapter.





Chapter 3
A Panorama of Phase Transitions

The purpose of this chapter is to provide a unified review of the fundamental statistical
limits in the sparse signal detection and support recovery problems. Our goal is to
convey the main ideas and thus we shall focus on the simple but important setting of
independent Gaussian errors. Specifically, we derive the conditions under which the
detection and support recovery problems succeed and fail in the sense of (2.25) and
(2.26), in the additive error model

x(i) = µ(i) + ✏ (i), i = 1, . . . , p, (3.1)

where the errors ✏ (i)’s are iid standard Gaussians random variables. Once again, we
restrict our analysis to models with independent and identically distributed Gaussian
errors for the moment. Both the distributional assumption and the independence
assumption will be relaxed substantially in the following chapters.

As laid out in Section 2.3, we work under the asymptotic regime where the
problem dimension p diverges to infinity. The set of non-zero entires of the signal
vector µ = µp will be referred to as its support and denoted by

Sp := {i : µ(i) , 0}.

We shall assume that the size of the support is

|Sp | = bp1��c, � 2 (0, 1], (3.2)

where � parametrizes the problem sparsity. A more general parameterization of the
support involving a slowly varying function is considered in Chapter 4.

The closer � to 1, the sparser the support Sp . Conversely, when � is close to 0,
the support is dense with many non-null signals. We consider one-sided alternatives
(2.14), and parametrize the range of the non-zero (and perhaps unequal) signals with

� =
q

2r log p  µ(i)  � =
q

2r log p, for all i 2 Sp, (3.3)

for some constants 0 < r  r  +1.

25
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The parametrization of signal sparsity (3.2) and signal sizes (3.3) in the Gaussian
model was first introduced in Ingster (1998), and later adopted by Hall and Jin (2010),
Cai et al. (2011), Zhong et al. (2013), Cai and Wu (2014), Arias-Castro and Wang
(2017), and numerous others for studying the signal detection problem in Gaussian
location-scale models. Similar scalings of sparsity and signal size are also used in,
e.g., Ji and Jin (2012), Jin et al. (2014), Butucea et al. (2018) to study the phase
transitions of the support recovery problems under Gaussianity assumptions.

It should be noted that the “classical” setting where all signals are of equal size
is not the only one that have been studied. The recent contribution of Li and Fithian
(2020) investigates the signal detection problem in a more realistic setting where the
signals are drawn from a general and potentially polynomial-tailed distribution. The
study of such general settings in both detection and support recovery problems is an
interesting new direction of research.

3.1 Sparse signal detection problems

The optimality of sparse signal detection was first studied by Ingster (1998), who
showed that a phase transition in the r-� plane exists for the signal detection problem.
Specifically, consider the so-called detection boundary function:

fD(�) =
8>
<
>
:

max{0, � � 1/2} 0 < �  3/4
⇣
1 �

p
1 � �

⌘2
3/4 < �  1.

� 2 (0, 1]. (3.4)

Assume that the non-zero signal sizes are all equal and parameterized as
p

2r log p.
If the signal size parameter r is above the detection boundary, i.e., r > fD(�), then
the global null hypothesis µ(i) = 0 for all i = 1, . . . , p can be distinguished from the
alternative as p! 1 in the sense of (2.25) using the likelihood ratio test. Otherwise,
when the signal sizes fall below the boundary, i.e., r < fD(�), no test can do better
than a random guess. We visualize the detection boundary in the upper panel of
Figure 3.1.

Adaptive tests such as Tukey’s HC in (2.19) (Donoho and Jin, 2004) and a
modified goodness-of-fit test statistic of Zhang (2002) have been identified to attain
this performance limit without knowledge of the sparsity and signal sizes. It is also
known that the max-statistic (2.16) is only e�cient when r > (1 +

p
1 � �)2, and is

therefore sub-optimal for denser signals where 1/2  �  3/4; see Cai et al. (2011).
(Recently, Li and Fithian (2020) showed that in the more general setting where
signals themselves are dispersed, the sub-optimality of the max statistic disappears
in the detection problem.) In contrast, the sum-of-square-type statistics such as L2
was shown in Fan (1996) to be asymptotically powerless when the L2-norm of the
signal kµk22 is o(pp), or equivalently, when � > 1/2 in our parametrization.

Notice that the scaling for the signal magnitude � =
p

2r log p is useful for
studying very sparse signals (� > 1/2), but fails to reveal the di�culties of the
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detection problems when the signals are relatively dense (� < 1/2). This is because
fD(�) = 0, � 2 (0, 1/2]. Thus, a di�erent scaling is needed to study the regime
of small but dense signals. In this case, with slight overloading of notation, we
parametrize signal sizes as

� = pr  µ(i)  � = pr, for all i 2 Sp, (3.5)

where r and r are negative constants and the signal magnitude vanishes, as p! 1.
In this scaling, for the so-called faint signal regime, Cai et al. (2011) established a
phase transition result characterized by the following boundary,

fD0 (�) = � � 1/2, 0 < �  1/2. (3.6)

Specifically, if r < fD0 (�), the signal detection fails in the sense of (2.26) regardless
of the procedures, while the HC statistic continues to attain asymptotically perfect
detection when r > fD0 (�). We visualize this boundary in the lower panel of Figure
3.1.

To the best of our knowledge, the performance of simple statistics such as L1, L2
norms, and the sum statistic T in (2.15) in this weak signal setting have not been
reported in the literature. Our first theorem establishes the performance of these
simple but popular statistics for detecting sparse signals in high-dimensions, and
summarizes the known results.

Theorem 3.1. Consider the signal detection problem in the triangular array of Gaus-
sian error models (3.1) where the sparsity is parametrized as in (3.2).

(i) For � 2 (1/2, 1) and growing signals sizes as in (3.3), the statistics L1, L2 and
T are asymptotically powerless in the sense of (2.26).

(ii) For � 2 (0, 1/2] and growing signals sizes as in (3.3), the statistics L1, L2
and T solve the detection problem in the sense of (2.25).

(iii) For dense and faint signals, i.e., � 2 (0, 1/2] under the parameterization
(3.5), the sum statistic T attains the optimal detectability boundary in (3.6). That is,
tests based on the sum statistic T can succeed asymptotically in the sense of (2.25)
when r > � � 1/2.

(iv) In the dense and faint signal setting of (iii), the L1 and L2 statistics are both
sub-optimal. More precisely, they succeed in the sense of (2.25) when r > �/2�1/4,
but fail in the sense of (2.26) when r < �/2 � 1/4.

Proof. The claims in parts (i) and (ii) about the L1, L2, and the sum statistic T in the
cases of diverging signal sizes (3.3) can be found in Fan (1996) and Candès (2018).
We prove here the statements for the cases (iii) and (iv), where the signals are dense
and small, as parametrized in (3.5).

For simplicity of the exposition, we will suppose that in (3.5) we have r = r = r ,
so that µ(i) = pr . The general case where r < r is left as an exercise.
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Fig. 3.1 The phase diagrams of the sparse signal detection problem. Signal size and sparsity are
parametrized by r and �, respectively. The diagrams illustrate the regions where the signal detection
problem can be solved asymptotically by some of the commonly used statistics: the maximum (M),
the sum-of-squares (L2), the sum-of-absolute values (L1), and the sum (T ). In each region of the
diagram, the annotated statistics can make the detection risk (2.4) vanish, as dimension p diverges.
Conversely, the risks has liminf at least one. The detection problem is unsolvable for very sparse and
weak signals in the undetectable regions. Notice that the L1 and L2 statistics are in fact sub-optimal
for all sparsity levels. On the other hand, the max-statistic remains powerful for sparse signals
(� > 1/2), and is fully e�cient when the problem is very sparse (� � 3/4). The HC statistic can
detect signals in all configurations in the detectable regions; we explicitly marked the region where
signals are only detectable by HC among the statistics considered. See the text and Theorem 3.1.

Part (iii): We first show that the sum statistic T , or equivalently, the simple
arithmetic mean attains the sparse signal detection boundary. By the normality and
independence of the summands, we have

1
pp

pX

i=1
x(i) ⇠

8>
<
>
:

N(0, 1), under H0

N(p(r��)+1/2, 1), under H1.
(3.7)

It immediately follows that the two distributions can be distinguished perfectly if
pr�(��1/2) diverges, i.e., r > ��1/2. This can be seen by simply setting the rejection
region at (p(r��)+1/2/2, +1) for the scaled statistic

Pp
i=1 x(i)/pp. According to the

lower bound on the performance limit in detection problems (see Theorem 8 in Cai
et al., 2011), we have shown that T attains the optimal detection boundary (3.6).



3.1 Sparse signal detection problems 29

Part (iv): We now turn to the L2-norm statistic. Recall a non-central chi-square
random variable �2

k (�) has mean (k + �) and variance 2(k + 2�). Since the obser-
vations have distributions N(0, 1) under the null and N(pr, 1) under the alternative,
we have x2(i) ⇠ �2

1(0) for i < S and x2(i) ⇠ �2
1(p2r ) for i 2 S. Therefore, the mean

and variance of the (centered and scaled) L2 statistics are

E
2
6
6
6
6
4

1
pp

pX

i=1

⇣
x(i)2 � 1

⌘3
7
7
7
7
5

=
8>
<
>
:

0 under H0

p1��p2r p�1/2 = p1/2��+2r under H1,
(3.8)

and

Var *

,

1
pp

pX

i=1

⇣
x(i)2 � 1

⌘
+

-

=
8>
<
>
:

1
p2p = 2 under H0
1
p

⇣
2p + 4p1��+2r

⌘
= 2(1 + 2p2r��) under H1,

(3.9)
respectively. By the central limit theorem, we have

1
p

2p

pX

i=1

⇣
x(i)2 � 1

⌘
=) N(0, 1), (3.10)

under the null. On the other hand, under the alternative, since p2r�� ! 0 for all
r < 0 and � > 0, the variance in (3.9) converges to 2, as p! 1 and an application
of the Lyapunov version of the CLT, entails

1
p

2p
*

,

pX

i=1

⇣
x(i)2 � 1

⌘
� p1/2��+2r+

-

=) N(0, 1). (3.11)

Hence, perfect detection with the L2-norm is possible if p1/2��+2r diverges, i.e.,
r > �/2� 1/4. On the other hand, if r < �/2� 1/4, the distributions of the (scaled)
statistics merge under the null and the alternative.

The case of the L1-norm is treated similarly. Let Y = |X | where X ⇠ |N(µ, 1) |.
Using the expressions for the mean and variance of Y (see, e.g., Tsagris et al., 2014),

µY = E[Y ] =
r

2
⇡

e�µ
2/2 + µ(1 � �(�µ)), (3.12)

�2
Y = Var(Y ) = µ2 + 1 � µ2

Y, (3.13)

where � is the CDF of a standard normal random variable, we have, regardless of
the value of µ,

�2
Y = Var(Y ) = E(Y � EY )2  E(X � EX )2 = 1, (3.14)

where the inequality holds because absolute value is a Lipschitz function with
Lipschitz constant 1.

By the central limit theorem, we have,
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1
pp

*

,

pX

i=1
|x(i) | �

r
2
⇡

+

-

=) N(0, 1 � 2/⇡) (3.15)

under the null. On the other hand, when the alternative hypothesis holds, we have

E
2
6
6
6
6
4

1
pp

*

,

pX

i=1
|x(i) | �

r
2
⇡

+

-

3
7
7
7
7
5

=
p1��
pp

2
6
6
6
6
4

*

,

r
2
⇡

e�µ
2/2 + µ (1 � 2�(�µ))+

-

�
r

2
⇡

3
7
7
7
7
5

= p1/2��
2
6
6
6
6
4

r
2
⇡

⇣
e�p

2r /2 � 1
⌘
+ pr (1 � 2�(�µ))

3
7
7
7
7
5

= p1/2��
2
6
6
6
6
4

r
2
⇡

⇣
�p2r/2 �O(p4r )

⌘
+ pr *

,

r
2
⇡

pr +O(p3r )+

-

3
7
7
7
7
5

= p1/2��
r

2
⇡

⇣
p2r/2 +O(p4r )

⌘

= p1/2��+2rp1/2⇡ +O(p1/2��+4r ),

and

Var *

,

1
pp

*

,

pX

i=1
|x(i) | �

r
2
⇡

+

-

+

-

=
1
p

(p � p1��)(1 � 2/⇡) +
1
p

p1���2
Y

! 1 � 2/⇡,

by the boundedness of �2
Y shown in (3.14). Again, by the Lyapunov version of the

central limit theorem, we conclude asymptotic normality of the centered and scaled
L1-norms under the alternative. In an entirely analogous argument to the L2-norm
case, asymptotically perfect detection can be achieved if p1/2��+2r diverges, i.e.,
r > �/2 � 1/4. On the other hand, when r < �/2 � 1/4, the two hypotheses cannot
be told apart by the L1-norms since the distributions of the (scaled) statistics merge
under the two hypotheses. ut

The portmanteau of results in Theorem 3.1 are visualized in Figure 3.1. It is worth
noting that the �-r parameter regions where L1 and L2 statistics are asymptotically
powerful coincide, and these statistics are theoretically suboptimal for both sparse
regimes (� > 1/2) and relatively dense regimes (�  1/2).

Ideas have been proposed to combine statistics that are powerful for di�erent
alternatives to create adaptive tests that maintain high power for at all sparsity levels.
Such adaptive tests can be constructed, for example, by leveraging the asymptotic
independence of the sum- and supremum-type statistics (Hsing, 1995). Recently,
Xu et al. (2016) showed that for dependent observations under mixing and moment
conditions, the sum-of-power-type statistics

HLq (x) =
pX

i=1
xq (i) (3.16)
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with distinct positive integer powers (i.e., q = 1, 2, . . .) are asymptotically jointly
independent, and proposed an adaptive test that monitors the minimium p-value of
tests constructed with L̃q’s. This idea is further developed in Wu et al. (2019) for
generalized linear models and in He et al. (2018) with U-statistics.

Optimality properties of such adaptive tests and the optimal choice of the q-
combinations, however, remain open problems. Xu et al. (2016) suggested combining
q = 1, 2, 3, . . . , 6, and q = 1, based empirical evidence from numerical experiments.
Theorem 3.1 here implies that, at least for detecting one-sided alternatives, the HL2
statistic (i.e., L2 norm) and the L1 norm are asymptotically dominated by the HL1
statistic (or equivalently, the sum T). Therefore it is su�cient to include only the
latter in the construction of the adaptive test.

3.2 Sparse signal support recovery problems

Turning to support recovery problems in the Gaussian error model (3.1), in the rest
of this chapter we will analyze the asymptotic performance limits in terms of the risk
metrics for exact, exact-approximate, approximate-exact support recovery problems
(i.e., (2.8), (2.11), and (2.12), respectively), as well as the probability of support
recovery (2.9). We will also review the recent result for exact support recovery risk
(2.7) by Arias-Castro and Chen (2017), to reveal a rather complete landscape of
support recovery problems in high-dimensional Gaussian error models.

In the rest of this chapter, we restrict our attention to the class of thresholding
procedures. Specifically, the lower bounds that we develop in Theorems 3.2 through
3.5 below are only meant to apply to thresholding procedures. Although it is intu-
itively appealing to consider only data-thresholding procedures in multiple testing
problems, such procedures are not always optimal in more general settings. The
optimality of thresholding procedures and the consequences of this restriction will
be treated in Chapter 5.

Figure 3.2 illustrates the rich landscape of phase transitions in support recovery
for the various choices of statistical risk for the family of thresholding estimators,
established in the following sections. We end this brief overview with a technical
notion needed in order to state our main results. We define a rate at which the nominal
levels of FWER or FDR go to zero.

Definition 3.1. We say the nominal level of errors ↵ = ↵p vanishes slowly, if

↵ ! 0, and ↵p� ! 1 for any � > 0. (3.17)

As an example, the sequence of nominal levels ↵p = 1/ log (p) is slowly vanishing,
while the sequence ↵p = 1/pp is not.



32 3 A Panorama of Phase Transitions

0.0 0.2 0.4 0.6 0.8 1.0

0

1

2

3

4

r

sparsity β

signal size r = µ2 (2log(p))

Undetectable

Type I + II
FDR + FNR

FWER + FNR

FDR + FWNR

FWER + FWNR

Fig. 3.2 The phase diagram of support recovery problems for the high-dimensional model (3.1),
illustrating the boundaries of the exact support recovery (FWER + FWNR; top curve; Theorem
3.2), the approximate-exact support recovery (FDR + FWNR; second curve from top; Theorem
3.5), the exact-approximate support recovery (FWER + FNR; horizontal line r = 1; Theorem 3.4),
and the approximate support recovery problems (FDR + FNR; tilted line r = �; Theorem 3.3). The
signal detection problem (Type I + Type II errors of the global test; lower curve) was studied in
Donoho and Jin (2004). In each region of the diagram and above, the annotated statistical risk can
be made to vanish, as dimension p diverges. Conversely, the risks has liminf at least one.

3.3 The exact support recovery problem

Our study of the exact support recovery risk (2.8) begins with a brief review of
existing results for the Hamming loss (2.10). Indeed, as discussions in Section 2.3
suggest, the latter can be informative of the exact support recovery problems for
models with independent components.

Inspired by the phase transition results for the signal detection problem, Ji and Jin
(2012), Genovese et al. (2012), and Jin et al. (2014) derived interesting sharp results
on support recovery problems in linear models under the Hamming loss H (DS, S).
Specifically, these papers establish minimax-type phase transition results in their
respective settings. Under the sparsity parametrization in (3.2) and assuming equal
signal sizes of (2r log p)1/2, Hamming losses were shown to diverge to +1 when r
falls below the threshold

fE(�) = (1 + (1 � �)1/2)2, (3.18)
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for any method of support estimation. Conversely, under orthogonal, or near-
orthogonal random designs, if r > fE(�), they showed that the methods they
proposed achieve vanishing Hamming loss.

Very recently, Butucea et al. (2018) studied both asymptotics and non-asymptotics
of support recovery problems in the additive noise model (3.1) under the assumption
of equal signal sizes, using the Hamming loss. Again, the analysis of asymptotic
optimality focused on a newly proposed procedure which is very specific to the
Gaussian model. It is not at all clear if the optimality properties are a consequence
of its mysterious construction.

We now show that commonly used and computationally e�cient procedures can
also be asymptotically optimal in the exact support recovery problem.

Theorem 3.2. Consider the high-dimensional additive error model (3.1) under in-
dependent standard Gaussian errors, with signal sparsity and size as described in
(3.2) and (3.3). The function (3.18) characterizes the phase transition of the exact
support recovery problem. Namely, the following two results hold.

(i) If r > fE(�), then Bonferroni’s, Sidák’s, Holm’s, and Hochberg’s procedures
with slowly vanishing nominal FWER levels (as defined in Definition 3.1) all achieve
asymptotically exact support recovery in the sense of (2.25).

(ii) Conversely, if r < fE(�), then for any thresholding procedure DSp , we have
P[DSp = Sp] ! 0. Therefore, in view of Lemma 2.1, exact support recovery asymp-
totically fails for all thresholding procedures in the sense of (2.26).

We illustrate this result with a �-r phase diagram in Figure 3.2. Theorem 3.2
is in fact a special case of the more general Theorem 4.1, below, which covers
dependent as well as Gaussain and non-Gaussian errors. We will study the exact
support recovery problem in greater detail and generality in Chapter 4.

3.4 The approximate support recovery problem

Arias-Castro and Chen (2017) studied the performance of the Benjamini-Hochberg
procedure (Benjamini and Hochberg, 1995) and a stripped-down version of the
Candés-Barber procedure (Barber and Candès, 2015) in approximate support recov-
ery problems when the components of the noise term ✏ in (3.1) have independent
and symmetric distributions. A phase transition phenomenon for the approximate
support recovery risk (2.7) was established in the Gaussian additive error model,
where the two aforementioned methods are both shown to be asymptotically optimal.

The analysis therein, however, assumed equal signal sizes for the alternatives. We
generalize the main results of Arias-Castro and Chen (2017) to allow for unequal
signal sizes. The key to establishing this generalization is a monotonicity property
of the BH procedure, presented in the following Section 3.5. Namely, the power of
the BH procedure in terms of FNR monotonically increases for stochastically larger
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alternatives. This fact will be formalized in Lemma 3.2, and may be of independent
interest.

Theorem 3.3. In the context of Theorem 3.2, the function

fA(�) = � (3.19)

characterizes the phase transition of approximate support recovery problem. Specif-
ically the following two results hold.

(i) If r > fa(�), then the Benjamini-Hochberg procedure (defined in Section 2.2)
with slowly vanishing nominal FDR levels (as defined in Definition 3.1) achieves
asymptotically approximate support recovery in the sense of (2.25).

(ii) Conversely, if r < fa(�), then approximate support recovery asymptotically
fails in the sense of (2.26) for all thresholding procedures.

Proof (Necessary condition in Theorem 3.3). We first show part (ii). That is, when
r < �, no thresholding procedure is able to achieve approximate support recovery.
The arguments are similar to that in Theorem 1 of Arias-Castro and Chen (2017),
although we allow for unequal signal sizes.

Denote the distributions of N(0, 1), N(�, 1), and N((�, 1) as F0, Fa, and Fa

respectively.
Recall that thresholding procedures are of the form

DSp =
(

i | x(i) > tp (x)
)

.

Denote DS :=
(

i | x(i) > tp (x)
)

, and DS(u) := {i | x(i) > u}. For any threshold u � tp
we must have DS(u) ✓ DS, and hence

FDP :=
|DS \ S |
|DS |

� |
DS \ S |
|DS [ S |

=
|DS \ S |

|DS \ S | + |S |
� |DS(u) \ S |
|DS(u) \ S | + |S |

. (3.20)

On the other hand, for any threshold u  tp we must have DS(u) ◆ DS, and hence

NDP :=
|S \ DS |
|S | �

|S \ DS(u) |
|S | . (3.21)

Since either u � tp or u  tp must take place, putting (3.20) and (3.21) together, we
have

FDP + NDP � |DS(u) \ S |
|DS(u) \ S | + |S |

^ |S \
DS(u) |
|S | , (3.22)

for any u. Therefore it su�ces to show that for a suitable choice of u, the RHS of
(3.22) converges to 1 in probability; the desired conclusion on FDR and FNR follows
by the dominated convergence theorem.
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Let t⇤ =
p

2q log p for some fixed q, we obtain an estimate of the tail probability
by Mill’s ratio (2.45),

F0(t⇤) ⇠ 1
t⇤
�(t⇤) =

1
2
p
⇡q log p

p�q, (3.23)

where ap ⇠ bp is taken to mean ap/bp ! 1. Observe that |DS(t⇤) \ S | has distribution
Binom(p � s, F0(t⇤)) where s = |S |, denote X = Xp := |DS(t⇤) \ S |/|S |, and we have

µ := E [X] =
(p � s)F0(t⇤)

s
, and Var (X ) =

(p � s)F0(t⇤)F0(t⇤)
s2  µ/s.

Therefore for any M > 0, we have, by Chebyshev’s inequality,

P [X < M]  P ⇥|X � µ| > µ � M
⇤  µ/s

(µ � M)2 =
1/(µs)

(1 � M/µ)2 . (3.24)

Now, from the expression of F0(t⇤) in (3.23), we obtain

µ = (p� � 1)F0(t⇤) ⇠ 1
2
p
⇡q log p

p��q .

Since r < �, we can pick q such that r < q < �. In turn, we have µ! 1, as p! 1.
Therefore the last expression in (3.24) converges to 0, and we conclude that X ! 1
in probability, and hence

|DS(t⇤) \ S |
|DS(t⇤) \ S | + |S |

=
X

X + 1
! 1 in probability. (3.25)

On the other hand, we show that with the same choice of u = t⇤, we have,

|S \ DS(t⇤) |
|S | ! 1 in probability. (3.26)

By the stochastic monotonicity of Gaussian location family (2.46), we have the
following lower bound for the probability of missed detection for each signal µ(i),
i 2 S,

P[N(µ(i), 1)  t⇤] � Fa (t⇤). (3.27)

Since |S \ DS(t⇤) | can be written as the sum of s independent Bernoulli random
variables,

|S \ DS(t⇤) | =
X

i2S
(�1,t⇤](x(i)),

using with (3.27), we conclude that |S \DS(t⇤) |
d
� Binom(s, Fa (t⇤)). Finally, we know

that Fa (t⇤) converges to 1 by our choice of diverging t⇤, and the necessary condition
is shown. ut
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Proof (Su�cient condition in Theorem 3.3). We now turn to the su�cient condition,
i.e., part (i). That is, when r > �, the Benjamini-Hochberg procedure with slowly
vanishing FDR levels achieves asymptotic approximate support recovery.

The FDR vanishes by our choice of ↵ and the FDR-controlling property of the
BH procedure (Benjamini and Hochberg, 1995). It only remains to show that FNR
also vanishes.

To do so we compare the FNR under the alternative specified in Theorem 3.3 to
one with all of the signal sizes equal to �. By Lemma 3.2, it su�ces to show that
the FNR under the BH procedure in this setting vanishes. Let x(i) be vectors of
independent observations with p � s nulls having standard Gaussian distributions,
and s signals having N(�, 1) distributions.

Denote the null and the alternative distributions as F0 and Fa respectively. Let
DG denote the empirical survival function as in (3.36). Define the empirical survival
functions for the null part and signal part

DWnull(t) =
1

p � s

X

i<S

{x(i) � t}, DWsignal(t) =
1
s

X

i2S
{x(i) � t}, (3.28)

where s = |S |, so that

DG(t) =
p � s

p
DWnull(t) +

s
p

DWsignal(t).

We need the following result to describe the deviations of the empirical distribu-
tions.

Lemma 3.1 (Theorem 1 of Eicker (1979)). Let Z1, . . . , Zk be iid with continuous
survival function Q. Let DQk denote their empirical survival function and define
⇠k =

p
2 log log (k)/k for k � 3. Then

1
⇠k

sup
z

|DQk (z) �Q(z) |
p

Q(z)(1 �Q(z))
! 1,

in probability as k ! 1. In particular,

DQk (z) = Q(z) +OP
⇣
⇠k

p
Q(z)(1 �Q(z))

⌘
,

uniformly in z.

Apply Lemma 3.1 to the two summands in DG, we obtain DG(t) = G(t) + DR(t),
where

G(t) =
p � s

p
F0(t) +

s
p

Fa (t), (3.29)

and
DR(t) = OP

 
⇠p

q
F0(t)F0(t) +

s
p
⇠s

q
Fa (t)Fa (t)

!
, (3.30)

uniformly in t.
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Recall (see proof of Lemma 3.2) that the BH procedure is the thresholding
procedure with threshold set at

⌧ = inf{t | F0(t)  ↵DG(t)}. (3.31)

The NDP may also be re-written as

NDP =
|S \ DS |
|S | =

1
s

X

i2S
{x(i) < ⌧} = 1 � DWsignal(⌧),

so that it su�ces to show that

DWsignal(⌧) ! 1 (3.32)

in probability. Applying Lemma 3.1 to DWsignal, we know that

DWsignal(⌧) = Fa (⌧) +OP
 
⇠s

q
Fa (⌧)Fa (⌧)

!
= Fa (⌧) + oP(1).

So it su�ces to show that Fa (⌧) ! 0 in probability. Now let t⇤ =
p

2q log(p) for
some q such that � < q < r . We have

Fa (t⇤) = �(t⇤ � �) = �(
q

2(q � r) log p) ! 0. (3.33)

Hence in order to show (3.32), it su�ces to show

P
⇥
⌧  t⇤

⇤ ! 1. (3.34)

By (3.29), the mean of the empirical process DG evaluated at t⇤ is

G(t⇤) =
p � s

p
F0(t⇤) +

s
p

Fa (t⇤). (3.35)

The first term, using Relation (3.23), is asymptotic to p�qL(p), where L(p) is the
logarithmic term in p. The second term, since Fa (t⇤) ! 1 by Relation (3.33), is
asymptotic to p�� . Therefore, G(t⇤) ⇠ p�qL(p) + p�� ⇠ p�� , since p��qL(p) ! 0
where q > �.

The fluctuation of the empirical process at t⇤, by Relation (3.30), is

DR(t⇤) = OP
 
⇠p

q
F0(t⇤)F0(t⇤) +

s
p
⇠s

q
Fa (t⇤)Fa (t⇤)

!

= OP
 
⇠p

q
F0(t⇤)

!
+ oP

⇣
p��

⌘
.
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By (3.23) and the expression for ⇠p , the first term is OP
⇣
p�(q+1)/2L(p)

⌘
where L(p)

is a poly-logarithmic term in p. Since � < min{q, 1}, we have � < (q + 1)/2, and
hence DR(t⇤) = oP(p�� ).

Putting the mean and the fluctuation of DG(t⇤) together, we obtain

DG(t⇤) = G(t⇤) + DR(t⇤) ⇠P G(t⇤) ⇠ p��,

and therefore, together with (3.23), we have

F0(t⇤)/DG(t⇤) = p��qL(p)(1 + oP(1)),

which is eventually smaller than the FDR level ↵ by the assumption (3.17) and the
fact that � < q. That is,

P
f

F0(t⇤)/DG(t⇤) < ↵
g

! 1.

By definition of ⌧ (recall (3.31)), this implies that ⌧  t⇤ with probability tending to
1, and (3.34) is shown. The proof for the su�cient condition is complete. ut

3.5 Monotonicity of the Benjamini-Hochberg procedure

As promised in the previous section, we make a connection between power of the
BH procedure and the stochastic ordering of distributions under the alternative. This
natural result seems new.

Lemma 3.2 (Monotonicity of the BH procedure). Consider p independent obser-
vations x(i), i 2 {1, . . . , p}, where the (p � s) coordinates in the null part have
common distribution F0, and the remaining s signals have alternative distributions
Fi
j , i 2 S, respectively. Compare the two alternatives j 2 {1, 2}, where the distribu-

tions in Alternative 2 are stochastically larger than those in Alternative 1, i.e.,

Fi
2 (t)  Fi

1 (t), for all t 2 R, and for all i 2 S.

If the BH procedure is applied at the same nominal level of FDR, then the FNR of the
BH procedure under Alternative 2 is bounded above by the FNR under Alternative
1. Further, the threshold of the BH procedure under Alternative 2 is stochastically
smaller than that under Alternative 1.

Loosely put, the power of the BH procedure is monotone increasing with respect
to the stochastic ordering of the alternatives, yet (the distribution of) the BH threshold
is monotone decreasing in the distributions of the alternatives.

Proof (Lemma 3.2). We first re-express the BH procedure in a di�erent form. Recall
that on observing x(i), i 2 {1, . . . , p}, the BH procedure is the thresholding procedure
with threshold set at x[i⇤], where i⇤ := max{i | F0(x[i])  ↵i/p}, and x[1] � . . . � x[p]
are the order statistics.
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Let DG denote the left-continuous empirical survival function

DG(t) =
1
p

pX

i=1
{x(i) � t}. (3.36)

By the definition, we know that DG(x[i]) = i/p. Therefore, by the definition of i⇤, we
have

F0(x[i]) > ↵DG(x[i]) = ↵i/p for all i > i⇤.

Since DG is constant on (x[i⇤+1], x[i⇤]], the fact that F0(x[i⇤])  ↵DG(x[i⇤]) and
F0(x[i⇤+1]) > ↵DG(x[i⇤+1]) implies that ↵DG and F0 must “intersect” on the inter-
val by continuity of F0. We denote this “intersection” as

⌧ = inf{t | F0(t)  ↵DG(t)}. (3.37)

Note that ⌧ cannot be equal to x[i⇤+1] since F0 is càdlàg. Since there is no observation
in [⌧, x[i⇤]), we can write the BH procedure as the thresholding procedure with
threshold set at ⌧.

Now, denote the observations under Alternatives 1 and 2 as x1(i) and x2(i). Since
x2(i) stochastically dominates x1(i) for all i 2 {1, . . . , p}, there exists a coupling
(Hx1,Hx2) of x1 and x2 such that Hx1(i)  Hx2(i) almost surely for all i. We will replace
Hx1 and Hx2 with x1 and x2 in what follows. Since we will compare the FNR’s, i.e.,
expectations with respect to the marginals of x’s in the last step, this replacement
does not a�ect the conclusions. To simplify notation, we still write x1 and x2 in place
of Hx1 and Hx2.

Let DGk be the left-continuous empirical survival function under Alternative k,
i.e.,

DGk (t) =
1
p

pX

i=1
{xk (i) � t}, k 2 {1, 2}. (3.38)

We define the BH thresholds ⌧1 and ⌧2 by replacing DG in (3.37) with DG1 and DG2,
respectively. Denote the set estimates of signal support DSk = {i | xk (i) � ⌧k } by the
BH procedure. We claim that

⌧2  ⌧1 with probability 1. (3.39)

Indeed, by definition of the empirical survival function (3.38) and the fact that
x1(i)  x2(i) almost surely for all i, we have DG1(t)  DG2(t) for all t. Hence,
F0(t)  ↵DG1(t) implies F0(t)  ↵DG2(t), and Relation (3.39) follows from the
definition of ⌧ in (3.37). The claim of stochastic ordering of the BH thresholds in
Lemma 3.2 follows from (3.39).

Finally, when ⌧2  ⌧1, we have ⌧2  ⌧1  x1(i)  x2(i) with probability 1 for all
i 2 DS1. Therefore, it follows that DS1 ✓ DS2 and hence |S \ DS2 |  |S \ DS1 | almost surely.
The first conclusion in Lemma 3.2 follows from the last inequality. ut
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3.6 The exact-approximate support recovery problem

We now derive two new asymptotic phase transition results for the asymmetric
statistical risks, (2.11) and (2.12), in the Gaussian error models. As discussed in
Section 2.1, the exact-approximate support recovery risk is the natural criteria when
considering the marginal power of discovery while controlling for family-wise error
rates in applications such as GWAS.

Although there have been discussions of weighted sums of type I and type II errors
in the literature (see, e.g., Genovese and Wasserman (Genovese and Wasserman,
2002) Section 6, where the authors sought to minimize FDR + �FNR), asymptotic
limits were not discussed. We point out that the asymptotic limits for the unequally-
weighted risks are no di�erent from the equally-weighted risk, so long as � is
bounded away from zero and infinity. This is because FDR + �FNR vanishes if
and only if both FDR and FNR vanish; conversely, non-vanishing FDR and FNR is
equivalent to non-vanishing weighted sums. Therefore, a di�erent phase transition
would only arise if we weight the type I and type II errors by combining family-wise
error metrics with marginal error rates.

The next theorem describes the phase transition in the exact-approximate support
recovery problem.

Theorem 3.4. In the context of Theorem 3.2, the function

fEA(�) = 1 (3.40)

characterizes the phase transition of exact-approximate support recovery problem.
Namely, the following two results hold.

(i) If r > fEA(�), then the procedures listed in Theorem 3.2 with slowly vanishing
nominal FWER levels (as defined in Definition 3.1) achieve asymptotically exact-
approximate support recovery in the sense of (2.25).

(ii) Conversely, if r < fEA(�), then for any thresholding procedure DS, the exact-
approximate support recovery fails in the sense of (2.26).

The phase transition boundary (3.40) is visualized in Figure 3.2. The proof of this
result uses ideas from the proof of Theorem 3.3 and is substantially shorter.

Proof (Theorem 3.4). We first show the su�cient condition. Vanishing FWER is
guaranteed by the properties of the procedures, and we only need to show that FNR
also goes to zero. Similar to the proof of Theorem 3.3, it su�ces to show that

NDP = 1 � DWsignal(tp) ! 0, (3.41)

where tp is the threshold of Bonferroni’s procedure.
Since ↵ vanishes slowly (see Definition 3.17), for any � > 0, we have p�� = o(↵).

Therefore, we have � log ↵  � log p for large p, and
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1  lim sup
p!1

2 log p � 2 log ↵
2 log p

 1 + �,

for any � > 0. Therefore, by the expression for normal quantiles, we know that

tp = F (1 � ↵/p) ⇠ (2 log p � 2 log ↵)1/2 ⇠ (2 log p)1/2.

Since r > fEA(�) = 1, we can pick q such that 1 < q < r . Let t⇤ =
p

2q log p,
we know that tp < t⇤p for large p. Therefore for large p, we have

DWsignal(tp) � DWsignal(t⇤) � Fa (t⇤) + oP(1),

where Fa is the survival function of N(
p

2r log p, 1); the last inequality follows from
the stochastic monotonicity of the Gaussian location family (2.46), and Lemma 3.1.
Indeed, by our choice of q < r , we obtain

Fa (t⇤) = �
✓q

2(q � r) log p
◆
! 0,

and (3.41) is shown. This completes the proof of the su�cient condition.
The proof of the necessary condition follows similar structure as in the proof of

Theorem 3.3, and uses the lower bound

FWER(R) + FNR(R) � P


max
i2Sc

x(i) > u
�

^ E
2
6
6
6
6
4

|S \ DS(u) |
|S |

3
7
7
7
7
5

, (3.42)

which holds for any arbitrary thresholding procedure R and arbitrary real u 2 R.
By the assumption that r < fEA(�) = 1, we can pick q such that r < q < 1

and let u = t⇤ =
p

2q log p in (3.42). By relative stability of iid Gaussian random
variables (2.43), we have

P
2
6
6
6
6
4

maxi2Sc x(i)
p

2 log p
>

t⇤
p

2 log p

3
7
7
7
7
5

! 1. (3.43)

since the first fraction in (3.43) converges to 1, while the second converges to q < 1.
Therefore, the first term on the right-hand side of (3.42) converges to 1.

On the other hand, by the stochastic monotonicity of Gaussian location family
(2.46), the probability of missed detection for each signal is lower bounded by
P[Z + µ(i)  t⇤] � Fa (t⇤), where Z is a standard Gaussian r.v., and Fa is the cdf of

N(
p

2r log p, 1). Therefore, |S \ DS(t⇤) |
d
� Binom(s, Fa (t⇤)), and it su�ces to show

that Fa (t⇤) converges to 1. Indeed,

Fa (t⇤) = �(
q

2(q � r) log p) ! 1,

by our choice of q > r . Hence both quantities in the minimum on the right-hand side
of (3.42) converge to 1 in the limit, and the necessary condition is shown. ut
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Remark 3.1. The boundary (3.40) was briefly suggested by Arias-Castro and Chen
(2017). Unfortunately, it was falsely claimed that the boundary characterized the
phase transition of the exact support recovery problem, and the alleged proof was
left as an “exercise to the reader”. This exercise was completed in Chapter 4, where
the correct boundary (7.4) was identified.

Theorem 3.4 here shows that the boundary (3.40) does exist, though for the slightly
di�erent exact-approximate support recovery problem. As we will see in Section 7.1,
the boundary (3.40) also applies to the exact-approximate support recovery problem
in chi-square models (1.3).

3.7 The approximate-exact support recovery problem

The last phase transition is in terms of the approximate-exact support recovery risk
(2.12).

Theorem 3.5. In the context of Theorem 3.2, the function

fAE(�) =
⇣p
� +

p
1 � �

⌘2
(3.44)

characterizes the phase transition of approximate-exact support recovery problem.
Namely, the following two results hold.

(i) If r > fAE(�), then the Benjamini-Hochberg procedure with slowly van-
ishing nominal FDR levels (as defined in Definition 3.1) achieves asymptotically
approximate-exact support recovery in the sense of (2.25).

(ii) Conversely, if r < fAE(�), then for any thresholding procedure DS, the
approximate-exact support recovery fails in the sense of (2.26).

The phase transition boundary (3.44) is visualized in Figure 3.2.

Proof (Theorem 3.5). We first show the su�cient condition (part (i)). Since FDR
control is guaranteed by the BH procedure, we only need to show that the FWNR
also vanishes, that is,

P


min
i2S

x(i) � ⌧
�

! 1, (3.45)

where ⌧ is the threshold for the BH procedure.
By the assumption that r > fAE(�) = (

p
� +

p
1 � �)2, we have pr �

p
1 � � >p

�, so we can pick q > 0, such that
p

r �
p

1 � � > pq >
p
�. (3.46)

We only need to show that with a specific choice of t⇤ =
p

2q log p where

p
r �

p
1 � � > pq >

p
�, (3.47)
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we have both
P

⇥
⌧  t⇤

⇤ ! 1, (3.48)

and
P



min
i2S

x(i) � t⇤
�

! 1, (3.49)

so that
P



min
i2S

x(i) � ⌧
�

� P


min
i2S

x(i) � t⇤, t⇤ � ⌧
�

! 1.

Relation (3.48) follows in exactly the same way (3.34) did on page 37.
Dividing the left-hand-side in Relation (3.49) by

p
2 log p, we have,

mini2S x(i)
p

2 log p
=

mini2S µ(i) + ✏ (i)
p

2 log p

d
�

p
2r log p +mini2S ✏ (i)p

2 log p

! �
p

1 � � + pr,

where the last convergence follows from the relative stability of iid Gaussians minima
(2.44). On the other hand, t⇤/

p
2 log p = pq < pr �

p
1 � � by our choice of q, and

Relation (3.49) follows.
The necessary condition follows from the lower bound

FDR(R) + FWNR(R) � E
2
6
6
6
6
4

|DS(u) \ S |
|DS(u) \ S | + |S |

3
7
7
7
7
5

^ P


min
i2S

x(i) < u
�

, (3.50)

which holds for any thresholding procedure R and for arbitrary u 2 R. In particular,
we show that both terms in the minimum in (3.50) converge to 1 when we set
u = t⇤ =

p
2q log p where

p
r �

p
1 � � < pq <

p
�. (3.51)

On the one hand, we have,

mini2S x(i)
p

2 log p

d
 mini2S ✏ (i) +

p
2r log p

p
2 log p

!
p

r �
p

1 � �,

by relative stability of iid Gaussians (2.44). On the other hand, t⇤/
p

2 log p = pq >
pr �

p
1 � � by our choice of q; this shows that the second term on the right-hand

side of (3.50) converges to 1.
Observe that |DS(t⇤) \ S | has distribution Binom(p � s,�(t⇤)), and define X =

Xp := |DS(t⇤) \ S |/|S |, we obtain,

µ := E[X] = (p� � 1)�(t⇤) ⇠ (p� � 1)
�(t⇤)

t⇤

⇠ 1
p

2⇡
�
2q log p

��1/2 p��q ! 1,
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where the divergence follows from our choice of q < �. Using again Relations
(3.24) and (3.25), we conclude that the first term on the right-hand side of (3.50)
also converges to 1. This completes the proof of the necessary condition. ut

3.8 Asymptotic power analysis: A discussion

Theorems 3.2 through 3.5 allow us to asymptotically quantify the required signals
sizes in support recovery problems, as well as in the global hypothesis testing problem
in the Gaussian additive error model (3.1). Specifically, these results indicate that at
all sparsity levels � 2 (0, 1), the di�culties of the problems in terms of the required
signal sizes have the following ordering

fD(�) < fA(�) < fEA(�) < fAE(�) < fE(�),

as previewed in Figure 3.2. The ordering aligns with our intuition that the required
signal sizes must increase as we move from detection to support recovery problems.
Similarly, more stringent criteria for error control (e.g., FWER compared to FDR)
require larger signals. We can now also compare fEA(�) and fAE(�), whose ordering
may not be clear from this line of reasoning.

Our last comment is on the gap between FDR and FWER under sparsity as-
sumptions. Although it is believed that FWER control is sometimes too stringent
compared to, say, FDR control in support recovery problems, the fact that all five
thresholds involve the same scaling indicates that the di�culties of the problems
(signal detection, and the four support recovery problems) are comparable when
signals are very sparse, i.e., when � is close to 1. This is illustrated with the next
example.

Example 3.1 (Power analysis for variable selection). For Gaussian errors (AGG with
⌫ = 2), when � = 3/4, the signal detection boundary (3.4) says that signals will have
to be at least of magnitude

p
(log p)/2, while approximate support recovery (3.19)

requires signal sizes of at least
p

3(log p)/2, and exact support recovery (3.18) calls
for signal sizes of at least

p
9(log p)/2. The required signal sizes increases, but are

within the same order of magnitude.
If m independent copies x1, . . . , xm of the observations were made on the same

set of p locations, then by taking location-wise averages, xm( j) = 1
m

Pm
i=1 xi ( j), we

can reduce error standard deviation, and hence boost the signal-to-noise ratio, by a
factor of

p
m. By the simple calculations above, if m samples are needed to detect

(sparse) signals of a certain magnitude, then 3m samples will enable approximate
support recovery with false discovery and non-discovery control, and in fact, 9m
samples would enable exact support recovery with family-wise error rates control.

On the other hand, the gap between FDR and FWER is much larger when signals
are dense. For example, if the signals are only approximately sparse, i.e., having
a few components above (3.18) but many smaller components above (3.19), then
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FDR-controlling procedures will discover substantially larger proportion of signals
than FWER-controlling procedures.

Indeed, as � ! 0, the required signal size for approximate support recovery (3.19)
tends to 0, while the required signal size for exact support recovery (3.18) tends to
4 in the Gaussian error models. While Example 3.1 indicates that the exact support
recovery is not much more stringent than approximate support recovery when signals
are sparse, the gap between required signal sizes widens when signals are dense.





Chapter 4
Exact Support Recovery Under Dependence

We focus on exact support recovery problems in this chapter. Recall from Lemma
2.1 that in order to study the asymptotic behaviors of riskE, it is su�cient to establish
minimal conditions under which the support sets can be consistently estimated, i.e.,

P[DSp = Sp] �! 1 as p! 1, (4.1)

where DSp is an estimate of the true support set Sp of a high-dimensional signal vector
µp .

We will establish minimal conditions such that (4.1) holds, by generalizing the
results we obtained in Chapter 3 to additive error models with relaxed distributional
and dependence assumptions on the additive error array.

4.1 Generalizations of distributional and dependence
assumptions

Consider the additive error model (1.1) with the triangular array of errors,

E =
(

(✏ p (i))pi=1, p = 1, 2, . . .
)

, (4.2)

where the ✏ p (i)’s have common cumulative distribution function F (x) = P[✏ p (i) 
x]. In contrast to the assumptions in Chapter 3, we only require the errors to have
common marginal distributions.

Although our method of analysis applies to all light-tailed error distributions with
rapidly varying tails (see Definition 2.7), to be concrete and better convey the main
ideas, we will focus on the class of AGG(⌫) laws (see Definition 2.6). Extensions of
the results to other classes of error models are presented in Section B.1.

This generalized distributional assumption on the errors call for a suitable gen-
eralization of the signal size parametrization in order to analyze the problem as we
did in the previous chapter. As before, we assume the signals in model (1.1) to be a

47
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sparse vector µp =
⇣
µp (i)

⌘p
i=1

, with support Sp := {i : µp (i) , 0}. The sparsity of
µp , with a few exceptions which will be explicitly stated, is parametrized in terms
of a fixed regularly varying sequence {s†p } as follows:

|Sp | = bs†pc, where s†p := `(p)p1��, (4.3)

for some fixed slowly varying function `. Recall that a function ` is slowly varying
if `(�t)/`(t) ! 1, as t ! 1, for all � > 0. As before, the exponent

0 < �  1

controls the sparsity.
We assume that the non-zero entries of µ are positive and take values in the

interval
f

�,�
⌘
⇢ (0,1). That is, 0 < �  µ(i) < �  +1, for all i 2 Sp . The lower

and upper bound on the signal sizes � and � are parametrized as

� = �(p) = (⌫r log p)1/⌫ and � = �(p) = (⌫r log p)1/⌫, (4.4)

with parameters 0 < r  r  +1.

We now turn to the dependence conditions. Several authors have studied the
support recovery problem in terms of the Hamming loss and obtained minimax
optimality results (see, e.g., Ji and Jin (2012); Genovese et al. (2012); Jin et al.
(2014); Butucea et al. (2018)). In the special case of Gaussian marginals, Butucea
et al. (2018) showed that the boundary (3.18) exists in a minimax sense. That is, when
the errors are independent Gaussians, the Hamming loss cannot be made to vanish if
the signal sizes are su�ciently small by any procedure. Conversely, if signal size falls
below, the Hamming loss can be made to vanish for some thresholding procedure.
However, as pointed out in Section 2.4, vanishing Hamming loss is only su�cient,
not necessary for support recovery (4.1), and results on the former do not carry
over directly to the study of the exact support recovery problem. More importantly,
since Hamming loss decomposes into expectations on individual terms that are not
a�ected by dependence, Hamming loss-minimax studies do not reveal the di�erence
in probability of support recovery between independent and dependent observations.
This prevents one from fully exploring the phase transition phenomena under other
dependence conditions. As a result, so far in the literature, the role of dependence in
model (1.1) have remained largely unexplored.

We take a di�erent approach in this text. In particular, we study the exact support
recovery problem (4.1) directly, and show that for thresholding procedures the phase
transition phenomena exists universally in a large class of dependence structures,
and not just in a minimax sense.

In a first step, we show that in the AGG model under arbitrary dependence, under
the scaling described in (4.3) and (4.4), the function

fE(�) = fE,⌫ (�) = (1 + (1 � �)1/⌫)⌫, ⌫ > 0, (4.5)
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demarcates the region of possibility for the exact support recovery problem. That is,
if the signal sizes are above the boundary (i.e., r > fE(�)), then FWER-controlling
procedures with appropriately calibrated levels achieve exact support recovery (The-
orem 4.1 below). We refer to (4.5) as the strong classification boundary.

Conversely, we show that for a surprisingly large class of dependence structures
characterized by the concept of uniform relative stability (URS, see Definition 4.1
below), when the signal size is below the boundary (i.e., r < fE(�)), no thresholding
procedure can achieve the asymptotically perfect support recovery. In fact,

P
f
DSp = Sp

g

�! 0, as p! 1, (4.6)

for all thresholding procedures (Theorem 4.2 below). These two results show that
the thresholding procedures obey a phase transition phenomenon in a strong, point-
wise sense over the class of URS dependence structures, and over the class of
AGG(⌫), ⌫ > 0 error distributions.

4.2 Su�cient conditions for exact support recovery

Following Butucea et al. (2018), we define the parameter space for the signals µ as

⇥+p (�, r) = {µ 2 Rp : there exists a set Sp ✓ {1, . . . , p} such that |Sp |  s†p,

µ(i) � (⌫r log p)1/⌫ for all i 2 Sp, and µ(i) = 0 for all i < Sp },
(4.7)

where s†p is as in (4.3). Our first result states that, when F 2 AGG(⌫) with ⌫ > 0,
regardless of the error dependence structure, (asymptotic) perfect support recovery is
achieved by applying Bonferroni’s procedure with appropriately calibrated FWER,
as long as the minimum signal size r is above the strong classification boundary
(4.5).

Theorem 4.1. Let the errors have common marginal distribution F 2 AGG(⌫) with
⌫ > 0. Let DSp be the Bonferroni’s procedure (2.21) with vanishing FWER ↵ =
↵(p) ! 0, such that ↵p� ! 1 for every � > 0. If

r > fE(�) = (1 + (1 � �)1/⌫)⌫, (4.8)

then we have
lim
p!1

sup
µ2⇥+p (�,r )

P[DSp , Sp] = 0. (4.9)

Proof. Throughout the proof, the dependence on p will be suppressed to simplify
notations when such omissions do not lead to ambiguity.

Under the AGG(⌫) model, it is easy to see from equation (2.33) that the thresholds
in Bonferroni’s procedure are
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tp = F (1 � ↵/p) = (⌫ log (p/↵))1/⌫ (1 + o(1)). (4.10)

It is known that Bonferroni’s procedure DSp =
(

i : x(i) > tp
)

controls the FWER.
Indeed,

P
f
DS ✓ S

g

= 1 � P


max
i2Sc

x(i) > tp
�

= 1 � P


max
i2Sc
✏ (i) > tp

�

� 1 �
pX

i=1
P

f

✏ (i) > tp
g

� 1 � ↵(p) ! 1, (4.11)

where we used the union bound in the first inequality. Notice that the lower bound
(4.11) is independent of the parameter µ (as well as the dependence structures), and
hence holds uniformly over the parameter space, i.e.,

lim
p!1

inf
µ2⇥+p (�,r )

P[DSp ✓ Sp] = 1. (4.12)

On the other hand, for the probability of no missed detection, we have:

P
f
DS ◆ S

g

= P


min
i2S

x(i) > tp
�

= P


min
i2S

x(i) � (⌫r log p)1/⌫ > tp � (⌫r log p)1/⌫
�

.

Since the signal sizes are no smaller than (⌫r log p)1/⌫ , we have

x(i) � �
⌫r log p

�1/⌫ � ✏ (i), for all i 2 S,

and hence we obtain

P
f
DS ◆ S

g

� P


min
i2S
✏ (i) > (⌫ log (p/↵))1/⌫ (1 + o(1)) � (⌫r log p)1/⌫

�

, (4.13)

where we plugged in the expression for tp in (4.10). Now, since the minimum signal
size is bounded below by r >

⇣
1 + (1 � �)1/⌫

⌘⌫
, we have r1/⌫ � (1� �)1/⌫ > 1, and

so we can pick a � > 0 such that

� <
⇣
r1/⌫ � (1 � �)1/⌫

⌘⌫ � 1. (4.14)

Since by assumption, for all � > 0, we have p�� = o (↵(p)), there is an M = M (�)
such that p/↵(p) < p1+� for all p � M . Thus, from (4.13), we further conclude that
for p � M we have

P
f
DS ◆ S

g

� P
f

min
i2S
✏ (i) >

�
(1 + �)⌫ log p

�1/⌫ (1 + o(1)) � (⌫r log p)1/⌫
g

= P
f

max
i2S

(�✏ (i)) <
⇣
r1/⌫ � (1 + �)1/⌫

⌘
(⌫ log p)1/⌫ (1 + o(1))

|                                                 {z                                                 }
=:A

g

� 1 � `(p)p1�� ⇥ F�(A), (4.15)
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where F�(x) = P[�✏ (i) > x] is the survival function of the (�✏ (i))’s. Notice that
(4.15) follows from the union bound and the assumption that |Sp |  s†p = `(p)p1�� in
(4.7). Therefore, the lower bound does not depend on µ (nor on the error dependence
structure), and holds uniformly in the parameter space. In turn, we obtain

inf
µ2⇥+p (�,r )

P[DSp ◆ Sp] � 1 � `(p)p1�� ⇥ F�(A). (4.16)

We first show that the right-hand-side of (4.16) converges to 1 when � = 1.
Indeed, since F 2 AGG(µ), we have, for su�ciently large p,

F�(A)  F�(c(⌫ log(p))1/⌫) = O(p�c
0
),

for some c > c0 > 0. On the other hand, the celebrated Potter bounds for slowly-
varying functions (see, e.g., Bingham et al., 1987) entail `(p) = o(pc

0 ), for every
c0 > 0 and hence `(p)F�(A) ! 0, as p! 1.

Let now � 2 (0, 1) and u�p := F � (1 � 1/p). The fact that pF�(u�p)  1, implies

s†p ⇥ F�(A) 
F�

 
B ⇥ u�

s†p

!

F�
✓
us†p

◆ (4.17)

where B := A/u�
s†p

.
Notice that by assumption, the �✏ (i)’s are also AGG(⌫) distributed, and by

Proposition 2.1, u�p := F � (1 � 1/p) ⇠ (⌫ log(p))1/⌫ , as p! 1. Therefore, we have

u�
s†p
⌘ u�

`(p)p1�� ⇠
�
⌫(1 � �) log p

�1/⌫ , (4.18)

where we used the fact that log(`(p)) = o(log(p)). Hence,

B =
A

u�
s†p

=
r1/⌫ � (1 + �)1/⌫

(1 � �)1/⌫ (1 + o(1)) ! c > 1

as p! 1, by our choice of � in (4.14).
Finally, since the distribution F� has rapidly varying tails (by Definition 2.7 and

Example 2.1), applying Proposition 2.2, we conclude that (4.17) vanishes. Con-
sequently, the lower bound on the right-hand-side of (4.16) converges to 1. This,
combined with (4.12), entails limp!1 infµ2⇥+p (�,r ) P[DSp = Sp] = 1, and hence the
desired conclusion (4.9), which completes the proof. ut

We end this section with several comments and applications of Theorem 4.1.

Corollary 4.1 (Classes of procedures attaining the boundary). Relation (4.9)
holds for any FWER-controlling procedure that is strictly more powerful than Bon-
ferroni’s procedure. This includes Holm’s procedure (Holm, 1979), and in the case



52 4 Exact Support Recovery Under Dependence

of independent errors, Hochberg’s procedure (Hochberg, 1988), and the äidák pro-
cedure (äidák, 1967).

Example 4.1. Under Gaussian errors, the particular choice of the thresholding at tp =p
2 log p in (2.21) corresponds to a Bonferroni’s procedure with FWER decreasing

at a rate of O((log p)�1/2), and hence Theorem 4.1 applies. By Corollary 4.1,
Holm’s procedure — and when the errors are independent, the äidák, and Hochberg
procedures — with FWER controlled at (log p)�1/2 all achieve perfect support
recovery provided that r > fE(�).

Proof (Example 4.1). By the Mill’s ratio for the standard Gaussian distribution,

tpP
f

Z > tp
g

�(tp)
! 1, as tp ! 1,

where Z ⇠ N(0, 1). Using the expression for tp =
p

2 log p, we have

p P
f

Z > tp
g

⇠
p

2⇡
�1 �

2 log p
��1/2 ! 0,

as desired. The rest of the claims follow from Corollary 4.1. ut

The statements in Theorem 4.1 can be strengthened, to prepare us for a minimax
result given in Section 5.5 below.

Remark 4.1. In the proof of Theorem 4.1, both (4.11) and (4.15) hold uniformly over
all error dependence structures. Therefore, (4.12) and (4.16) may be strengthened to
yield

lim
p!1

sup
µ2⇥+p (�,r )
E2D(F )

P[DSp , Sp] = 0, (4.19)

for r > fE(�), where D(F) is the collection of all arrays with common marginal F,
i.e.,

D(F) = {E = (✏ p (i))p : ✏ p (i) ⇠ F for all i = 1, . . . , p, and p = 1, 2, . . .}. (4.20)

Remark 4.2. We emphasize that Theorem 4.1 holds for errors with arbitrary depen-
dence structures. Intuitively, this is because the maxima of the errors grow at their
fastest in the case of independence (recall Remark 2.1). Formally, the light-tailed
nature of the error distribution allowed us to obtain sharp tail estimates via simple
union bounds, valid under arbitrary dependence.

4.3 Dependence and uniform relative stability

An important ingredient needed for a converse of Theorem 4.1 is an appropriate
characterization of the error dependence structure under which the strong classifica-
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tion boundary (4.5) is tight. The notion of uniform relative stability turns out to be
the key.

Definition 4.1 (Uniform Relative Stability). Under the notations established in
Definition 2.8, the triangular array E is said to have uniform relatively stable (URS)
maxima if for every sequence of subsets Sp ✓ {1, . . . , p} such that |Sp | ! 1, we
have

1
u |Sp |

MSp :=
1

u |Sp |
max
i2Sp

✏ p (i)
P�! 1, (4.21)

as p ! 1, where uq, q 2 {1, . . . , p} is the generalized quantile in (2.37). The
collection of arrays E = {✏ p (i)} with URS maxima is denoted U (F).

Uniform relative stability is, as its name suggests, a stronger requirement on
dependence than relative stability (recall Definition 2.8). Proposition 2.2 states that
an array with iid components sharing a marginal distribution F with rapidly varying
tails (Definition 2.7) has relatively stable maxima; it is easy to see that URS also
follows, by independence of the entries.

Corollary 4.2. An independent array E with common marginals F 2 AGG(⌫),
⌫ > 0, is URS; in this case, URS holds with u |Sp | ⇠

⇣
⌫ log |Sp |

⌘1/⌫
.

On the other hand, RS and URS hold under much broader dependence structures
than just independent errors. These conditions are extremely mild and can be shown
to hold for many classes of error models. In Chapter 6, we will focus extensively on the
Gaussian case, which is of great interest in applications and is rather challenging. We
will provide simple necessary and su�cient condition for uniform relative stability
in terms of the covariance structures.

The relative stability concepts are important because they characterize the depen-
dence structures under which the maxima of error sequences concentrate around the
quantiles (2.37) in the sense of (2.38). This concentration of maxima phenomena,
in turn, is the key to establishing the necessary conditions of the phase transition
results in support recovery problems.

4.4 Necessary conditions for exact support recovery

With the preparations from Section 4.3, we are ready to state the necessary conditions
for exact support recovery (4.1) by thresholding procedures. It turns out that the
strong classification boundary (4.5) is tight, under the general dependence structure
characterized by URS (Definition 4.1).

Formally, we define the parameter space for the signals µ to be

⇥�p (�, r) = {µ 2 Rp : there exists a set Sp ✓ {1, . . . , p} such that |Sp | = bs†pc,
0 < µ(i)  (⌫r log p)1/⌫ for all i 2 Sp, and µ(i) = 0 for all i < Sp },

(4.22)
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where s†p = `(p)p1�� is as in (4.3).
Theorem 4.2. Let E be a triangular array with common AGG(⌫) marginal F, ⌫ > 0.
Assume further that the errors E have uniform relatively stable maxima and minima,
i.e., E 2 U (F), and (�E) = {�✏ p (i)} 2 U (F). If

r < fE(�) =
⇣
1 + (1 � �)1/⌫

⌘⌫
, (4.23)

then
lim
p!1

inf
DSp 2T

inf
µ2⇥�p (�,r )

P[DSp , Sp] = 1, (4.24)

where T is the class of all thresholding procedures (2.20).
Proof. To avoid cumbersome double subscript notations, we will sometimes sup-
press dependence on p of the set sequences DSp and Sp in the proof.

Since the estimator DSp = {x(i) � tp (x)} is thresholding, exact support recovery
takes place if and only if the threshold separates the signals and null part, i.e.,

P[DSp = Sp] = P


max
i2Sc

x(i) < tp (x)  min
i2S

x(i)
�

 P


max
i2Sc

x(i) < min
i2S

x(i)
�

.

Since the right-hand-side does not depend on the procedure DSp , we also have

sup
DSp 2T

P[DSp = Sp]  P


max
i2Sc

x(i) < min
i2S

x(i)
�

 P


max
i2Sc
✏ (i) < � +min

i2S
✏ (i)

�

,

(4.25)
where we used the assumption that the signal sizes are no greater than�. Let S⇤ = S⇤p
be a sequence of support sets that maximize the right-hand-side of (4.25), i.e., let

S⇤p = arg max
S✓ {1,...,p }: |S |= bs†p c

P


max
i2Sc
✏ (i) < � +min

i2S
✏ (i)

�

,

where s†p = `(p)p1�� is the size of the true support set, and ties are broken lexico-
graphically if multiple maximizers exist. Then, we obtain the following bound which
only depends on r and the distribution of E,

sup
DSp 2T

sup
µ2⇥�p (�,r )

P[DSp = Sp]  P


max
i2S⇤c

✏ (i) < � +min
i2S⇤
✏ (i)

�

= P
2
6
6
6
6
4

MS⇤c

up
<
� � mS⇤

up

3
7
7
7
7
5

, (4.26)

where MS⇤c = maxi2S⇤c ✏ (i) and mS⇤ = maxi2S⇤ (�✏ (i)). Since the error arrays E
and (�E) are URS by assumption, using the expression for the AGG quantiles (2.33),
we have

MS⇤c

up
=

MS⇤c

u |S⇤c |
u |S⇤c |

up

P�! 1, and
mS⇤

up
=

mS⇤

u |S⇤ |
u |S⇤ |
up

P�! (1 � �)1/⌫, (4.27)
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so that the two random terms in probability (4.26) converge to constants. Notice that
the second relation in (4.27) holds by URS for any � 2 (0, 1). When � = 1, the
relation holds because {mS⇤/u |S⇤ | } is tight, while 0  u |S⇤ |/up  u`(p)/up ! 0 since
`(p) = o(p) by the Potter bounds for slowly varying functions (see, e.g., Bingham
et al., 1987).

Since signal sizes are bounded above by r <
⇣
1 + (1 � �)1/⌫

⌘⌫
, we can write

r1/⌫ = 1 + (1 � �)1/⌫ � d for some d > 0. By our parametrization of �, we have

�

up
=

⇣
1 + (1 � �)1/⌫ � d

⌘
(1 + o(1)). (4.28)

Combining (4.27) and (4.28), we conclude that the right-hand-side of the probability
(4.26) converges in probability to a constant strictly less than 1, that is,

� � mS

up

P�! 1 � d, (4.29)

while MS⇤c/up
P�! 1. Therefore, the probability in (4.26) must go to 0. ut

We end this section with several remarks on the scope and consequences of our
results. Our first comment is on the signal sizes, and in particular, on the gap between
the su�cient conditions (Theorem 4.1) and the necessary conditions (Theorem 4.2).

Remark 4.3 (Minding the gap). The su�cient condition in Theorem 4.1 requires that
all signals be larger than the strong classification boundary fE(�) in order to achieve
exact support recovery (4.1), while Theorem 4.2 states that exact support recovery
fails (in the sense of (4.6)) when all signal sizes are below the boundary — the two
conditions are not complements of each other. This gap between the su�cient and
necessary conditions on signal sizes, however, may be di�cult to bridge. Indeed, in
general, when signal sizes straddle the boundary fE(�), either outcome is possible,
as we demonstrate in Example 4.2 below.

Example 4.2 (Signals straddling the boundary). Let the signal µ have |Sp | = bp(1��)c
non-zero entries, composed of two disjoint sets Sp = S(1)

p [ S(2)
p . Let also the

magnitude of the signals be equal within the two sets, i.e., µ(i) =
p

2r (k) log p if
i 2 S(k)

p for some constants r (k) > 0 for k = 1, 2. For simplicity, assume that the
errors are iid standard Gaussians.

Consider two scenarios

1. r (1) = (1 + �) fE(�), r (2) = (1 + �), with |S(1)
p | = |Sp | � 1, |S(2)

p | = 1,
2. r (1) = (1 + �) fE(�), r (2) = (1 � �) fE(�), with |S(1)

p | = b |Sp |/2c, |S(2)
p | =

|Sp | � |S(1)
p |.

for some constants 0 < � < 1�� < 1. In both cases, signals in S(1)
p (respectively, S(2)

p )
are above (respectively, below) the strong classification boundary (4.5). However,
in the first scenario, we have P[DSBonf

p = Sp] ! 1 where DSBonf
p is the Bonferroni’s
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procedure described in Theorem 4.1, while in the second scenario, we have P[DSp =
Sp]! 0 for all thresholding procedures DSp .

Proof (Example 4.2). In the first scenario, signal sizes in S(1)
p are by definition

above the strong classification boundary (4.5). The signal in S(2)
p has size parameter

1 + � < 2 � � < (1 +
p

1 � �)2, and therefore falls below the boundary.
It remains to show that P[DSBonf

p = Sp]! 1. To do so, we define two new arrays

Y (k) = {y(k)
p ( j), j = 1, 2, . . . , p}, k 2 {1, 2}p,

where y(k)
p ( j) = xp ( j) if j < S(k)

p , and y(k)
p ( j) = H✏ p ( j) if j 2 S(k)

p , using an
independent error array {H✏ p ( j), j = 1, . . . , p} with iid standard Gaussian elements.
That is, we replace the elements in S(1)

p and S(2)
p with iid standard Gaussian noise.

Notice both arraysY (1) andY (2) satisfy the conditions in Theorem 4.1 (with sparsity
parameter equal to � and 1, respectively). Hence, we have

P[DSBonf
p ✓ Sp] = P

"

max
j2Sc

x( j)  tp
#

 P
"

max
j2Sc

y(1) ( j)  tp
#

! 0,

and

P[DSBonf
p ◆ Sp] = P

"

min
j2S

x( j) > tp
#

� 1 � P
"

min
j2S(1)

x( j)  tp
#

� P
"

min
j2S(2)

x( j)  tp
#

� 1 � P
"

min
j2S(1)

y(2)
p ( j)  tp

#

� P
"

min
j2S(2)

y(1)
p ( j)  tp

#

! 1,

where tp is the threshold in Bonferroni’s procedure. The conclusion follows.
In the second scenario, the signal sizes in S(2) by definition fall below the strong

classification boundary (4.5). To see that no thresholding procedure succeeds, we
adapt the proof of Theorem 4.2. In particular, we obtain

P[DSp = Sp]  P
"

max
j2Sc

x( j)  tp < min
j2S

x( j)
#

 P
"

max
j2Sc

x( j) < min
j2S(2)

x( j)
#

.

By the assumption that signals in S(2) have size parameter (1 � �) fE(�), we have

P

"

max
j2Sc

x( j) < min
j2S(2)

x( j)
#

= P
2
6
6
6
6
4

MSc

up
<

p
2(1 � �) fE(�) log p � mS(2)

up

3
7
7
7
7
5

, (4.30)

where MSc = maxj2Sc ✏ ( j) and mS(2) = maxj2S(2) (�✏ ( j)). The ratio on the left-
hand-side of the inequality converges to 1 as in (4.27) in the main text, whereas the
term on the right-hand-side
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p

2(1 � �) fE(�) log p � mS(2)

up
=

p
(1 � �) fE(�) � mS(2)

u |S(2) |

u |S(2) |
up

P�!
p

(1 � �) +
p

1 � �(
p

(1 � �) � 1) < 1.

where we used the URS of the error arrays, and that

u |S(2) | ⇠
q

2 log (p1��/2) =
p

2((1 � �) log p � log 2) ⇠
p

2(1 � �) log p.

to conclude the convergence in probability. ut

Our second remark is on the restriction to thresholding procedures.

Remark 4.4. Since the sharp phase transition result just established apply only to the
general class of thresholding procedures, it is natural to ask if other good procedures
have left out by this restriction. We will establish later in Chapter 5 that in many
cases the optimal procedures are in fact thresholding procedures. In general, how-
ever, thresholding procedures can be sub-optimal, e.g., when the errors have heavy
(regularly-varying) tails. We will also demonstrate the absence of a phase transition
phenomenon in exact support recovery by thresholding, in Supplement Section B.2.

Our final comment is on the interplay between thresholding procedures and the
dependence class characterized by URS.

Remark 4.5. Paraphrasing Theorems 4.1 and 4.2: if we consider only thresholding
procedures, then for a very large class of dependence structures, we cannot improve
upon the Bonferroni procedure DSBonf

p . Specifically, for all E 2 U (F) and�E 2 U (F),
and for all Sp 2 S, where S =

(

S ✓ {1, . . . , p}; |S | = b`(p)p1��c
)

, we have

lim
p!1
P[DSBonf

p , Sp] =
8>
<
>
:

lim supp!1 infDSp 2T P[
DSp , Sp] = 0, if r > fE(�),

lim infp!1 infDSp 2T P[
DSp , Sp] = 1, if r < fE(�)

(4.31)
where T is the set of all thresholding procedures (2.20).

Theorem 4.2 answers a question raised in Butucea et al. (2018). In particular,
the authors of (Butucea et al., 2018) commented that independent error is the ‘least
favorable model’ in the problem of support recovery, and conjectured that the sup-
port recovery problem may be easier to solve under dependence, similar to how
the problem of signal detection is easier under dependent errors (Hall and Jin,
2010). Surprisingly, our results here state that asymptotically, all error dependence
structures in the large URS class are equally di�cult for thresholding procedures.
Therefore, the phase transition behavior is universal in the class of dependence
structures characterized by URS.

We emphasize the restriction to the URS dependence class in Theorem 4.2 is not
an assumption of convenience. The dependence condition characterized by uniform
relative stability is in fact one of the weakest in the literature. We will characterize
the class URS dependence class in Chapter 6 below.
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4.5 Dense signals

We treat briefly the case of dense signals, where the size of the support set is
proportional to the problem dimension, i.e. s ⇠ cp for some constant c 2 (0, 1). We
show that in this case, a phase-transition-type result still holds, independently of the
value of c. Analogous to the set-up of Theorems 4.1 and 4.2, let

⇥d+
p (c, r) = {µ 2 Rp : there exists a set Sp ✓ {1, . . . , p} such that |Sp |  bcpc,

µ(i) � (⌫r log p)1/⌫ for all i 2 Sp, and µ(i) = 0 for all i < Sp },
(4.32)

where “d” in the notation ⇥d+
p stands for “dense”. Similarly, define

⇥d�
p (c, r) = {µ 2 Rp : there exists a set Sp ✓ {1, . . . , p} such that |Sp | = bcpc,

0 < µ(i)  (⌫r log p)1/⌫ for all i 2 Sp, and µ(i) = 0 for all i < Sp }.
(4.33)

Theorem 4.3. Let c 2 (0, 1) be a fixed constant, and let DS = DSBonf
p denote the

Bonferroni’s procedure as described in Theorem 4.1. In the context of Theorem 4.1,
if r > 1, then we have

lim
p!1

sup
µ2⇥d+

p (c,r )
P[DSp , Sp] = 0. (4.34)

While in the context of Theorem 4.2, if r < 1, then

lim
p!1

inf
DSp 2T

inf
µ2⇥d�

p (c,r )
P[DSp , Sp] = 1, (4.35)

where T is the class of all thresholding procedures (2.20).

Remark 4.6. Notice that the boundary for the signal size parameter is identically 1
in this dense regime. Therefore, if we interpret � = 0 of the parametrization (4.3)
as s ⇠ cp, where c 2 (0, 1), then the strong classification boundary (4.5) may be
continuously extended to the left-end point where fE(0) = 1.

Proof (Theorem 4.3). The proof is entirely analogous to that of Theorems 4.1 and
4.2. Specifically, (4.34) follows by replacing bp1��c with bcpc in Relation (4.15)
onward, and replacing (4.18) with

u�s ⇠ (⌫ log cp)1/⌫ ⇠ (⌫ log p)1/⌫ .

in the proof of Theorem 4.1. Similarly, (4.35) follows the proof of Theorem 4.2.
Indeed, by using the fact that

u |S⇤c |
up

⇠ (⌫ log (1 � c)p)1/⌫

(⌫ log p)1/⌫ ! 1
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and u |S⇤ |/up ! 1 for all c 2 (0, 1), we see that Relation (4.27) holds with � = 0,
and the rest of Theorem 4.2 applies. ut

4.6 Numerical illustrations for independent errors

We examine numerically the boundaries (4.5) under several error tail assumptions
for independence errors in this section. Numerical experiments for dependent errors
will be deferred until we characterize the URS conditions in Chapter 6.

To demonstrate the phase transition phenomenon under di�erent error tail densi-
ties, we simulate from the additive error model (1.1) with

• Gaussian errors, where the density is given by f (x) = 1p
2⇡

exp
(

�x2/2
)

.
• Laplace errors, where the density is given by f (x) = 1

2 exp {� |x |}.
• Generalized Gaussian ⌫ = 1/2, with density f (x) = 1

2 exp
� � 2 |x |1/2  

.

The sparsity and signal size of the sparse mean vector are parametrized as in
equations (4.3) and (4.4), respectively. The support set S is estimated with HS =
(

i : x(i) >
p

2 log p
)

under the Gaussian errors, HS =
�
i : x(i) > log p + (log log p)/2

 

under the Laplace errors, and with HS = {i : x(i) > 1
4

�
W

��c/(ep log p)
�
+ 1

�2} un-
der the generalized Gaussian (⌫ = 1/2) errors. Here W is the Lambert W function,
i.e., W = f �1 where f (x) = x exp (x). The choices of thresholds correspond to
Bonferroni’s procedures with FWER decreasing at a rate of 1/

p
log p, therefore

satisfying the assumptions in Theorem 4.1. Experiments were repeated 1000 times
under each sparsity-and-signal-size combination.

The results of the numerical experiments are shown in Figure 4.1. The numer-
ical results illustrate that the predicted boundaries are not only accurate in high-
dimensions (p = 10000, right panels of Figure 4.1), but also practically meaningful
even at moderate dimensions (p = 100, left panels of Figure 4.1).
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Fig. 4.1 The empirical probability of exact support recovery from numerical experiments, as a
function of sparsity level � and signal sizes r , from Gaussian error models (upper panels), Laplace
error models (middle panels), and generalized Gaussian with ⌫ = 1/2 (lower panels); darker color
indicates higher probability of exact support recovery. The experiments were repeated 1000 times
for each sparsity-signal size combination, and for dimensions p = 100 (left panels) and p = 10000
(right panels). Numerical results agree with the boundaries described in Theorem 4.1; convergence
is noticeably slower for under generalized Gaussian (⌫ = 1/2) errors. For reference, the dashed and
dash-dotted lines represent the weak classification and detection boundaries (see Chapter 3).



Chapter 5
Bayes and Minimax Optimality

In this chapter, we investigate the universality of the phase-transition results on exact
support recovery established in Chapter 4. Specifically, we would like to know to what
extent the strong classification boundary applies to all support estimators, and not
just thresholding ones. The answer to this question will complete the characterization
of the fundamental limits in exact support recovery.

To this end, we begin by characterizing the finite-sample Bayes optimality of the
thresholding procedures. As we will see, the so-called oracle thresholding estimators
are in fact finite-sample optimal for many classes of models. These optimality results
allow us to establish a minimax formulation of the exact support recovery phase-
transition phenomenon that covers arbitrary procedures.

Perhaps surprisingly, thresholding estimators can be sub-optimal. This is so, for
example, in the additive noise model when the error tail densities are heavier than
exponential. In this case, we will see that likelihood ratio thresholding rather than
data thresholding are the optimal support estimators.

5.1 Bayes optimality in support recovery problems

In studying support recovery problems, restrictions to the thresholding procedures
are sometimes justified by arguing that such procedures are the “reasonable” choice
for estimating the support set (see, e.g., Arias-Castro and Chen, 2017). We show
in this chapter that, perhaps surprisingly, for general error models, thresholding
procedures are not always optimal, even when the observations are independent.

We shall identify the optimal procedure for support recovery problems under a
Bayesian setting with general distributional assumptions (including but not limited
to additive models (1.1)). Specifically, we assume that there is an ordered set P =
(i1, . . . , is), ii 2 {1, . . . , p}, and s not necessarily equal densities f1, . . . , fs , such that
the observations indexed by set P have corresponding densities. That is,

x(i j ) ⇠ f j, j = 1, . . . , s. (5.1)

61
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Let also the rest (p � s) observations have common density f0, i.e., x(i) ⇠ f0 for
i < S. We further assume that the observations x are mutually independent.

We adopt here a Bayesian framework to measure statistical risks. Let the ordered
support P = (i1, . . . , is) have prior

⇡((i1, . . . , is)) = (p � s)!/p!, (5.2)

for all distinct 1  i1 < . . . < is  p. Consequently, the unordered support
S = {i1, . . . , is } is distributed uniformly in the collection of all set of size s,
with the unordered uniform distribution ⇡u. That is, for all for all S 2 S :=
{S ✓ {1, . . . , p}; |S | = s}, we have

⇡u({i1, . . . , is }) =
X

�

⇡((i�(1), . . . , i�(s) )) = (p � s)!s!/p!, (5.3)

where the sum is taken over all permuations of {1, 2, . . . , s}.
For any fixed configuration P, consider the loss function,

`(DS, S) := P[DS , S] = PP[DS , S],

where the probability is taken over the randomness in the observations x only. The
Bayes optimal procedures, by definitions, should minimize

E⇡P[DS , S], (5.4)

where the expectation is taken over the random configurations P, with a uniform
distribution ⇡ as specified in (5.2).

If, however, the sparsity s = |S | of the problem is known, then a “natural”
estimator for S would be based on the set of top s order statistics. Such estimators
will be referred to as oracle thresholding estimators and formally defined next.

For any collection of numbers {ai, i = 1, · · · , s}, let

ha1, · · · , asi := (a[1], · · · , a[s])

denote the vector of ai’s arranged in a non-increasing order.

Definition 5.1 (Oracle data thresholding). Let x[1] � . . . � x[p] be the order
statistics of the data vector x. Any estimator DS⇤ := {i1, · · · , is }, where

hx(i1), · · · , x(is)i = (x[1], · · · , x[s])

will be referred to as an oracle thresholding estimator.

Simply put, the oracle thresholding estimators are comprised of the indices cor-
responding to the s largest values in the data. Note that, in the absence of ties among
the largest s + 1 data values, the oracle thresholding estimator is unique. For con-
creteness, one can break possible ties lexicographically. In many cases, the oracle
thresholding estimators will be almost surely unique.
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5.2 Bayes optimality of oracle thresholding

In this section, we study the Bayes optimality of the oracle thresholding procedures.
The following monotone likelihood ratio (MLR) property will play a key role.

Definition 5.2 (Monotone Likelihood Ratio). A family of positive densities on R,
{ f�, � 2 U }, is said to have the MLR property if, for all �0, �1 2 U ✓ R such that
�0 < �1, the likelihood ratio

�
f�1 (x)/ f�0 (x)

�
is an increasing function of x.

The next result provides a general criterion for the finite-sample Bayes optimality
of the oracle thresholding procedure DS⇤.

Theorem 5.1. Let the observations x(i), i = 1, . . . , p be as prescribed as in (5.1)
through (5.2). If each of the pairs { f0, f1}, . . . , { f0, fs } forms an MLR family, then
every oracle data thresholding procedure DS⇤ is finite-sample optimal in terms of
Bayes risk E⇡P[DS , S]. That is,

DS⇤ 2 arg min
DS

E⇡P[DS , S]. (5.5)

for all s and p.

Proof. The problem of support recovery can be equivalently stated as a classification
problem, where the discrete parameter space is S = {S ✓ {1, . . . , p} : |S | = s}, and
the observation x 2 Rp has likelihood f (x |S) indexed by the support set S.

By the optimality of the Bayes classifier (see, e.g., Domingos and Pazzani, 1997),
a set estimator that maximizes the probability of support recovery is one such that

DS 2 arg max
S2S

f (x |S)⇡(S).

Since we know from (5.3) that ⇡(·) is uniform, the problem in our context reduces
to showing that f (x |DS⇤) = f (x |DS), where f (x |S) is the conditional distribution of
data given the unordered support S,

f (x |S) =
X

P2�(S)

f (x |P)⇡ord(P |S) =
1
s!

*
.

,

X

P2�(S)

sY

i=1
f i (x(P(i)))+

/

-

Y

k<S

f0(x(k)),

where �(S) is the set of all permutations of the indices in the support set S.
Suppose that DS is not an oracle thresholding estimator, then there must be indices

j 2 DS and j 0 < DS such that x( j) < x( j 0). We exchange the classifications of x( j)
and x( j 0), and form a new estimate DS 0 =

�
DS \ { j}� [ { j 0}. Comparing the likelihoods

under DS and DS 0, we have
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f (x |DS) � f (x |DS 0) = 1
s!

X

P2�(DS)

sY

i=1
f i (x(P(i))) f0(x( j 0))

Y

k<DS[{ j0 }

f0(x(k))�

� 1
s!

X

P0 2�(DS0)

sY

i=1
f i (x(P0(i))) f0(x( j))

Y

k<DS0[{ j }

f0(x(k))

=
1
s!

*

,

sX

i=1
ai

⇣
f i (x( j)) f0(x( j 0)) � f i (x( j 0)) f0(x( j))

⌘
+

-

Y

k<DS[{ j0 }

f0(x(k)),

(5.6)

where the last equality follows by first summing over all permutations fixing P(i) = j
and P0(i) = j 0, and setting ai =

P
P2�(DS\{ j })

Q
i0,i f i0 (x(P(i0))). Notice that the ai’s

are non-negative.
Since x( j) < x( j 0), and since each of { f0, f i } is an MLR family, we have

f i (x( j))
f0(x( j))

� f i (x( j 0))
f0(x( j 0))

 0 =) f i (x( j)) f0(x( j 0)) � f i (x( j 0)) f0(x( j))  0.

Using Relation (5.6), we conclude that f (x |DS)  f (x |DS 0). Continuing this way,
we can successively improve the likelihood of every estimator until we arrive at
an oracle thresholding estimator, proving the desired optimality. Note that with the
same argument, we obtain that any two oracle thresholding estimators have the same
likelihood. ut

We emphasize that under the MLR conditions in Theorem 5.1, the oracle thresh-
olding procedures are in fact finite-sample optimal in the above Bayesian context.
Further, our setup allows for di�erent alternative distributions, and relaxes the as-
sumptions of Butucea et al. (2018) when studying distributional generalizations,
where the alternatives are assumed to be identically distributed.

It remains to understand when the key MLR property holds. We elaborate on this
question next. Returning to the more concrete signal-plus-noise model (1.1), it turns
out that the error tail behavior is what determines the optimality of data thresholding
procedures. In this setting, log-concavity of the error densities is equivalent to the
MLR property (Lemma 5.1). This, in turn, yields the finite-sample optimality of data
thresholding procedures (Theorem 5.1).

Lemma 5.1. Let � be the magnitude of the non-zero signals in the signal-plus-noise
model (1.1) with positive error density f0, and let f� (x) = f0(x � �). The family
{ f�, � 2 R} has the MLR property if and only if the error density f0 is log-concave.

Proof. Suppose MLR holds, we will show that f0(t) = exp{�(t)} for some concave
function �. By the assumption of MLR, for any x1 < x2, setting �0 = 0, and
�1 = (x2 � x1)/2 > 0, we have

log
f�1 (x2)
f�0 (x2)

= �

 
(x1 + x2)

2

!
� �(x2) � �(x1) � �

 
(x1 + x2)

2

!
= log

f�1 (x1)
f�0 (x1)

.



5.2 Bayes optimality of oracle thresholding 65

This implies that the log-density �(t) is midpoint-concave, i.e., for all x1 and x2, we
have,

�

 
(x1 + x2)

2

!
� 1

2
�(x1) +

1
2
�(x2). (5.7)

For Lebesgue measurable functions, midpoint concavity is equivalent to concavity
by the Sierpinki Theorem (see, e.g., Sec I.3 of Donoghue, 2014). This proves the
‘only-if’ part.

For the ‘if’ part, when �(t) = log ( f0(t)) is log-concave, then for any �0 < �1,
and any x < y, we have

log
f�1 (y)
f�0 (y)

� log
f�1 (x)
f�0 (x)

= �(y� �1)��(y� �0)��(x� �1)+�(x� �0) � 0, (5.8)

where the last inequality is a simple consequence of concavity (see Lemma 5.2
below). This proves the ‘if’ part. ut

Lemma 5.2. Let � be any concave function on R. For any x < y 2 R, and � > 0 we
have

�(x) + �(y + �)  �(y) + �(x + �).

Proof. Pick � = �/(y � x + �), by concavity of f we have

��(x) + (1 � �)�(y + �)  �(�x + (1 � �)(y + �)) = �(y), (5.9)

and

(1 � �)�(x) + ��(y + �)  �((1 � �)x + �(y + �)) = �(x + �). (5.10)

Summing up (5.9) and (5.10) and we arrive at the conclusion as desired. ut

Theorem 5.1 and Lemma 5.1 yield immediately the following.

Corollary 5.1. Consider the additive error model (1.1), where the ✏ (i)’s are inde-
pendent with common distribution F. Let the signal µ have s positive entries with
magnitudes 0 < �1  . . .  �s , located on {1, . . . , p} as prescribed in (5.2).

If F has a positive, log-concave density f , then the support estimator

DS⇤ := {i : x(i) � x[s]}

is finite-sample optimal in terms of Bayes risk in the sense of (5.5).

Proof. The independence and the fact that the observations have densities implies
the absence of ties among the order statistics {x[i]}, with probability one. Thus, the
oracle thresholding procedure is a.s. unique and given by DS⇤ = {i : x(i) � x[s]}.
The result then follows from Theorem 5.1 and Lemma 5.1. ut

Remark 5.1. Theorem 5.1 and Corollary 5.1 show that under MLR (or equivalently,
log-concavity of the errors in additive models), the oracle thresholding procedures
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are finite-sample optimal even in the case where the signals have di�erent (positive)
sizes. This fascinating property perhaps explains the success of the thresholding
estimators.

The assumption of log-concavity of the densities is compatible with the AGG
model when ⌫ � 1, as demonstrated in the next example.

Example 5.1. The generalized Gaussian density f (x) / exp{�|x |⌫/⌫} is log-concave
for all ⌫ � 1. Therefore in the additive error model (1.1), according to Corollary 5.1,
the oracle thresholding procedure is Bayes optimal in the sense of (5.5).

5.3 Bayes optimality of likelihood ratio thresholding

When the MLR condition in Theorem 5.1 is violated, the oracle thresholding proce-
dures can in fact be sub-optimal (see Example 5.2 and Section 5.4, below).

In this section, we demonstrate that thresholding the likelihood ratio rather than
signal values yields the finite-sample Bayes optimal procedures. We consider a
special but su�ciently general case of signal models with equal densities.

Namely, let the observations x(i), i = 1, . . . , p have s signals as prescribed in
(5.2) with common “signal” density fa, and let the remaining (p� s) locations have
common “error” density f0. Define the likelihood ratios

L(i) := fa (x(i))
�

f0(x(i)),

and let L[1] � L[2] � . . . � L[p] be the order statistics of the L(i)’s.

Definition 5.3 (Oracle likelihood ratio thresholding). Recall that ha1, · · · , asi
denotes the vector of ai’s arranged in a non-increasing order. Any estimator
Ŝ = {i1, · · · , is } such that

hL(i1), · · · , L(is)i = (L[1], · · · , L[s]),

will be referred to as an oracle likelihood thresholding estimator of the support S.

Theorem 5.2. Any oracle likelihood ratio thresholding procedure DSLRT is finite-
sample optimal in terms of Bayes risk. That is,

DSLRT 2 arg min
DS2S

E⇡P[DS , S]. (5.11)

for all s and p, where the infimum on DS is taken over all support estimators of size s.

Proof. The proof is analogous to that of Theorem 5.1. We need to show that DSLRT 2
arg maxS2S f (x |S)⇡(S). Since the distribution ⇡ of the support S is uniform (recall
(5.3)), it is equivalent to prove that
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f (x |DSLRT) = max
S2S

f (x |S),

where f (x |S) is the conditional distribution of the data given the unordered support
S,

f (x |S) =
X

P

f (x |P)⇡ord(P |S) =
Y

j2S
fa (x( j))

Y

j<S

f0(x( j)). (5.12)

Suppose DS 2 S is not an oracle likelihood thresholding estimator. Then from the
definition of the likelihood ratio thresholding procedure, there must be indices j 2 DS
and j 0 < DS such that L( j) < L( j 0). If we exchange the labels of L( j) and L( j 0),
that is, we form a new estimate DS 0 =

�
DS \ { j}� [ { j 0}, comparing the log-likelihoods

under DS and DS 0, we have

log f (x |DS)�log f (x |DS 0) = log fa (x( j))+log f0(x( j 0))�log fa (x( j 0))�log f0(x( j)).

By the definition of L( j)’s, and the order relations, we obtain

log f (x |DS) � log f (x |DS 0) = log L( j) � log L( j 0) > 0

This shows that DS cannot be Bayes optimal unless it is a likelihood thresholding
estimator. Note that with the same argument for every two likelihood thresholding
estimators DS0 and DS00, we have f (x |DS0) = f (x |DS00), proving the desired optimality.
ut

The characterization of optimal likelihood ratio thresholding procedures in The-
orem 5.2 may not always yield practical estimators, as the density of the alternatives,
and the number of signals s are typically unknown. Still, some insights can be
gained by virtue of Theorem 5.2. In particular, when MLR fails (for example, when
the errors in model (1.1) do not have log-concave densities), data thresholding is
sub-optimal.

Example 5.2 (Sub-optimality of data thresholding). Let the errors have iid gen-
eralized Gaussian density with ⌫ = 1/2, i.e., log f0(x) / �x1/2. Let dimen-
sion p = 2, sparsity s = 1 with uniform prior, and signal size � = 1. That
is, P[µ = (0, 1)T] = P[µ = (1, 0)T] = 1/2. If the observations take on values
x = (x1, x2)T = (1, 2)T, we see from a comparison of the likelihoods (and hence,
the posteriors),

log
f (x |{1})
f (x |{2}) = 2x1/2

1 + 2(x2 � 1)1/2 � 2x1/2
2 � 2(x1 � 1)1/2 = 4 � 2

p
2 > 0,

that even though x1 < x2, the set {1} is a better estimate of support than {2}, i.e.,
P[S = {1} �

� x] > P[S = {2} �
� x].

This simple example shows that, in the case when the errors have super-
exponential tails, the optimal procedures are in general not data thresholding. A
slightly more general conclusion can be found in Corollary 5.2.
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5.4 Sub-optimality of data thresholding procedures

We provide a slightly more general result on the sub-optimality of data thresholding
procedures.

Corollary 5.2. Consider the additive error model (1.1). Let the errors ✏ be indepen-
dent with common distribution F. Let each of the s signals be located on {1, . . . , p}
uniformly at random with equal magnitude 0 < � < 1. Assume the errors ✏ (i)’s are
iid with density f that is log-convex on [K,+1), for some K > 0.

If DSopt is the Bayes optimal (i.e., the oracle likelihood thresholding estimator),
then, whenever j 2 DSopt for some x( j) > K + �, we must necessarily have j 0 2 DSopt
for all j 0 such that K + �  x( j 0) < x( j).

Specifically, if there are m observations exceeding K + �, with m > s, then the
top m� s observations will not be included in the optimal estimator DSopt. This shows
that, in the case when the errors have super-exponential tails, the optimal procedures
are in general not data thresholding.

Proof (Corollary 5.2). Since the density of the alternatives fa (t) = f (t � �) is log-
convex on [K + �,1), by Relation (5.8) in the proof of Lemma 5.1 and appealing to
log-convexity (rather than log-concavity), the likelihood ratio

L( j) :=
fa (x( j))
f0(x( j))

is decreasing in x( j) on [K + �,1). The claim follows from Theorem 5.2. ut

Remark 5.2. As we have seen, the thresholding estimators are no longer optimal in
the additive model with error-densities heavier than exponential. Thanks to Theorem
5.2, the oracle likelihood thresholding procedures are promising alternatives that can
lead us to practical support estimators.

In the case where the signals have di�erent sizes, however, the argument in the
proof of Theorem 5.2 breaks downs since the signal densities need to be identical for
Relation (5.12) to hold. In such cases, the characterization of the optimal procedure
is an open problem.

5.5 Minimax optimality in exact support recovery

We establish in this section minimax versions of our results from Chapter 4. Specif-
ically, if we restrict ourselves to the class of thresholding procedures T (defined in
(2.20)), then Bonferroni’s procedure is minimax optimal, for any fixed dependence
structure in the URS class. This is formalized in Corollary 5.3 below.We refer to
this result as point-wise minimax, to emphasize the fact that this optimality holds for
every fixed URS array.



5.5 Minimax optimality in exact support recovery 69

Meanwhile, if we search over all procedures, but expand the model space to in-
clude all dependence structures, then a di�erent minimax optimality statement holds
for Bonferroni’s procedure. This result, formally stated in Section 5.5.2, is a conse-
quence of our characterization of the finite-sample Bayes optimality of thresholding
procedures in Section 5.2.

5.5.1 Point-wise minimax optimality for thresholding procedures

Theorems 4.1 and 4.2 can be cast in the form of an asymptotic minimax statement.

Corollary 5.3 (Point-wise minimax). Let DSBonf be the sequence of Bonferroni’s
procedure described in Theorem 4.1. Let also the errors have common AGG(⌫)
distribution F with parameter ⌫ > 0, and ⇥+p (�, r) be as defined in (4.7). If r >
fE(�), then we have

lim sup
p!1

sup
µ2⇥+p (�,r )

P(DSBonf
p , Sp) = 0, (5.13)

for arbitrary dependence structure of the error array E = {✏ p (i)}p . Let T be the
class of thresholding procedures (2.20). If r < fE(�), then we have

lim inf
p!1

inf
DSp 2T

sup
µ2⇥+p (�,r )

P(DSp , Sp) = 1, (5.14)

for any error dependence structure such that E 2 U (F) and (�E) 2 U (F).

Proof. The first conclusion (5.13) is a restatement of Theorem 4.1.
For the second statement (5.14), since r < fE(�), we can pick a sequence

µ⇤ 2 ⇥+p (�, r) such that |Sp | = b`(p)p1��c, with signals having the same signal size
µ(i) = (2r log p)1/⌫ for all i 2 Sp , where r < r < fE(�). For this particular choice
of µ⇤ we have µ⇤ 2 ⇥�p (�, r) (recall (4.22)), where r < r < fE(�), and according
to Theorem 4.2, we obtain limp!1 infDSp 2T P[

DSp , Sp] = 1, for all dependence
structures in the URS class. ut

Remark 5.3. Theorem 4.2 is a stronger result than the traditional minimax claim in
Relation (5.14). Indeed, (4.24) involves an infimum (over the class ⇥�p) while (5.14)
has a supremum (over the class ⇥+p).

On the other hand, Corollary 5.3 is more informative than many minimax-type
statements, since it applies “point-wise” to any fixed error dependence structure in
the URS class.

Remark 5.4. Corollary 5.3 echoes Remark 4.5: for a very large class of dependence
structures, we cannot improve upon Bonferroni’s procedure in exact support recovery
problems (asymptotically), unless we look beyond thresholding procedures.
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5.5.2 Minimax optimality over all procedures

Consider the asymptotic Bayes risk as defined in (5.4). The statement for the neces-
sary condition of support recovery in Theorem 4.2, with the help of Corollary 5.1,
can be strengthened to include all procedures (in the Bayesian context), regardless
of whether they are thresholding or not.

Theorem 5.3. Consider the additive model (1.1) where the ✏ p (i)’s are independent
and identically distributed with log-concave densities in the AGG class. Let the
signals be as prescribed in Corollary 5.1. If the signal sizes fall below the strong
classification boundary (4.5), i.e. r < fE(�), then we have

lim inf
p!1

inf
DSp

E⇡P[DSp , Sp] = 1, (5.15)

where the infimum on DSp is taken over all procedures.

Proof. When the errors are independent with log-concave density, the oracle thresh-
olding procedure DS⇤p , by Corollary 5.1, minimizes the Bayes risk (5.4) among all
procedures. That is,

lim inf
p!1

inf
DSp

E⇡P[DSp , Sp] � lim inf
p!1

E⇡P[DS⇤p , Sp].

Since DS⇤p belongs to the class of all thresholding procedures, we have

lim inf
p!1

E⇡P[DS⇤p , Sp] � lim inf
p!1

inf
DSp 2T

E⇡P[DSp , Sp]

� lim inf
p!1

inf
DSp 2T

inf
Sp

P[DSp , Sp] = 1,

when r < fE(�), where the last line follows from Theorem 4.2. ut
Theorem 5.3 allows us to state another minimax conclusion — one in which we

search over all procedures, by allowing the supremum in the minimax statement to
be taken over the dependence structures.

Corollary 5.4. Let D(F) be the collection of error arrays with common marginal F
as defined in (4.20) where F is an AGG(⌫) distribution. Let also DSBonf

p be Bonferroni’s
procedure as described in Theorem 4.1. If r > fE(�), then we have

lim sup
p!1

sup
µ2⇥+p (�,r )
E2D(F )

P(DSBonf
p , Sp) = 0. (5.16)

Further, when r < fE(�), and F has a positive log-concave density f , we have

lim inf
p!1

inf
DSp

sup
µ2⇥+p (�,r )
E2D(F )

P(DSp , Sp) = 1, (5.17)
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where the infimum on DSp is taken over all procedures.

Proof. Relation (5.16) is a re-statement of Remark 4.1.
For any distribution ⇡ (with a slight abuse of notation) over the parameter space

⇥+p ⇥ D(F), we have

lim inf
p!1

inf
DSp

sup
µ2⇥+p (�,r )
E2D(F )

P(DSp , Sp) � lim inf
p!1

inf
DSp

E⇡P(DSp , Sp), (5.18)

since the supremum is bounded from below by expectations. In particular, define ⇡
to be the uniform distribution over the configurations ⇥⇤p ⇥ I ( f ), where

⇥⇤p = {µ 2 Rd : |Sp | = b`(p)p1��c, µ(i) = 0 for all i < S, and

µ(i) = (⌫r log p)1/⌫ for all i 2 S, where r < r < fE(�)},

and

I ( f ) = {E = (✏ p (i))p : ✏ p (i) iid with density f (x) / exp{�|x |⌫/⌫}}.

Since the density f of F is log-concave, the distribution of the signal configu-
rations satisfies the conditions in Theorem 5.3. Thus, the desired conclusion (5.17)
follows from Theorem 5.3 and (5.18). ut

Remark 5.5. Since the class AGG(⌫), ⌫ � 1 contains distributions with log-concave
densities (Example 5.1), the minimax statement (5.17) continues to hold if the
supremum is taken over the entire class F 2 AGG(⌫), ⌫ � 1. We opted for a
more informative formulation which emphasizes the log-concavity condition on the
density of F.

Remark 5.6. Corollary 5.4 is no stronger than Corollary 5.3. In Corollary 5.3 we
search over only the class of thresholding procedures, but o�er a tight, point-wise
lower bound on the asymptotic risk over the class of URS dependence structures.
On the other hand, Corollary 5.4 provides a uniform lower bound for the asymptotic
risk over all dependence structures, which may not be tight except in the case of
independent errors.

5.6 Optimality and sub-optimality: A discussion

We conclude with a brief summary on the optimality and sub-optimality of the
thresholding procedures in the problem of exact support estimation. For clarity, we
focus on the model (1.1) with independent errors.

Theorem 5.3 and Corollary 5.4 provide a nearly complete picture of the di�culty
in the exact support recovery problem, in the regime when the thresholding esti-
mators are optimal. Specifically, in such cases the signal classification boundary is
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universal. On the other hand, Theorem 5.2, and indeed, Example 5.2 demonstrate that
thresholding procedures are sub-optimal for AGG(⌫) models with ⌫ < 1. Therefore,
the optimality of thresholding procedures (specifically, Bonferroni’s procedure) only
applies to AGG(⌫) models with ⌫ � 1.

If we restrict the space of methods to only thresholding procedures, then the
results in Section 5.5.1 state that the phase transition phenomenon — the 0-1 law in
the sense of Corollary 5.3 — is universal in all error models with rapidly varying
tails. This includes AGG(⌫) models for all ⌫ > 0. In contrast, models with heavy
(regularly varying) tailed errors do not exhibit this phenomenon (form more details,
see Theorem B.3). We summarize the properties of thresholding procedures in Table
5.1.

Table 5.1 Properties of thresholding procedures under di�erent error distributions when the errors
are independent. Properties of the error distributions are listed in brackets.

Thresholding procedure Bayes optimality Phase transition
(Error distributions) (Log-concave density) (Rapidly-varying tails)

AGG(⌫), ⌫ � 1 Yes (Yes) Yes (Yes)

AGG(⌫), 0 < ⌫ < 1 No (No) Yes (Yes)

Power laws No (No) No (No)



Chapter 6
Uniform Relative Stability for Gaussian Arrays

The notion of uniform relative stability (URS) in Definition 4.1 is the key to the
necessary conditions for exact support recovery established in Theorem 4.2. In this
chapter, we provide a complete characterization of the class of URS Gaussian arrays
in terms of a simple condition on their covariance structure. The condition is as
follows.

Definition 6.1 (Uniformly decreasing dependence (UDD)). Consider a triangular
array of jointly Gaussian distributed errors E =

(⇣
✏ p (i)

⌘p
i=1
, p = 1, 2, . . .

)

with unit
variances,

✏ p ⇠ N(0, ⌃p), p = 1, 2, . . . .

The array E is said to be uniform decreasingly dependent (UDD) if for every � > 0
there exists a finite N (�) < 1, such that for every i 2 {1, . . . , p}, and p 2 N, we have

�
�
�

(

k 2 {1, . . . , p} : ⌃p (i, k) > �
)

�
�
�
 N (�) for all � > 0. (6.1)

That is, for every coordinate i, the number of elements which are more than �-
correlated with ✏ p (i) does not exceed N (�).

Note that the bound in (6.1) holds uniformly in i and p, and only depends on �.
Also observe that on the left-hand side of (6.1), we merely count in each row of ⌃p
the number of exceedances of covariances (not their absolute values!) over level �.

Remark 6.1. Without loss of generality, we may require that N (�) be a monotone
non-increasing function of �, for we can take

N (�) = sup
p,i

�
�
�
{k : ⌃p (i, k) > �}��

�
,

which is non-increasing in �. Definition 6.1 therefore states that the array is UDD
when N (�) < 1 for all � > 0.

Observe that the UDD condition does not depend on the order of the coordinates
in the error vector ✏ p = (✏ p (i))pi=1. Often times, however, the errors are thought

73
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of coming from a stochastic process indexed by time or space. To illustrate the
generality of the UDD condition, we formulate next a simple su�cient condition
(UDD0) that is easier to check in a time-series context.

Definition 6.2 (UDD 0). For ✏ p ⇠ N(0, ⌃p) with unit variances, an array E =⇣
✏ p (i)

⌘p
i=1

is said to satisfy the UDD 0 condition if there exist:

(i) permutations lp of {1, . . . , p}, for all p 2 N, and
(ii) a non-negative sequence (rn)1n=1 converging to zero rn ! 0, as n ! 1,

such that
sup
p2N
|⌃p

�
i0, j 0

� |  r |i�j | . (6.2)

where i0 = lp (i), j 0 = lp ( j), for all i, j 2 {1, . . . , p}.

Remark 6.2. Without loss of generality, we may also require that rn be non-increasing
in n, for we can replace rn with the non-increasing sequence r 0n = supm�n rm.

Proposition 6.1. UDD 0 implies UDD.

Proof. Since rn ! 0, for any � > 0, there exists an integer M = M (�) < 1 such
that rn  �, for all n � M . Thus, by (6.2), for every fixed j 0 2 {1, . . . , p}, we can
have |Cov(✏ p (k 0), ✏ p ( j 0)) | > �, only if k 0 belongs to the set:

(

k 0 2 {1, . . . , p} : j � M  k := l�1
p (k 0)  j + M

)

,

where j := l�1
p ( j 0). That is, there are at most 2M + 1 < 1 indices k 0 2 {1, . . . , p},

whose covariances with ✏ ( j 0) may exceed �. Since this holds uniformly in j 0 2
{1, . . . , p}, Condition UDD follows with N (�) = 2M + 1. ut

We now state the main result of this chapter. It states that a Gaussian array is URS
if and only if it is UDD. The URS condition essentially requires that the dependencies
decay in a uniform fashion, the rate at which dependence decay does not matter.

Theorem 6.1. LetE be a Gaussian triangular array with standard normal marginals.
The arrayE has uniformly relatively stable (URS) maxima if and only if it is uniformly
decreasing dependent (UDD).

Specifically, for stationary Gaussian arrays, we have the following corollary.

Corollary 6.1. Let E = {✏ p (i) = Z (i)} for a stationary Gaussian time series Z =
{Z (i)}. Then E is URS if and only if the autocovariance function Cov(Z (k), Z (0)) !
0, as k ! 1.

Corollary 6.1 follows by Theorem 6.1 and the observation that UDD is equivalent
to vanishing autocovariance of Z. A slightly weaker form of the “if” part was
established in Theorem 3 of Berman (1964).

Returning again to the study of support recovery problems, Theorem 6.1 and the
necessary condition for exact support recovery in Theorem 4.2 yield the following
result.
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Corollary 6.2. For UDD Gaussian errors, the result in Theorem 4.2 holds.

One may ask, whether the UDD (equivalently, URS) condition can be relaxed
further for the phase-transition result in Theorem 4.2 to hold. As a counterpart to
Remark 4.5, we demonstrate next that the dependence conditions in Theorem 4.2
are nearly optimal. Specifically, we show that if the URS dependence condition is
violated, then it may be possible to recover the support of weaker signals, falling
below the boundary. The main idea is to use the equivalence of URS and UDD
to construct a Gaussian error array, whose correlations do not decay in a uniform
fashion (UDD fails). As we will see, in such a case one can do substantially better
in terms of support recovery. This shows that the URS condition is nearly optimal in
the Gaussian setting. Numerical simulations illustrating this example can be found
in Section 4.6, below.

Example 6.1 (On the tightness of the URS condition for exact support recovery).
Suppose E =

⇣
✏ p (i)

⌘p
i=1

is Gaussian, and is comprised of bp1��c blocks, each of
size at least bp�c. Let the elements within each block have correlation 1, and let the
elements from di�erent blocks be independent. If r � 4(1 � �), then the procedure

DS =
�
i : x(i) >

p
2(1 � �) log p

 

yields exact support recovery, i.e., P[DS = S] ! 1, as p ! 1. This requirement on
the signal size is strictly weaker than that of the strong classification boundary, since
4(1 � �) < (1 +

p
1 � �)2 on � 2 (0, 1).

Proof (Example 6.1). Let t⇤p =
p

2(1 � �) log p and observe that DS = { j : x( j) > t⇤p }.
Analogous to (4.11) in the proof of Theorem 4.1, we have

P
f
DS ✓ S

g

= 1 � P
"

max
j2Sc

x( j) > t⇤p

#

= 1 � P
"

max
j2Sc
✏ ( j) > t⇤p

#

� 1 � P
"

max
j2 {1,...,p }

✏ ( j) > t⇤p

#

� 1 � P
"

max
j2 {1,..., bp1�� c }

H✏ ( j) > t⇤p

#

where
�
H✏
� bp1�� c
j=1 ’s are independent Gaussian errors; in the last inequality we used the

assumption that there are at most bp1��c independently distributed Gaussian errors
in

⇣
✏ p ( j)

⌘p
j=1

. By Example 4.1 (with bp1��c taking the role of p), we know that the

FWER goes to 0 at a rate of
⇣
2 log bp1��c

⌘�1/2
. Therefore, the probability of no false

inclusion converges to 1.
On the other hand, since the signal sizes are no smaller than (⌫r log p)1/⌫ =p

2r log p (for ⌫ = 2), similar to (4.13), we obtain
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P
f
DS ◆ S

g

� P
"

min
j2S
✏ ( j) >

p
2(1 � �) log p �

q
2r log p

#

= P

"

max
j2S

(�✏ ( j)) <
p

2 log p
⇣p

r �
p

1 � �
⌘#

= P
2
6
6
6
6
4

maxj2S (�✏ ( j))
u |S |

<

pr �
p

1 � �
p

1 � �
(1 + o(1))

3
7
7
7
7
5

, (6.3)

where in the last line we used the quantiles (2.33). Since the minimum signal size
is bounded below by r > 4(1 � �), the right-hand-side of the inequality in (6.3)
converges to a constant strictly larger than 1. While the left-hand-side, by Slepian’s
lemma (recall Theorem 2.1 and Relation 2.47), is stochastically smaller than a r.v.
going to 1. Namely, we have

1
u |S |

max
j2S

(�✏ ( j))
d
 1

u |S |
max
j2S
✏⇤( j)

P�! 1, (6.4)

where (✏⇤) bp
1�� c

j=1 ’s are independent Gaussian errors. Therefore the probability in
(6.3) must also converge to 1. ut

Before proceeding to the proof of Theorem 6.1, we will briefly discuss the rela-
tionships between UDD and other dependence conditions in the context of extreme
value theory. The main idea we would like to convey is that UDD (and equivalently
URS) is an exceptionally mild condition on the dependence of the array.
The Berman and UDD conditions. Suppose that the array of errors E comes
from a stationary Gaussian time series ✏ (i), i 2 N, with auto-covariance rp =
Cov(✏ (i + p), ✏ (i)). One is interested in the asymptotic behavior of the maxima
Mp := maxi=1,...,p ✏ (i).

In this setting, the Berman’s condition, introduced in Berman (1964), requires
that

rp log p! 0, as p! 1. (6.5)

This condition entails that

ap (Mp � bp)
d�! Z, as p! 1, (6.6)

with the Gumbel limit distribution P[Z  x] = exp{�e�x }, x 2 R, where

ap =
p

2 log p, bp =
p

2 log p � 1
2

⇣p
2 log p

⌘�1 �
log log(p) + log(4⇡)

�
,

are the same centering and normalization sequences as in the case of iid ✏ (i)’s.
Berman’s condition is one of the weakest dependence conditions in the literature for
which the convergence in (6.6) holds. See, e.g., Theorem 4.4.8 in Embrechts et al.
(2013), where (6.5) is described as “very weak”.

Instances where the dependence in the time series is so strong that Berman’s
condition (6.5) fails have also been studied. In such cases, one may continue to
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have (6.6) but typically the sequences of normalizing and centering constants will
be di�erent from the iid case, and the corresponding limit is usually no longer
Gumbel; see, for example, Theorems 6.5.1 and 6.6.4 in Leadbetter et al. (1983), and
McCormick and Mittal (1976).

In our high dimensional support estimation context, the notion of relative stability
is su�cient and more natural than the finer notions of distributional convergence. If
one is merely interested in the asymptotic relative stability of the Gaussian maxima,
then Berman’s condition can be relaxed significantly (see also, Theorem 4.1 of
Berman, 1964). Observe that by Proposition 6.1, the Berman condition (6.5) implies
UDD and hence relative stability (Theorem 6.1), i.e.,

1
bp

Mp
P! 1, as p! 1. (6.7)

This concentration of maxima property can be readily deduced from (6.6), since
apbp ⇠ 2 log(p) ! 1 as p ! 1. Theorem 6.1 shows that (6.7) holds if the
much weaker uniform dependence condition UDD holds. Note that our condition is
coordinate free — neither monotonicity of the sequence rp nor stationarity of the
underlying array is required. This makes it substantially broader than the time series
setting in the seminal work Berman (1964).

The rest of this chapter is devoted to the proof of the main result, i.e., Theorem 6.1.
We first introduce a key lemma regarding the structure of an arbitrary correlation
matrix of high-dimensional random variables. The proof uses a surprising, yet elegant
application of Ramsey’s Theorem from the study of combinatorics. The ‘only if’
part of Theorem 6.1 follows from this lemma, in Section 6.2.

The proof of the ‘if’ part is detailed in Section 6.3. The arguments there have
been recently extended to establish bounds on the rate of concentration of maxima
in Kartsioukas et al. (2019); see also, Tanguy (2015b) and the related notion of
super-concentration of Chatterjee (2014).

6.1 Ramsey’s theory and the structure of correlation matrices

Given any integer k � 1, there is always an integer R(k, k) called the Ramsey
number:

k  R(k, k) 
 
2k � 2
k � 1

!
(6.8)

such that the following property holds: every undirected graph with at least R(k, k)
vertices will contain either a clique of size k, or an independent set of k nodes. Recall
that a clique is a complete sub-graph where all pairs of nodes are connected, and an
independent set is a set of nodes where no two nodes are connected.

This result is a consequence of the celebrated work of Ramsey (2009), which
gave birth to Ramsey Theory (see e.g., Conlon et al., 2015). The Ramsey Theorem
and the upper bound (6.8) (established first in Erdös and Szekeres, 1935) are at the
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heart of the proof of the following result. A recent improvement on the upper bound
is given by Sah (2020).

Proposition 6.2. Fix � 2 (0, 1) and let P = (⇢(i, j))n⇥n be an arbitrary correlation
matrix. If

k := blog2(n)/2c � d1/�e + 1, (6.9)

then there is a set of k indices K = {l1, . . . , lk } ✓ {1, . . . , n} such that

⇢(i, j) � ��, for all i, j 2 K . (6.10)

Proof. By using (6.8) and a refinement of the Stirling’s formula, we will show at the
end of the proof that for k  log2(n)/2, we have

R(k, k)  n, (6.11)

where R(k, k) is the Ramsey number.
Now, construct a graph with vertices {1, . . . , n} such that there is an edge between

nodes i and j if and only if ⇢(i, j) � ��. In view of (6.11) and Ramsey’s theorem (see
e.g., Theorem 1 in Fox (2009) or Conlon et al. (2015) for a recent survey on Ramsey
theory), there is a subset of k nodes K = {l1, . . . , lk }, which is either a complete
graph or an independent set. Recall that in a complete graph, every two nodes are
connected with an edge; while in independent sets, no two nodes are connected.

If K is a complete graph, then by our construction of the graph, Relation (6.10)
holds.

Now, suppose that K is a set of independent nodes. This means, again by the
construction of our graph, that

⇢(i, j) < ��, for all i , j 2 K .

Let Zi, i 2 K be zero-mean random variables such that ⇢(i, j) = E[ZiZ j]. Observe
that

Var *

,

X

i2K
Zi

+

-

=
X

i2K
Var(Zi) +

X

i,j
i, j2K

Cov(Zi, Z j ) < k � k (k � 1)�, (6.12)

since Var(Zi) = 1 and ⇢(i, j) < �� for i , j. By our assumption, k � (d1/�e + 1), or
equivalently, (k �1) � 1/�, the variance in (6.12) is negative. This is a contradiction
showing that there are no independent sets K with cardinality k.

To complete the proof, it remains to show that Relation (6.11) holds. In view of the
upper bound on the Ramsey numbers (6.8), it is enough to show that k  log2(

p
n)

implies  
2k � 2
k � 1

!
 n.

This follows from a refinement of the Stirling formula, due to Robbins (1955):
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p
2⇡mm+1/2e�me

1
(12m+1)  m! 

p
2⇡mm+1/2e�me

1
12m .

Indeed, letting Hk := k � 1, and applying the above upper and lower bounds to the
terms (2Hk)! and Hk!, respectively, we obtain:

 
2k � 2
k � 1

!
⌘ (2Hk)!

(Hk!)2
 22Hk

p
⇡Hk

exp
(

1
24Hk
� 2

12Hk + 1

)
< 22k

where the last two inequalities follow by simply dropping positive factors less than
1. Since 2k  log2(n), the above bound implies Relation (6.11) and the proof is
complete. ut

Using Proposition 6.2, we establish the key lemma used in the proof of Theorem
6.1.

Lemma 6.1. Let c 2 (0, 1), and P = (⇢(i, j))(n+1)⇥(n+1) be a correlation matrix such
that

⇢(1, j) > c for all j = 1, . . . , n + 1. (6.13)

If n � 22 d2/c2 e+4, then there is a set of indices K = {l1, . . . , lk } ✓ {2, . . . , n + 1} of
cardinality k = |K | = blog2

p
nc, such that

⇢(i, j) >
c2

2
for all i, j 2 K . (6.14)

That is, all entries of the k ⇥ k sub-correlation matrix PK := (⇢(i, j))i, j2K are larger
than c2/2.

Proof (Lemma 6.1). Let Z1, . . . , Zn+1 be random variables with covariance matrix
P. Denote ⇢ j = ⇢(1, j) and define

Rj =
8>>
<
>>
:

1q
1�⇢2

j

⇣
Z j � ⇢ j Z1

⌘
, if ⇢ j < 1,

R⇤ if ⇢ j = 1,
(6.15)

where R⇤ is an arbitrary zero-mean, unit-variance random variable. It is easy to see
that Var(Rj ) = 1, and

Cov
⇣
Zi, Z j

⌘
= Cov

✓
⇢iZ1 +

q
1 � ⇢2i Ri, ⇢ j Z1 +

q
1 � ⇢2j Rj

◆

= ⇢i ⇢ j +
q

1 � ⇢2i
q

1 � ⇢2j Cov
⇣
Ri, Rj

⌘

> c2 +min
(

Cov
⇣
Ri, Rj

⌘
, 0

)

.

Therefore, Relation (6.14) would hold if we can find a set of indices K =
{l1, . . . , lk } such that Cov

⇣
Ri, Rj

⌘
� �c2/2 for all i, j 2 K , where k = |K | =

blog2
p

nc. This, however, follows from Proposition 6.2 applied to
⇣
Rj

⌘n+1
j=2

with
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� = c2/2, provided that

k = blog2
p

nc � d2/c2e + 1.

The last inequality indeed follows form the assumption that n � 22 d2/c2 e+4. ut

6.2 URS implies UDD (Proof of the ‘only if’ part of Theorem 6.1)

In view of Remark 6.1, UDD is equivalent to the requirement that N (�) := 1 +
supp Np (�) < 1 for all � 2 (0, 1), where

Np (�) := max
j2 {1,...,p }

�
�
�
{i : i , j, ⌃p ( j, i) > �}��

�
. (6.16)

Therefore, if E is not UDD, then there must exist a constant c 2 (0, 1) for which
N (c) is infinite, i.e., there is a subsequence Hp ! 1 such that NHp (c) ! 1. Without
loss of generality, we may assume that Hp = p.

Let jp (c) be the maximizers of (6.16), and let

Sp (c) := {i 2 {1, . . . , p} : ⌃p ( jp (c), i) > c}. (6.17)

Observe that |Sp (c) | = Np (c) + 1! 1, as p! 1 (note jp (c) 2 Sp (c)).
Applying Lemma 6.1 to the set of random variables indexed by Sp (c), we con-

clude, for Np (c) � 22 d2/c2 e+4, there must be a further subset

Kp (c) ✓ Sp (c), (6.18)

of cardinality
kp (c) := �

�
�
Kp (c)�

�
�
� log2

q
Np (c), (6.19)

such that all pairwise correlations of the random variables indexed by Kp (c) are
greater than c2/2. Since the sequence Np (c) ! 1, by (6.19), we have kp (c) ! 1
as p! 1.

Therefore, we have identified a sequence of subsets Kp (c) ✓ {1, . . . , p} with the
following two properties:

1. kp (c) := �
�
�
Kp (c)�

�
�
! 1, as p! 1, and

2. For all i, j 2 Kp (c), we have

⌃p (i, j) > c2/2. (6.20)

Without loss of generality, we may assume Kp (c) = {1, . . . , kp (c)} ✓ {1, . . . , p},
upon re-labeling of the coordinates.

Now consider a Gaussian sequence ✏⇤ = {✏⇤( j), j = 1, 2, . . .}, independent of E,
defined as follows:
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✏⇤( j) := Z
⇣
c/
p

2
⌘
+ Z ( j)

q
1 � c2/2, j = 1, 2, . . . ,

where Z and Z ( j), j = 1, 2, . . . are independent standard normal random variables.
Hence,

Var(✏⇤( j)) = 1 = Var(✏ p ( j)), (6.21)

and
Cov(✏⇤(i), ✏⇤( j)) =

c2

2
 Cov(✏ p (i), ✏ p ( j)), (6.22)

for all p, and all i , j, i, j 2 Kp (c). Thus we have, as p! 1,

1
ukp (c)

max
j2Kp (c)

✏⇤( j) =
c/
p

2
ukp (c)

Z +
p

1 � c2/2
ukp (c)

max
j2Kp (c)

Z ( j)
P!

r
1 � c2

2
, (6.23)

where the convergence in probability follows from Proposition 2.2 part 2.
Relations (6.21) and (6.22), by Slepian’s Lemma (recall Theorem 2.1), also imply,

1
ukp (c)

max
j2Kp (c)

✏⇤( j)
d
� 1

ukp (c)
max

j2Kp (c)
✏ p ( j). (6.24)

Therefore, by (6.24) and (6.23), for all
p

1 � c2/2  � < 1, we have,

P

"
1

ukp (c)
max

j2Kp (c)
✏ p ( j) < �

#

! 1 as p! 1.

This contradicts the definition of URS (with the particular choice of Sp := Kp (c)),
and the proof of the ‘only if’ part of Theorem 6.1 is complete.

6.3 UDD implies URS (Proof of the ‘if’ part of Theorem 6.1)

Recall that our objective is to show (4.21). We will do so in two stages; namely, we
will prove that for all � > 0, we have

P

" MSp

u |Sp |
> 1 + �

#

! 0, (6.25)

and
P

" MSp

u |Sp |
< 1 � �

#

! 0, (6.26)

for any sequence of subsets Sp such that |Sp | ! 1. Although the first step (6.25) was
already shown in Proposition 2.2, regardless of the dependence structure, we provide
in this section a more refined result. Specifically, the following result states that for
the AGG model, the constant � in Proposition 2.2 can be replaced by a vanishing
sequence cp ! 0.
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Lemma 6.2 (Upper tails of AGG maxima). Let E be an array with marginal
distribution F 2 AGG(⌫), ⌫ > 0. If we pick

cp =
up log p

up
� 1, (6.27)

where up = F (1 � 1/p), then we have cp > 0, cp ! 0, and

P

"
Mp

up
� (1 + cp) > 0

#

! 0. (6.28)

The proof can be found in Section 6.3.1 below.
Since Lemma 6.2 holds regardless of the dependence structure, the same conclu-

sions hold if one replaces Mp by MSp = maxj2Sp ✏ ( j) and p by q = q(p) = |Sp |,
where Sp is any sequence of sets such that q ⌘ |Sp | ! 1. This entails (6.25).

On the other hand, the proof of (6.26) uses a more elaborate argument based on
the Sudakov-Fernique bound. We proceed by first bounding the probability by an
expectation. For all � > 0, we have

P

" MSp

uq
< 1 � �

#

= P

"

�
 MSp

uq
� (1 + cq)

!
> � + cq

#

 P
" MSp

uq
� (1 + cq)

!

�
> � + cq

#

 1
� + cq

E

" MSp

uq
� (1 + cq)

!

�

#

, (6.29)

where (x)� := max{�x, 0} and the last line follows from the Markov inequality. The
next result shows that the upper bound in (6.29) vanishes.

Lemma 6.3. Let E be a Gaussian UDD array and Sp ✓ {1, . . . , p} be an arbitrary
sequence of sets such that q = q(p) = |Sp | ! 1. Then, for MSp := maxj2Sp ✏ p ( j)
and cq as in (6.27), we have

E

" MSp

uq
� (1 + cq)

!

�

#

! 0, as p! 1. (6.30)

The proof of the lemma is given in Section 6.3.2 below.
Going back to the proof of Theorem 6.1, we observe that Relations (6.29) and

(6.30) imply (6.26), which completes the proof of the ‘if’ part of Theorem 6.1. ut

Remark 6.3. Only the Sudakov-Fernique minorization argument used in the proof of
Lemma 6.3, relies on the Gaussian assumption. We expect the techniques and results
here to be useful in extending Theorem 6.1 to more general class of distributions,
say, the AGG model.
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6.3.1 Bounding the upper tails of AGG maxima

Proof (Lemma 6.2). Recall by (2.33) that

uq ⇠
�
⌫ log q

�1/⌫ , q ! 1,

so that

cp =
up log p

up
� 1 =

 
log p + log log p

log p

!1/⌫
(1 + o(1)) � 1! 0 as p! 1. (6.31)

By the union bound, we have

P

"
Mp

up
> 1 + cp

#


pX

j=1
P

"
✏ p ( j)

up
> 1 + cp

#

= pF
⇣
up log p

⌘
(6.32)

= pF
 
F 

 
1 � 1

p log p

!!
 1

log p
! 0.

where the last inequality follows from the fact that F (F (u)) � u for all u 2 [0, 1].
ut

In addition to Lemma 6.2, which says the upper tail vanishes in probability, we
will also prepare a result which states that the upper tail also vanishes in expectation.

Lemma 6.4. Let Mp and cp be as in Lemma 6.2, and denote

⇠p :=
Mp

(1 + cp)up
.

Then there exist p0, t0 > 0, and an absolute constant C > 0 such that

P
f

⇠p > t
g

 exp {�Ct⌫ }, for all p > p0, t > t0. (6.33)

In particular, the set of random variables {
⇣
⇠p

⌘
+
, p 2 N} is uniformly integrable.

Proof (Lemma 6.4). Recalling that (1 + cp)up = up log p , and by applying the union
bound as in (6.32), we have

logP
f

⇠p > t
g

 log p + log F
⇣
up log pt

⌘

 log p � 1
⌫

⇣
up log pt

⌘⌫
(1 � �). (6.34)

for t > t0(�) > 0, where � 2 (0, 1) is an arbitrarily small number fixed in advance.
This follows from the assumption that F 2 AGG(⌫) and Definition 2.6 of the AGG
distribution. Using in (6.34) the explicit expressions for the quantiles in (2.33), we
obtain
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logP
f

⇠p > t
g

 log p� (1 + o(1)) (1 � �)t⌫|                   {z                   }
greater than 1 for large t

log p� t⌫ log log p (1 + o(1)) (1 � �)|                             {z                             }
greater than C for large p

.

(6.35)
For large t, we have (1 + o(1)) (1 � �)t⌫ > 1, so that the sum of the first two terms
on the right-hand side of (6.35) is negative. Also, for p larger than some constant
p0(�), we have log log p (1 + o(1)) (1 � �) > C for some constant C that does not
depend on p. Therefore (6.33) holds for t > t0(�) and p > p0(�), and the proof is
complete. ut

Corollary 6.3. The upper tails of AGG maxima vanish in expectation, i.e.,

E

" 
Mp

up
� (1 + cp)

!

+

#

! 0 as p! 1, (6.36)

where (a)+ := max{a, 0}.

Proof (Corollary 6.3). Since cp � 0 is a sequence converging to 0, we have cp < 1
for p � p0. Hence for any t > 0, we have

P

" 
Mp

up
� (1 + cp)

!

+

> t
#

= P
f

(1 + cp)
⇣
⇠p � 1

⌘
+
> t

g

 P
f⇣
⇠p � 1

⌘
+
> t/2

g

 P
f

⇠p > t/2
g

. (6.37)

By Lemma 6.4, {
⇣
⇠p

⌘
+
} is u.i., therefore by Relation (6.37), {

⇣
Mp/up � (1 + cp)

⌘
+
, p 2

N} is u.i. as well. Since by Lemma 6.2,
⇣
Mp/up � (1 + cp)

⌘
+
! 0 in probability,

Relation (6.36) follows from the established uniform integrability (see, e.g., Theorem
6.6.1 in Resnick, 2014). ut

6.3.2 Bounding the lower tails of Gaussian maxima

The main goal of this section is to establish the following result.

Proposition 6.3. For every UDD Gaussian array E, and any sequence of subsets
Sp ✓ {1, . . . , p} such that q = q(p) = |Sp | ! 1, we have

lim inf
p!1

E

" MSp

uq

#

� 1, (6.38)

where MS = maxj2S ✏ ( j).

We will first show that Lemma 6.3, which is the key to the proof of the ‘if’ part
of Theorem 6.1, follows immediately from this proposition.

Proof (Lemma 6.3). We start with the identity
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E

" MSp

uq
� (1 + cq)

#

= E

" MSp

uq
� (1 + cq)

!

+

#

� E
" MSp

uq
� (1 + cq)

!

�

#

.

By re-arranging terms and taking limsup/liminf, we obtain

0  lim sup
p!1

E

" MSp

uq
� (1 + cq)

!

�

#

 lim sup
p!1

E

" MSp

uq
� (1 + cq)

!

+

#

� lim inf
p!1

E

" MSp

uq
� (1 + cq)

#

(6.39)

= � lim inf
p!1

E

" MSp

uq
� (1 + cq)

#

, (6.40)

where the last equality follows from the fact that the lim-sup in (6.39) vanishes by
Corollary 6.3. On the other hand, since cq ! 0, we have

lim inf
p!1

E

" MSp

uq
� (1 + cq)

#

= lim inf
p!1

E

" MSp

uq
� 1

#

� 0,

where the last inequality follows from Proposition 6.3. This shows that the right-hand
side of (6.40) is non-positive and hence (6.30) holds. ut

The following interesting fact about the relationship between the upper quantiles
and the expectation of iid maxima will be needed for the proof of Proposition 6.3.

Lemma 6.5. Let (Xi)
p
i=1 be p iid random variables with distribution F such that

E[(Xi)�] exists, i.e.,
E[max{�Xi, 0}] < 1.

Let Mp = maxi=1,...,p Xi . Assume that F has a density f , which is eventually de-
creasing. More precisely, we suppose there exists a C0 such that 0 < F (C0) < 1,
and f (x1) � f (x2) whenever C0 < x1  x2. Under these assumptions, we have,

lim inf
p!1

EMp

up+1
� 1,

where up+1 = F (1 � 1/(p + 1)).

Proof. The idea comes from an argument in the monograph of Boucheron et al.
(2013). Write

Xi = F (Ui)

where Ui are iid uniform random variables on (0, 1). Denote MU
p as the maximum

of the Ui’s, we have EMp = E
f

F (MU
p )

g

, and by conditioning, we obtain

EMp = E
f

F (MU
p ) �

� MU
p � F (C0)

g

P
f

MU
p � F (C0)

g

+

+ E
f

F (MU
p ) �

� MU
p < F (C0)

g

P
f

MU
p < F (C0)

g

. (6.41)
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Focus on the first term in the summation. Since f is decreasing beyond C0, F is
concave on (C0,1), and F is convex on (F (C0), 1). By Jensen’s inequality, we
have

E
f

F (MU
p ) �

� MU
p � F (C0)

g

� F 
⇣
E[MU

p | MU
p � F (C0)]

⌘
.

Using the fact that MU
p is the maximum of iid Uniform(0, 1) random variables, with

a direct calculation one can show that

F 
⇣
E[MU

p | MU
p � F (C0)]

⌘
= F 

  
1 � 1

p + 1

!  
1 � F (C0)p+1

1 � F (C0)p

!!
,

and hence

E
f

F (MU
p ) �

� MU
p � F (C0)

g

� F 
  

1 � 1
p + 1

!  
1 � F (C0)p+1

1 � F (C0)p

!!

� F 
 
1 � 1

p + 1

!
= up+1. (6.42)

Now, focus on the second term in (6.41). Since P[MU
p  m�

� MU
p < F (C0)] =

(m/F (C0))p  m/F (C0) for m  F (C0), we have

⇣
MU

p
�
� MU

p < F (C0)
⌘ d
� �

U1 �
� U1 < F (C0)

�
,

where and the latter is the uniform distribution on (0, F (C0)). Therefore, for the
second term of the sum in (6.41), by the monotonicity of F , we obtain

E
f

F (MU
p ) �

� MU
p < F (C0)

g

� E ⇥
F (U1) �

� U1 < F (C0)
⇤

= E
⇥
X1 �

� X1 < C0
⇤
. (6.43)

Finally, since P
f

MU
p < F (C0)

g

= F (C0)p = 1 � P
f

MU
p � F (C0)

g

, by (6.42) and
(6.43), we have

EMp

up+1
� �

1 � F (C0)p
�
+
E

⇥
X1 �

� X1 < C0
⇤

up+1
F (C0)p .

The conclusion follows since the right-hand-side of the last inequality converges to
1. ut

We are now ready to prove Proposition 6.3. This is where the UDD dependence
assumption is used.

Proof (Proposition 6.3). Recall that E = {✏ p (i), i = 1, · · · , p, p 2 N} is a Gaussian
array with standardized marginals. Define the canonical (pseudo) metric on Sp ⇢
{1, · · · , p},

d(i, j) =
q
E

f

(✏ (i) � ✏ ( j))2
g

.
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It can be easily checked that the canonical metric takes values between 0 and 2. For
an arbitrary � 2 (0, 1), take � =

p
2(1 � �), and letN be a �-packing of Sp . That is,

let N be a subset of Sp , such that for any i, j 2 N , i , j, we have d(i, j) � �, i.e.,

d(i, j) =
q

2
⇣
1 � ⌃p (i, j)

⌘
� � =

p
2(1 � �), (6.44)

or equivalently, ⌃p (i, j)  �. We claim that we can find a �-packing N whose
number of elements is at least

|N | � q/N (�). (6.45)

Indeed, N can be constructed iteratively as follows:

1: Set S(1)
p := Sp andN := { j1}, where j1 2 S(1)

p is an arbitrary element. Set k := 1.
2: Set S(k+1)

p := S(k)
p \ B� ( jk ), where

B� ( jk ) := {i 2 Sp : d(i, jk ) < � ⌘
p

2(1 � �)}.

3: If S(k)
p , ;, pick an arbitrary jk+1 2 S(k)

p , set N := N [ { jk+1}, and k := k + 1,
go to step 2; otherwise, stop.

By the definition of UDD (see Definition 6.1), there are at most N (�) coordinates
whose covariance with ✏ ( j) exceed �. Therefore at each iteration, �

�
�
B� ( jk )�

�
�
 N (�),

and hence
�
�
�
S(k+1)
p

�
�
�
� �

�
�
S(k)
p

�
�
�
� �

�
�
B� ( jk )�

�
�
� q � k N (�).

The construction can continue for at least q/N (�) iterations, and we have |N | �
bq/N (�)c as desired.

Now we define on this �-packingN an independent Gaussian process (⌘( j)) j2N ,

⌘( j) =
�
p

2
Z ( j) j 2 N ,

where Z ( j)’s are iid standard normal random variables. Observe that by the definition
of �-packing in (6.44), the increments of the new process are smaller than those of
the original process in the following sense,

E
f

(⌘(i) � ⌘( j))2
g

= �2  d2(i, j) = E
f

(✏ (i) � ✏ ( j))2
g

for all i , j, i, j 2 N . Applying the Sudakov-Fernique inequality (see Theorem 2.2)
to (⌘( j)) j2N and (✏ ( j)) j2N , we have

E

"

max
j2N
⌘( j)

#

 E
"

max
j2N
✏ ( j)

#

 E
"

max
j2Sp

✏ ( j)
#

. (6.46)

Since the (⌘( j)) j2N are independent Gaussians, Lemma 6.5 yields the lower bound,
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lim inf
p!1

E

" maxj2N ⌘( j)
u |N |

#

� �p
2
=
p

1 � �. (6.47)

Using (6.45) and the expressions (2.33) for the quantiles of AGG models (with ⌫ = 2
here), we have

u |N |
uq
�

 
log q � log N (�)

log q

!1/2
(1 + o(1)) ! 1, (6.48)

since N (�) does not depend on q = q(p) ! 1.
By combining (6.46), (6.47) and (6.48), we conclude that

lim inf
p!1

E

" maxj2Sp ✏ ( j)
uq

#

� lim inf
p!1

E

" maxj2N ⌘( j)
uq

#

by (6.46)

� lim inf
p!1

E

" maxj2N ⌘( j)
u |N |

#

by (6.48)

�
p

1 � �. by (6.47)

Since � > 0 is arbitrary, (6.38) follows as desired. ut

6.4 Numerical illustrations of exact support recovery under
dependence

The characterization of URS with the UDD condition allows us to simulate Gaussian
errors and illustrate the e�ect of dependence on the phase transition behavior in finite
dimensions. We shall compare the performance of the Bonferroni’s procedure, which
is agnostic to both sparsity and signal size, with the oracle procedure which picks
the top-s observations.

The first set of experiments explores short-range dependent errors from an auto-
regressive (AR) models.

• AR(1) Gaussian errors with parameter ⇢ = �0.5, ⇢ = 0.5, and ⇢ = 0.9, where
the autocovariance functions decay exponentially, ⇢k = ⇢k .

We again apply both the sparsity- and signal-size agnostic Bonferroni’s procedure,
i.e., DS = {i : x(i) >

p
2 log p}, as well as the oracle procedure DS⇤ = {i : x(i) � x[s]},

s = |S |, to all settings. Results of the numerical experiments for the AR models are
shown in Figure 6.1.

As was commented in the main text, for dependent errors the oracle procedures
is able to recover support of signals with higher probability than the Bonferroni
procedures in finite dimensions; compare left and right columns of Figure 6.1. Short
range dependent observations, however, there is not a pronounced di�erence. The
results of the experiments are very similar to that of the independent Gaussian case.
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Fig. 6.1 The empirical probability of exact support recovery from numerical experiments, as
a function of sparsity level � and signal sizes r . Darker colors indicate higher probability of
exact support recovery. Three AR(1) models with autocorrelation functions (�0.5)k (upper), 0.5k

(middle), and 0.9k (lower) are simulated. The experiments were repeated 1000 times for each
sparsity-signal size combination. In finite dimensions (p = 10000), the Bonferroni procedures
(left) su�ers small loss of power compared to the oracle procedures (right). A phase transition in
agreement with the predicted boundary (4.5) can be seen in the AR models. The boundaries (solid,
dashed, and dash-dotted lines) are as in Fig 4.1.
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The second set of experiments explores exact support recovery in additive error
models in the cases of long-range dependent but UDD, as well as non-UDD errors.
In particular we simulate

• Fractional Gaussian noise (fGn) with Hurst parameter H = 0.75 and H = 0.9.
The autocovariance functions are

⇢k ⇠ 0.75k�0.6 and ⇢k ⇠ 1.44k�0.2,

as k ! 1. Both fGn models represent the regime of long-range dependence,
where covariances decay very slowly to zero, so that

P |⇢k | = 1; see, e.g.,
(Taqqu, 2003). Observe that every stationary Gaussian process with vanishing
autocovariance gives rise to an UDD array as concluded in Corollary 6.1.

• The non-UDD Gaussian errors described in Example 6.1.

We will apply both the sparsity-and-signal-size-agnostic Bonferroni’s procedure,
i.e., HS = {i : x(i) >

p
2 log p}, as well as the oracle procedure DS⇤ = {i : x(i) � x[s]},

s = |S |, to all settings. Results of the numerical experiments for the fGn and non-
UDD models are shown in Figure 6.2.

Notice that the oracle procedure sets its thresholds more aggressively (at roughlyp
2 log s) than the Bonferroni procedure (at

p
2 log p). Although this di�erence van-

ishes as p! 1, in finite dimensions (p = 10 000) the advantage can be felt. Indeed,
in all our experiments the oracle procedure is able to recover support of signals with
higher probability than the Bonferroni procedures; compare left and right columns
of Figure 6.2. Notice also that there is an increase in probability of recovery near
� = 0 for oracle procedures. This is an artifact in finite dimensions due to the fact
that s = bp1��c < p/2, and there are more signals than nulls. The oracle procedures
is able to adjust to this reversal by lowering its threshold accordingly.

For UDD errors, Theorem 4.2 predicts that exact recovery of the support is impos-
sible when signal sizes are below the boundary (4.5), even with oracle procedures.
However, the rate of this convergence (i.e., P[DS⇤ = S] ! 0 or 1) can be very slow
when the errors are heavily dependent, even though all AR and fGn models demon-
strate qualitatively the same behavior in line with the predicted boundary (4.5). In
finite dimensions (p = 10 000), as dependence in the errors increases (fGN(H=0.75)
to fGN(H=0.9)), the oracle procedure becomes more powerful at recovering signal
support with high probability for weaker signals.

On the other hand, as demonstrated in Example 6.1, non-UDD errors yield quali-
tatively di�erent behavior; exact support recovery is possible for signal sizes strictly
weaker than that in the UDD case. Lower-right panel of Figure 6.2 demonstrates in
this example that the signal support can be recovered as long as the signal sizes are
larger than 4(1 � �).
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Fig. 6.2 The empirical probability of exact support recovery from numerical experiments, as a
function of sparsity level � and signal sizes r . Darker colors indicate higher probability of exact
support recovery. Two fGn models with Hurst parameter H = 0.75 (upper), H = 0.9 (middle),
and the non-UDD errors in Example 6.1 (lower) are simulated. The experiments were repeated
1000 times for each sparsity-signal size combination. In finite dimensions (p = 10000), the oracle
procedures (right) is able to recover support for weaker signals than the Bonferroni procedures
(left) when errors are heavily dependent, although they have the same phase transition limit. The
non-UDD errors demonstrate qualitatively di�erent behavior, enabling support recovery for strictly
weaker signals. The boundaries (solid, dashed, and dash-dotted lines) are as in Fig 4.1. In the
non-UDD example, dashed lines represent the limit attained by Bonferroni’s procedures. See text
for additional comments.





Chapter 7
Fundamental Statistical Limits in Genome-wide
Association Studies

The process of scientific discovery, as explained by Richard Feynman, usually starts
with guesses. The consequences of such guesses are then computed and compared
with experimental results. If the predictions disagree with the experiment then our
guesses are wrong. “That is all there is to it” (Feynman, 2017).

In the previous chapters, we delved deep into the theoretical underpinnings of
the phase transition phenomena in high-dimensional multiple testing problems. The
results are interesting in their own right. However, we have not discovered any scien-
tific law in the spirit of Feynman, but merely worked out mathematical consequences
of our postulated models. In this chapter, our goal is to relate these predictions to
real experimental data from the field of genetics, where large-scale simultaneous hy-
potheses testing problems often arise. From such comparisons, we will demonstrate
that the phase transition laws are indeed reasonable predictions of some curious
phenomena in that field. The accuracy of our predictions will lend credibility to the
application of these “laws of large dimensions” in actual applications.

In our case, the experimental data used as the measuring stick come from genome-
wide association studies (GWAS), introduced in Section 1.2. Recall that in GWAS,
a large number of marginal association tests are conducted simultaneously, resulting
in statistics that can be approximated by

x(i) ⇠ �2
⌫ (�(i)) , i = 1, . . . , p, (7.1)

where �2
⌫ (�(i)) is a chi-square distributed random variable with ⌫ > 0 degrees of

freedom1 and non-centrality parameter �(i).
We establish our theoretical predictions in two steps. In Section 7.1 below, we

shall first establish the phase transitions of the model (7.1). In parallel to results
in Chapter 3, we show that several commonly used family-wise error rate-control
procedures — including Bonferroni’s procedure — are asymptotically optimal for
the exact, and exact-approximate support recovery problems (recall Definition 2.5)

1The parameter⌫ here should not be confused with the shape parameter of the AGG(⌫) distributions,
which will not appear in this chapter.
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in idealized chi-square models with independent components. Analogously, the BH
procedure is asymptotically optimal for the approximate, and approximate-exact
support recovery problems. Under appropriate parametrization of the signal sizes
and sparsity, we establish the phase transitions of support recovery problems in the
chi-square model. Remarkably, the degree-of-freedom parameter does not a�ect the
asymptotic boundaries in any of the four support recovery problems.

In the second step, we translate the canonical signal size and sparsity parametriza-
tions into the vernacular of statistical geneticists in Section 7.2. We do so by char-
acterizing the relationship between the signal size � and the marginal frequencies,
odds ratio, and sample sizes for association tests on 2-by-2 contingency tables. This
is important because these parameters are often estimated and reported in GWAS,
while we have never seen the elusive signal size parameter � reported. As a bonus, we
point out the implications of this relationship on statistically optimal study designs
for association studies in Section 7.3: perhaps surprisingly, balanced designs with
equal number of cases and controls are often statistically ine�cient.

Armed with the results on phase transitions in the chi-square model, and a trans-
lation from the language of high-dimenstional statistics to the patois of association
screening studies, we finally present in Section 7.4 the consequences of the phase
transitions in GWAS, and compare against real experimental data to evaluate the
success of our predictions.

The phase transitions in the chi-square models are demonstrated with numerical
simulations in Section 7.5. The proofs, which are closely resemble those of the
results in Chapter 3, are collected in Section A.

7.1 Support recovery problems in chi-squared models

Similar to the analysis of additive error models in Chapter 3, we will work with trian-
gular arrays of chi-square models (7.1) indexed by p. We adopt the same parametriza-
tion for the sparsity of the non-centrality parameter vectors � = �p ,

|Sp | =
h

p1��i

, � 2 (0, 1] (7.2)

where Sp := {i : �(i) > 0} is the signal support set and � parametrizes the problem
sparsity. More general parameterizations of the support size are possible as in (4.3).
Here, however, we drop the slowly varying term `(·) for simplicity. The closer �
is to 1, the sparser the support Sp; conversely, when � is close to 0, the support is
dense with many non-null signals.

We parametrize the range of the non-zero and perhaps unequal signals in the
chi-square model with

� = 2r log p  �(i)  � = 2r log p, for all i 2 Sp, (7.3)

for some constants 0 < r  r  +1.
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7.1.1 The exact support recovery problem

The first main result characterizes the phase transition phenomenon in the exact
support recovery problem under the chi-square model. It parallels Theorem 3.2.
Theorem 7.1. Consider the high-dimensional chi-squared model (7.1) with signal
sparsity and size as described in (7.2) and (7.3). The function

fE(�) =
⇣
1 +

p
1 � �

⌘2
(7.4)

characterizes the phase transition of exact support recovery problem. Namely, the
following two results hold.

(i) If r > fE(�), then Bonferroni’s, Sidák’s, Holm’s, and Hochberg’s procedures
with slowly vanishing (see Definition 3.1) nominal FWER levels all achieve asymp-
totically exact support recovery in the sense of (2.25).

(ii) Conversely, if r < fE(�), then for any thresholding procedure DSp , we have
P[DSp = Sp] ! 0. Therefore, in view of Lemma 2.1, exact support recovery asymp-
totically fails for all thresholding procedures in the sense of (2.26).

The procedures listed in Theorem 7.1 were reviewed in Section 2.2. The proof of
the theorem can be found in Section A.2.

It is evident that the exact support recovery boundary (7.4) coincides with that in
parallel results for the Gaussian additive error models (1.1) in Chapter 3. Implications
of these results will be discussed in Section 7.1.5 below.
Remark 7.1. Theorem 7.1 predicts that the asymptotic boundaries are the same for all
values of the degrees of freedom parameter ⌫. In simulations (Section 7.5), we find
this asymptotic prediction to be quite accurate for ⌫  3 even in moderate dimensions
(p = 100). For ⌫ > 3, the phase transitions take place somewhat above the boundary
g. The behavior is qualitatively similar for the other three phase transitions (see
Theorems 7.2, 7.3, and 7.4 below).

7.1.2 The exact-approximate support recovery problem

The next theorem describes the phase transition in the exact-approximate support
recovery problem. Recall also Theorem 3.4.
Theorem 7.2. In the context of Theorem 7.1, the function

fEA(�) = 1 (7.5)

characterizes the phase transition of exact-approximate support recovery problem.
Namely, the following two results hold.
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(i) If r > fEA(�), then the procedures listed in Theorem 7.1 with slowly vanishing
nominal FWER levels achieve asymptotically exact-approximate support recovery
in the sense of (2.25).

(ii) Conversely, if r < fEA(�), then for any thresholding procedure DSp , the
exact-approximate support recovery fails in the sense of (2.26).

Theorem 7.2 is proved in Section A.4.

7.1.3 The approximate support recovery problem

Our third asymptotic result characterizes the phase transition phenomenon in the
approximate support recovery problem in the chi-square model. It closely parallels
Theorem 3.3 for the additive errors model.

Theorem 7.3. Consider the high-dimensional chi-squared model (7.1) with signal
sparsity and size as described in (7.2) and (7.3). The function

fA(�) = � (7.6)

characterizes the phase transition of approximate support recovery problem. Specif-
ically the following two results hold.

(i) If r > fA(�), then the BH procedure DSp (defined in Section 2.2) with slowly
vanishing (see Definition 3.1) nominal FDR levels achieves asymptotically approxi-
mate support recovery in the sense of (2.25).

(ii) Conversely, if r < fA(�), then approximate support recovery asymptotically
fails in the sense of (2.26) for all thresholding procedures.

Theorem 7.3 is proved in Section A.4 below.

7.1.4 The approximate-exact support recovery problem

A counterpart of Theorem 3.5 also holds in the chi-square models.

Theorem 7.4. In the context of Theorem 7.3, the function

fAE(�) =
⇣p
� +

p
1 � �

⌘2
(7.7)

characterizes the phase transition of approximate-exact support recovery problem.
Namely, the following two results hold.
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(i) If r > fAE(�), then the Benjamini-Hochberg procedure with slowly vanishing
nominal FDR levels achieves asymptotically approximate-exact support recovery in
the sense of (2.25).

(ii) Conversely, if r < fAE(�), then for any thresholding procedure DSp , the
approximate-exact support recovery fails in the sense of (2.26).

Theorem 7.4 is proved in Section A.2.
Notice that all phase transitions boundaries are identical to those in the Gaussian

additive error model (1.1) under one-sided alternative. We refer readers to Figure
3.2 in Section 3.2 for a visualization of the results in Theorems 7.1 through 7.4.

All four phase transitions results in Theorems 7.1 through 7.4 focus only on the
idealized models (7.1) where the statistics are independent. Support recovery prob-
lems under dependent observations remain to be explored. Recall in Chapter 4 we
showed that the boundary for the exact support recovery problem in the additive error
model (1.1) continues to hold even under severe dependence and general distribu-
tional assumptions. We conjecture that the concentration of maxima phenomenon,
which is at the heart of the results in Chapter 4, will play a role and all of the above
phase-transition results will continue to hold, under broad dependence conditions
in the chi-square models. As an example, in the GWAS application, dependence
among the genetic markers at di�erent locations (known as linkage disequilibrium)
decay as a function of their physical distances on the genome (Bush and Moore,
2012), resulting in locally dependent test statistics. It would be of great interest to
extend the current theory to cover important dependence structures that arise in such
applications.

7.1.5 Comparison of one- versus two-sided alternatives in additive
error models

As alluded to in Chapter 1.2 in the introduction, we draw explicit comparisons
between the one-sided and two-sided alternatives in Gaussian additive error models
(1.1).

The exact support recovery problem in the dependent Gaussian additive error
model (1.1) was studied in Chapter 3, with parametrization of sparsity identical to
that in (7.2), whereas the range of the non-zero (and perhaps unequal) mean shifts
µ(i) was parametrized as

� =
q

2r log p  µ(i)  � =
q

2r log p, for all i 2 Sp,

for some constants 0 < r  r  +1. Under this one-sided alternative, a phase
transition in the r-� plane was described, where the boundary was found to be
identical to (7.4) in Theorem 7.1 for the chi-square models (7.1).
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As discussed in Section 1.2, support recovery problems in the chi-square model
with ⌫ = 1 correspond to the support recovery problems in the additive model under
two-sided alternatives. This implies that the asymptotic signal size requirements are
identical between the two-sided alternative and its one-sided counterpart, in order to
achieve exact support recovery. As we shall see in numerical experiments (in Section
7.5 below), the di�erence is not very pronounced even in moderate dimensions, and
vanishes as p! 1, in accordance with Theorem 7.1.

Comparisons can also be drawn in the approximate, approximate-exact, and exact
approximate support recovery problems between the two types of alternatives.

Specifically, the approximate support recovery problem in the Gaussian addi-
tive error model (1.1) under one-sided alternatives exhibits a phase transition phe-
nomenon characterized by a boundary that coincides with (7.6) in Theorem 7.3.
Similar to the exact support recovery problem, this indicates vanishing di�erence
in the di�culties of the two types alternatives in approximate support recovery
problems.

Comparing Theorems 7.2 and 3.4 as well as Theorems 7.4 and 3.5, we see that
the phase transition boundaries under the two types of alternatives are also identical
in the exact-approximate and approximate-exact support recovery problems.

To complete the comparisons, we point out that the phase transition boundaries
for the sparse signal detection problem in the two types of alternatives are both
identical to (3.4). This was analyzed in Donoho and Jin (2004).

Therefore, all phase transition boundaries coincide with those in the additive
error models obtained in Chapter 3 under their respective parametrizations. This in-
dicates vanishing di�erences between the di�culties of the one-sided and two-sided
alternatives in the Gaussian additive error model (1.1). The additional uncertainty
in the two-sided alternatives does not call for larger signal sizes in these problems,
asymptotically.

7.2 Odds ratios and statistical power

We return to the application of association screenings for categorical variables, and
put the results in the previous section to use. In particular, we focus on the exact-
approximate support recovery problem, and demonstrate the consequences of its
phase transition (Theorem 7.2) in genetic association studies.

In order to do so, we must first connect the concept of statistical signal size
� with some key quantities in association tests. While the term “signal size” likely
sounds foreign to most practitioners, it is intimately linked with the concept of “e�ect
sizes” — or odds ratios — in association studies, which are frequently estimated and
reported in GWAS catalogs. E�ect sizes, on the other hand, may be alien to some
statisticians. In this section, we aim to bridge the two languages by characterizing the
relationship between “signal size” and “odds-ratio” parameterizations in the special,
but fairly common case of association tests on 2-by-2 contingency tables.
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Recall the general setup of genetic association testing in Section 1.2, where one
wants to detect the association between genetic variations at a specific location and
the occurrence of a disease. An individual randomly drawn from the target population
will have two (random) characteristics: a phenotype indicating whether the individual
has the condition or is healthy (i.e., belonging to the Case group or the Control
group), and a genotype that encodes the genetic variation in question. Table 1.2 in
the introduction summarizes the counts for all phenotype-genotype combinations for
the individuals in a given study sampled from the population. These counts may be
assumed to follow a multinomial distribution, with probabilities given in Table 7.2
below.

Consider a 2-by-2 multinomial distribution with marginal probabilities of pheno-
types (�1, �2) and genotypes (✓1, ✓2). The probability table (as opposed to the table
of multinomial counts in the introduction) is as follows.

Genotype
Probabilities Variant 1 Variant 2 Total by phenotype

Cases µ11 µ12 �1
Controls µ21 µ22 �2

Total by genotype ✓1 ✓2 1

Table 7.1 Probabilities of the multinomial distribution in a genetic association test. (Compare and
contrast with Table 1.2. We have E[Oi j ] = nµi j, i, j = 1, 2, where n =

P
i, j Oi j .)

The odds ratio (i.e., “e�ect size”) is defined as the ratio of the phenotype frequen-
cies between the two genotype variants,

R :=
µ11
µ21

. µ12
µ22
=
µ11µ22
µ12µ21

. (7.8)

The multinomial distribution is fully parametrized by the trio (✓1, �1, R). Odds ratios
further away from 1 indicate greater contrasts between the probability of outcomes.
Independence between the genotypes and phenotypes would imply an odds ratio of
one, and hence µ jk = � j✓k , for all j, k 2 {1, 2}.

For a sequence of local alternatives µ(1), µ(2), . . ., such that
p

n(µ(n)
jk � � j✓k )

converges to a constant table � = (� jk ), the chi-square test statistics converge in
distribution to the non-central chi-squared distribution with non-centrality parameter

� =
2X

j=1

2X

k=1
�2jk/(� j✓k ).

See, e.g., Ferguson (2017). Hence, for large samples from a fixed distribution (µi j ),
the statistic is well approximated by a �2

1(�) distribution, where

� = n
2X

j=1

2X

k=1

(µ jk � � j✓k )2

� j✓k
. (7.9)
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Power calculations therefore only depend on the µ jk’s through � = nw2, where we
define

w2 := �/n (7.10)

to be the signal size per sample. Statistical power would be increasing in w2 for fixed
sample sizes.

The next proposition states that the statistical signal size per sample can be
parametrized by the odds ratio and the marginals in the probability table.

Proposition 7.1. Consider a 2-by-2 multinomial distribution with marginal distri-
butions (�1, �2 = 1 � �2) and (✓1, ✓2 = 1 � ✓1). Let signal size w2 be defined as
in (7.10), and odds ratio R be defined as in (7.8). If R = 1, we have w2 = 0; if
R 2 (0, 1) [ (1,+1), then we have

w2(R) =
1

4A(R � 1)2

 
B + CR �

q
(B + CR)2 � 4A(R � 1)2

!2
, (7.11)

where A = �1✓1�2✓2, B = �1✓1 + �2✓2, and C = �1✓2 + �2✓1.

Proof. We parametrize the 2-by-2 multinomial distribution with the parameter �,

µ11 = �1✓1 + �, µ12 = �1✓2 � �, µ21 = �2✓1 � �, µ22 = �2✓2 + �. (7.12)

By relabelling of categories, we may assume 0 < ✓1, �1  1/2 without loss of
generality. Note that � must lie within the range [�min, �max], where

�min := max{��1✓1,��2✓2, �1✓2 � 1, �2✓1 � 1} = ��1✓1,

and
�max := min{1 � �1✓1, 1 � �2✓2, �1✓2, �2✓1} = min{�1✓2, �2✓1},

in order for µi j � 0 for all i, j 2 {1, 2}. Under this parametrization, Relation (7.8)
then becomes

R =
µ11µ22
µ12µ21

=
�1✓1�2✓2 + �(�1✓1 + �2✓2) + �2

�1✓1�2✓2 � �(�1✓2 + �2✓1) + �2
=

A + �B + �2

A � �C + �2
, (7.13)

which is one-to-one and increasing in � on (�min, �max). Equation (7.10) becomes

w2 =

2X

i=1

2X

j=1

(µi j � �i✓ j )2

�i✓ j
= �2

X

i

X

j

1
�i✓ j

=
�2

�1✓1�2✓2
, (7.14)

Solving for � in (7.13), and plugging into the expression for signal size (7.14) yields
Relation (7.11).

The other three cases (1/2  ✓1, �1  1; 0 < ✓1  1/2  �1  1; and
0  �1  1/2  ✓1  1) may be obtained similarly, or by appealing to the symmetry
of the problem. ut
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To understand Proposition 7.1, we illustrate Relation (7.11) for selected values of
marginals ✓1 and �1 in Figure 7.1. Observe in the figure that an odds ratio further
away from one corresponds to stronger statistical signal per sample, ceteris paribus.
However, this “valley” pattern is in general not symmetric around 1, except for
balanced marginal distributions (�1 = 1/2 or ✓1 = 1/2). While the odds ratio R can
be arbitrarily close to 0 or diverge to +1 for any marginal distribution, the signal
sizes w2 are bounded from above by constants that depend only on the marginals.
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Fig. 7.1 Signal sizes per sample w2 as functions of odds ratios in 2-by-2 multinomial distributions
for selected genotype marginals in balanced (left) and unbalanced (right) designs; see Relation
(7.11) in Proposition 7.1. For given marginal distributions, extreme odds ratios imply stronger
statistical signals at a given sample size. However, the signal sizes are bounded above by constants
that depend on the marginal distributions; see Relations (7.15) and (7.16).

Corollary 7.1. The signal size as a function of the odds ratio w2(R) is decreasing
on (0, 1) and increasing on (1,1), with limits

lim
R!0+

w2(R) = min
(
�1✓1
�2✓2
,
�2✓2
�1✓1

)
, (7.15)

and
lim

R!+1
w2(R) = min

(
�1✓2
�2✓1
,
�2✓1
�1✓2

)
. (7.16)

Proof. As in the proof of Proposition 7.1, we examine the case where 0 < ✓1, �1 
1/2, and leave the other three cases an exercise. Take the first derivative of the
expression for w2 in equation (7.14) with respect to �, it is evident that w2(�) is
decreasing on [�min, 0), increasing on (0, �max], with limits

lim
d!�min

w2(�) =
�1✓1
�2✓2
, and lim

d!�max
w2(�) = min

(
�1✓2
�2✓1
,
�2✓1
�1✓2

)
.
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ut

Corollary 7.1 immediately implies that balanced designs with roughly equal
number of cases and controls are not necessarily the most informative.

For example, in a study where a third of the recruited subjects carry the genetic
variant positively correlated with the trait (i.e., ✓1 = 1/3), an unbalanced design with
�1 = 1/3 would maximize w2 at large odds ratios. This unbalanced design is much
more e�cient compared to, say, a balanced design with �1 = 1/2. In the first case,
we have w2 ! 1 as R! 1; whereas in the second design, w2 < 1/2 no matter how
large R is. This di�erence can also be read by comparing the dashed curve (✓1 = 1/3,
�1 = 1/2) in the left panel of Figure 7.1, with the solid curve (✓1 = 1/3, �1 = 1/3)
in the right panel of Figure 7.1.

7.3 Optimal study designs and rare variants

For a study with a fixed budget, i.e., a fixed total number of subjects n, the researcher
is free to choose the fraction of cases �1 to be included in the study. A natural
question is how this budget should be allocated to maximize the statistical power of
discovery, or equivalently, the signal sizes � = nw2.

In principal, Relation (7.11) can be optimized with respect to the fraction of cases
�1 in order to find optimal designs, if ✓1 is known and held constant. In practice,
this is not the case. While the fraction of cases can be controlled, the distributions
of genotypes in the study are often unknown prior to data collection, and can change
with the case-to-control ratio.

Fortunately, the conditional distributions of genotypes in the healthy control
groups are often estimated by existing studies, and are made available by consortia
such as the NHGRI-EBI GWAS catalog (MacArthur et al., 2016). We denote the
conditional frequency of the first genetic variant in the control group as ( f , 1 � f ),
where

f := µ21/�2 = µ21/(1 � �1). (7.17)

The multinomial probability is fully parametrized by the new trio: ( f , �1, R).

Genotype
Probabilities Variant 1 Variant 2 Total by phenotype

Cases �1 f R
f R+1� f

�1 (1� f )
f R+1� f �1

Controls f (1 � �1) (1 � f )(1 � �1) 1 � �1

Proposition 7.1 may also be re-stated in terms of the new parametrization.

Corollary 7.2. In the 2-by-2 multinomial distribution with marginals (�1, �2 = 1 �
�1), and conditional distribution of the variants in the control group ( f , 1 � f ),
Relation (7.11) holds with ✓1 = �1 f R/( f R + 1 � f ) + f (1 � �1) and ✓2 = 1 � ✓1.

The choice of �1 now has a practical solution.
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Corollary 7.3. In the context of Corollary 7.2, the optimal design (�⇤1, �
⇤
2) that

maximizes the signal size per sample w2 is prescribed by

�⇤1 =
f R + 1 � f

f R + 1 � f +
p

R
, and �⇤2 = 1 � �⇤1. (7.18)

Proof. Using the parametrization in (7.12), we solve for � in (7.13) to obtain

� =
�1 f R

f R + 1 � f
�

 
�1 f R

f R + 1 � f
+ f (1 � �1)

!
�1

=
f (1 � f )�1(1 � �1)(R � 1)

f R + 1 � f
. (7.19)

Substituting (7.19) into the expression (7.14), after some simplification, yields

w2 =
f (1 � f )�1(1 � �1)(R � 1)2

⇥
�1R + (1 � �1)D

⇤ ⇥
�1 + (1 � �1)D

⇤ , (7.20)

where D = f R + 1 � f > 0. Therefore, the derivative of (7.20) with respect to �1 is

dw2

d�1
=

f (1 � f )(R � 1)2

⇥
�1R + (1 � �1)D

⇤2 ⇥
�1 + (1 � �1)D

⇤2

f

(D2 � R)�2
1 � 2D2�1 + D2

g

.

(7.21)
Further, we obtain the second derivative with respect to �1,

d2w2

d�2
1
= h(R, f )

f

(�1 � 1)D2 � �1R
g

, (7.22)

where h is some function of (R, f ) taking on strictly positive values.
Since

f

(�1 � 1)D2 � �1R
g

< 0, the second derivative (7.22) must be strictly
negative on [0, 1]. This implies that the first derivative (7.21) is strictly decreasing
on [0, 1]. Since the first derivative (7.21) is strictly positive at �1 = 0, and strictly
negative at �1 = 1, it must have a unique zero between 0 and 1, and hence, the solution
to (D2 � R)�2

1 � 2D2�1 + D2 = 0 in the interval of [0, 1] must be the maximizer of
(7.20) — when D2�R > 0, the smaller of the two roots maximizes (7.20), and when
D2 � R < 0, it is the larger of the two. They share the same expression D/(D +

p
R),

which coincides with (7.18). Finally, when D2 = R, the only root �⇤1 = 1/2, which
also coincides with (7.18), is the maximizer of (7.20). ut

Of particular interest in the genetics literature are genetic variants with very low
allele frequencies in the control group (i.e., f ⇡ 0), known as rare variants. In such
cases, Equation (7.18) can be approximated using the Taylor expansion,

�⇤1 =
1

1 +
p

R
+

(R �
p

R) f
1 +
p

R
+O( f 2). (7.23)
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To illustrate, for rare and adversarial factors ( f ⇡ 0 and R > 1), the optimal �⇤1 is
less than 1/2. Therefore, for studies under a fixed budget, controls should constitute
the majority of the subjects, in order to maximize power. On the other hand, for rare
and protective factors ( f ⇡ 0 and R < 1), the optimal �⇤1 is greater than 1/2, and
cases should be the majority.

7.4 Phase transitions in large-scale association screening studies

Returning to the problem of high-dimensional marginal screenings for categorical co-
variates, we explore the manifestation of the phase transition in the exact-approximate
support recovery problem in the genetic context.

Recall Theorem 7.2 predicts that FWER and FNR can be simultaneously con-
trolled in large dimensions if and only if

r =
�

2 log p
=

w2n
2 log p

> 1. (7.24)

Therefore, if we were to apply FWER-controlling procedures at low nominal levels
(say, 5%), then the FNR would experience a phase transition in the following sense.
If the signal size is strong enough, i.e.,

r > 1 () w2 >
2 log p

n
, (7.25)

then the FNR can be close to 0; otherwise, FNR must be close to 1.
Using the parametric relationship described in Corollary 7.2 (and Proposition

7.1), the inequalities in (7.25) implicitly define regions of ( f , R) where associations
are discoverable with high power, for a given �1. Further, the boundary of such
discoverable regions sharpens as dimensionality diverges. We illustrate this phase
transition through a numerical example next.

Example 7.1. Consider association tests on 2 ⇥ 2 contingency tables at p locations
as introduced in Section 1.2, where the counts follow a multinomial distribution
parametrized by ( f , R, �1) as in Section 7.3. Assume that the phenotype marginals
are fixed at �1 = �2 = 1/2. Applying Bonferroni’s procedure with nominal FWER
at ↵ = 5% level, we can approximate the marginal power of association tests by

P[�2
1(�) > �2

1,↵/p], (7.26)

where �2
1,↵/p is the upper (↵/p)-quantile of a central chi-squared distribution with 1

degree of freedom. We calculate this marginal power as a function of the parameters
( f , R) in three scenarios:

• p = 4, n = 3 ⇥ 104

• p = 102, n = 1 ⇥ 105
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Fig. 7.2 The OR-RAF diagram visualizing the marginal power of discovery in genetic association
studies, after applying Bonferroni’s procedure with nominal FWER at 5% level. Sample sizes are
marked in each panel, and the problem dimensions are, respectively, p = 4 (upper-left), p = 102

(upper-right), and p = 106 (lower-left), so that n/ log p are roughly constant. Red curves mark the
boundaries (r = 1) of the phase transition for the exact-approximate support recovery problem;
dashed curves are the equi-signal (equi-power) curves. The phase transition in signal sizes �
translates into the phase transition in terms of ( f , R), and sharpens as p ! 1; see Example 7.1.
In the lower-right panel, we visualize discovered associations (blue circles) in a recent GWA study
(Michailidou et al. (2017)); the estimated odds ratios and risk allele frequencies are subject to
survival bias and should not be taken at their face values; see Remark 7.2.

• p = 106, n = 3 ⇥ 106

and visualize the results as heatmaps2 (referred to as OR-RAF diagrams) in Figure
7.2. These parameter values are chosen so that log(p)/n are roughly constant (around
4.6 ⇥ 10�5).

2 Since genetic variants can always be relabelled such that Variant 1 is positively associated with
Cases, we only produce part of the diagram where R > 1. Sample sizes marked in the figure are
adjusted by a factor of 1/2, to reflect the genetic context where a pair of alleles are measured for
every individual at every genomic location.
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We also overlay “equi-signal” curves, i.e., functions implicitly defined by the
equations r = c for a range of c (dashed curves), and highlight the predicted bound-
ary of phase transition for the exact-approximate support recovery problem r = 1
(red curves). The change in marginal power clearly sharpens around the predicted
boundary r = 1 as dimensionality diverges.

Remark 7.2. In an attempt to find empirical evidence of our theoretical predictions,
we chart the genetic variants associated with breast cancer, discovered in a 2017
study by Michailidou et al. (2017) in an OR-RAF diagram. The estimated risk allele
frequencies ( f ) and odds ratios (R) are taken from the NHGRI-EBI GWAS catalog
MacArthur et al. (2016), and plotted against a power heatmap calculated according
to the reported sample sizes. See lower-right panel of Figure 7.2.

It is tempting to believe, on careless inspection, that roughly all discovered as-
sociations fall inside the high power region of the diagram, therefore demonstrating
the phase transition in statistical power. Unfortunately, the estimates here are subject
to survival bias — the study in fact uses the same dataset for both support estimation
and parameter estimation, without adjusting the latter for the selection process. The
seemingly striking agreement between the power calculations and the estimated ef-
fects of reported associations should not be taken as evidence for the validity of our
theory. We conjecture, as the theory predicts, that accurate and unbiased parameter
estimates from an independent replication will still place the associations in the high
power region of the diagram.

Finally, we demonstrate with an example how results in Sections 7.1 and 7.2 may
be used for planning prospective association studies.

Example 7.2. In a GWAS with p = 106 genomic marker locations, researchers wish
to locate genetic associations with the trait of interest. Specifically, they wish to
maximize power in the region where genetic variants have risk allele frequencies of
0.01 and odds ratios of 1.2. By Corollary 7.3, the optimal design has a fraction of
cases �⇤ = 0.478, yielding the statistical signal size per sample w2 ⇡ 9.00 ⇥ 10�5

according to Corollary 7.2.
If we wish to achieve exact-approximate support recovery in the sense of (2.25),

Theorem 7.2 predicts that the signal size parameter r has to be at least fEA(�) = 1.
This signal size calls for a sample size of n = �/w2 = 2r log(p)/w2 ⇡ 307, 011. In
a typical GWAS, a pair of alleles are sequenced for every marker location, bringing
the required number of subjects in the study to n/2 ⇡ 153, 509.

In comparison, a more accurate power calculation directly using (7.26) predicts
that n/2 = 165, 035 subjects are needed, under the set of parameters (p = 106,
f = 0.01, R = 1.2) and FWER = 0.05, FNR = 0.5; this is 7% higher than our crude
asymptotic approximation. In general, we recommend using the more precise calcu-
lations over the back-of-the-envelope asymptotics for planning prospective studies
and performing systematic reviews; a user-friendly web application implementing
the more precise approximations is provided in Gao et al. (2019). Nevertheless,
the theoretical results on phase transitions generate simple, accurate, and powerful
insights that cannot be easily derived from numerical calculations.
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7.5 Numerical illustrations of the phase transitions in chi-square
models

We illustrate with simulations the phase transition phenomena in the chi-square
model, and compare numerically the required signal sizes in support recovery prob-
lems between the two types of alternatives in the additive error model.

7.5.1 Exact support recovery

The sparsity of the signal vectors in the experiments are parametrized as in (7.2).
Signal sizes are assumed equal with magnitude �(i) = 2r log p for i 2 S. We estimate
the support set S using Bonferroni’s procedure with nominal FWER level set at
1/(5log p). The nominal FWER levels vanishes slowly, in line with the assumptions
in Theorem 7.1. Experiments were repeated 1000 times at each of the 400 sparsity-
signal-size combinations, for dimension p = 104.

The empirical probabilities of exact support recovery under Bonferroni’s proce-
dure are shown in Figure 7.3. The numerical results suggest good accuracy of the
predicted boundaries in high-dimensions (left panels of Figure 7.3).

We conduct further experiments to examine the optimality claims in Theorem
7.1 by comparing with the oracle procedure with thresholds tp = mini2S x(i). We
also examine the claims in Section 7.1.5, and compare the one-sided alternatives
in Gaussian additive models with the two-sided alternatives (or equivalently, the
chi-square model with ⌫ = 1). We apply Bonferroni’s procedure and the oracle
thresholding procedure in both settings.

The experiments were repeated 1000 times for a grid of signal size values ranging
from r = 0 to 6, and for dimensions 102, 103, and 105. Results of the experiments,
shown in Figure 7.4, suggest vanishing di�erence between di�culties of two-sided
vs one-sided alternatives in the additive error models, as well as vanishing di�erence
between the powers of Bonferroni’s procedures and the oracle procedures as p! 1.

7.5.2 Approximate, and approximate-exact support recovery

Similar experiments are conducted to examine the optimality claims in Theorem 7.3,
and in Section 7.1.5. We define an oracle thresholding procedure for approximate
support recovery, where the threshold is chosen to minimize the empirical risk. That
is,

tp (x, S) 2 arg min
t2R

|DS(t) \ S |
max{|DS(t) |, 1}

+
|S \ DS(t) |

max{|S |, 1} ,

where DS(t) = {i | x(i) � t}; in implementation, we only need to scan the values of
observations t 2 {x(1), . . . , x(p)}. The nominal FDR level for the BH procedure is
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Fig. 7.3 The empirical risks of exact, approximate, and approximate-exact support recovery (left
to right) in the chi-squared model (1.3) with Bonferroni’s procedure and the Benjamini-Hochberg
procedure. We display results as a heatmap for ⌫ = 1, 2, 3, 6 (first to last row) at dimension p = 104

(left to right column), for a grid of sparsity levels� and signal sizes r . The experiments were repeated
1000 times for each sparsity-signal size combination; darker color indicates higher probability of
exact support recovery. Numerical results are in general agreement with the boundaries described
in Theorem 7.1; for large ⌫’s, the phase transitions take place somewhat above the predicted
boundaries.
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Fig. 7.4 The empirical probability of exact support recovery of Bonferroni’s procedure (solid
curves) and the oracle procedure (dashed curves) in the chi-squared model with one degree of
freedom (marked ‘2’) in the additive Gaussian error model and under one-sided alternatives (marked
‘1’). We simulate at dimensions p = 102, 103, 105 (left to right) for a grid of signal sizes r and
sparsity level � = 0.6. The experiments were repeated 1000 times for each method-model-signal-
size combination. Numerical results show evidence of convergence to the 0-1 law as predicted by
Theorem 7.1; regions where asymptotically exact support recovery can be achieved are shaded in
grey. The di�erence in power between Bonferroni’s procedure and the oracle procedure, as well as
in the two types of alternatives both decrease as dimensionality increases.

set at 1/(5log p), therefore slowly vanishing, in line with the assumptions in Theorem
7.3; all other parameters are identical to that in the experiments for exact support
recovery in Section 7.5.1. The results of the experiments are shown in Figure 7.5
and in the middle column of Figure 7.3.

We also examine the boundary described in Theorem 7.2. Experimental settings
are identical to that in the experiments for approximate support recovery. We compare
the performance of the BH procedure with an oracle procedure with threshold

tp (x, S) 2 min
i2S

x(i),

and visualize the results of the experiments in the right column of Figure 7.3. Notice
that the BH procedure sets its threshold somewhat higher than the oracle, especially
for small �’s. The empirical risk of the oracle procedure (not shown here in the
interest of space) follows much more closely the predicted boundary (7.7).
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Fig. 7.5 The empirical risk of approximate support recovery of Benjamini-Hochberg’s procedure
(solid curves) and the oracle procedure (dashed curves) in the chi-squared model with one degree
of freedom (marked ‘2’) and in the additive Gaussian error model under one-sided alternatives
(marked ‘1’). We simulate at dimensions p = 102, 103, 105 (left to right) for a grid of signal
sizes r and sparsity level � = 0.6. The experiments were repeated 1000 times for each method-
model-signal-size combination. Numerical results show evidence of convergence to the 0-1 law
as predicted by Theorem 7.3; regions where asymptotically approximate support recovery can be
achieved are shaded in grey. The di�erence in risks between Benjamini-Hochberg’s procedure and
the oracle procedure, as well as in the two types of alternatives, both decrease as dimensionality
increases.
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Appendix A
Additional proofs

We review some properties of the chi-square distributions in Section A.1, before
presenting the proofs of the main theorems on phase transitions in Sections A.2,
A.3, and A.4.

A.1 Auxiliary facts of chi-square distributions

We shall recall, and establish, some auxiliary facts about chi-square distributions.
These facts will be used in the proofs of Theorem 7.1 and Theorem 7.3.

Lemma A.1 (Rapid variation of chi-square distribution tails). The central chi-
square distribution with ⌫ degrees of freedom has rapidly varying tails. That is,

lim
x!1

P[�2
⌫ (0) > t x]

P[�2
⌫ (0) > x]

=

8>>>>
<
>>>>
:

0, t > 1
1, t = 1
1, 0 < t < 1

, (A.1)

where we overloaded the notation �2
⌫ (0) to represent a random variable with the

chi-square distribution.

Proof (Lemma A.1). When ⌫ = 1, the chi-square distribution reduces to a squared
Normal, and (A.1) follows from the rapid variation of the standard Normal distribu-
tion. For ⌫ � 2, we recall the following bound on tail probabilities (see, e.g., (Inglot,
2010)),

1
2
E⌫ (x)  P[�2

⌫ (0) > x]  x
(x � ⌫ + 2)

p
⇡
E⌫ (x), ⌫ � 2, x > ⌫ � 2,

where E⌫ (x) = exp
(

� 1
2 [(x � ⌫ � (⌫ � 2) log(x/⌫) + log ⌫]

)

. Therefore, we have

117
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(x � ⌫ + 2)
p
⇡

2x
E⌫ (t x)
E⌫ (x)

 P[�
2
⌫ (0) > t x]

P[�2
⌫ (0) > x]

 2t x
(t x � ⌫ + 2)

p
⇡

E⌫ (t x)
E⌫ (x)

,

whereE⌫ (t x)/E⌫ (x) = exp{� 1
2 [(t�1)x�(⌫�2) log t]} converges to 0 or1 depending

on whether t > 1 or 0 < t < 1. The case where t = 1 is trivial. ut

Lemma A.1 and Proposition 2.2 yield the following Corollary.

Corollary A.1. Maxima of independent observations from central chi-square dis-
tributions with ⌫ degrees of freedom are relatively stable. Specifically, let ✏ p =⇣
✏ p (i)

⌘p
i=1

be independently and identically distributed (iid) �2
⌫ (0) random vari-

ables. Then the triangular array E = {✏ p, p 2 N} has relatively stable (RS) maxima
in the sense of (2.38).

Lemma A.2 (Stochastic monotonicity). The non-central chi-square distribution is
stochastically monotone in its non-centrality parameter. Specifically, for two non-
central chi-square distributions both with ⌫ degrees of freedom, and non-centrality

parameters �1  �2, we have �2
⌫ (�1)

d
 �2

⌫ (�2). That is,

P[�2
⌫ (�1)  t] � P[�2

⌫ (�2)  t], for any t � 0. (A.2)

where we overloaded the notation �2
⌫ (�) to represent a random variable with the

chi-square distribution with non-centrality parameter � and degree-of-freedom pa-
rameter ⌫.

Proof (Lemma A.2). Recall that non-central chi-square distributions can be written
as sums of ⌫�1 standard normal random variables and a non-central normal random
variable with mean

p
� and variance 1,

�2
⌫ (�) d

= Z2
1 + . . . + Z2

⌫�1 + (Z⌫ +
p
�)2.

Therefore, it su�ces to show that P[(Z +
p
�)2  t] is non-increasing in � for any

t � 0, where Z is a standard normal random variable. We rewrite this expression in
terms of standard normal probability function �,

P[(Z +
p
�)2  t] = P[�

p
� �
p

t  Z  �
p
� +
p

t]

= �(�
p
� +
p

t) � �(�
p
� �
p

t). (A.3)

The derivative of the last expression (with respect to �) is

1
2
p
�

⇣
�(
p
� +
p

t) � �(
p
� �
p

t)
⌘
=

1
2
p
�

⇣
�(
p
� +
p

t) � �(
p

t �
p
�)

⌘
, (A.4)

where � is the density of the standard normal distribution. Notice that we have used
the symmetry of � around 0 in the last expression.

Since 0  max{
p
��
p

t,
p

t�
p
�} <

p
t+
p
� when t > 0, by monotonicity of the

normal density on (0,1), we conclude that the derivative (A.4) is indeed negative.
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Therefore, (A.3) is decreasing in �, and (A.2) follows for t > 0. For t = 0, equality
holds in (A.2) with both probabilities being 0. ut

Finally, we derive asymptotic expressions for chi-square quantiles.

Lemma A.3 (Chi-square quantiles). Let F be the central chi-square distributions
with ⌫ degrees of freedom, and let u(y) be the (1 � y)-th generalized quantile of F,
i.e.,

u(y) = F (1 � y). (A.5)

Then
u(y) ⇠ 2 log(1/y), as y ! 0. (A.6)

Proof (Lemma A.3). The case where ⌫ = 1 follows from the well-known formula
for Normal quantiles (see, e.g., Proposition 1.1 in Gao and Stoev (2020))

F (1 � y) = � (1 � y/2) ⇠
p

2 log (2/y) ⇠
p

2 log (1/y).

The case where ⌫ � 2 follows from the following estimates of high quantiles of
chi-square distributions (see, e.g., (Inglot, 2010)),

⌫ + 2 log(1/y) � 5/2  u(y)  ⌫ + 2 log(1/y) + 2
p
⌫ log(1/y), for all y  0.17,

where both the lower and upper bound are asymptotic to 2 log(1/y). ut

A.2 Proof of Theorem 7.1

Proof (Theorem 7.1). We first prove the su�cient condition. The Bonferroni proce-
dure sets the threshold at tp = F (1 � ↵/p), which, by Lemma A.3, is asymptotic
to 2 log p � 2 log ↵. By the assumption on ↵ in (3.17), for any � > 0, we have
p�� = o(↵). Therefore, we have � log ↵  � log p for large p, and

1  lim sup
p!1

2 log p � 2 log ↵
2 log p

 1 + �,

for any � > 0. Hence, tp ⇠ 2 log p.
The condition r > fE(�) implies, after some algebraic manipulation, pr �p

1 � � > 1. Therefore, we can pick q > 1 such that

p
r �

p
1 � � > pq > 1. (A.7)

Setting the t⇤ = t⇤p = 2q log p, we have tp < t⇤p for large p.
On the one hand, FWER = 1 � P[DSp ✓ Sp] vanishes under the Bonferroni

procedure with ↵ ! 0. On the other hand, for large p, the probability of no missed
detection is bounded from below by
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P[DSp ◆ Sp] = P[min
i2S

x(i) � tp] � P[min
i2S

x(i) � t⇤] � 1 � p1��P[�2
⌫ (�) < t⇤],

(A.8)
where we have used the fact that signal sizes are bounded below by �, and the
stochastic monotonicity of chi-square distributions (Lemma A.2) in the last inequal-
ity. Writing

�2
⌫ (�) d

= Z2
1 + . . . + Z2

⌫�1 + (Z⌫ +
q
�)2

where Zi’s are iid standard normal variables, we have

P[�2
⌫ (�) < t⇤]  P[(Z⌫ +

q
�)2 < t⇤] = P[|Z⌫ +

q
�| <

p
t⇤]

 P


Z⌫ < �
q
� +
p

t⇤
�

= P
f

Z⌫ <
p

2 log p
⇣p

q � pr
⌘g

. (A.9)

By our choice of q in (A.7), the last probability in (A.9) can be bounded from above
by

P
f

Z⌫ < �
p

2(1 � �) log p
g

⇠
�

⇣
�
p

2(1 � �) log p
⌘

p
2(1 � �) log p

=
1

p
2(1 � �) log p

p�(1��),

where the first line uses Mill’s ratio for Gaussian distributions (see Section 2.7 and
Relation (2.45)). This, combined with (A.8), completes the proof of the su�cient
condition for the Bonferroni’s procedure.

Under the assumption of independence, Sidák’s, Holm’s, and Hochberg’s pro-
cedures are strictly more powerful than Bonferroni’s procedure, while controlling
FWER at the nominal levels. Therefore, the risks of exact support recovery for these
procedures also vanishes. This completes the proof for the first part of Theorem 7.1.

We now show the necessary condition. We first normalize the maxima by the
chi-square quantiles up = F (1 � 1/p), where F is the distribution of a (central)
chi-square random variable,

P[DSp = Sp]  P
f

MSc < tp  mS

g

 P
"

MSc

up
<

mS

up

#

, (A.10)

where MSc = maxi2Sc x(i) and mS = mini2S x(i). By the relative stability of
chi-square random variables (Corollary A.1), we know that MSc/u |Sc | ! 1 in
probability. Further, using the expression for up (Lemma A.3), we obtain

up�p1��

up
⇠ 2 log (p � p1��)

2 log p
=

log p + log (1 � p�� )
log p

⇠ 1.

Therefore, the left-hand-side of the last probability in (A.10) converges to 1,



A.2 Proof of Theorem 7.1 121

MSc

up
=

MSc

up�p1��

up�p1��

up

P�! 1. (A.11)

Meanwhile, for any i 2 S, by Lemma A.2 and the fact that signal sizes are bounded
above by �, we have,

�2
⌫ (�(i))

d
 �2

⌫ (�) d
= Z2

1 + . . . + Z2
⌫�1 +

 
Z⌫ +

q
�

!2

.

Dividing through by up , and taking minimum over S, we obtain

mS

up
= min

i2S

�2
⌫ (�(i))

up

d
 min

i2S

8>
<
>
:

Z2
1 (i) + . . . + Z2

⌫�1(i)
up

+
(Z⌫ (i) +

p
�)2

up

9>
=
>
;

. (A.12)

Let i† = i†p be the index minimizing the second term in (A.12), i.e.,

i† := arg min
i2S

(Z⌫ (i) +
p
�)2

up
= arg min

i2S
fp (Z⌫ (i)) , (A.13)

where fp (x) := (x +
p
�)2/(2 log p). We shall first show that

P[ fp (Z⌫ (i†)) < 1 � �]! 1, (A.14)

for some small � > 0. On the one hand, we know (by solving a quadratic inequality)
that

fp (x) < 1 � � () x
p

2 log p
2 (�(

p
r +
p

1 � �),�(
p

r �
p

1 � �)). (A.15)

On the other hand, we know (by the relative stability of iid Gaussians, recall Section
2.7) that

mini2S Z⌫ (i)
p

2 log p
! �

p
1 � � in probability. (A.16)

Further, by the assumption on the signal sizes r < (1 +
p

1 � �)2, we have,

�(
p

r + 1) < �1 < �
p

1 � � < �(
p

r � 1).

Therefore we can picking a small � > 0 such that

� (
p

r +1) < �(
p

r +
p

1 � �) < �
p

1 � � < �(
p

r �
p

1 � �) < �(
p

r �1). (A.17)

Combining (A.15), (A.16), and (A.17), we obtain
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P


min
i2S

fp (Z⌫ (i)) < 1 � �
�

= P
f

fp (Z⌫ (i†)) < 1 � �
g

� P


fp
✓
min
i2S

Z⌫ (i)
◆
< 1 � �

�

! 1,

and we arrive at (A.14). As a corollary, since up ⇠ 2 log p, it follows that

P
2
6
6
6
6
4

min
i2S

(Z⌫ (i) +
p
�)2

up
< 1 � �

3
7
7
7
7
5

! 1. (A.18)

Finally, by independence between Z2
1 (i) + . . . + Z2

⌫�1(i) and (Z2
⌫ (i) +

p
�)2, and

the fact that i† is a function of only the latter, we have

Z2
1 (i†) + . . . + Z2

⌫�1(i†) d
= Z2

1 (i) + . . . + Z2
⌫�1(i) for all i 2 S.

Therefore, Z2
1 (i†) + . . . + Z2

⌫�1(i†) = OP(1), and

Z2
1 (i†) + . . . + Z2

⌫�1(i†)
up

! 0 in probability. (A.19)

Together, (A.18) and (A.19) imply that

P

"
mS

up
< 1 � �

#

� P
2
6
6
6
6
4

min
i2S

8>
<
>
:

Z2
1 (i) + . . . + Z2

⌫�1(i)
up

+
(Z⌫ (i) +

p
�)2

up

9>
=
>
;

< 1 � �
3
7
7
7
7
5

� P
2
6
6
6
6
4

Z2
1 (i†) + . . . + Z2

⌫�1(i†)
up

+
(Z⌫ (i†) +

p
�)2

up
< 1 � �

3
7
7
7
7
5

! 1.

(A.20)

In view of (A.10), (A.11), and (A.20), we conclude that exact recovery cannot succeed
with any positive probability. The proof of the necessary condition is complete. ut

A.3 Proof of Theorem 7.3

We first show the necessary condition. That is, when r < �, no thresholding proce-
dure is able to achieve approximate support recovery.

The proof follows the ideas in Arias-Castro and Chen (2017), and is very similar
to the proof of Theorem 3.3. One could in principle obtain the proofs in this section
by referencing arguments that have appeared in Chapter 3. We choose to present the
proof here in full for completeness.

Proof (Necessary condition in Theorem 7.3). Denote the distributions of �2
⌫ (0),

�2
⌫ (�) and �2

⌫ (�) as F0, Fa, and Fa respectively.
Recall that thresholding procedures are of the form
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DSp =
(

i | x(i) > tp (x)
)

.

Denote DS :=
(

i | x(i) > tp (x)
)

, and DS(u) := {i | x(i) > u}. For any threshold u � tp
we must have DS(u) ✓ DS, and hence

FDP :=
|DS \ S |
|DS |

� |
DS \ S |
|DS [ S |

=
|DS \ S |

|DS \ S | + |S |
� |DS(u) \ S |
|DS(u) \ S | + |S |

. (A.21)

On the other hand, for any threshold u  tp we must have DS(u) ◆ DS, and hence

NDP :=
|S \ DS |
|S | �

|S \ DS(u) |
|S | . (A.22)

Since either u � tp or u  tp must take place, putting (A.21) and (A.22) together,
we have

FDP + NDP � |DS(u) \ S |
|DS(u) \ S | + |S |

^ |S \
DS(u) |
|S | , (A.23)

for any u. Therefore it su�ces to show that for a suitable choice of u, the RHS
of (A.23) converges to 1 in probability; the desired conclusion on FDR and FNR
follows by the dominated convergence theorem.

Let t⇤ = 2q log p for some fixed q, we obtain an estimate of the tail probability

F0(t⇤) = P[�2
⌫ (0) > t⇤] =

2�⌫/2

�(⌫/2)

Z 1

2q log p
x⌫/2�1e�x/2dx

⇠ 2�⌫/2

�(⌫/2)
2

�
2q log p

�⌫/2�1 p�q . (A.24)

where ap ⇠ bp is taken to mean ap/bp ! 1; this tail estimate was also obtained in
Donoho and Jin (2004). Observe that |DS(t⇤) \S | has distribution Binom(p� s, F0(t⇤))
where s = |S |, denote X = Xp := |DS(t⇤) \ S |/|S |, and we have

µ := E [X] =
(p � s)F0(t⇤)

s
, and Var (X ) =

(p � s)F0(t⇤)F0(t⇤)
s2  µ/s.

Therefore for any M > 0, we have, by Chebyshev’s inequality,

P [X < M]  P ⇥|X � µ| > µ � M
⇤  µ/s

(µ � M)2 =
1/(µs)

(1 � M/µ)2 . (A.25)

Now, from the expression of F0(t⇤) in (A.24), we obtain

µ = (p� � 1)F0(t⇤) ⇠ 21�⌫/2

�(⌫/2)
�
2q log p

�⌫/2�1 p��q .
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Since r < �, we can pick q such that r < q < �. In turn, we have µ! 1, as p! 1.
Therefore the last expression in (A.25) converges to 0, and we conclude that X ! 1
in probability, and hence

|DS(t⇤) \ S |
|DS(t⇤) \ S | + |S |

=
X

X + 1
! 1 in probability. (A.26)

On the other hand, we show that with the same choice of u = t⇤,

|S \ DS(t⇤) |
|S | ! 1 in probability. (A.27)

By the stochastic monotonicity of chi-square distributions (Lemma A.2), the prob-
ability of missed detection for each signal is lower bounded by P[�2

⌫ (�i)  t⇤] �
Fa (t⇤). Therefore, |S \DS(t⇤) |

d
� Binom(s, Fa (t⇤)), and it su�ces to show that Fa (t⇤)

converges to 1. This is indeed the case, since

Fa (t⇤) = P[Z2
1 + . . . + Z2

⌫ + 2
q

2r log pZ⌫ + 2r log p  2q log p]

� P[Z2
1 + . . . + Z2

⌫  (q � r) log p, 2
q

2r log pZ⌫  (q � r) log p],

and both events in the last line have probability going to 1 as p! 1. The necessary
condition is shown. ut

We now turn to the su�cient condition. That is, when r > �, the Benjamini-
Hochberg procedure with slowly vanishing FDR levels achieves asymptotic approx-
imate support recovery. The structure for the proof of su�cient condition follows
that of Theorem 2 in Arias-Castro and Chen (2017).

Proof (Su�cient condition in Theorem 7.3). The FDR vanishes by our choice of ↵
and the FDR-controlling property of the BH procedure. It only remains to show that
FNR also vanishes.

To do so we compare the FNR under the alternative specified in Theorem 7.3
to one with all of the signal sizes equal to �. Let x(i) be vectors of independent
observations with p� s nulls having �2

⌫ (0) distributions, and s signals having �2
⌫ (�)

distributions. By Lemma 3.2, it su�ces to show that the FNR under the BH procedure
in this setting vanishes.

Let DG denote the empirical survival function as in (3.36). Define the empirical
survival functions for the null part and signal part

DWnull(t) =
1

p � s

X

i<S

{x(i) � t}, DWsignal(t) =
1
s

X

i2S
{x(i) � t}, (A.28)

where s = |S |, so that

DG(t) =
p � s

p
DWnull(t) +

s
p

DWsignal(t).
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Apply Lemma 3.1 to the two summands in DG, we obtain DG(t) = G(t) + DR(t).
where

G(t) =
p � s

p
F0(t) +

s
p

Fa (t), (A.29)

where F0 and Fa are the survival functions of �2
⌫ (0) and �2

⌫ (�) respectively, and

DR(t) = OP
 
⇠p

q
F0(t)F0(t) +

s
p
⇠s

q
Fa (t)Fa (t)

!
, (A.30)

uniformly in t.
Recall (see proof of Lemma 3.2) that the BH procedure is the thresholding

procedure with threshold set at ⌧ (defined in (3.37)). The NDP may also be re-
written as

NDP =
|S \ DS |
|S | =

1
s

X

i2S
{x(i) < ⌧} = 1 � DWsignal(⌧),

so that it su�ces to show that

DWsignal(⌧) ! 1 (A.31)

in probability. Applying Lemma 3.1 to DWsignal, we know that

DWsignal(⌧) = Fa (⌧) +OP
 
⇠s

q
Fa (⌧)Fa (⌧)

!
= Fa (⌧) + oP(1).

So it su�ces to show that Fa (⌧) ! 0 in probability. Now let t⇤ = 2q log(p) for some
q such that � < q < r . We have

Fa (t⇤) = P[�2
⌫ (�)  t⇤]  P



2
q
�Z⌫  t⇤ � �

�

= P
2
6
6
6
6
4

Z⌫ 
t⇤

2
p
�
�

p
�

2

3
7
7
7
7
5

= P

"

Z⌫ 
q � r
2pr

p
2 log p

#

! 0. (A.32)

Hence in order to show (A.31), it su�ces to show

P
⇥
⌧  t⇤

⇤ ! 1. (A.33)

By (A.29), the mean of the empirical process DG evaluated at t⇤ is

G(t⇤) =
p � s

p
F0(t⇤) +

s
p

Fa (t⇤). (A.34)

The first term, using Relation (A.24), is asymptotic to p�qL(p), where L(p) is the
logarithmic term in p. The second term, since Fa (t⇤) ! 1 by Relation (A.32), is
asymptotic to p�� . Therefore, G(t⇤) ⇠ p�qL(p) + p�� ⇠ p�� , since p��qL(p) ! 0
where q > �.

The fluctuation of the empirical process at t⇤, by Relation (A.30), is
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DR(t⇤) = OP
 
⇠p

q
F0(t⇤)F0(t⇤) +

s
p
⇠s

q
Fa (t⇤)Fa (t⇤)

!

= OP
 
⇠p

q
F0(t⇤)

!
+ oP

⇣
p��

⌘
.

By (A.24) and the expression for ⇠p , the first term is OP
⇣
p�(q+1)/2L(p)

⌘
where L(p)

is a poly-logarithmic term in p. Since � < min{q, 1}, we have � < (q + 1)/2, and
hence DR(t⇤) = oP(p�� ).

Putting the mean and the fluctuation of DG(t⇤) together, we obtain

DG(t⇤) = G(t⇤) + DR(t⇤) ⇠P G(t⇤) ⇠ p��,

and therefore, together with (A.24), we have

F0(t⇤)/DG(t⇤) = p��qL(p)(1 + oP(1)),

which is eventually smaller than the FDR level ↵ by the assumption (3.17) and the
fact that � < q. That is,

P
f

F0(t⇤)/DG(t⇤) < ↵
g

! 1.

By definition of ⌧ (recall (3.37)), this implies that ⌧  t⇤ with probability tending to
1, and (A.33) is shown. The proof for the su�cient condition is complete. ut

A.4 Proof of Theorems 7.2 and 7.4

As with the proof of Theorem 7.3, one could shorten the presentations in this section
by referencing arguments in Chapter 3.

Proof (Theorem 7.2). We first show the su�cient condition. Similar to the proof of
Theorem 7.3, it su�ces to show that

NDP = 1 � DWsignal(tp) ! 0, (A.35)

where tp is the threshold of Bonferroni’s procedure.
Since r > fEA(�) = 1, we can pick q such that 1 < q < r . Let t⇤ = 2q log p, we

have tp < t⇤p for large p as in the proof of Theorem 7.1. Therefore for large p, we
have

DWsignal(tp) � DWsignal(t⇤) � Fa (t⇤) + oP(1),

where the last inequality follows from the stochastic monotonicity of the chi-square
family (Lemma A.2), and Lemma 3.1. Indeed, Fa (t⇤) ! 0 by (A.32) and our choice
of q < r . The proof of the su�cient condition is complete.

Proof of the necessary condition follows a similar structure to that of Theorem
7.3. That is, we show that FWER + FNR has liminf at least 1 by working with the
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lower bound

FWER(R) + FNR(R) � P


max
i2Sc

x(i) > u
�

^ E
2
6
6
6
6
4

|S \ DS(u) |
|S |

3
7
7
7
7
5

, (A.36)

which holds for any thresholding procedure R and for arbitrary u 2 R. By the
assumption that r < fEA(�) = 1, we can pick q such that r < q < 1 and let
u = t⇤ = 2q log p. By relative stability of chi-squared random variables (Lemma
A.1), we have

P

"
maxi2Sc x(i)

2 log p
>

t⇤

2 log p

#

! 1. (A.37)

where the first fraction in (A.37) converges to 1, while the second converges to q < 1.
On the other hand, by our choice of q > r , the second term in (A.36) also converges
to 1 as in (A.27). This completes the proof of the necessary condition. ut
Proof (Theorem 7.4). We first show the su�cient condition. Since FDR control is
guaranteed by the BH procedure, we only need to show that the FWNR also vanishes,
that is,

P


min
i2S

x(i) � ⌧
�

! 1, (A.38)

where ⌧ is the threshold for the BH procedure.
By the assumption that r > fAE(�) = (

p
� +

p
1 � �)2, we have pr �

p
1 � � >p

�, so we can pick q > 0, such that
p

r �
p

1 � � > pq >
p
�. (A.39)

Let t⇤ = 2q log p, we claim that

P
⇥
⌧  t⇤

⇤ ! 1. (A.40)

Indeed, by our choice of q > �, (A.40) follows in the same way that (A.33) did.
With this t⇤, we have

P


min
i2S

x(i) � ⌧
�

� P


min
i2S

x(i) � t⇤, t⇤ � ⌧
�

. (A.41)

However, by our choice of pq < pr �
p

1 � �, the probability of the first event on
the right-hand side of (A.41) also goes to 1 according to (A.8) and (A.9). Together
with (A.40), this proves (A.38), and completes proof of the su�cient condition.

The necessary condition follows from the lower bound

FDR(R) + FWNR(R) � E
2
6
6
6
6
4

|DS(u) \ S |
|DS(u) \ S | + |S |

3
7
7
7
7
5

^ P


min
i2S

x(i) < u
�

, (A.42)

which holds for any thresholding procedure R and for arbitrary u 2 R.
By the assumption that r < fAE(�) = (

p
� +

p
1 � �)2, we can pick a constant

q > 0, such that
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p

r �
p

1 � � < pq <
p
�. (A.43)

Let also u = t⇤ = 2q log p. By our choice of q < �, we know from (A.26) that the
first term on the right-hand-side of (A.42) converges to 1. It remains to show that
the second term in (A.42) also converges to 1.

For the second term in (A.42), dividing through by 2 log p, we obtain

P


min
i2S

x(i) < t⇤
�

= P

"
mS

2 log p
< q

#

. (A.44)

Similar to (A.12), we have

mS

2 log p
d
 min

i2S

Z2
1 (i) + . . . + Z2

⌫�1(i)
2 log p

+
(Z⌫ (i) +

p
�)2

2 log p
. (A.45)

Define i† = i†p to be the index minimizing the second term in (A.45), i.e.,

i† := arg min
i2S

fp (Z⌫ (i)) , (A.46)

where fp (x) := (x +
p
�)2/(2 log p).

Since pq >
p

r �
p

1 � � and q > 0, we have
p
r�pqp
1��
< 1. Also, since

p
r + pq

p
1 � �

> 0, and
p

r � pq
p

1 � �
<

p
r + pq

p
1 � �

,

we can further pick a constant �0 2 (0, 1] such that
p

r � pq
p

1 � �
<

p
�0 <

p
r + pq

p
1 � �

. (A.47)

Let Z[1]  Z[2]  . . .  Z[s] be the order statistics of {Z⌫ (i)}i2S and define k =
bs1��0c. Applying Lemma A.4 (stated below), we obtain

Z[k]p
2 log p

=
Z[k]p
2 log s

p
2 log s

p
2 log p

! �
p
�0(1 � �) in probability. (A.48)

Since we know (by solving a quadratic inequality) that

fp (x) < q () x
p

2 log p
2

⇣
�(
p

r +
p

q),�(
p

r � pq)
⌘
, (A.49)

combining (A.47), (A.48), and (A.49), it follows that

P
f

fp
⇣
Z⌫ (i†)

⌘
< q

g

� P
f

fp
�
Z[k]

�
< q

g

! 1.
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Finally, using (A.19), we conclude that

P


min
i2S

x(i) < t⇤
�

= P

"
mS

2 log p
< q

#

� P
f

oP(1) + fp
⇣
Z⌫ (i†)

⌘
< q

g

! 1.

Therefore, the two terms on the right-hand-side of (A.42) both converge 1. This
completes the proof of the necessary condition. ut

It only remains to justify (A.48).

Lemma A.4 (Relative stability of order statistics). Let Z[1]  . . .  Z[s] be the
order statistics of s iid standard Gaussian random variables. Let �0 2 (0, 1] and
define k = bs1��0c, then we have

Z[k]p
2 log s

! �
p
�0 in probability. (A.50)

Proof (Lemma A.4). Using the Renyi representation for order statistics, we write

Z[i] = �
 (U[i]), (A.51)

where U[i] is the ith (smallest) order statistic of s independent uniform random
variables over (0, 1). Since U[i] has a Beta(i, s + 1 � i) distribution, with mean and
standard deviation,

E[U[k]] = k/(s + 1) ⇠ s��0, and sd(U[k]) =
1

s + 1

r
k (s + 1 � k)

s + 2
⇠ s�

1+�0
2 ,

we obtain by Chebyshev’s inequality

P
f

s��0 (1 � ✏ ) < U[k] < s��0 (1 + ✏ )
g

! 1,

where ✏ is an arbitrary positive constant. This implies, by representation (A.51),

P
f

� 
⇣
s��0 (1 � ✏ )

⌘
< Z[k] < �

 ⇣
s��0 (1 + ✏ )

⌘g

! 1. (A.52)

Using the expression for standard Gaussian quantiles (see, e.g., Proposition 1.1. in
Gao and Stoev (2020)), we know that

� 
⇣
s��0 (1 � ✏ )

⌘
⇠ �

q
2 log

�
s�0/(1 � ✏ )�

= �
p

2(�0 log s � log (1 � ✏ )) ⇠ �
p

2�0 log s,

and similarly � 
⇣
s��0 (1 + ✏ )

⌘
⇠ �

p
2�0 log s. Since both ends of the interval in

(A.52) are asymptotic to �
p

2�0 log s, the desired conclusion follows. ut





Appendix B
Exact support recovery in non AGG models

B.1 Strong classification boundaries in other light-tailed error
models

The strong classification boundaries extend beyond the AGG models. As our analysis
in Chapter 4 suggests, all additive error models where the errors have URS maxima
exhibit this phase transition phenomenon under appropriate parametrization of the
sparsity and signal sizes. We derive explicit boundaries for two additional classes of
models under the general form of the additive noise models (1.1) with heavier and
lighter tails than the AGG models, respectively.

We would like to point out that the sparsity and signal sizes can be re-parametrized
for the boundaries to have di�erent shapes. For example in the case of Gaussian
errors, if we re-parametrize sparsity s with H� = 2�

⇣
1 +

p
1 � �

⌘2
where H� 2 (0, 1),

then the signal sparsity would have a slightly more complicated form:

�
�
�
Sp

�
�
�
=

h

p1��i

=

6
6
6
6
6
4

p
✓p

2�H��1
◆2 7

7
7
7
7
5

,

while the strong classification boundary would take on the simpler form:

fE(�) = HfE( H�) = 2 � H�. (B.1)

In the next two classes of models we will adopt parametrizations such that the
boundaries are of the form Hg in (B.1).

B.1.1 Additive error models with heavier-than-AGG tails

Distributions such as the log-normal have heavier tails than the AGG model, yet
the tails are nevertheless rapidly-varying. Therefore, Proposition 2.2 applies, and
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we expect to see phase-transition-type results when the additive errors have these
heavier-than-AGG tails.
Example B.1 (Heavier than AGG). Let � > 1, c > 0, and suppose that

log F (x) = � �
log x

�� (c + M (x)) , (B.2)

where limx!1 M (x) log� x = 0. Then, Relation (2.39) holds under model (B.2).
Further, if the entries in the array are independent, the maxima are relatively stable.

The behavior of the quantiles up in this model is as follows. As p! 1,

up ⇠ exp
⇢⇣

c�1 log p
⌘1/��

() c
⇣
log up

⌘�
+ o(1) = log(p) = � log F (up).

since up diverges, and M (up) is o((log� up)�1).
Following Example B.1, assume that the errors in Model (1.1) have rapidly

varying right tails
log F (x) = � �

log x
�� (c + M (x)) , (B.3)

as x ! 1, and left tails

log F (x) = � �
log (�x)

�� (c + M (�x)) , (B.4)

as x ! �1.
Theorem B.1. Suppose the marginals F follows (B.3) and (B.4). Let

k (�) = log p �
⇣
(log p)1/� + log (1 � �)

⌘�
,

and let the signal µ have
|Sp | =

h

pe�k (�)
i

non-zero entries. Assume the magnitudes of non-zero signal entries are in the range
between

� = exp
(

(log p)1/�
)

r and � = exp
(

(log p)1/�
)

r .

If r > HfE(�) = 2 � �, then Bonferroni’s procedure DSp (defined in (2.21)) with
appropriately calibrated FWER↵ ! 0 achieves asymptotic perfect support recovery,
under arbitrary dependence of the errors.

On the other hand, when the errors are uniformly relatively stable, if r < HfE(�) =
2 � �, then no thresholding procedure can achieve asymptotic perfect support re-
covery with positive probability.

B.1.2 Additive error models with lighter-than-AGG tails

Similar to how Proposition 2.2 applies to models with heavier-than-AGG tails, it
also to error models with lighter tails than the AGG class.
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Example B.2 (Lighter than AGG). With ⌫ > 0, and L(x) a slowly varying function,
the class of distributions

log F (x) = � exp
�
x⌫L(x)

 
, (B.5)

is rapidly varying. The quantiles can be derived explicitly in a subclass of (B.5)
where L(x) ! 1, or equivalently, when log | log F (x) | ⇠ x⌫ ,

up ⇠
�
log log p

�1/⌫ () exp
(

u⌫p (1 + o(1))
)

= log(p) = � log F (up).

Following Example B.2, assume that errors in Model (1.1) has rapidly varying
right tails

log F (x) = � exp
�
x⌫L(x)

 
, (B.6)

where L(x) is a slowly varying function, as x ! 1, and left tails

log F (x) = � exp
��x⌫L(�x)

 
, (B.7)

as x ! �1.
The phase transition results in multiple testing problems under such tail assump-

tions is characterizes as follows.

Theorem B.2. Suppose marginals F follow (B.6) and (B.7). Let

k (�) = log p � �
log(p)

� (1��)⌫ ,

and let the signal µ have
|Sp | =

h

pe�k (�)
i

non-zero entries. Assume the magnitudes of non-zero signal entries are in the range
between

� = log log p1/⌫r and � = log log p1/⌫r .

If r > HfE(�) = 2 � �, then Bonferroni’s procedure DSp (defined in (2.21)) with
appropriately calibrated FWER↵ ! 0 achieves asymptotic perfect support recovery,
under arbitrary dependence of the errors.

On the other hand, when the errors are uniformly relatively stable, if r < HfE(�) =
2 � �, then no thresholding procedure can achieve asymptotic perfect support re-
covery with positive probability.

B.2 Thresholding procedures under heavy-tailed errors

We analyze the performance of thresholding estimators under heavy-tailed models
in this section, and illustrate its lack of phase transition. Suppose we have iid errors
with Pareto tails in Model (1.1), that is, ✏ (i)’s have common marginal distribution F
where
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F (x) ⇠ x�↵ and F (�x) ⇠ x�↵, (B.8)

as x ! 1. It is well-known (see, e.g., Theorem 1.6.2 of (Leadbetter et al., 1983)) that
the maxima of iid Pareto random variables have Frechet-type limits. Specifically, we
have

maxi2 {1,...,p } ✏ (i)
up

=) Y, (B.9)

in distribution, where up = F (1 � 1/p) ⇠ p1/↵, and Y is a standard ↵-Frechet
random variable, i.e.,

P[Y  t] = exp {�t�↵}, t > 0.

By symmetry in our assumptions, the same argument applies to the minima as well.

Theorem B.3. Let errors in Model (1.1) be as described in Relation (B.8). Let the
signal have s = |S | = f p non-zero entries, with magnitude � = rp1/↵, where both
f 2 (0, 1) and r 2 (0,+1) may depend on p, so that no generality is lost.

Under these assumptions, the necessary condition for thresholding procedures DS
to achieve exact support recovery (P[DS = S]! 1) is

lim inf
p!1

r = 1. (B.10)

Condition (B.10) is also su�cient for the oracle thresholding procedure to succeed
in the exact support recovery problem.

On the other hand, the necessary and su�cient condition for all thresholding
procedures to fail exact support recovery (P[DS = S]! 0) is

lim sup
p!1

r = 0.

In other words, Theorem B.3 states that there does not exist a non-trivial phase
transition for thresholding procedures when errors have (two-sided) ↵-Pareto tails.

Proof (Theorem B.3). Recall the oracle thresholding procedure DS⇤ =
�
i : x(i) � x[s]

 
,

and the set of all thresholding procedures, denotedS (see Definition 2.20). The prob-
ability of exact support recovery by any thresholding procedure DS 2 S is bounded
above by that of DS⇤, that is,

max
DS2S
P[DS = S] = P[DS⇤ = S] = P

f

max
i2Sc

x(i)  min
i2S

x(i)
g

= P
f maxi2Sc x(i)

up
 mini2S x(i)

up

g

= P
f MSc

up
 mS

up
+ rp

g

, (B.11)

where MSc = maxi2Sc ✏ (i) and mS = mini2S ✏ (i). For any ↵ > 0, the following
elementary relations hold,
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0 < L  (1 � f )1/↵ + f 1/↵  U < 1, for all f 2 (0, 1),

where L = min
(

1, 2(1/2)1/↵
)

and U = max
(

1, 2(1/2)1/↵
)

. Therefore we have,

U max
(

MSc

up
,�mS

up

)
< rp =) (1 � f )1/↵ MSc

up
� f 1/↵ mS

up
< rp, (B.12)

and

L min
(

MSc

up
,�mS

up

)
< rp (= (1 � f )1/↵ MSc

up
� f 1/↵ mS

up
< rp . (B.13)

Putting together (B.11), (B.12), and (B.13), we have

P
f

max
(

MSc

up
,�mS

up

)
< rp/U

g

 P[DS⇤ = S]  P
f

min
(

MSc

up
,�mS

up

)
< rp/L

g

.

(B.14)
We know from the weak convergence result (B.9) that for any ✏ > 0 there is a
constant N such that for all p > N we have

P
f

max
(

MSc

up
,�mS

up

)
< rp/U

g

� P
f

max
(

Y (1),Y (2)
)

< rp/U
g

� ✏, (B.15)

where Y (1) and Y (2) are independent ↵-Frechet random variables with scale coe�-
cients (1 � f )1/↵ and f 1/↵ respectively. That is,

P[Y (1)  t] = exp {�(1 � f )/t↵}, and P[Y (2)  t] = exp {� f /t↵}.

Since the distributional limit in (B.15) has a density (with respect to the Lebesgue
measure), we know that density is bounded above by a finite constant, say, K . For
the same choice of ✏ as before, we can find a further constant N 0 such that for all
p > max{N, N 0} we have

lim inf rp < ✏/K + rp,

so that the right hand side of (B.15) is bounded by

P
f

max
(

Y (1),Y (2)
)

< rp/U
g

� ✏ � P
f

max
(

Y (1),Y (2)
)

<
lim inf rp

U

g

� 2✏ . (B.16)

By the arbitrariness in the choice of ✏ , we conclude from (B.15) and (B.16) that

lim inf P
f

max
(

MSc

up
,�mS

up

)
< rp/U

g

� P
f

max
(

Y (1),Y (2)
)

<
lim inf rp

U

g

.

(B.17)
Combining Relations (B.14) and (B.17), we know that if lim inf rp = 1, we must
have

lim inf P
f
DS⇤ = S

g

� P
f

max
(

Y (1),Y (2)
)

<
lim inf rp

U

g

= 1.



136 B Exact support recovery in non AGG models

Conversely, if lim inf P
f
DS⇤ = S

g

< 1, we must have lim inf rp < 1.
Similarly, we can obtain the upper bound of exact support recovery probability

for the optimal thresholding procedure,

lim supP
f

min
(

MSc

up
,�mS

up

)
< rp/L

g

 P
f

min
(

Y (1),Y (2)
)

<
lim sup rp

L

g

.

(B.18)
The conclusions of the second part of Theorem B.3 follow from (B.14) and (B.18).
ut

The probability of exact recovery can be approximated if the parameters r and f
converge. The next result follows from a small modification of the arguments in the
proof of Theorem B.3.

Corollary B.1. Under the assumptions in Theorem B.3, if lim r = r⇤, and lim f = f ⇤,
for some constant r⇤ � 0 and f ⇤ 2 [0, 1], then

limP[DS⇤ = S] = P
f

(1 � f ⇤)1/↵Z1 + ( f ⇤)1/↵Z2 < r⇤
g

.

where Z1 and Z2 are independent standard ↵-Frechet random variables, i.e., P[Zi 
x] = exp {�x�↵}, x > 0.

Remark B.1. Of course one might wonder if it would be meaningful to derive a
“phase transition” under a di�erent parametrization of the signal sizes, say

� = pr/↵ . (B.19)

In this case, Theorem B.3 suggests that a “phase transition” takes place at r = 1.
However, this non-multiplicative parametrization of the signal sizes would make
power analysis (like in Example 3.1) dimension-dependent.

To illustrate, in the case of Gaussian errors with variance 1, if we were interested
in small signals of size

p
2r log p, where r < 1 is below the boundary (4.5), then

we only need n > 2/r samples to guarantee discovery of their support. In the Pareto
case with parametrization (B.19), however, if we were interested in small signals of
size pr/↵, where r < 1, then the “boundary” says that we will need n > p2(1�r )/↵

samples, which is exponential in the dimension p and quickly diverges. Recall that
the “boundary” is really an asymptotic result in p. Such an approximation in finite
dimensions becomes invalid.
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