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Preface

This text presents a collection of new results and recent developments on the phase
transition phenomena in sparse signal problems. The main theme is the study of
the fundamental limits in high-dimensional testing and inference. Since the seminal
works of |Ingster| (1998)) and |Donoho and Jin (2004), the subject has received a lot
of attention in the literature with important contributions from Ji and Jin| (2012);
Genovese et al. (2012); Jin et al. (2014); |Arias-Castro and Chen (2017); |Butucea
et al.| (2018). These works, among many others, have discovered some fundamental
limits in the so-called needle in haystack problems, where a sparse signal is observed
with high-dimensional additive noise. In this setting, two archetypal problems arise
— the signal detection and signal support recovery. The signal detection refers to a
global hypothesis testing problem that amounts to determining the presence of non-
zero signal in any of its dimensions. The support recovery, on the other hand, can
be seen either as a multiple testing problem where the presence of non-zero signal
is tested for each signal location of interest, or alternatively, as an inference problem
that aims to estimate the signal support, i.e., the locations of the non-zero signal
components. The fundamental limits of these problems are studied in the so-called
high-dimensional asymptotic regime where the dimension p of the underlying signal
grows to infinity, and the sample size n is either bounded or grows slowly relative to
p-

From a probabilistic perspective, these aforementioned fundamental limits are
stated as asymptotic zero-one type laws, as dimensionality diverges. Namely, con-
sider a sparse signal with support size on the order of p' for some parameter
B € (0,1). Parameterize the non-zero signal amplitude by A(p”), for some r > 0
and a suitable monotone non-decreasing function A(-). Then, for a broad range of er-
ror distributions and statistical problems, one encounters a sharp transition between
the regimes where the problem is solvable and unsolvable depending on the signal
magnitude r and signal sparsity 5. More precisely, there exists a boundary function
f(B) such that if the signal magnitudes are above the boundary, r > f(3), then the
problem can be solved with vanishing loss as p — co, with a suitable statistical pro-
cedure. On the other hand, if the signal is below that same boundary, i.e., r < f(f3),
all statistical procedures fail to provide a solution with a vanishing loss, as p — oo.
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Of course, depending on whether one considers the detection (testing) or support
recovery (inference) problems, different loss functions quantify success and failure.
The choice of the loss functions is often guided by the applications, resulting in a
rich picture of phase-transitions (see e.g. Figure[3.2).

The contributions of this work. The fundamental limits of the classic detection
problem hinge of the analysis of the discrepancy between the null and alternative
hypotheses e.g., via Hellinger distance. Thus, perhaps for technical reasons, much
of the analysis in the existing literature has been done under the assumption that the
additive errors are independent and/or Gaussian, or using loss functions unaffected
by the dependence such as the Hamming loss. In this work, we demonstrate that the
support recovery problems, especially exact support recovery, are best understood
from the novel perspective of the concentration of maxima phenomenon in extreme
value theory. It turns out that under a very broad range of light-tailed error distribu-
tions and under a very broad range of error dependence structures, the maxima of the
errors, when rescaled (but not centered!) converge in probability to a positive con-
stant. This concentration property leads to a complete solution of the exact support
recovery problem for the broad family of thresholding procedures. Most if not all
existing support estimation procedures are types thresholding procedures (see Sec-
tion[2.2). That is, the signal support estimate comprises of all components exceeding
a suitable (potentially data-dependent) threshold. We show, by exploiting concen-
tration of maxima, that thresholding procedures obey a phase-transition, where if
the signal is above a certain boundary, asymptotically exact recovery is possible
while below the boundary all thresholding procedures fail, as p — co. Remarkably,
light-tailed maxima concentrate under very broad and strong dependence. This is
exemplified by our characterization of the concentration of maxima phenomenon for
Gaussian triangular arrays. For example, in the special case of stationary Gaussian
time series, vanishing auto-covariance is necessary and sufficient for the maxima to
concentrate in the same way as independent standard normal random variables. This
is in stark contrast with the behavior of sums, commonly studied under short- and
long-range dependence conditions (see e.g.|Dedecker et al.|[2007; |Pipiras and Taqqu|
2017). Simply put, the notion of weak dependence that entails that the maxima of
dependent variables concentrate at the same rate as in the case of independence is
fundamentally weaker than the conventional mixing conditions widely used in the
study of sums.

Our probabilistic contributions may be of independent interest and extend classic
work of Berman| (1964). Concentration of maxima is a type of super-concentration
phenomenon studied also in (Chatterjee (2014) and [Tanguy|(2015a). The robustness
of the concentration of maxima phenomenon to dependence can perhaps explain the
universality of phase transitions in support recovery problems.

The use of concentration of maxima phenomenon highlights one core idea in our
work, which allows for a first of its kind comprehensive treatment of thresholding
procedures under very broad error-dependence conditions. The text involves also
a full spectrum of related results such as minimax-optimality and finite-sample
Bayes optimality in support estimation. Using different type of loss functions and
type I error controls, we obtain a rich picture of the exact and approximate support
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recovery problems in high dimensions. Many of these phase transition results have
not appeared in previously published literature.

High-dimensional support recovery problems arise in many modern applications
ranging from cybersecurity, theoretical computer science, to statistical genetics.
Genome-wide association studies (GWAS) in genetics are particularly natural appli-
cations, where the asymptotic phase-transition results help explain and quantify a
previously observed empirical phenomenon of the so-called steep part of the power
curve. In the last chapter of this work, we detail this application and highlight future
theoretical and practical consequences of our work.

Target audience. The original research presented in this text originates from the
doctoral dissertation of the first author in the Statistics department at the University
of Michigan, Ann Arbor. The main goal of this text is to provide a comprehensive
treatment of the exact and approximate support recovery problems by utilizing
existing and newly developed probabilistic tools on concentration of maxima. The
text also provides a quick introduction to the state-of-the-art in the dynamic area
of phase-transitions in high-dimensional testing and inference. It is accessible to
doctoral students in Statistics with background in measure-theoretic probability and
statistics as well as to researchers in applied fields working with high-dimensional
data sets. The text can be used as a reference and a supplement to a special topics
course on high-dimensional inference.

Acknowledgements. The authors gratefully acknowledge the support of their fam-
ilies and all colleagues from the Statistics Department at the University of Michigan,
Ann Arbor. Special thanks (in alphabetical order) go to Xuming He, Tailen Hsing,
Michalis Kallitsis, Liza Levina, Yuanzhi Li, Rodderick Little, Ya’acov Ritov, Kerby
Shedden, Jinqi Shen, Jonathan Terhorst, Gongjun Xu. The authors were partially
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Chapter 1
Introduction and Guiding Examples

The proliferation of information technology has enabled us to collect and consume
huge volumes of data at unprecedented speeds and at very low costs. This convenient
access to data gave rise to a fundamentally different way of pursuing scientific ques-
tions. In contrast with the traditional hypothesis—experiment—analysis cycle where
data are collected from the experiments, nowadays abundant data are often available
before specific questions are even formulated. Such data can be used for not just eval-
uating hypotheses, but also for generating, and selecting the hypotheses to pursue.
As a result, multiple testing — where a large number of hypotheses are formulated
and screened for their plausibility simultaneously — has become a staple of modern
data-driven studies.

An archetypal example of multiple testing problems is genetic association studies
(Bush and Moore, 2012). In these studies, scientists test hypotheses relating each of
the hundreds of thousands of genetic marker locations to phenotypic traits of interest.
For a phenotypic trait on which we have little prior knowledge, we cannot simply
test for association on one or a few specific genetic locations, as there are often not
enough empirical evidence or biological theory to pin point these genetic locations
in the first place. Rather, the goal here is to select the set of most promising genetic
markers from a large number of candidate locations for subsequent investigation.

Another example of multiple testing problems arise in cybersecurity, where mil-
lions of IP addresses are monitored in real time. In this engineering application,
statistics are collected and tests are performed for each IP address, in an attempt
to locate the IP addresses with anomalous network activities, so that and malicious
traffic and volumetric attacks can be filtered to protect end users of network services
(Kallitsis et al.,2016). Similar to the genetic application above, we use data to search
over candidate IP addresses and identify locations of interest.

We are motivated very much by these examples to study high-dimensional multi-
ple testing problems where a large number of hypotheses are tested simultaneously.
In the rest of the introduction, we shall more review the main objectives of high-
dimensional multiple testing, and elaborate on these objectives with two classes of
data models in the context of various applications.
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1.1 The additive error model

Consider the canonical signal-plus-noise model where the observation x is a high-
dimensional vector in R”,

x(i) = u@@) + €G@), i=1,...,p. (1.1)

The signal, u = ( u(i))l’.; |» 8 a vector with s non-zero components supported on the
set S = {i : u@@) # 0}; the second term € is a random error vector. The goal of

high-dimensional statistics is usually two-fold:

1. Signal detection: to detect the presence of non-zero components in u. That is, to
test the global hypothesis y = 0.

II. Support recovery: to estimate the support set S. This is also sometimes referred
to as the support estimation or signal identification problem.

To illustrate, in the engineering application of cybersecurity, Internet service
providers (ISP) routinely monitor a large number of network traffic streams to deter-
mine if there are abnormal surges, blackouts, or other types of anomalies. The data
vector x could represent, for example, incoming traffic volumes to each server node,
internet protocol (IP) address, or port that the ISP monitors. In this case, the vector u
represents the average traffic volumes in each of the streams under normal operating
conditions, and €’s — the fluctuations around these normal levels of traffic. The signal
detection problem in this context is then equivalent to determining if there are any
anomalies among all data streams, and the support recovery problem is equivalent
to identifying the streams experiencing anomalies. Similar questions of signal detec-
tion and support recovery are pursued in large-scale microarray experiments (Dudoit
et al., 2003), brain imaging and fMRI analysis (Nichols and Hayasaka, |2003)), and
numerous other anomaly detection applications.

A common theme in such applications is that the errors are correlated, and that
the signal vectors are believed to be sparse: the number of non-zero (or large) compo-
nents in y is small compared to the number of tests performed. In the cybersecurity
context, while a very large number of data streams are monitored, typically only just
a few of them will be experiencing problems at any time, barring large-scale outages
or distributed denial of service attacks. Under such sparsity assumptions, it is natural
to ask if and when one can reliably (1) detect the signals, and (2) recover the support
set S. In this text, we explore both the detection and the support recovery problems.
More precisely, we are interested in the theoretical feasibility of both problems, and
seek minimal conditions under which these problems can be consistently solved in
large dimensions.

Model (1.1) is simple yet ubiquitous. Consider the linear model

Y=Xu+é
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where p is a p-dimensional vector of regression coefficients of interest to be inferred
from observations of X and Y. If the design matrix X is of full column ranKT, then
the ordinary least squares (OLS) estimator of u can be formed

A=X'X)"'XY=p+e (1.2)

where € := (X’X)!X’¢. Hence we recover the generic problem (I.1). Signal de-
tection is therefore equivalent to the problem of testing the global null model, and
support recovery problem corresponds to the fundamental problem of variable se-
lection.

Note that the components of the observation vector x (and equivalently, the noise
€) in need not be independent. In the linear regression example, even when
the components of the noise term & are independent, those of the OLS estimator
(1.2) need not be, except in the case of orthogonal designs. Indeed, in practice,
independence is the exception rather than the rule. Therefore, a general theory of
feasibility must address the role of the error dependence structure in such testing and
support estimation problems. It is also important to identify practical and/or optimal
procedures that attain the performance limits in independent as well as dependent
cases, as soon as the problems become theoretically feasible. We address both themes
in this text.

1.2 Genome-wide association studies and the chi-square model

The second data model we analyze is the high-dimensional chi-square model,
x(i) ~ x5 (@), i=1...p, (1.3)

where the data x(7)’s follow independent (non-central) chi-square distributions with
v degrees of freedom and non-centrality parameter A(7).

Model is motivated by large-scale categorical variable screening problems,
typified by GWAS where millions of genetic factors are examined for their potential
influence on phenotypic traits.

Ina GWAS with a case-control design, a total of n subjects are recruited, consisting
of n; subjects possessing some defined traits, and n, subjects without the traits
serving as controls. The genetic compositions of the subjects are then examined for
variations known as SNP at an array of p genomic marker locations, and compared
between the case and the control group. These physical traits are commonly referred
to as phenotypes, and the genetic variations are known as genotypes.

Focusing on one specific genomic location, the counts of observed genotypes, if
two variants are present, can be tabulated as follows. Researchers test for associations

! This, of course, requires that we have more samples than dimensions, i.e., n > p. Nevertheless,
multiplicity of tests is still present when p itself is large — the multiple testing problem is by no
means exclusive to situations where p > n.
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Genotype
# Observations Variant 1 Variant 2 Total by phenotype
Cases O] 1 012 ny
Controls 07 Oy ny

Table 1.1 Tabulated counts of genotype-phenotype combinations in a genetic association test.

between the genotypes and phenotypes using, for example, the Pearson chi-square

test with statistic ,

(Ojk — Ejx)?

v 33 O 00
j=1 k=1 Ej

where Ejk = (Ojl + 0j2)(01k + Ozk)/n.

Under the mild assumption that the counts Oj’s follow a multinomial distribu-
tion (or a product-binomial distribution, if we decide to condition on one of the
marginals), the statistic x in can be shown to have an approximate y*(A) dis-
tribution with v = 1 degree of freedom at large sample sizes (see, e.g., classical
results in [Ferguson| (2017) and |Agresti (2018)). Independence between the geno-
types and phenotypes would imply a non-centrality parameter A value of zero; if
dependence exists, we would have a non-zero A where its value depends on the un-
derlying multinomial probabilities. More generally, if we have a J phenotypes and K
genetic variants, assuming a J X K multinomial distribution, the statistic will follow
approximately a )(3(/1) distribution with v = (J — 1)(K — 1) degrees of freedom,
when sample sizes are large.

The same asymptotic distributional approximations also apply to the likelihood
ratio statistic, and many other statistics under slightly different modeling assumptions
(Gao et al.| [2019). These association tests are performed at each of the p SNP
marker locations throughout the whole genome, and we arrive at p statistics having
approximately (non-central) chi-square distributions, /\(‘2,(1.) (A@), fori =1,...,p,
where A = (/l(i))f:1 is the p-dimensional non-centrality parameter.

Although the number of tested genomic locations p can sometimes exceed 10° or
even 100, it is often believed that only a small set of genetic locations have tangible
influences on the outcome of the disease or the trait of interest. Under the stylized
assumption of sparsity, A is assumed to have s non-zero components, with s being
much smaller than the problem dimension p. The goal of researchers is again two-
fold: (1) to test if A(i) = O for all i, and (2) to estimate the set S = {i : A1(i) # 0}. In
other words, we look to first determine if there are any genetic variations associated
with the disease; and if there are associations, we want to locate them.

The chi-square model also plays an important role in analyzing variable
screening problems under omnidirectional alternatives. A primary example is mul-
tiple testing under two-sided alternatives in the additive error model where the
errors € are assumed to have standard normal distributions.

Under two-sided alternatives, unbiased test procedures call for rejecting the hy-
pothesis u(i) = 0 at locations where observations have large absolute values, or
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equivalently, large squared values. Taking squares on both sides of (I.I), and we
arrive at Model with non-centrality parameters A(i) = u?(i) and degree-of-
freedom parameter v = 1. In this case, the support recovery problem is equivalent
to locating the set of observations with mean shifts, S = {i : u(i) # 0}, where the
mean shifts could take place in both directions.

Therefore, a theory for the chi-square model naturally lends itself to the study
of two-sided alternatives in the Gaussian additive error model (L.I). In comparing
such results with existing theory on one-sided alternatives, we will be able to quantify
if, and how much of a price has to be paid for the additional uncertainty when we
have no prior knowledge on the direction of the signals.

1.3 Contents

Important notions and definitions in high-dimensional testing problems are recalled
in Chapter [2| We review related literature as well as key concepts and technical
results used in our subsequent analyses.

In Chapter [3] we study the sparse signal detection and support recovery prob-
lems for the additive error model when components of the noise term € are
independent standard Gaussian random variables. In particular, we point out several
new phase transitions in signal detection problems, and provide a unified account
of recently discovered phase transitions in support recovery problems. These result
show that as the dimension p — oo, the tasks of detecting the existence of signals, or
identifying the support set S are either doable or impossible depending on the spar-
sity and signal sizes of the problems. We also identify commonly used procedures
that attain the performance limits in both detection and support recovery problems.

Both the Gaussianity assumption and the independence assumption are relaxed in
Chapter[4] Established are the necessary and sufficient conditions for exact support
recovery in the high-dimensional asymptotic regime for the large class of threshold-
ing procedures. This is a major theoretical contribution of our approach, which solves
and expands on open problems in the recent literature (see/Butucea et al.|(2018));|Gao
and Stoev| (2020)). The analysis of support recovery problem is intimately related
to a concentration of maxima phenomena in the analysis of extremes. The latter
concept is key to understanding the role played by dependence in the phase transi-
tion phenomena of high-dimensional testing problems. In Chapter [5| we study the
universality of the phase-transition phenomenon in exact support recovery. We do so
by first establishing the finite-sample Bayes optimality and sub-optimality of thresh-
olding procedures. This, combined with the results from Chapter [ culminates in
asymptotic minimax characterizations of the phase transition phenomenon in exact
support recovery across all procedures for a large class of dependence structures.

The dependence condition defined by the concentration of maxima concepts is
further demystified in Chapter [6] for Gaussian errors. We offer a complete charac-
terization of the concentration of maxima phenomenon, known as uniform relative
stability, in terms of the covariance structures of the Gaussian arrays. This result
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may be of independent interest since it relates to the so-called superconcentration
phenomenon coined by |Chatterjee (2014). See also, (Gao and Stoev| (2020) and
Kartsioukas et al.|(2019).

Chapter [/| returns to high-dimensional multiple testing problems, and study the
chi-square model inspired by the marginal association screening problems.
We establish four new phase-transition-type results in the chi-square model, and
illustrate their practical implications in the GWAS application. Our theory enables
us to explain the long-standing empirical observation that small perturbations in
the frequency and penetrance of genetic variations lead to drastic changes in the
discoverability in genetic association studies.



Chapter 2
Risks, Procedures, and Error Models

We establish the background necessary for the study of sparse signal detection and
support recovery problems in this chapter. Sections and [2.2| provide a refresher
on the definitions of statistical risks and some commonly used statistical procedures.
Section describes the asymptotic regime under which we analyze these proce-
dures, and reviews the related literature in high-dimensional statistics. We discuss in
Section[2.4]the connections among the risk metrics, and point out some common fal-
lacies. The remaining sections collect the technical preparations for this text. Section
defines an important class of error distributions which will be analyzed in detail
in later chapters. And finally, Section introduces the concepts of concentration
of maxima, which plays a crucial role in the analysis of high-dimensional support
recovery problems. Finally, in Section we gather well-known but indispensable
facts about Gaussian distributions.

2.1 Statistical risks

We define the statistical risk metrics for signal detection and signal support recovery
problems in this section. Formally, we denote a statistical procedure, i.e., measurable
function of the data, as R = R(x). In the testing context, a procedure R produces
a binary decision T that represents our judgment on the presence or absence of a
signal. In the support recovery problem, a procedure R produces an index set S that
represents our estimate of the signal support. The statistical risks are then suitable
functionals of T and S in respective contexts.

Signal detection. Recall that in sparse signal detection problems, our goal is to
come up with a procedure, R(x), such that the null hypothesis is rejected if the data
x is deemed incompatible with the null. In the additive error models context (L.1),
we wish to tell apart two hypotheses

Ho:u@)=0,i=1,...,p, vs. H;:u@) #0, forsomeie{l,...,p}, (2.1)
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based on the p-dimensional observation x. Similarly, in the chi-square model (1.3),
we look to test

Hy:2G@)=0,i=1,...,p, vs. H;:A@() #0, forsomeie€ {l,...,p}. 2.2)

Since the decision is binary, we may write the outcome of the procedure in the form
of an indicator function, T(R(x)) € {0, 1}, where T = 1 if the null is to be rejected
in favor of the alternative, and 0 if we fail to reject the null. The Type I and Type
II errors of the procedure, i.e., the probability of wrong decisions under the null
hypothesis Hj and alternative hypothesis |, respectively, are defined as

a(R) :=Pq, (T(R(x))=1) and B(R) =Py, (T(R(x)) =0). (2.3)

The Neyman-Pearson framework of hypothesis testing then seeks tests that minimize
the Type II error of the test, while controlling the Type I error of the test at low levels.
We are particularly interested in the sum of the two errors,

risk? (R) := a(R) + B(R), (2.4)

which shall be referred to as the risk of signal detection (of the procedure R). It is
trivial that a small risk® would imply both small Type I and Type II errors of the
procedure.

Signal support recovery. Turning to support recovery problems, our goal is to
design a procedure that produces a set estimate S (R(x)) of the true index set of
relevant variables S. For example, in the sparse additive error model we aim
to estimate S = {i : u(i) # 0}, while in the sparse chi-square model the goal
is to estimate S = Ll : A(i) # 0}. For simplicity of notation, we shall write S for the
support estimator S(R(x)).

For a given procedure R, its false discovery rate (FDR) and false non-discovery

rate (FNR) are defined, respectively, as

1S\ S|

IS\ S|
max{|S|, 1}

FDR(R) :=E —
max{|S|, 1}

] and FNR(R) :=E

} , 2.5)

where the maxima in the denominators resolve the possible division-by-0 problem.
Roughly speaking, FDR measures the expected fraction of false findings, while FNR
describes the proportion of Type II errors among the true signals, and reflects the
average marginal power of the procedure.

A more stringent criterion for false discovery is the family-wise error rate (FWER),
defined to be the probability of reporting at least one finding not contained in the
true index set. Correspondingly, a more stringent criterion for false non-discovery is
the family-wise non-discovery rate (FWNR), i.e., the probability of missing at least
one signal in the true index set. That is,

FWER(R) := 1 -P[SC S] and FWNR(R):=1-P[SC S]. (2.6)
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We introduce five different statistical risk metrics, each having different asymp-
totic limits in the support recovery problems as we will see in Chapter 3] Following
Arias-Castro and Chen (2017), we define the risk for approximate support recovery
as

risk® (R) := FDR(R) + FNR(R). 2.7)

Analogously, we define the risk for exact support recovery as
riskE(R) := FWER(R) + FWNR(R). (2.8)

Two closely related measures of success in the exact support recovery risk are the
probability of exact recovery,

P[S=S]=1-P[S%S], (2.9)

and the Hamming loss

)4
H(S, ) :=|Sas| = Z |156) - 15 (2.10)
i=1

which counts the number of mismatches between the estimated and true support sets.

The relationship between probability of support recovery P[S = S], exact support
recovery risk risk®, and the expected Hamming loss E[H (§, S)] will be discussed in
Section 2.4]below.

Notice that all risk metrics introduced so far penalize false discoveries and missed
signals somewhat symmetrically — the approximate support recovery risk combines
proportions of errors, the exact supportrecovery risk combines probabilities of errors,
and the Hamming loss increments the risk by one regardless of the types of errors
made. In applications, however, attitudes towards false discoveries and missed signals
are often asymmetric. In the example of GWAS, where the number of candidate
locations p could be in the millions, and a class imbalance between the number of
nulls and signals exists, researchers are typically interested in the marginal (location-
wise) power of discovery, while exercising stringent (family-wise) false discovery
control. These types of asymmetric considerations, while important in applications,
have not been studied theoretically. For example, the GWAS application motivates
the exact-approximate support recovery risk, which weighs both the family-wise
error rate and the marginal power of discovery:

riskFA(R) := FWER(R) + FNR(R). (2.11)

The somewhat cumbersome name and notation are chosen to reflect the asymmetry
in dealing with the two types of errors in support recovery. Namely, when the risk
metric (2.11) vanishes, we have “exact false discovery control, and approximate false
non-discovery control” asymptotically.

Analogously, we consider the approximate-exact support recovery risk
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risk*E(R) := FDR(R) + FWNR(R), (2.12)

which places more emphasis on non-discovery control over false discovery.

Theoretical limits and performance of procedures in support recovery problems
will be studied in terms of the five risk metrics 2.7), 2.8), (2.9), (2.11) and (2.12),
in Chapters[3][d] and[7] We are particularly interested in fundamental limits of signal
detection and support recovery problems in terms of these metrics, as well as the
optimality of commonly used procedures in high dimensional settings.

2.2 Statistical procedures

We review some popular procedures for signal detection and signal support recovery
tasks in this section.

Signal detection. One of the commonly used statistics in sparse signal detection
problems such as and are the L, norms of the observations x,

p l/q
Ly(x) = (Z |x(i>|Q) . 2.13)
i=1

Typical choices of g include g = 1,2 and oo, where L, (x) is interpreted as the limit
of L,(x) norms as ¢ — oo, and is equivalent to max; |x(i)|. Test procedures based
on may then be written as T(R(x)) = 1(;,+00)(Lg(x)), where the cutoff # can
be chosen to control the Type I error at desired levels.

While (2.13) measures the deviation of the data from the origin in an omnidirec-
tional manner, statistics that are tailored to the alternatives can be used in the hopes
of power improvement if the directions of the alternatives are known. For example,
in the additive error model (I.I), suppose we want to test for positive mean shifts,
i.e., one-sided alternative

Hy : u(@) >0, forsomei € {1,...,p}. (2.14)

Then, one might consider monitoring the sum (or equivalently, the arithmetic aver-
age) of the observations,

)4
T(x) = Z x(i), (2.15)
i=1

or the maximum of the observations,

M(x) = _nlqax x(i). (2.16)
i=1,...,p

Other tests based on the empirical CDF are also available. Assuming the same
one-sided alternative, let
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q(i) = 1=sup{Fi(y) : y<x@}, i=1....p, 2.17)

be the p-values of the individual observations, where F; is the CDF of the i-th
component x (i) under Hy. We define empirical CDF of the p-values as

~ 1 <&
Fp) =2 D Loa(@). 2.18)
i=1

Viewed as random elements in the space of cadlag functions with the Skorohod J;
topology, the centered and scaled CDFs converge weakly to a Brownian bridge,

{‘/E(FP(I)_I)LE[O’“ = {B(O}ie0,17> asp— o,

under the global null H, and mild continuity assumptions on the F;’s (Skorokhod,
1956)). Therefore, goodness-of-fit statistics such as Kolmogorov-Smirnov distance
(Smirnov, |1948), Cramer-von Mises-type statistics (Cramér} [1928; |Anderson and
Darling, [1952) that measure the departure from this limiting behavior can be used
for testing Ho against H . Of particular interest is the higher criticism (HC) statistic,
first proposed by [Tukey (1976),

HC(x) = max Fp®) 1

0<t<ayp \/ﬁ

Each of the above statistics Ly, S, M, or HC, givesrise to a decision rule, whereby
the null hypothesis is rejected if the statistic exceeds a suitably calibrated threshold.
The choice of the threshold is typically determined based on large-sample limit
theorems. For example, as shown in Theorem 1.1 of |Donoho and Jin|(2004), under
the null hypothesis

(2.19)

HC(x)
y2loglog(p)

as p — oo. Thus, one decision rule is to reject Ho, if HC(x) > t(p, a@p), where
t(p,ap) = y2loglog(p)(1 + o(1)). As we will see, this yields an optimal signal
detection procedure (see also Theorem 1.2 in [Donoho and Jin} [2004). The perfor-
mance of these statistics in high-dimensional sparse signal detection problems will
be reviewed in Section and analyzed in Chapter 3]

— 1, in probability,

Signal support recovery. In signal support recovery tasks, we shall study the
performance of five procedures, all of which belong to the broad class of thresholding
procedures.

Definition 2.1 (Thresholding procedures). A thresholding procedure for estimat-
ing the support S := {i : A(i) # 0} is one that takes on the form

S={ilx@) > t(x)}, (2.20)
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where the threshold #(x) may depend on the data x.

Examples of thresholding procedures include ones that aim to control FWER
[2-.6) — Bonferroni’s (Dunn, [1961), Siddk’s (Siddk, |1967), Holm’s (Holm, (1979),
and Hochberg’s procedure (Hochberg, [1988) — as well as procedures that tar-
get FDR (2.3), such as the Benjamini-Hochberg [Benjamini and Hochberg| (1995))
and the Barber-Candes procedure (Barber and Candes, 2015). Indeed, the class of
thresholding procedures is so general that it contains most (but not all) of the
statistical procedures in the multiple testing literature.

Under the assumption that the data x(i)’s under the null have a common marginal
distribution F, we review five thresholding procedures for support recovery, starting
with the well-known Bonferroni’s procedure which aims at controlling family-wise
error rates.

Definition 2.2 (Bonferroni’s procedure). Bonferroni’s procedure with level « is
the thresholding procedure that uses the threshold

tp=F (1-a/p). 2.21)

where F (1) = inf {x : F(x) > u} is the generalized inverse function.

The Bonferroni procedure is deterministic, i.e. non data-dependent, and only de-
pends on the dimension of the problem and the null distribution. A closely related
procedure is Sidak’s procedure (Siddk, |[1967), which is a more aggressive (and also
deterministic) thresholding procedure that uses the threshold

ty=F((1-a)'P). (2.22)

The third procedure, strictly more powerful than Bonferroni’s, is the so-called
Holm’s procedure (Holm, [1979). On observing the data x, its coordinates can be
ordered from largest to smallest x(i1) > x(i2) > ... > x(ip), where (i1,...,ip) isa
permutation of {1, ..., p}. Denote these order statistics as x[ij, X2, - - ., X[p]-

Definition 2.3 (Holm’s procedure). Let i* be the largest index such that
F(x[l-]) <a/(p-i+1), forall i <i".
Holm’s procedure with level « is the thresholding procedure with threshold
tp(x) = x(je. (2.23)

In contrast to the Bonferroni procedure, Holm’s procedure is data-dependent. A
closely related, more aggressive (and also data-dependent) thresholding procedure is
Hochberg’s procedure (Hochberg, 1988). It replaces the index i* in Holm’s procedure
with the largest index such that

F(xp) < af/(p—i+1).

Notice that both Holm’s and Hochberg’s procedures compare p-values to the same
thresholds «/(p—i+1). However, Holm’s procedure only rejects the set of hypotheses
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whose p-values are all smaller than their respective thresholds. On the other hand,
Hochberg’s procedure rejects the set of hypotheses as long as the largest of their
p-values fall below its threshold, and therefore, can be more powerful than Holm’s
procedure.

It can be shown that both Bonferroni’s and Holm’s procedures control FWER at
their nominal levels, regardless of dependence in the data (Holm,|1979). In contrast,
Siddk’s and Hochberg’s procedures control FWER at nominal levels when data are
independent (Sidak, |1967; Hochberg, |1988).

Last but not least, we review the BH procedure, which aims at controlling FDR
in (2.5)), proposed by Benjamini and Hochberg| (1995).

Recall the order statistics of our observations are: x1] > x[21 > ... 2 X[p].

Definition 2.4 (Benjamini-Hochberg’s procedure). Let i* be the largest index such
that _
F(xp) < ai/p.

The Benjamini-Hochberg (BH) procedure with level « is the thresholding procedure
with threshold
tp(x) = X[, (2.24)

The BH procedure is shown to control the FDR at level @ when the x(i)’s are
independent (Benjamini and Hochberg, |1995)). Variations of this procedure have
been proposed to control the FDR under certain models of dependent observations
(Benjamini and Yekutieli, [2001).

The performance of these procedures in high-dimensional sparse signal support
recovery problems will be reviewed in Section and analyzed in Chapters [3] @]
and[Z

2.3 Related literature and our contributions

We look to derive useful asymptotic approximations for high-dimensional problems,
and analyze the afore-mentioned procedures in the regime where the dimensionality
of the observations diverge. Throughout this text, we consider triangular arrays of
observations as described in Models and (1.3), and study the performance of
various procedures in the signal detection and support recovery tasks when

p — 0.

The criteria for success and failure in support recovery problems under this high-
dimensional asymptotic regime are defined as follows.

Definition 2.5. We say a sequence of procedures R = R, succeeds asymptotically
in the detection problem (and respectively, exact, exact-approximate, approximate-
exact, and approximate support recovery problem) if

risk’(R) - 0, as p — oo, (2.25)
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where P = D (respectively, E, EA, AE, A).

Conversely, we say the exact support recovery fails asymptotically in the detec-
tion problem (and respectively, exact, exact-approximate, approximate-exact, and
approximate support recovery problem) if

liminfrisk?(R) > 1, as p — oo, (2.26)

where P = D (respectively, E, EA, AE, A).

The choice of the constant 1 in the definition (2.26) allows us to declare failure for
trivial testing procedures. For example, trivial deterministic procedures that always
reject, and ones that always fail to reject, both have statistical risks 1 in either the
detection or the support recovery problem. Similarly, a trivial randomized procedure
that reject the nulls uniformly at random also has risk of 1, and is declared as a failure
in both problems.

Signal detection. The asymptotic behavior of the statistical risk in signal detection
problems in high dimensions was first studied by Yuri Izmailovich Ingster in the
context of sparse additive models with independent and Gaussian components.
Specifically, Ingster| (1998) considered the behavior of the theoretically optimal
likelihood ratio (LR) test in the high-dimensional asymptotic regime, where the
dimension p grows to infinity. Then, under certain parameterization of the size and
sparsity of the signal y, a dichotomy exists: either risk? (R) vanishes as p — oo
where R is the LR test, or liminf, risk? (R) = 1 for any procedure. The precise
signal size and sparsity parameterizations as well as the so-called detection boundary
discovered by Ingster are described in Chapter 3]

The LR test, unfortunately, relies on the knowledge of the signal sparsity and
signal sizes which are not available in practice. The sparsity-and-signal-size-agnostic
statistic HC in (2.19) was identified to attain such optimal performance limits in
sparse Gaussian models in|Donoho and Jin|(2004). A modified goodness-of-fit test
statistic in |Zhang| (2002)), and two statistics based on thresholded-L; and L, norms
in|{Zhong et al. (2013)) were also shown to be asymptotically optimal in the detection
problem. Recent studies have also focused on the behavior of detection risk
in dense and scale mixture models |Cai et al.| (2011), under general distributional
assumptions (Cai and Wu|2014;|Arias-Castro and Wang|, 2017)), as well as when the
errors are dependent (Hall and Jin, 2010). A comprehensive review focusing on the
role of HC in detection problems can be found in|\Donoho and Jin (2015). The very
recent contribution of|Li and Fithian (2020) shows exciting new developments on the
detection problem in a more realistic regime than the ones previously studied in the
literature. It shows that the max statistic begins to attain the optimal boundary and
is on par with HC (cf Table 1, therein). Notwithstanding the extensive literature on
the detection problem, the performances of simple statistics such as L, norms (2.13)
and sums (2.13), to the best of our knowledge, have only been sparingly documented.
We gather relevant results in Chapter [3] and make several new contributions on the
performance of several statistics commonly used in practice.
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Exact support recovery. There is a wealth of literature on the so-called sparsis-
tency (i.e., P[S = S] — 1as p — o0) problem in the regression context. Sparsistency
problems were pursued, among many others, by Zhao and Yu (2006)) and Wasserman
and Roeder (2009) in the high-dimensional regression setting (where the number of
samples n < p), and by [Meinshausen and Biihlmann| (2006) in graphical models.
Although there have been numerous studies on the sufficient conditions for sparsis-
tency, efforts on necessary conditions have been scarce. Notable exceptions include
‘Wainwright|(2009a,b) and|Comminges and Dalalyan (2012) in regression problems.
We refer the reader to the recent book by |Wainwright| (2019)) (and in particular, the
bibliographical sections of Chapters 7 and 15 therein) for a comprehensive review.

Elaborate asymptotic minimax optimality results under the Hamming loss were
derived for methods proposed in Ji and Jin|(2012) and [Jin et al.| (2014) for regres-
sion problems. More recently, Butucea et al. (2018)) also obtained similar minimax
optimality results for a specific procedure in the Gaussian additive error model
in terms of the expected Hamming loss.

Nevertheless, two important questions remained unanswered. Namely, precise
phase-transition-type results for the exact support recovery risk and for the
support recovery probability have not been established. And secondly, perfor-
mance of commonly used statistical procedures reviewed in Section[2.2]in terms of
these risk metrics have not been studied. Some of our main contributions in this text
are the solutions to these problems, presented in Chapters[3|and[]below. Specifically,
we show that the Bonferroni thresholding procedure (among others) is asymptotically
optimal for the exact support recovery problem in under broad classes of error
distributions. Furthermore, a phase-transition in the exact support recovery problem
for thresholding procedures is established under broad dependence conditions on the
errors using the concentration of maxima phenomenon (Chapter [d). We also estab-
lish finite-sample Bayes optimality and sub-optimality results for these procedures
under independence, and by extension, arrive at minimax optimality results for the
exact support recovery problem (Chapter [3)).

The landscape of the fundamental statistical limits in support estimation is yet to
be fully charted. We conjecture, however, that the general concentration of maxima
phenomenon will lead to its complete solution under very broad error dependence
scenarios.

Approximate support recovery. The performance limits of FDR-controlling
procedures in the support recovery problem have been actively studied in recent years.
The asymptotic optimality of the Benjamini-Hochberg procedure was analyzed under
decision theoretic frameworks in |(Genovese and Wasserman| (2002); Bogdan et al.
(2011); Neuvial and Roquain| (2012), with main focus on location/scale models.
In particular, these papers show that the statistical risks of the procedures come
close to that of the oracle procedures under suitable asymptotic regimes. Strategies
for dealing with multiple testing under general distributional assumptions can be
found in, e.g., [Efron (2004, Storey|(2007), and |Sun and Cai| (2007). The two-sided
alternative in the additive error model was featured as the primary example in|Sun
and Cai| (2007)).
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In the additive error model under independent Gaussian errors and one-sided
alternatives , Arias-Castro and Chen| (2017)) showed that a phase transition
exists for the approximate support recovery risk (2.7). The BH procedure (Ben-
jamini and Hochberg, [1995), and the Barber-Candes procedure (Barber and Candes,
2015) were identified to be asymptotically optimal. However, |Arias-Castro and Chen
(2017)), as all related work so far, assumed the non-nulls to follow a common alterna-
tive distribution. We derive a new phase transition result that relaxes this assumption
on the alternatives in Chapter 3]

Asymmetric statistical risks. Although weighted sums of false discovery and
non-discovery have been studied in the literature mentioned above, the case of simul-
taneous family-wise error control and marginal, location-wise power requirements,
has not been previously considered. As a result, asymmetric statistical risks such as
[2.11) and have not been investigated. As argued in Section[2.] the properties
of these asymmetric risks are of important practical concern in applications such as
GWAS. We study the asymptotic behavior of these risks in Chapters [3|and[7] of this
text.

Chi-square models and GWAS. The high-dimensional chi-square model
seemed to have received little attention in the literature. While the sparse signal
detection problem in the chi-square model has been studied |Donoho and Jin|(2004)),
to the best of our knowledge, asymptotic limits of the support recovery problems
have not been studied. The chi-squared model and the motivating GWAS application
are analyzed in Chapter[7] The results obtained therein help us explain a phenomenon
in GWAS where statistical power decays sharply as function of sample size when the
latter is in a small region known as the steep part of the power curve. This empirical
fact has long been observed by statistical geneticists but has not been mathematically
quantified. |Gao et al. (2019) provide further details on the power and design in
GWAS as well as an accompanying interactive statistical software (Gao, |2019).

2.4 Relationships between the asymptotic risks

We now elaborate on the relationship between statistical risks, as promised in Section
[2.1] The first lemma concerns the asymptotic relationship between the probability
of exact recovery (2.9) and the risk of exact support recovery (2.8).

Lemma 2.1. For any sequence of procedures for support recovery R = Rp,, we have
P[S=S] =1 e risk®(R) - 0, (2.27)

and R
P[S = S] » 0 = liminfriskE(R) > 1, (2.28)

as p — oo. Dependence on p and R was suppressed for notational convenience.
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Proof (Lemma . Notice that {§ = S} implies {§ c Sin {§ D S}, therefore we
have for every fixed p,

riskE = 2 —=P[S C S]-P[S C §] < 2 - 2P[S = S]. (2.29)

On the other hand, since {§ # S} implies {§ Z S}u{ S 2 S}, we have for every fixed

b ~ ~ ~ ~
1-P[S=8]=P[S#S]<2-P[SCS]-P[SC S] = risk". (2.30)

Relation (2.27) follows from (2.29) and (2.30), and Relation (2.28) from (2.30). O

By virtue of Lemma [2.1] it is sufficient to study the probability of exact support
recovery P[S = S] in place of risk®, if we are interested in the asymptotic properties

of the risk in the sense of (2.25) and (2.26).

Keen readers must have noticed the asymmetry in Relation (2.28) when we
discussed the relationship between the exact support recovery risk and the
probability of exact support recovery (2.9). While a trivial procedure that never
rejects and a procedure that always rejects both have risk® equal to 1, the converse
is not true. For example, it is possible that a procedure selects the true index set S
with probability 1/2, but otherwise makes one false inclusion and one false omission
simultaneously. In this case the procedure will have

riskE =1, and P[S=S]=1/2

showing that the converse of Relation is in fact false.

The same argument applies to risk”: a procedure may select the true index set
S with probability 1/2, but makes enough false inclusions and omissions the rest
of the time, so that risk” is equal to one. Therefore, although the class of methods
with risks equal to or exceeding 1 certainly contains the trivial procedures that we
mentioned, they are not necessarily “useless’” as some researchers have claimed (cf.
Remark 2 in |Arias-Castro and Chen, [2017)).

Upper and lower bounds for FDR and FNR can be immediately derived by
replacing the numerators in (2.3) with the Hamming loss,
H(S,S)

< FDR + FNR < E —
max{min{|S], | S|}, 1}

. H(S,S)
max{|S], |S], 1}

} . (2.31)

Therefore, it is sufficient, but not necessary, that the Hamming loss vanish in order
to have vanishing approximate support recovery risks (2.7).

Turning to the relationship between the probability of exact support recovery (2.9)
and Hamming loss (2.10), we point out a natural lower bound of the former using
the expectation of the latter,

p
PIS =812 1-E[H(,$)]=1- ) E|lg() - 1s()|. (2.32)

i=1
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A key observation in Relation (2.32) is that the expected Hamming loss decouples
into p terms, and the dependence of the estimates 15(/) among the p locations no
longer plays any role in the sum. Therefore, studying support recovery problems
via the expected Hamming loss is not very informative especially under severe
dependence, as the bound may become very loose. Vanishing Hamming loss
is again sufficient, but not necessary for P[S = S] or the exact support recovery risk
to fo to zero.

2.5 The asymptotic generalized Gaussian (AGG) models

We introduce a fairly general class of distributions known as asymptotic generalized
Gaussians AGG. We also state some of their tail properties which play important
roles in the analysis of phase transitions of high-dimensional testing problems.

Definition 2.6. A distribution F is called asymptotic generalized Gaussian with
parameter v > 0 (denoted AGG(v)) if

1. F(x) € (0,1) forall x € R, and
2.log F(x) ~ —1x" and log F(-x) ~ —1(-x)”,

where F(x) = 1 — F(x) is the survival function, and a(x) ~ b(x) is taken to mean
limy e a(x)/b(x) = 1.

The AGG models include, for example, the standard Gaussian distribution (v = 2)
and the Laplace distribution (v = 1) as special cases. Since the requirement is only
placed on the tail behavior, this class encompasses a large variety of light-tailed
models. This class is commonly used in the literature on high-dimensional testing
(Cai et al.,[2007; |Arias-Castro and Chen, [2017).

Proposition 2.1. The (1/p)-th upper quantile of AGG(v) is
u, == F~(1=1/p) ~ (vlogp)'’”, as p — o, (2.33)
where F~(q) = inf{x : F(x) > q}, q € (0, 1).

Proof (Proposition[2.1). By the definition of AGG, for any € > 0, there is a constant
C = C(e) such that for all x > C, we have

1 — 1
——x"(1+¢€) <logF(x) <——x"(1 —e).
v %
_1 1/v
Therefore, for all x < x; := ((1 +¢€)  vlog p) , we have

1 — _
—logp = —;xlv(l +€) < log F(x;) < log F(x), (2.34)



2.6 Rapid variation and relative stability 19

1/v
and for all x > x, := ((1 - e)"vlogp) / , we have

log F(x) <log F(x,) < —%x‘;(l —€) =—logp. (2.35)
By definition of generalized inverse,
up = F~(1-1/p) = inf{x : F(x) < 1/p} = inf{x : log F(x) < —logp}.
We know from relations and that
[x,, +00) C {x : log F(x) < —log p} C [x;, +c0),

and so x; < up, < x,, and the expression for the quantiles follows. O

2.6 Rapid variation and relative stability

The behavior of the maxima of identically distributed random variables has been
studied extensively in the extreme value theory literature (see, e.g.,|Leadbetter et al.,
1983} [Resnick, [2013; [Embrechts et al.,2013; |De Haan and Ferreira, 2007, and the
references therein). The concept of rapid variation plays an important role in the
light-tailed case.

Definition 2.7 (Rapid variation). The survival function of a distribution, f(x) =
1 — F(x), is said to be rapidly varying if

0, t>1
1, =1 . (2.36)
oo, O<r<l1

. F(tx)
lim — =
X—00 F(X)

When F(x) < 1 for all finite x, Gnedenko| (1943) showed that the distribution F’
has rapidly varying tails if and only if the maxima of independent observations from
F are relatively stable in the following sense.

Definition 2.8 (Relative stability). Let €, = (ep(i))il be a sequence of random
variables with common marginal distribution F. Define the sequence (up);":l to be
the (1 — 1/p)-th generalized quantile of F, i.e.,

u, = F<(1-1/p). (2.37)

The triangular array & = {€,, p € N} is said to have relatively stable (RS) maxima if

1 P
—M, ;= — max €,(i) > 1, as p— oo (2.38)
Up Up i=1,...,p
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In the case of independent and identically distributed €, (i)’s, BarndorfI-Nielsen
(1963) and Resnick and Tomkins (1973) obtained necessary and sufficient conditions
for the almost sure stability of maxima, where the convergence in holds almost
surely. See also Klass (1984)) for further sharp results on almost sure stability, and
Naveau| (2003) for almost sure stability in stationary sequences. Here, we will only
need the weaker notion in but extend our inquiry to the case of dependent
€p(i)’s.

While relative stability (and almost sure stability) is well-understood in the in-
dependent case, the role of dependence has not been fully explored. We start this
investigation with a small refinement of Theorem 2 in (Gnedenko|(1943) valid under
arbitrary dependence.

Proposition 2.2 (Rapid variation and relative stability). Assume that the array
& consists of identically distributed and possibly dependent random variables with
cumulative distribution function F, where F(x) < 1 for all finite x > 0.

1. If F has rapidly varying right tail in the sense of ([2.36)), then for all § > 0,

F((1+8)up) R

>1- —
F(up)

1
P [—M,, <1+6 1. (2.39)

Up

2. If the array & has independent entries, then it is relatively stable if and only if F
has rapidly varying tail, i.e., (2.36) holds.

Proof (Proposition . By the union bound and the fact that pf(up) < 1, we have

F((1+ 6)up)

— (2.40)
F(“p)

P[M,, > (1 + 8)u,] < pF((1 + Sup) <

In view of (2.36) (rapid variation) and the fact that u, — co, as p — oo, the right-
hand side of (2.40) vanishes as p — oo, for all § > 0. This completes the proof of
([2.39). Part 2 is a re-statement of a classic result dating back to [Gnedenko| (1943).

O

Remark 2.1. Part (1) of Proposition [2.2]is equivalent to

P[MLMP > 1+6p] — 0, asp — oo, 2.41)
P

for some positive sequence 6, — 0. Notice on the other hand that, if M, is the
maximum of p iid variables with distribution F, the relative stability property entails
M /u, — 1, in probability, as p — co. Since the sequence 1 + 6, — 1, Relation
means that the rate of growth of the maxima M,, in & cannot be faster than
that of the independent maxima M,,. This somewhat surprising fact holds regardless

of the dependence structure of & and is solely a consequence of the rapid variation
of F.
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We demonstrate next that the Gaussian, Exponential, Laplace, and Gamma dis-
tributions all have rapidly varying tails.

Example 2.1 (Generalized AGG). A distribution is said to have Generalized AGG
right tail, if log F is regularly varying,

log F(x) = —x"L(x), (2.42)

where v > 0 and L : (0, +00) — (0, +o0) is a slowly varying function. (A function
is said to be slowly varying if limy_, L(x)/L(x) = 1 for all + > 0.) Note that the
AGG(v) model corresponds to the special case where L(x) — 1/v, as x — oo.
Relation holds for all arrays & with generalized AGG marginals; if the
entries are independent, the maxima are relatively stable. This follows directly from
Proposition once we show that F has rapidly varying tail. Indeed, by (2.42), we

have
, L(tx) -1
L(x) )

which converges to —co, 0, and +oco, as x — oo, whent > 1,¢ = 1, and t < 1,
respectively, since x” L(x) — oo as x — co by definition of L.

log (F(1x)[F(x)) = —L(x)x" (z

The AGG class encompasses a wide variety of rapidly varying tail models such
as Gaussian and double exponential distributions. The larger class is needed,
however, for the Gamma distribution.

More generally, distributions with heavier tails (e.g., log-normal) and lighter tails
(e.g., Gompertz) outside the generalized AGG class may also possess rapidly
varying tails; heavy-tailed distributions like the Pareto and t-distributions, on the
other hand, do not. More details on these alternative classes of models can be found

in Chapter

2.7 Auxiliary facts about Gaussian distributions

We end this chapter with several facts about univariate and multivariate Gaussian
distributions that will be used in the rest of the manuscript.

Relative stability. We first state the relative stability of iid standard Gaussian
random variables. Since the standard Gaussian distribution falls in the class of
asymptotically generalized Gaussians (AGG; see Definition [2.6), by Example
we know that the triangular array & = {(ep, (i ))ip:l, p € N} has relatively stable (RS)
maxima in the sense of (2.38), i.e.,

1
— max e,(i) > 1, as po oo, (2.43)
Mp i=1,...,p

where u,, is the (1/p)-th upper quantile as defined in (2.33). Similarly, since the
array & has distributions symmetric around 0, it also has relatively stable minima
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1
— min €,(i) E -1, as p— oo. (2.44)
Uup i=1,...p
The convergence in (2.43) also holds almost surely.
Mill’s ratio. We give next the well-known bounds for the Mill’s ratio of Gaussian

tails. Let @ denote the CDF of the standard Gaussian distribution and ¢ its density.
One can show that for all x > 0 we have

X

— 1
50(x) < P(x) =1-D(x) < —¢(x), (2.45)
1+x X
using e.g., integration by parts. Note that this fact may be used to verify the rapid
variation of @, which entails the relative stability property above.

Stochastic monotonicity. The third fact is the stochastic monotonicity of the
Gaussian location family. In fact, for all location families {Fs(x)}s where Fs(x) =
F(x - 6), we have,

Fs,(t) > F5 (1), forall teR andall & < 6. (2.46)

Relation (2.46) holds, of course, when F is the standard Gaussian distribution.

Slepian’s lemma and the Sudakov-Fernique inequality. The following two
results will be instrumental in our characterization of uniform relative stability for
Gaussian triangular arrays in Chapter [6] The first is the celebrated result due to
Slepian|(1962).

p

Theorem 2.1 (Slepian’s lemma). Let € = (e(i))l’.’:1 and n = (n(i));_, be two multi-
variate normally distributed random vectors with zero means E[e(i)] = E[n(i)] = 0.
Ifforalli,j=1,---,p, we have

Ele(i)’] =Eln(i)’], and Cov(e(i), e(j)) < Cov(n(i), n(j)).
then € SZI n, ie.,
Ple(@) <x,i=1,---,pl <Pp(i) <x;,i=1,---,pl.

This result implies in particular that M, := max;-,... , €(i) dominates stochasti-
cally M,, := max;—y,... , 7(i) in the sense that

P[M,, > u] <P[M¢ > u], forallu e R. 2.47)
d
In this case, we shall write M, < M,.. This result shows, for example, that the

maximum of iid Gaussians is stochastically larger the maximum of any positively
correlated Gaussian vector with the same marginal distributions.
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Slepian’s lemma can be obtained as a corollary from the general Normal Com-
parison Lemma (see, e.g., Theorem 4.2.1 on page 81 in|Leadbetter et al.,|1983). See
also Ch. 2 in|Adler and Taylor|(2009).

The following result, known as the Sudakov-Fernique inequality, is similar in spirit
to Slepian’s lemma but it does not assume that the Gaussian vectors are centered and
yields a weaker conclusion — an inequality between expectations. For a proof, many
insights, and, in fact, a more general result, see e.g., Theorem 2.2.5 on page 61 in
Adler and Taylor| (2009).

Theorem 2.2 (The Sudakov-Fernique inequality). Ler € = (e(i))!, and n =
(n(i))l.p:1 be two multivariate normally distributed random vectors.
Ifforalli,j=1,---,p, we have

Ele(i)] = Eln())] and E[(n(i) —n(j))*] < El((i) — €())?],
then for Me = max;=y,... p €(i) and M;, = max;-y ... , 7(i), we have
E[M,] < E[M].

With these conceptual and technical preparations, we are ready to discuss the
high-dimensional signal detection and support recovery problems in the next chapter.






Chapter 3
A Panorama of Phase Transitions

The purpose of this chapter is to provide a unified review of the fundamental statistical
limits in the sparse signal detection and support recovery problems. Our goal is to
convey the main ideas and thus we shall focus on the simple but important setting of
independent Gaussian errors. Specifically, we derive the conditions under which the
detection and support recovery problems succeed and fail in the sense of (2.25) and
(2.26), in the additive error model

x(i) = p() + €@, i=1,....p, 3.1)

where the errors €(i)’s are iid standard Gaussians random variables. Once again, we
restrict our analysis to models with independent and identically distributed Gaussian
errors for the moment. Both the distributional assumption and the independence
assumption will be relaxed substantially in the following chapters.

As laid out in Section 2.3] we work under the asymptotic regime where the
problem dimension p diverges to infinity. The set of non-zero entires of the signal
vector u = u, will be referred to as its support and denoted by

Spi=1{i : u@) #0}.
We shall assume that the size of the support is
ISpl = 1p' L Bel] (3.2)

where 3 parametrizes the problem sparsity. A more general parameterization of the
support involving a slowly varying function is considered in Chapter 4]

The closer § to 1, the sparser the support S,. Conversely, when g is close to 0,
the support is dense with many non-null signals. We consider one-sided alternatives
(2.14), and parametrize the range of the non-zero (and perhaps unequal) signals with

A= |2rlogp < (i) < A =[2Flogp, forall i€ S, (3.3)

for some constants 0 < r <7 < +oo.

25
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The parametrization of signal sparsity and signal sizes in the Gaussian
model was first introduced in|{Ingster|(1998)), and later adopted by Hall and Jin (2010),
Cai et al. (2011), [Zhong et al.| (2013)), |Cai and Wu| (2014}, |Arias-Castro and Wang
(2017), and numerous others for studying the signal detection problem in Gaussian
location-scale models. Similar scalings of sparsity and signal size are also used in,
e.g., Ji and Jin (2012), Jin et al. (2014), Butucea et al.| (2018)) to study the phase
transitions of the support recovery problems under Gaussianity assumptions.

It should be noted that the “classical” setting where all signals are of equal size
is not the only one that have been studied. The recent contribution of [Li and Fithian
(2020) investigates the signal detection problem in a more realistic setting where the
signals are drawn from a general and potentially polynomial-tailed distribution. The
study of such general settings in both detection and support recovery problems is an
interesting new direction of research.

3.1 Sparse signal detection problems

The optimality of sparse signal detection was first studied by [Ingster| (1998), who
showed that a phase transition in the r- 8 plane exists for the signal detection problem.
Specifically, consider the so-called detection boundary function:

max{0,8-1/2} 0< B <3/4

(1-VvT=B)" 3/4<B<l.

Assume that the non-zero signal sizes are all equal and parameterized as /2r log p.
If the signal size parameter r is above the detection boundary, i.e., r > fp(f8), then
the global null hypothesis u(i) = O foralli = 1,.. ., p can be distinguished from the
alternative as p — oo in the sense of using the likelihood ratio test. Otherwise,
when the signal sizes fall below the boundary, i.e., 7 < fp(/3), no test can do better
than a random guess. We visualize the detection boundary in the upper panel of
Figure

Adaptive tests such as Tukey’s HC in (Donoho and Jin, 2004) and a
modified goodness-of-fit test statistic of Zhang (2002) have been identified to attain
this performance limit without knowledge of the sparsity and signal sizes. It is also
known that the max-statistic is only efficient when r > (1 ++/1 = )%, and is
therefore sub-optimal for denser signals where 1/2 < 8 < 3/4; see|Cai et al. (2011).
(Recently, |[Li and Fithian (2020) showed that in the more general setting where
signals themselves are dispersed, the sub-optimality of the max statistic disappears
in the detection problem.) In contrast, the sum-of-square-type statistics such as L;
was shown in [Fan| (1996) to be asymptotically powerless when the L,-norm of the
signal || ,u||§ is 0(+4/p), or equivalently, when § > 1/2 in our parametrization.

Notice that the scaling for the signal magnitude A = /2rlogp is useful for
studying very sparse signals (8 > 1/2), but fails to reveal the difficulties of the

fo(B) = { B € (0. 1]. (3.4)
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detection problems when the signals are relatively dense (8 < 1/2). This is because
/o(B) =0, B € (0,1/2]. Thus, a different scaling is needed to study the regime
of small but dense signals. In this case, with slight overloading of notation, we
parametrize signal sizes as

A=p-<u()<A=p", forall i€S,, (3.5)

where r and 7 are negative constants and the signal magnitude vanishes, as p — oo.
In this scaling, for the so-called faint signal regime, |Cai et al.|(2011) established a
phase transition result characterized by the following boundary,

fo(B)=p-1/2, 0<p<1/2 (3.6)

Specifically, if 7 < fp/ (), the signal detection fails in the sense of regardless
of the procedures, while the HC statistic continues to attain asymptotically perfect
detection when r > fpy (). We visualize this boundary in the lower panel of Figure
B.1

To the best of our knowledge, the performance of simple statistics such as Ly, L,
norms, and the sum statistic 7 in (2.15) in this weak signal setting have not been
reported in the literature. Our first theorem establishes the performance of these
simple but popular statistics for detecting sparse signals in high-dimensions, and
summarizes the known results.

Theorem 3.1. Consider the signal detection problem in the triangular array of Gaus-
sian error models (3.1) where the sparsity is parametrized as in (3.2).

(i) For B € (1/2,1) and growing signals sizes as in (3.3), the statistics Ly, L, and
T are asymptotically powerless in the sense of ([2.26).

(ii) For B € (0,1/2] and growing signals sizes as in (3.3), the statistics Ly, L,
and T solve the detection problem in the sense of (2.25).

(iii) For dense and faint signals, i.e., B € (0, 1/2] under the parameterization
(3.3), the sum statistic T attains the optimal detectability boundary in (3.6). That is,
tests based on the sum statistic T can succeed asympiotically in the sense of (2.25)
whenr > 3 —1/2.

(iv) In the dense and faint signal setting of (iii), the Ly and L, statistics are both
sub-optimal. More precisely, they succeed in the sense of (2.25) whenr > 8/2—1/4,
but fail in the sense of (2.26) whenr < B/2 — 1/4.

Proof. The claims in parts (i) and (ii) about the L, L,, and the sum statistic 7" in the
cases of diverging signal sizes can be found in|Fan (1996) and|Candes| (2018)).
We prove here the statements for the cases (iii) and (iv), where the signals are dense
and small, as parametrized in (3.5).

For simplicity of the exposition, we will suppose that in wehaver =r =7,
so that p(i) = p". The general case where r < 7 is left as an exercise.
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signal size r, where A =2 r log(p)
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Fig. 3.1 The phase diagrams of the sparse signal detection problem. Signal size and sparsity are
parametrized by r and 3, respectively. The diagrams illustrate the regions where the signal detection
problem can be solved asymptotically by some of the commonly used statistics: the maximum (M),
the sum-of-squares (L;), the sum-of-absolute values (L), and the sum (7"). In each region of the
diagram, the annotated statistics can make the detection risk vanish, as dimension p diverges.
Conversely, the risks has liminf at least one. The detection problem is unsolvable for very sparse and
weak signals in the undetectable regions. Notice that the L and L, statistics are in fact sub-optimal
for all sparsity levels. On the other hand, the max-statistic remains powerful for sparse signals
(B > 1/2), and is fully efficient when the problem is very sparse (8 > 3/4). The HC statistic can
detect signals in all configurations in the detectable regions; we explicitly marked the region where
signals are only detectable by HC among the statistics considered. See the text and Theorem 3.1

Part (iii): We first show that the sum statistic 7, or equivalently, the simple
arithmetic mean attains the sparse signal detection boundary. By the normality and
independence of the summands, we have

1 i (i) ~ N, 1), under Hy a7
VP 5 N(p"=A*1/2 /1), under Hj. :

It immediately follows that the two distributions can be distinguished perfectly if
p ~B=1/2) diverges, i.e.,r > 8—1/2. This can be seen by simply setting the rejection
region at (p"#*1/2/2, 400) for the scaled statistic 3/, x(i)/+/p. According to the
lower bound on the performance limit in detection problems (see Theorem 8 in
[201T)), we have shown that T attains the optimal detection boundary (3.6).
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Part (iv): We now turn to the Ly-norm statistic. Recall a non-central chi-square
random variable Xi(/l) has mean (k + A) and variance 2(k + 21). Since the obser-
vations have distributions N(0, 1) under the null and N(p”, 1) under the alternative,
we have x%(i) ~ x2(0) fori ¢ S and x>(i) ~ x3(p*") fori € S. Therefore, the mean
and variance of the (centered and scaled) L, statistics are

1 < 2 0 under H
E VP ; ( @) - 1)] = {pl—ﬁp2rp—1/2 = p!2B+2  under H), 3-8)
and
1 < Lop=2 under Hy
Var| — 2 —1)|=4"”
5 24 @ )=t 2p +4p'B2r) = 2(1 +2p2B) under H,
2! ,,
3.9

respectively. By the central limit theorem, we have

1 &
— Z (x@?=1) = N(@. 1), (3.10)
V2r 5
under the null. On the other hand, under the alternative, since pzr B - 0 for all

r < 0and B > 0, the variance in (3.9) converges to 2, as p — oo and an application
of the Lyapunov version of the CLT, entails

)4
\/LZ_p (Z (x@)?-1) - p”z—ﬁ”’) = N(O, 1). (3.11)

Hence, perfect detection with the Ly-norm is possible if p'/2#+>" diverges, i.e.,
r > /2 —1/4. On the other hand, if »r < 8/2 — 1/4, the distributions of the (scaled)
statistics merge under the null and the alternative.

The case of the Li-norm is treated similarly. Let ¥ = |X| where X ~ |[N(g, 1)].
Using the expressions for the mean and variance of Y (see, e.g.,[Tsagris et al.,[2014),

i=1

py = E[Y] = \/ge‘“zﬂ + u(l — O(—p)), (3.12)
oy = Var(Y) = > + 1 - i, (3.13)

where © is the CDF of a standard normal random variable, we have, regardless of
the value of g,

o3 = Var(Y) = E(Y —-EY)? <E(X -EX)* =1, (3.14)

where the inequality holds because absolute value is a Lipschitz function with
Lipschitz constant 1.
By the central limit theorem, we have,
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1 (& 2
%(Z Ix(i)l—\/;) — N(0,1-2/n) (3.15)
i=1

under the null. On the other hand, when the alternative hypothesis holds, we have

1 (& 2\ PP [2 _ep 2

E ﬁ@mm—\/;) aiva (\/;e“ + (1 = 20 (-p)) —\/;
2 2r

=p'*F [ — (e 1) 4 pn (1= 20(-p)

) 2
_ B [ [Z (-7 12-0(p™)) +p" (\/ =p 4+ 0(p3’))
T T

— 2 r r
=p'? ﬁ\/;(pz 2+ 0(p™))
:pl/27ﬁ+2r\/m+ O(p]/27ﬁ+4r),

and

1 (& 2 1 1

—1-2/x,

by the boundedness of o shown in (3.14). Again, by the Lyapunov version of the
central limit theorem, we conclude asymptotic normality of the centered and scaled
Li-norms under the alternative. In an entirely analogous argument to the L,-norm
case, asymptotically perfect detection can be achieved if p!/>#+2" diverges, i.e.,
r > /2 — 1/4. On the other hand, when r < 8/2 — 1/4, the two hypotheses cannot
be told apart by the L;-norms since the distributions of the (scaled) statistics merge
under the two hypotheses. O

The portmanteau of results in Theorem[3.T]are visualized in Figure[3.T] It is worth
noting that the B-r parameter regions where L and L, statistics are asymptotically
powerful coincide, and these statistics are theoretically suboptimal for both sparse
regimes (S > 1/2) and relatively dense regimes (5 < 1/2).

Ideas have been proposed to combine statistics that are powerful for different
alternatives to create adaptive tests that maintain high power for at all sparsity levels.
Such adaptive tests can be constructed, for example, by leveraging the asymptotic
independence of the sum- and supremum-type statistics (Hsing| |1995). Recently,
Xu et al.[(2016) showed that for dependent observations under mixing and moment
conditions, the sum-of-power-type statistics

p

Ly(x) = Z x9 (i) (3.16)

i=1
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with distinct positive integer powers (i.e., ¢ = 1,2,...) are asymptotically jointly
independent, and proposed an adaptive test that monitors the minimium p-value of
tests constructed with Z,q’s. This idea is further developed in Wu et al. (2019) for
generalized linear models and in|He et al. (2018)) with U-statistics.

Optimality properties of such adaptive tests and the optimal choice of the g-
combinations, however, remain open problems. Xu et al. (2016) suggested combining

=1,2,3,...,6,and g = oo, based empirical evidence from numerical experiments.
Theorem - 1 here implies that, at least for detecting one-sided alternatives, the L
statistic (i.e., L, norm) and the L; norm are asymptotically dominated by the L
statistic (or equivalently, the sum 7'). Therefore it is sufficient to include only the
latter in the construction of the adaptive test.

3.2 Sparse signal support recovery problems

Turning to support recovery problems in the Gaussian error model (3.1), in the rest
of this chapter we will analyze the asymptotic performance limits in terms of the risk
metrics for exact, exact-approximate, approximate-exact support recovery problems
(i.e., (2.8), (2.11), and (2.12), respectively), as well as the probability of support
recovery (2.9). We will also review the recent result for exact support recovery risk
by |Arias-Castro and Chen| (2017), to reveal a rather complete landscape of
support recovery problems in high-dimensional Gaussian error models.

In the rest of this chapter, we restrict our attention to the class of thresholding
procedures. Specifically, the lower bounds that we develop in Theorems [3.2]through
below are only meant to apply to thresholding procedures. Although it is intu-
itively appealing to consider only data-thresholding procedures in multiple testing
problems, such procedures are not always optimal in more general settings. The
optimality of thresholding procedures and the consequences of this restriction will
be treated in Chapter[5

Figure illustrates the rich landscape of phase transitions in support recovery
for the various choices of statistical risk for the family of thresholding estimators,
established in the following sections. We end this brief overview with a technical
notion needed in order to state our main results. We define a rate at which the nominal
levels of FWER or FDR go to zero.

Definition 3.1. We say the nominal level of errors & = @, vanishes slowly, if
a—0, and ap® — coforanys > 0. 3.17)

As an example, the sequence of nominal levels «, = 1/log (p) is slowly vanishing,
while the sequence «), = 1/4/p is not.
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signal size r = p?/(2log(p))
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Fig. 3.2 The phase diagram of support recovery problems for the high-dimensional model (3.1),
illustrating the boundaries of the exact support recovery (FWER + FWNR; top curve; Theorem
[3:2), the approximate-exact support recovery (FDR + FWNR; second curve from top; Theorem
[3.5), the exact-approximate support recovery (FWER + FNR; horizontal line = 1; Theorem|[3.4),
and the approximate support recovery problems (FDR + FNR; tilted line r = 8; Theorem[3.3). The
signal detection problem (Type I + Type II errors of the global test; lower curve) was studied in
Donoho and Jin (2004). In each region of the diagram and above, the annotated statistical risk can
be made to vanish, as dimension p diverges. Conversely, the risks has liminf at least one.

3.3 The exact support recovery problem

Our study of the exact support recovery risk begins with a brief review of
existing results for the Hamming loss (2.10). Indeed, as discussions in Section 2.3]
suggest, the latter can be informative of the exact support recovery problems for
models with independent components.

Inspired by the phase transition results for the signal detection problem,
(2012)),[Genovese et al.|(2012)), and [Jin et al | (2014) derived interesting sharp results
on support recovery problems in linear models under the Hamming loss H (E, S).
Specifically, these papers establish minimax-type phase transition results in their
respective settings. Under the sparsity parametrization in and assuming equal
signal sizes of (2r log p)!/?, Hamming losses were shown to diverge to +co when r
falls below the threshold

feB) =1+ =-pH2 (3.18)
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for any method of support estimation. Conversely, under orthogonal, or near-
orthogonal random designs, if r > fg((8), they showed that the methods they
proposed achieve vanishing Hamming loss.

Very recently, Butuceaetal./(2018) studied both asymptotics and non-asymptotics
of support recovery problems in the additive noise model under the assumption
of equal signal sizes, using the Hamming loss. Again, the analysis of asymptotic
optimality focused on a newly proposed procedure which is very specific to the
Gaussian model. It is not at all clear if the optimality properties are a consequence
of its mysterious construction.

We now show that commonly used and computationally efficient procedures can
also be asymptotically optimal in the exact support recovery problem.

Theorem 3.2. Consider the high-dimensional additive error model under in-
dependent standard Gaussian errors, with signal sparsity and size as described in
and (3.3). The function characterizes the phase transition of the exact
support recovery problem. Namely, the following two results hold.

@) If r > fg(B), then Bonferroni’s, Siddk’s, Holm’s, and Hochberg’s procedures
with slowly vanishing nominal FWER levels (as defined in Definition all achieve
asymptotically exact support recovery in the sense of ([2.23).

(ii) Conversely, if ¥ < fg(B), then for any thresholding procedure Ep, we have

IP’[:S’;, = 8,1 — 0. Therefore, in view of Lemma exact support recovery asymp-
totically fails for all thresholding procedures in the sense of (2.26).

We illustrate this result with a g-r phase diagram in Figure [3.2] Theorem
is in fact a special case of the more general Theorem below, which covers
dependent as well as Gaussain and non-Gaussian errors. We will study the exact
support recovery problem in greater detail and generality in Chapter 4]

3.4 The approximate support recovery problem

Arias-Castro and Chen|(2017) studied the performance of the Benjamini-Hochberg
procedure (Benjamini and Hochberg, |1995) and a stripped-down version of the
Candés-Barber procedure (Barber and Candes, [2015)) in approximate support recov-
ery problems when the components of the noise term € in have independent
and symmetric distributions. A phase transition phenomenon for the approximate
support recovery risk was established in the Gaussian additive error model,
where the two aforementioned methods are both shown to be asymptotically optimal.

The analysis therein, however, assumed equal signal sizes for the alternatives. We
generalize the main results of |Arias-Castro and Chen| (2017) to allow for unequal
signal sizes. The key to establishing this generalization is a monotonicity property
of the BH procedure, presented in the following Section [3.5] Namely, the power of
the BH procedure in terms of FNR monotonically increases for stochastically larger
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alternatives. This fact will be formalized in Lemma[3.2] and may be of independent
interest.

Theorem 3.3. In the context of Theorem[3.2) the function

fa(B) =8 (3.19)

characterizes the phase transition of approximate support recovery problem. Specif-
ically the following two results hold.

@) If r > fa(B), then the Benjamini-Hochberg procedure (defined in Section
with slowly vanishing nominal FDR levels (as defined in Definition [3.1) achieves
asymptotically approximate support recovery in the sense of (2.25).

(ii) Conversely, if v < fa(B), then approximate support recovery asymptotically
fails in the sense of (2.20)) for all thresholding procedures.

Proof (Necessary condition in Theorem 3.3). We first show part (ii). That is, when
7 < B, no thresholding procedure is able to achieve approximate support recovery.
The arguments are similar to that in Theorem 1 of |Arias-Castro and Chen (2017,
although we allow for unequal signal sizes.

Denote the distributions of N(0, 1), N(A, 1), and N((A, 1) as Fy, Fy, and F7
respectively.

Recall that thresholding procedures are of the form

Sp = {ilx@) > t,(x)}.

Denote S := {i | x(@) > t,,(x)}, and §(u) :={i| x(i) > u}. For any threshold u > 1,

we must have §(u) C S, and hence

S\SI_ IS\SI __IS\SI_ _ ISw\S|

FDP := — = — > — .
S| ISUST IS\ SI+IS] [S@)\ S| +]|S]

(3.20)

On the other hand, for any threshold u# < ¢, we must have S (u) 2 S, , and hence

IS\ S| _ 1S\ 8@
HE

Since either u > t,, or u < t, must take place, putting (3.20) and (3.21) together, we
have

NDP := (3.21)

S\ S| IS\ S|
1Su) \ S| +1S] 1]
for any u. Therefore it suffices to show that for a suitable choice of u, the RHS of

(3.22) converges to 1 in probability; the desired conclusion on FDR and FNR follows
by the dominated convergence theorem.

FDP + NDP >

, (3.22)
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Let t* = 4/2¢g log p for some fixed g, we obtain an estimate of the tail probability
by Mill’s ratio (2.45),

— 1 1
Fo(t") ~ t—*flﬁ(t*) =———>p (3.23)

2+/nglogp

where a, ~ b, is taken to mean a, /b, — 1. Observe that |§ (t*)\ S| has distribution
Binom(p — s, Fo(t*)) where s = |S|, denote X = X, = |85*) \ SI/1SI, and we have

(p— ) Fo(t)

(= )RR _

u:=E[X]=———"———, and Var(X) = 5 u/s.
s s
Therefore for any M > 0, we have, by Chebyshev’s inequality,
1
PIX < MI<P[X-pl > pu-m] < —H5 - 1ws) (3.24)

(u=M)?  (1-M/p?
Now, from the expression of Fy(¢*) in (3.23), we obtain
— 1
p=pF - DR ~ ——=p".
2+/nglogp

Since 7 < S8, we can pick g such that7 < g < B. Inturn, we have yt — oo, as p — oo.
Therefore the last expression in (3.24) converges to 0, and we conclude that X — oo
in probability, and hence

ISeH\SI X
ISE)\ S| +1s| X +1

— 1 in probability. (3.25)

On the other hand, we show that with the same choice of u = ¢*, we have,

1S\ S|

N — 1 in probability. (3.26)

By the stochastic monotonicity of Gaussian location family (2.46), we have the
following lower bound for the probability of missed detection for each signal u(i),
i €8,

PIN(u(i), 1) < 7] = Fz(t"). (3.27)

Since |S \ S (t*)] can be written as the sum of s independent Bernoulli random
variables,

ISVSE = D" L (X)),

ieS

—~ d

using with (3.27), we conclude that | S\ S(¢*)| > Binom(s, F5(¢*)). Finally, we know
that Fz(1*) converges to 1 by our choice of diverging ¢*, and the necessary condition
is shown. O
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Proof (Sufficient condition in Theorem[3.3)). We now turn to the sufficient condition,
i.e., part (i). That is, when r > g, the Benjamini-Hochberg procedure with slowly
vanishing FDR levels achieves asymptotic approximate support recovery.

The FDR vanishes by our choice of a and the FDR-controlling property of the
BH procedure (Benjamini and Hochberg, |1995)). It only remains to show that FNR
also vanishes.

To do so we compare the FNR under the alternative specified in Theorem to
one with all of the signal sizes equal to A. By Lemma it suffices to show that
the FNR under the BH procedure in this setting vanishes. Let x(i) be vectors of
independent observations with p — s nulls having standard Gaussian distributions,
and s signals having N(A, 1) distributions.

Denote the null and the alternative distributions as Fy and F, respectively. Let
G denote the empirical survival function as in (3.36). Define the empirical survival
functions for the null part and signal part

—~ 1 . ~ 1 :
Waa(1) = —— " 1{x(@) 2 1), Waigna (1) = = " Lx() 21}, (3.28)
P=9ig Sies
where s = |S|, so that
—~ -5 ~ S ~
G(t) = = Waan () + = Wisgna 1)
p P
We need the following result to describe the deviations of the empirical distribu-

tions.

Lemma 3.1 (Theorem 1 oAf Eicker| (1979)). Let Zi, . . ., Z; be iid with continuous
survival function Q. Let Qi denote their empirical survival function and define

& = +/2loglog (k) /k for k > 3. Then
1 10k (2) - 0(2)]
—Sup —— = — 1
&z VO(2)(1-0(2)

in probability as k — oo. In particular,

0x(2) = 0(2) + 0p (&+0(2) (1 - Q(2))),

uniformly in z.

Apply Lemma to the two summands in G, we obtain 6(0 =G(t) + ﬁ(t),
where

G = 22Fw) + 2F, ), (3.29)
p p

R(t) = Op (fp\/Fo(l‘)Fo(f) + ;f‘Y\/F_a(nFa(t)), (3.30)

and

uniformly in 7.
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Recall (see proof of Lemma [3.2) that the BH procedure is the thresholding
procedure with threshold set at

7 = inf{t| Fo(t) < aG(1)). (3.31)

The NDP may also be re-written as

IS\S| 1 . ~
NDP = == = = " 1{x(i) < 7} = 1 - W ,
IS p £ {x@) < 7} 51gnal(T)
so that it suffices to show that
Wiignat (T) — 1 (3.32)

in probability. Applying Lemma to Wsignal, we know that

Waignat (1) = Fu (1) + Op (fs\/F_a(r)Fm)) = Fu(1) + 0p(1).

So it suffices to show that F,(7) — 0 in probability. Now let t* = +/2¢g log(p) for
some g such that 8 < g < r. We have

Fa(t*) = D(1" = A) = B(2(q — 1) log p) — 0. (3.33)

Hence in order to show (3.32)), it suffices to show
Plr<¢t] -1 (3.34)

By (3.29), the mean of the empirical process G evaluated at 1* is
Gy = 2Ry + SFa(r). (3.35)
p p

The first term, using Relation @, is asymptotic to p~9L(p), where L(p) is the
logarithmic term in p. The second term, since F_a(t*) — 1 by Relation (3.33), is
asymptotic to p=#. Therefore, G(t*) ~ p~9L(p) + pP ~ p™, since pP~4L(p) — 0
where g > .

The fluctuation of the empirical process at t*, by Relation (3.30), is

R(t") = Op (fp\/Fo(l*)Fo(f*) + gfs\/F_aa*)Fa (t*))
=0p (fp\/Foa*)) +op (p7).
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By (3.23) and the expression for &, the first term is Op (p‘(q“)/zL(p)) where L(p)
is a poly-logarithmic term in p. Since S < min{g, 1}, we have 8 < (¢ + 1)/2, and
hence E(t*) = op(p7P). _

Putting the mean and the fluctuation of G(#*) together, we obtain

G(r*) = G(t*) + R(t") ~p G(t*) ~ pP,
and therefore, together with (3.23), we have
Fo(t")/G(t*) = PP~IL(p)(1 + 0p(1)),

which is eventually smaller than the FDR level a by the assumption (3.17) and the
fact that 8 < ¢. That is,

P [Fo(t*)/é(r*) < a'] - 1.

By definition of 7 (recall (3.31)), this implies that 7 < ¢* with probability tending to
1, and (3.34) is shown. The proof for the sufficient condition is complete. O

3.5 Monotonicity of the Benjamini-Hochberg procedure

As promised in the previous section, we make a connection between power of the
BH procedure and the stochastic ordering of distributions under the alternative. This
natural result seems new.

Lemma 3.2 (Monotonicity of the BH procedure). Consider p independent obser-
vations x(i), i € {1,...,p}, where the (p — s) coordinates in the null part have
common distribution Fy, and the remaining s signals have alternative distributions
F;, i € S, respectively. Compare the two alternatives j € {1,2}, where the distribu-
tions in Alternative 2 are stochastically larger than those in Alternative 1, i.e.,

Fé(t) < Fli(t), forall teR, andforall i€ S.

If the BH procedure is applied at the same nominal level of FDR, then the FNR of the
BH procedure under Alternative 2 is bounded above by the FNR under Alternative
1. Further, the threshold of the BH procedure under Alternative 2 is stochastically
smaller than that under Alternative 1.

Loosely put, the power of the BH procedure is monotone increasing with respect
to the stochastic ordering of the alternatives, yet (the distribution of) the BH threshold
is monotone decreasing in the distributions of the alternatives.

Proof (Lemmal[3.2). We first re-express the BH procedure in a different form. Recall
that on observing x(i),i € {1, ..., p}, the BH procedure is the thresholding procedure
with threshold set at xj;+, where i* := max{i | Fo(x[;7) < @i/p},and x1) > ... > x[p]
are the order statistics.
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Let G denote the left-continuous empirical survival function
~ 1 &
G@t) = — Z 1{x@) > 1. (3.36)
P

By the definition, we know that G(xm) = i/p. Therefore, by the definition of i*, we
have . _
Fo(xpip) > aG(xp) = aif/p foralli > i*.

Since G is constant on (xpi*+17> Xri+l, the fact that Fo(x[i*]) < a(A?(x[,-*]) and
Fo(xpis+11) > aG(x[+4+17) implies that oG and Fy must “intersect” on the inter-
val by continuity of Fy. We denote this “intersection” as

T =inf{t | Fo(t) < aG(1)}. (3.37)

Note that T cannot be equal to x;+1] since Fo is cadlag. Since there is no observation
in [7, x[;+7), we can write the BH procedure as the thresholding procedure with
threshold set at 7.

Now, denote the observations under Alternatives 1 and 2 as x (i) and x, (7). Since
x7(i) stochastically dominates x;(i) for all i € {I,..., p}, there exists a coupling
(X1, x2) of x1 and x; such that X (i) < X,(i) almost surely for all i. We will replace
x1 and X, with x; and x, in what follows. Since we will compare the FNR’s, i.e.,
expectations with respect to the marginals of x’s in the last step, this replacement
does not affect the conclusions. To simplify notation, we still write x| and x; in place
of x; and X;.

Let G be the left-continuous empirical survival function under Alternative k,
ie.,

)4
Gi(t) = 1 Z Lxi (i) > 1), ke(l,2). (3.38)
P “

i=1

We define the BH thresholds 7; and 7, by replacing G in (3.37) with G, and G,
respectively. Denote the set estimates of signal support S; = {i | xx (i) > 7%} by the
BH procedure. We claim that

7, <71 with probability 1. (3.39)

Indeed, by definition of the empirical survival function and the fact that
x1() < x2(i) almost surely for all i, we have G1(¢) < G»(¢) for all z. Hence,
Fo(t) < aG,(t) implies Fy(r) < @G (1), and Relation (3.39) follows from the
definition of 7 in (3.37). The claim of stochastic ordering of the BH thresholds in
Lemma|3.2]follows from (3.39).

FAinally, when 7 < 77, we havg T <7 < x1() < x2(7) with prgbability 1 for all
i € S1. Therefore, it follows that S; C S, and hence |S \ $>| < |S \ S1| almost surely.
The first conclusion in Lemma [3.2]follows from the last inequality. O
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3.6 The exact-approximate support recovery problem

We now derive two new asymptotic phase transition results for the asymmetric
statistical risks, and (2.12), in the Gaussian error models. As discussed in
Section[2.1] the exact-approximate support recovery risk is the natural criteria when
considering the marginal power of discovery while controlling for family-wise error
rates in applications such as GWAS.

Although there have been discussions of weighted sums of type I and type Il errors
in the literature (see, e.g., Genovese and Wasserman (Genovese and Wasserman,
2002) Section 6, where the authors sought to minimize FDR + AFNR), asymptotic
limits were not discussed. We point out that the asymptotic limits for the unequally-
weighted risks are no different from the equally-weighted risk, so long as A is
bounded away from zero and infinity. This is because FDR + AFNR vanishes if
and only if both FDR and FNR vanish; conversely, non-vanishing FDR and FNR is
equivalent to non-vanishing weighted sums. Therefore, a different phase transition
would only arise if we weight the type I and type II errors by combining family-wise
error metrics with marginal error rates.

The next theorem describes the phase transition in the exact-approximate support
recovery problem.

Theorem 3.4. In the context of Theorem[3.2] the function

Jea(B) =1 (3.40)

characterizes the phase transition of exact-approximate support recovery problem.
Namely, the following two results hold.

@) If r > fea(B), then the procedures listed in Theoremwith slowly vanishing
nominal FWER levels (as defined in Definition achieve asymptotically exact-
approximate support recovery in the sense of (2.23).

(ii) Conversely, if r < fga(B), then for any thresholding procedure S, the exact-
approximate support recovery fails in the sense of ([2.26).

The phase transition boundary (3.40) is visualized in Figure[3.2] The proof of this
result uses ideas from the proof of Theorem [3.3]and is substantially shorter.

Proof (Theorem [3.4). We first show the sufficient condition. Vanishing FWER is
guaranteed by the properties of the procedures, and we only need to show that FNR
also goes to zero. Similar to the proof of Theorem [3.3] it suffices to show that

NDP = 1 — Weignal () — 0, (3.41)

where ¢, is the threshold of Bonferroni’s procedure.
Since a vanishes slowly (see Definition , forany ¢ > 0, we have p™° = o(a).
Therefore, we have —log @ < § log p for large p, and
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2logp —2loga

1 < limsup <146,

p—roo 2logp
for any 6 > 0. Therefore, by the expression for normal quantiles, we know that

tp = F~(1-a/p) ~ 2logp - 2loga)> ~ (2log p)'/2.

Since r > fga(B) = 1, we can pick g such that 1 < g < r. Let t* = /2¢g log p,
we know that 7), <, for large p. Therefore for large p, we have

Wsignal(tp) 2 Wsignal(t*) 2 F_a(t*) + Op(l),

where F is the survival function of N(4/2r Tog p, 1); the last inequality follows from
the stochastic monotonicity of the Gaussian location family (2.46), and Lemma[3.1]
Indeed, by our choice of g < r, we obtain

Fat) = ® (y2(g = D logp) =0,

and (3.41) is shown. This completes the proof of the sufficient condition.
The proof of the necessary condition follows similar structure as in the proof of
Theorem[3.3] and uses the lower bound

FWER(R) + FNR(R) > P [m2§ x(i) > u] AE (3.42)

S|

|S\§(u>|}

which holds for any arbitrary thresholding procedure R and arbitrary real u € R.

By the assumption that 7 < fga(B) = 1, we can pick ¢ such that 7 < ¢ < 1
and let u = t* = y2¢qlog p in (3.42). By relative stability of iid Gaussian random
variables (2.43), we have

max;ese x(i) S t*
\2logp \2logp

since the first fraction in converges to 1, while the second converges to g < 1.
Therefore, the first term on the right-hand side of converges to 1.

On the other hand, by the stochastic monotonicity of Gaussian location family
(2.46), the probability of missed detection for each signal is lower bounded by
P[Z + u(i) < t*] > Fz(t*), where Z is a standard Gaussian r.v., and F is the cdf of

—~ d
N(+/2rlog p, 1). Therefore, |S \ S(t*)| > Binom(s, Fz(¢t*)), and it suffices to show
that Fz(1*) converges to 1. Indeed,

Fg(t") = ®(2(q =7 log p) — 1,

by our choice of g > r. Hence both quantities in the minimum on the right-hand side
of (3.42) converge to 1 in the limit, and the necessary condition is shown. O

1. (3.43)
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Remark 3.1. The boundary was briefly suggested by |Arias-Castro and Chen
(2017). Unfortunately, it was falsely claimed that the boundary characterized the
phase transition of the exact support recovery problem, and the alleged proof was
left as an “exercise to the reader”. This exercise was completed in Chapter 4 where
the correct boundary was identified.

Theorem[3.4]here shows that the boundary does exist, though for the slightly
different exact-approximate support recovery problem. As we will see in Section[7.1]
the boundary also applies to the exact-approximate support recovery problem
in chi-square models (L.3).

3.7 The approximate-exact support recovery problem

The last phase transition is in terms of the approximate-exact support recovery risk
(2.12).

Theorem 3.5. In the context of Theorem[3.2] the function

faeB) = (VB+VT=B)° (3.44)

characterizes the phase transition of approximate-exact support recovery problem.
Namely, the following two results hold.

@d) If r > fag(B), then the Benjamini-Hochberg procedure with slowly van-
ishing nominal FDR levels (as defined in Definition achieves asymptotically
approximate-exact support recovery in the sense of (2.23).

(i) Conversely, if ¥ < fag(B), then for any thresholding procedure S, the
approximate-exact support recovery fails in the sense of ([2.26).
The phase transition boundary (3.44) is visualized in Figure

Proof (Theorem [3.5). We first show the sufficient condition (part (i)). Since FDR
control is guaranteed by the BH procedure, we only need to show that the FWNR
also vanishes, that is,

P [?ggx(i) > T] S, (3.45)

where 7 is the threshold for the BH procedure.

By the assumption that r > fag(B) = (VB + /1 — B)*, we have \F — /1 - B >
/B, so we can pick g > 0, such that

VE=+1-8>+g> B (3.46)

We only need to show that with a specific choice of t* = 4/2¢ log p where

VE=N1=8> g > B (3.47)
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we have both
Plr <] -1, (3.48)

and
P [minx(i) > t*] S, (3.49)
ieS

so that

Plminx(@Q) >7| =P [minx(i) >t 1" > T] - 1.
ieS ieS

Relation (3.48) follows in exactly the same way (3.34) did on page[37]
Dividing the left-hand-side in Relation (3.49) by /2 log p, we have,

mines x(i) _ mines p(i) + €() 4 y2rlogp + minjcs €
\2logp \2logp B \2logp
— =1 =B+

where the last convergence follows from the relative stability of iid Gaussians minima

(2.44). On the other hand, ¢*/4/2log p = 1/g < 4/f —4/1 — 8 by our choice of g, and
Relation (3.49)) follows.
The necessary condition follows from the lower bound

FDR(R) + FWNR(R) > E | — 1
NORWNEIN ies

M] AP [minx(i) < u] . (3.50)

which holds for any thresholding procedure R and for arbitrary u € R. In particular,
we show that both terms in the minimum in (3.50) converge to 1 when we set

u =t* = +/2¢qlog p where
Vi - 1= B < g <+/B. (3.51)

On the one hand, we have,

min;es x(7) % min;es €(i) ++/2rlogp S VF T2 B,
\2logp v2logp
by relative stability of iid Gaussians (2.44). On the other hand, /2 log p = /g >

T — /1 = B by our choice of g; this shows that the second term on the right-hand

side of (3.50) converges to 1. _
Observe that [S(¢*) \ S| has distribution Binom(p — s, ®(¢*)), and define X =

X, = |S(t*) \ S|/IS|, we obtain,

w=BIX) = (F - DBE) ~ ¢F - DT

1
~ o log p) 12 PP = oo,
JT
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where the divergence follows from our choice of ¢ < B. Using again Relations
(3.24) and (3.25), we conclude that the first term on the right-hand side of (3.50)
also converges to 1. This completes the proof of the necessary condition. O

3.8 Asymptotic power analysis: A discussion

Theorems [3.2] through [3.5] allow us to asymptotically quantify the required signals
sizes in support recovery problems, as well as in the global hypothesis testing problem
in the Gaussian additive error model (3.1). Specifically, these results indicate that at
all sparsity levels S € (0, 1), the difficulties of the problems in terms of the required
signal sizes have the following ordering

S(B) < fa(B) < fea(B) < fae(B) < fE(B),

as previewed in Figure The ordering aligns with our intuition that the required
signal sizes must increase as we move from detection to support recovery problems.
Similarly, more stringent criteria for error control (e.g., FWER compared to FDR)
require larger signals. We can now also compare fga () and fag(83), whose ordering
may not be clear from this line of reasoning.

Our last comment is on the gap between FDR and FWER under sparsity as-
sumptions. Although it is believed that FWER control is sometimes too stringent
compared to, say, FDR control in support recovery problems, the fact that all five
thresholds involve the same scaling indicates that the difficulties of the problems
(signal detection, and the four support recovery problems) are comparable when
signals are very sparse, i.e., when S is close to 1. This is illustrated with the next
example.

Example 3.1 (Power analysis for variable selection). For Gaussian errors (AGG with
v = 2), when 8 = 3/4, the signal detection boundary says that signals will have
to be at least of magnitude +/(log p)/2, while approximate support recovery (3.19)
requires signal sizes of at least 4/3(log p)/2, and exact support recovery calls
for signal sizes of at least 4/9(log p)/2. The required signal sizes increases, but are
within the same order of magnitude.

If m independent copies xi, .. ., x,, of the observations were made on the same
set of p locations, then by taking location-wise averages, X, (j) = rl—n 2t xi(j), we
can reduce error standard deviation, and hence boost the signal-to-noise ratio, by a
factor of y/m. By the simple calculations above, if m samples are needed to detect
(sparse) signals of a certain magnitude, then 3m samples will enable approximate
support recovery with false discovery and non-discovery control, and in fact, 9m
samples would enable exact support recovery with family-wise error rates control.

On the other hand, the gap between FDR and FWER is much larger when signals
are dense. For example, if the signals are only approximately sparse, i.e., having
a few components above (3.18) but many smaller components above (3.19), then
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FDR-controlling procedures will discover substantially larger proportion of signals
than FWER-controlling procedures.

Indeed, as B — 0, the required signal size for approximate support recovery (3.19)
tends to 0, while the required signal size for exact support recovery tends to
4 in the Gaussian error models. While Example [3.1]indicates that the exact support
recovery is not much more stringent than approximate support recovery when signals
are sparse, the gap between required signal sizes widens when signals are dense.






Chapter 4
Exact Support Recovery Under Dependence

We focus on exact support recovery problems in this chapter. Recall from Lemma
|2._l[that in order to study the asymptotic behaviors of risk®, it is sufficient to establish
minimal conditions under which the support sets can be consistently estimated, i.e.,

P[S, = S,1 — 1 as p — oo, (4.1)

where S, p is an estimate of the true support set S, of a high-dimensional signal vector
Hp-

We will establish minimal conditions such that holds, by generalizing the
results we obtained in Chapter [3]to additive error models with relaxed distributional
and dependence assumptions on the additive error array.

4.1 Generalizations of distributional and dependence
assumptions

Consider the additive error model (I.1) with the triangular array of errors,

&={(e! . p=12...}, 4.2)

where the €, (7)’s have common cumulative distribution function F'(x) = P[e, (i) <
x]. In contrast to the assumptions in Chapter [3] we only require the errors to have
common marginal distributions.

Although our method of analysis applies to all light-tailed error distributions with
rapidly varying tails (see Definition[2.7), to be concrete and better convey the main
ideas, we will focus on the class of AGG(») laws (see Definition[2.6). Extensions of
the results to other classes of error models are presented in Section[B.T.

This generalized distributional assumption on the errors call for a suitable gen-
eralization of the signal size parametrization in order to analyze the problem as we
did in the previous chapter. As before, we assume the signals in model to be a

47
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sparse vector p, = (,up(i));, with support S, := {i : p, (i) # 0}. The sparsity of
Hp, with a few exceptions which will be explicitly stated, is parametrized in terms

of a fixed regularly varying sequence {s;} as follows:

|Sp| = Lsj, 1, where si, :=£(p)p'*, (4.3)

for some fixed slowly varying function €. Recall that a function ¢ is slowly varying
if £(At)/€(t) — 1,ast — oo, for all 1 > 0. As before, the exponent

0<pB<l1

controls the sparsity.
We assume that the non-zero entries of y are positive and take values in the
interval [é, A) C (0,00). Thatis, 0 < A < u(i) < A < +oo, foralli € §,,. The lower

and upper bound on the signal sizes A and A are parametrized as
A=A(p) = (vrlogp)'™ and A=Ap) = (Flogp)'l, (44

with parameters 0 < r <7 < +00.

We now turn to the dependence conditions. Several authors have studied the
support recovery problem in terms of the Hamming loss and obtained minimax
optimality results (see, e.g., Ji and Jin| (2012)); [Genovese et al. (2012)); Jin et al.
(2014); Butucea et al. (2018)). In the special case of Gaussian marginals, Butucea
etal[(2018)) showed that the boundary exists in a minimax sense. That is, when
the errors are independent Gaussians, the Hamming loss cannot be made to vanish if
the signal sizes are sufficiently small by any procedure. Conversely, if signal size falls
below, the Hamming loss can be made to vanish for some thresholding procedure.
However, as pointed out in Section vanishing Hamming loss is only sufficient,
not necessary for support recovery (4.1), and results on the former do not carry
over directly to the study of the exact support recovery problem. More importantly,
since Hamming loss decomposes into expectations on individual terms that are not
affected by dependence, Hamming loss-minimax studies do not reveal the difference
in probability of support recovery between independent and dependent observations.
This prevents one from fully exploring the phase transition phenomena under other
dependence conditions. As a result, so far in the literature, the role of dependence in
model have remained largely unexplored.

We take a different approach in this text. In particular, we study the exact support
recovery problem directly, and show that for thresholding procedures the phase
transition phenomena exists universally in a large class of dependence structures,
and not just in a minimax sense.

In a first step, we show that in the AGG model under arbitrary dependence, under
the scaling described in and (4.4), the function

feB) = fe,(B) =1 +1 =YY, v>0 (4.5)
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demarcates the region of possibility for the exact support recovery problem. That is,
if the signal sizes are above the boundary (i.e., r > fg(f)), then FWER-controlling
procedures with appropriately calibrated levels achieve exact support recovery (The-
orem .1 below). We refer to as the strong classification boundary.
Conversely, we show that for a surprisingly large class of dependence structures
characterized by the concept of uniform relative stability (URS, see Definition
below), when the signal size is below the boundary (i.e., 7 < fg(/3)), no thresholding
procedure can achieve the asymptotically perfect support recovery. In fact,

P[S,=5,] >0 asp—eo, (4.6)

for all thresholding procedures (Theorem [.2] below). These two results show that
the thresholding procedures obey a phase transition phenomenon in a strong, point-
wise sense over the class of URS dependence structures, and over the class of
AGG(v), v > 0 error distributions.

4.2 Sufficient conditions for exact support recovery

Following Butucea et al. (2018)), we define the parameter space for the signals u as

®;(,B,g) = {p € RP : thereexists aset S, C {l,...,p} suchthat|S,| < s;,

u(i) = (vrlogp)'’” foralli € S, and u(i) = 0 foralli ¢ S, },
(4.7)

where s; is as in (4.3). Our first result states that, when F € AGG(v) with v > 0,
regardless of the error dependence structure, (asymptotic) perfect support recovery is
achieved by applying Bonferroni’s procedure with appropriately calibrated FWER,
as long as the minimum signal size r is above the strong classification boundary

@.5).

Theorem 4.1. Let the errors have common marginal distribution F € AGG(v) with
v > 0. Let S, be the Bonferroni’s procedure (2.21) with vanishing FWER « =
a(p) = 0, such that ap® — oo for every § > 0. If

r>fe(B)=0+1-p"Y, (4.8)
then we have _
lim sup P[S, #S5,]=0. 4.9)
P ne®t (B.r)

Proof. Throughout the proof, the dependence on p will be suppressed to simplify
notations when such omissions do not lead to ambiguity.

Under the AGG(v) model, it is easy to see from equation that the thresholds
in Bonferroni’s procedure are
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tp = F~(1—a/p) = (vlog (p/a)'” (1 +o(1)). (4.10)

It is known that Bonferroni’s procedure Ep = {i cx(i) > tp} controls the FWER.
Indeed,

P[Scs]=1 —P[r};gﬁx(i) > tp] -1 —P[n;gice(i) > l‘p]
> l—iP[e(i) >tp] 2 1-a(p) > 1, (4.11)
i=1

where we used the union bound in the first inequality. Notice that the lower bound
(4.11) is independent of the parameter u (as well as the dependence structures), and
hence holds uniformly over the parameter space, i.e.,

lim inf P[S, CS,]1=1. 4.12)
P ued, (Br)

On the other hand, for the probability of no missed detection, we have:
P[S2s]=F [rl_nei;lx(i) > tp] - P [rirggx(i) ~(vrlogp)” > 1, — (vrlog p)'7] |
Since the signal sizes are no smaller than (vr log p)!/”, we have

x(i) = (vrlogp)'"” > e(i), forallie S,
and hence we obtain
P[S2s]=P [ngg i) > (vlog (p/a)”” (1 + o(1)) — (vrlogp)'” |, (4.13)

where we plugged in the expression for 7, in (4.10). Now, since the minimum signal

size is bounded below by r > (1 +(1- ﬂ)]/y)v, we have r'/” — (1 - g)! > 1, and
so we can pick a 6 > 0 such that

s<(r'-a-p") -1 (4.14)

Since by assumption, for all 6 > 0, we have p“s = o (a(p)), there is an M = M (6)
such that p/a(p) < p'*° for all p > M. Thus, from (4.13), we further conclude that
for p > M we have

P[S25] > P[migle(i) > ((1+6)vlogp)'” (1+0(1) = (vrlogp)'”]

- P[r?easx (=€) < (£ = A+ 8)") (vIog ) (1 + o(1)) |
=A
>1-(p)p' P xF_(A), (4.15)
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where f,(x) = P[—e€(i) > x] is the survival function of the (—e(i))’s. Notice that
follows from the union bound and the assumption that | S, | < s; ={(p)p'Pin
(@.7). Therefore, the lower bound does not depend on y (nor on the error dependence
structure), and holds uniformly in the parameter space. In turn, we obtain

inf  P[S, 2S,]>1-L(p)p' P xF_(A). (4.16)
HEBL (B,r)

We first show that the right-hand-side of (4.16) converges to 1 when g = 1.
Indeed, since F' € AGG(u), we have, for sufficiently large p,

Ff(A) < F,(c(y log(p))l/v) _ O(p_c/),

for some ¢ > ¢’ > 0. On the other hand, the celebrated Potter bounds for slowly-
varying functions (see, e.g., Bingham et al., [1987) entail £(p) = o(p<’), for every
¢’ > 0 and hence £(p)F_(A) — 0, as p — .

Letnow g € (0,1) and u, := F< (1 — 1/p). The fact that pF_ (u,) < 1, implies

(4.17)

where B := A/u". .
S
Notice that b; assumption, the —e(i)’s are also AGG(v) distributed, and by
Proposition u, == F<(1=1/p) ~ (vlog(p))!"”, as p — co. Therefore, we have

Wy =gy, s~ (V1= B)logp) ', (4.18)

o
°p
where we used the fact that log(€(p)) = o(log(p)). Hence,

A Y — (1 + &Y
B=T=#0+o(l))—>c>l
U, (1=p
Sp
as p — oo, by our choice of ¢ in (4.14).

Finally, since the distribution F_ has rapidly varying tails (by Definition [2.7]and
Example [2.1), applying Proposition we conclude that (4.17) vanishes. Con-
sequently, the lower bound on the right-hand-side of (4.16) converges to 1. This,
combined with (4.12), entails lim,, infpe@,*,(ﬁ,l) P[S, = Sp] = 1, and hence the
desired conclusion (4.9), which completes the proof. O

We end this section with several comments and applications of Theorem

Corollary 4.1 (Classes of procedures attaining the boundary). Relation (4.9)
holds for any FWER-controlling procedure that is strictly more powerful than Bon-
ferroni’s procedure. This includes Holm’s procedure (Holm, |1979), and in the case
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of independent errors, Hochberg’s procedure (Hochberg, 1988), and the Siddk pro-
cedure (Siddk, |1967).

Example 4.1. Under Gaussian errors, the particular choice of the thresholding atz,, =
v2logp in corresponds to a Bonferroni’s procedure with FWER decreasing
at a rate of O((logp)~'/?), and hence Theorem applies. By Corollary
Holm’s procedure — and when the errors are independent, the Sidak, and Hochberg
procedures — with FWER controlled at (log p)~!/? all achieve perfect support
recovery provided that r > fg(5).

Proof (Example[d.1). By the Mill’s ratio for the standard Gaussian distribution,

P [Z> 1)
o(tp)

where Z ~ N(0, 1). Using the expression for t,, = 4/2log p, we have

-1, as 1, — oo,

-1
pP [Z > tp] ~V2n (210gp)_1/2 -0,
as desired. The rest of the claims follow from Corollaryd.1, O

The statements in Theorem [4.1|can be strengthened, to prepare us for a minimax
result given in Section[5.5]below.

Remark 4.1. In the proof of Theorem[4.T] both (4.11) and (#.15) hold uniformly over
all error dependence structures. Therefore, (4.12)) and (4.16) may be strengthened to
yield _

lim  sup P[S, #S,]1=0, 4.19)

P et B,r)

&eD(F)

for r > fg(B), where D(F) is the collection of all arrays with common marginal F,
ie.,

D(F)={E&=(ep(@)p : €pi) ~Fforalli=1,....,pand p=12,...}. (4.20)

Remark 4.2. We emphasize that Theorem 4.1/ holds for errors with arbitrary depen-
dence structures. Intuitively, this is because the maxima of the errors grow at their
fastest in the case of independence (recall Remark [2.T). Formally, the light-tailed
nature of the error distribution allowed us to obtain sharp tail estimates via simple
union bounds, valid under arbitrary dependence.

4.3 Dependence and uniform relative stability

An important ingredient needed for a converse of Theorem [4.1] is an appropriate
characterization of the error dependence structure under which the strong classifica-
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tion boundary (4.5) is tight. The notion of uniform relative stability turns out to be
the key.

Definition 4.1 (Uniform Relative Stability). Under the notations established in
Definition the triangular array & is said to have uniform relatively stable (URS)

maxima if for every sequence of subsets S, € {1,..., p} such that |S,| — oo, we
have
1 1 P
Ms, = max €, (i) — 1, “4.21)
us, | us,| i€Sp

as p — oo, where uy, g € {1,...,p} is the generalized quantile in (2.37). The
collection of arrays & = {€), (i)} with URS maxima is denoted U (F).

Uniform relative stability is, as its name suggests, a stronger requirement on
dependence than relative stability (recall Definition [2.8). Proposition states that
an array with iid components sharing a marginal distribution F with rapidly varying
tails (Definition has relatively stable maxima; it is easy to see that URS also
follows, by independence of the entries.

Corollary 4.2. An independent array & with common marginals F € AGG(v),
1
v > 0, is URS; in this case, URS holds with us,| ~ (vlog |S,,|) /V.

On the other hand, RS and URS hold under much broader dependence structures
than just independent errors. These conditions are extremely mild and can be shown
to hold for many classes of error models. In Chapter[6] we will focus extensively on the
Gaussian case, which is of great interest in applications and is rather challenging. We
will provide simple necessary and sufficient condition for uniform relative stability
in terms of the covariance structures.

The relative stability concepts are important because they characterize the depen-
dence structures under which the maxima of error sequences concentrate around the
quantiles in the sense of (2.38). This concentration of maxima phenomena,
in turn, is the key to establishing the necessary conditions of the phase transition
results in support recovery problems.

4.4 Necessary conditions for exact support recovery

With the preparations from Section{4.3] we are ready to state the necessary conditions
for exact support recovery by thresholding procedures. It turns out that the
strong classification boundary is tight, under the general dependence structure
characterized by URS (Definition [4.T).

Formally, we define the parameter space for the signals u to be

®;(,B,F) = {p € R” : there exists aset S, C {I,...,p} suchthat|S,| = I_SI,J,

0 < u(i) < (vrlogp)'”” foralli € S, and (i) = 0 foralli ¢ S, },
(4.22)
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where s,T, ={(p)p' P is as in ({@.3).

Theorem 4.2. Let & be a triangular array with common AGG(v) marginal F, v > 0.
Assume further that the errors & have uniform relatively stable maxima and minima,
ie,&eU(F), and (-&) = {—€,())} e U(F). If

4
b

F<fe®=(1+0-p") (4.23)

then

lim inf  inf P[S, #S,] =1, (4.24)
Po® 7 uEed, (BT

where T is the class of all thresholding procedures ([2.20).

Proof. To avoid cumbersome double subscript notations, we will sometimes sup-
press dependence on p of the set sequences S, and S, in the proof.

Since the estimator :S'\p = {x(i) = tp(x)} is thresholding, exact support recovery
takes place if and only if the threshold separates the signals and null part, i.e.,

P[S, = S,] =P

N < mi A <p ; . N5
?;eslzgx(z) <tp(x) < rl_nelsnx(z)] < [?Elguch(z) < I}lelglx(l)]
Since the right-hand-side does not depend on the procedure Ep, we also have

sup IP[S'}, =S5,]<P
§,,e‘7'

max x(i) < min x(i)] < P |max e(i) < A + min e(i)] ,
ieS¢ ieS ieS¢ ieS

. (4.25)
where we used the assumption that the signal sizes are no greater than A. Let $* = S,
be a sequence of support sets that maximize the right-hand-side of #.23), i.e., let

S,=  argmax P [ma§ €i) <A+ min e(i)] ’
Sg{l’---sP}ZIS\=|_s;,J eS¢ ic

where sL = {(p)p' P is the size of the true support set, and ties are broken lexico-
graphically if multiple maximizers exist. Then, we obtain the following bound which
only depends on 7 and the distribution of &,

sup  sup ]P’[g,, =5,] <P [_max eli) <A+ min e(i)]
§p T HEOR (B.T) ieS*e ieS

Mgie A —mg:
=P[ S o ms], (4.26)
Up Up
where Mg+ = maX;es+ €(i) and mg- = maXx;es+ (—€(7)). Since the error arrays &
and (—&) are URS by assumption, using the expression for the AGG quantiles (2.33)),
we have
MS*” MS*" Ujss| P mg- mg+ U|S*| P
= —_——

—1, and — =
Up Uis=| Up Up Uuis<| Up

a-pv, @21
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so that the two random terms in probability converge to constants. Notice that
the second relation in holds by URS for any 8 € (0,1). When 8 = 1, the
relation holds because {mg-/u|s-} is tight, while 0 < u|s+|/u, < uepy/u, — 0since
{(p) = o(p) by the Potter bounds for slowly varying functions (see, e.g., Bingham
et al.,|1987).

Since signal sizes are bounded above by 7 < (1 +(1- ﬁ)'/v)v, we can write

P =1+ (1 - B)” - d for some d > 0. By our parametrization of A, we have
A
= =(1+1=p)" =d) 1 +o(1)). (4.28)
Up

Combining (4.27) and (4.28)), we conclude that the right-hand-side of the probability
([4.26) converges in probability to a constant strictly less than 1, that is,

A —
ms B _a (4.29)

Up
P
while Mg+ /u, — 1. Therefore, the probability in (4.26) must goto 0. O

We end this section with several remarks on the scope and consequences of our
results. Our first comment is on the signal sizes, and in particular, on the gap between
the sufficient conditions (Theorem[4.T) and the necessary conditions (Theorem[4.2).

Remark 4.3 (Minding the gap). The sufficient condition in Theorem4.T|requires that
all signals be larger than the strong classification boundary fg () in order to achieve
exact support recovery (4.1), while Theorem [4.2]states that exact support recovery
fails (in the sense of (4.6)) when all signal sizes are below the boundary — the two
conditions are not complements of each other. This gap between the sufficient and
necessary conditions on signal sizes, however, may be difficult to bridge. Indeed, in
general, when signal sizes straddle the boundary fg(f), either outcome is possible,
as we demonstrate in Example [4.2]below.

Example 4.2 (Signals straddling the boundary). Let the signal phave |S, | = LpU=P)]
non-zero entries, composed of two disjoint sets S, = SI(,I) U S‘L(,Z). Let also the
magnitude of the signals be equal within the two sets, i.e., u(i) = /2r® log p if
i € SI()k) for some constants #*) > 0 for k = 1,2. For simplicity, assume that the
errors are iid standard Gaussians.

Consider two scenarios

1L rD = (1+6)fe(B). r® = (1+6), with [S0] = IS, — 1, [P = 1,
2.5 = A+ 0)fe(p), r® = (1= 6)fe(B). with IS;°] = LIS,1/2]. 15,”| =
1551 = 15,1

for some constants 0 < § < 1-8 < 1.Inboth cases, signals in SI(,I) (respectively, SI(,Z) )
are above (respectively, below) the strong classification boundary (4.3). However,

in the first scenario, we have IP[:S";‘?"“‘c = S,] — 1 where :S’\g"“f is the Bonferroni’s
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procedure described in Theorem while in the second scenario, we have IP’[§ p =
Sp] — 0 for all thresholding procedures S),.

Proof (Example . In the first scenario, signal sizes in Sl(,l) are by definition
above the strong classification boundary (4.3). The signal in S,(,Z) has size parameter
1+6<2-p<(1++/1=p)2 and therefore falls below the boundary.

It remains to show that P[S\,‘fo“f = §,] — 1. To do so, we define two new arrays

YO =y PG j=12....ph ke(l2),

where y5'(j) = x,(j) if j ¢ SI, and y'(j) = €,(j) if j € S, using an
independent error array {Ep (), j =1,..., p} with iid standard Gaussian elements.

That is, we replace the elements in S 1(,1) and S ;,2) with iid standard Gaussian noise.
Notice both arrays Y (1 and Y ) satisfy the conditions in Theorem(with sparsity
parameter equal to 8 and 1, respectively). Hence, we have

P[S}fo“f CSyl=P [ma)c<x(j) < tp] <P [ma)C(y(l)(j) < tp] -0,
JjEeS JjEeS
and

P[:STEOHf D) Sp] =P |:1;n€1§] x(]) > tp

o1 . N < : . N <
> 1 P[jr;l;(l})x(])_lp] PLIBSIE)X(J)—IP]

_ in v® _ in v
>1-P [jrensl(l}) yp () < tp] P [,?slfz‘) yp () < fp] -1,
where ¢, is the threshold in Bonferroni’s procedure. The conclusion follows.
In the second scenario, the signal sizes in S® by definition fall below the strong

classification boundary (4.5). To see that no thresholding procedure succeeds, we
adapt the proof of Theorem [4.2] In particular, we obtain

P[S, = S,] <P ) <t, <minx(j)| <P i) < min x(j)|.
[Sp =Spl < [?égz?x(])—p Ijnelgx(ﬂ]_ [}ggy(ﬂ jlg(le)x(])]

By the assumption that signals in S® have size parameter (1 — &) fg(3), we have

Mse _ 2T =58)/e(B)Iogp - mse,

Up Up

jese

P [maxx(j) < min x(j)] =P } 4.30)
jes®

where Mge = max;ese €(j) and mge) = max; 5o (—€(j)). The ratio on the left-

hand-side of the inequality converges to 1 as in (4.27) in the main text, whereas the

term on the right-hand-side
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V2(1 - 6) fe(B) log p — mge - JT=5)75(B) - mga) Uis@)|

Up Uiso| Up

S JaA=0) +VI-B(d-6)-1) < L.

where we used the URS of the error arrays, and that

sy ~ y21og (p#/2) = \2((1 = B)log p —log2) ~ y2(I = ) logp.

to conclude the convergence in probability. O

Our second remark is on the restriction to thresholding procedures.

Remark 4.4. Since the sharp phase transition result just established apply only to the
general class of thresholding procedures, it is natural to ask if other good procedures
have left out by this restriction. We will establish later in Chapter [3] that in many
cases the optimal procedures are in fact thresholding procedures. In general, how-
ever, thresholding procedures can be sub-optimal, e.g., when the errors have heavy
(regularly-varying) tails. We will also demonstrate the absence of a phase transition
phenomenon in exact support recovery by thresholding, in Supplement Section [B.2,

Our final comment is on the interplay between thresholding procedures and the
dependence class characterized by URS.

Remark 4.5. Paraphrasing Theorems [4.1) and 4.2} if we consider only thresholding
procedures, then for a very large class of dependence structures, we cannot improve
upon the Bonferroni procedure @3‘”. Specifically, forall & € U(F) and -& € U(F),

and for all S, € S, where S = {S C {1,.... p}:|S| = L£(p)p'# ]}, we have

limsup,, ., infg ;- PIS, # S,1=0, if r> fe(B),
liminf, . infs _ P[S, #S,1=1, if 7< fa(B)

lim P[SE" 8, = {
SpeT
(4.31)

p—o

where 7 is the set of all thresholding procedures (2.20).

Theorem answers a question raised in |[Butucea et al. (2018). In particular,
the authors of (Butucea et al.,|2018)) commented that independent error is the ‘least
favorable model’ in the problem of support recovery, and conjectured that the sup-
port recovery problem may be easier to solve under dependence, similar to how
the problem of signal detection is easier under dependent errors (Hall and Jin|
2010). Surprisingly, our results here state that asymptotically, all error dependence
structures in the large URS class are equally difficult for thresholding procedures.
Therefore, the phase transition behavior is universal in the class of dependence
structures characterized by URS.

We emphasize the restriction to the URS dependence class in Theorem {.2]is not
an assumption of convenience. The dependence condition characterized by uniform
relative stability is in fact one of the weakest in the literature. We will characterize
the class URS dependence class in Chapter [6] below.
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4.5 Dense signals

We treat briefly the case of dense signals, where the size of the support set is
proportional to the problem dimension, i.e. s ~ cp for some constant ¢ € (0, 1). We
show that in this case, a phase-transition-type result still holds, independently of the
value of ¢. Analogous to the set-up of Theorems .T]and [4.2] let

®?,+(c,5) = {p € R” : there exists aset S, C {I,...,p} suchthat|S,| < [cp],
u(i) > (vrlogp)'"” foralli € S, and u(i) = 0 foralli ¢ S, },
(4.32)

where “d” in the notation (E)f;r stands for “dense”. Similarly, define

@g‘(c,F) ={p € R” : thereexistsaset S, C {l,...,p} suchthat|S,| = Lcpl,

0<u@ < (v?logp)l/" foralli € §,, and u(i) =0 foralli ¢ S,}.
(4.33)

Theorem 4.3. Let ¢ € (0,1) be a fixed constant, and let S = Eg(mf denote the
Bonferroni’s procedure as described in Theorem[d.1} In the context of Theorem
ifr > 1, then we have

lim sup P[S, #S,]=0. (4.34)

P he@d*(c,r)
While in the context of Theorem{.2} if 7 < 1, then

lim inf  inf P[S, #S,]=1, (4.35)
PoOg, €T uedi(c,7)

where T is the class of all thresholding procedures (2.20).

Remark 4.6. Notice that the boundary for the signal size parameter is identically 1
in this dense regime. Therefore, if we interpret 8 = 0 of the parametrization
as s ~ cp, where ¢ € (0, 1), then the strong classification boundary may be
continuously extended to the left-end point where fg(0) = 1.

Proof (Theorem{-3). The proof is entirely analogous to that of Theorems A.1]and

Specifically, (4.34) follows by replacing | p'] with |cp] in Relation (4.15)
onward, and replacing (4.18) with

uy ~ (vlogep)'’” ~ (vlogp)'””.

in the proof of Theorem (4.1} Similarly, {.35) follows the proof of Theorem (4.2}
Indeed, by using the fact that

ws<)  (vlog(1-o)p)'”
Up (vlogp)!””
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and ug+|/u, — 1 for all ¢ € (0, 1), we see that Relation (4.27) holds with 8 = 0,
and the rest of Theorem[d.2]applies. O

4.6 Numerical illustrations for independent errors

We examine numerically the boundaries under several error tail assumptions
for independence errors in this section. Numerical experiments for dependent errors
will be deferred until we characterize the URS conditions in Chapter [6]

To demonstrate the phase transition phenomenon under different error tail densi-
ties, we simulate from the additive error model with

* Gaussian errors, where the density is given by f(x) = ‘/%7 exp {—x2 / 2}.

» Laplace errors, where the density is given by f(x) = % exp {— |x[}.
* Generalized Gaussian v = 1/2, with density f(x) = %exp{ —-21x|'?}.

The sparsity and signal size of the sparse mean vector are parametrized as in
equations and (#.4), respectively. The support set S is estimated with § =
{i 2x(@) > 42 logp} under the Gaussian errors, S = {i : x(@) > logp + (loglogp)/2}
under the Laplace errors, and with S={i:x()> }1 (W (=c/(eplogp)) + 1)2} un-
der the generalized Gaussian (v = 1/2) errors. Here W is the Lambert W function,
ie, W = f~! where f(x) = xexp (x). The choices of thresholds correspond to
Bonferroni’s procedures with FWER decreasing at a rate of 1/4/log p, therefore
satisfying the assumptions in Theorem Experiments were repeated 1000 times
under each sparsity-and-signal-size combination.

The results of the numerical experiments are shown in Figure 4.1} The numer-
ical results illustrate that the predicted boundaries are not only accurate in high-
dimensions (p = 10000, right panels of Figure[4.T), but also practically meaningful
even at moderate dimensions (p = 100, left panels of Figure |4.1).
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Fig. 4.1 The empirical probability of exact support recovery from numerical experiments, as a
function of sparsity level B and signal sizes r, from Gaussian error models (upper panels), Laplace
error models (middle panels), and generalized Gaussian with v = 1/2 (lower panels); darker color
indicates higher probability of exact support recovery. The experiments were repeated 1000 times
for each sparsity-signal size combination, and for dimensions p = 100 (left panels) and p = 10000
(right panels). Numerical results agree with the boundaries described in Theorem convergence
is noticeably slower for under generalized Gaussian (v = 1/2) errors. For reference, the dashed and
dash-dotted lines represent the weak classification and detection boundaries (see Chapter.



Chapter 5
Bayes and Minimax Optimality

In this chapter, we investigate the universality of the phase-transition results on exact
supportrecovery established in Chapter[d] Specifically, we would like to know to what
extent the strong classification boundary applies to all support estimators, and not
just thresholding ones. The answer to this question will complete the characterization
of the fundamental limits in exact support recovery.

To this end, we begin by characterizing the finite-sample Bayes optimality of the
thresholding procedures. As we will see, the so-called oracle thresholding estimators
are in fact finite-sample optimal for many classes of models. These optimality results
allow us to establish a minimax formulation of the exact support recovery phase-
transition phenomenon that covers arbitrary procedures.

Perhaps surprisingly, thresholding estimators can be sub-optimal. This is so, for
example, in the additive noise model when the error tail densities are heavier than
exponential. In this case, we will see that likelihood ratio thresholding rather than
data thresholding are the optimal support estimators.

5.1 Bayes optimality in support recovery problems

In studying support recovery problems, restrictions to the thresholding procedures
are sometimes justified by arguing that such procedures are the “reasonable” choice
for estimating the support set (see, e.g., |Arias-Castro and Chen, 2017). We show
in this chapter that, perhaps surprisingly, for general error models, thresholding
procedures are not always optimal, even when the observations are independent.

We shall identify the optimal procedure for support recovery problems under a
Bayesian setting with general distributional assumptions (including but not limited
to additive models (I.1)). Specifically, we assume that there is an ordered set P =
(i1, -.-505),0; € {1,..., p}, and s not necessarily equal densities f1, ..., fs, such that
the observations indexed by set P have corresponding densities. That is,

xG)~fin j=1...s. 5.1

61
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Let also the rest (p — s) observations have common density fy, i.e., x(i) ~ fo for
i ¢ S. We further assume that the observations x are mutually independent.

We adopt here a Bayesian framework to measure statistical risks. Let the ordered
support P = (i, ..., i) have prior

(@, .- .i5)) = (p—)!/pl, (5.2)
for all distinct 1 < i < ... < iy < p. Consequently, the unordered support
S = {iy,...,is} is distributed uniformly in the collection of all set of size s,

with the unordered uniform distribution #". That is, for all for all S € S :=
{Sc{l,...,p}I|S| = s}, we have

7 (i i) = Y Aoy, sio)) = (p = 9)!s!/p, (5.3)
[on
where the sum is taken over all permuations of {1,2, ..., s}.

For any fixed configuration P, consider the loss function,
£(S,S) :=P[S # 8] =Pp[S # S|,

where the probability is taken over the randomness in the observations x only. The
Bayes optimal procedures, by definitions, should minimize

E,P[S # S], (5.4)

where the expectation is taken over the random configurations P, with a uniform
distribution 7 as specified in (5.2).

If, however, the sparsity s = |S| of the problem is known, then a “natural”
estimator for S would be based on the set of top s order statistics. Such estimators
will be referred to as oracle thresholding estimators and formally defined next.

For any collection of numbers {a;, i = 1,---, s}, let

(ai, -+, as) = (aqy, -+, ags)
denote the vector of a;’s arranged in a non-increasing order.

Definition 5.1 (Oracle data thresholding). Let x(;; > ... > xp,; be the order
statistics of the data vector x. Any estimator S* := {iy,-- - ,is}, where

(@), x(s)) = (x5 X[s])
will be referred to as an oracle thresholding estimator.

Simply put, the oracle thresholding estimators are comprised of the indices cor-
responding to the s largest values in the data. Note that, in the absence of ties among
the largest s + 1 data values, the oracle thresholding estimator is unique. For con-
creteness, one can break possible ties lexicographically. In many cases, the oracle
thresholding estimators will be almost surely unique.
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5.2 Bayes optimality of oracle thresholding

In this section, we study the Bayes optimality of the oracle thresholding procedures.
The following monotone likelihood ratio (MLR) property will play a key role.

Definition 5.2 (Monotone Likelihood Ratio). A family of positive densities on R,
{fs,0 € U}, is said to have the MLR property if, for all 9,; € U € R such that
0o < &1, the likelihood ratio (fs,(x)/fs,(x)) is an increasing function of x.

The next result provides a general criterion for the finite-sample Bayes optimality
of the oracle thresholding procedure S*.

Theorem 5.1. Let the observations x(i), i = 1,...,p be as prescribed as in
through (5.2). If each of the pairs { fo, f1}, - .., {fo. fs} forms an MLR family, then
every oracle data thresholding procedure S* is finite-sample optimal in terms of
Bayes risk E;P[S # S]. That is,

S* € argminE,P[S # S]. (5.5)
3

for all s and p.

Proof. The problem of support recovery can be equivalently stated as a classification
problem, where the discrete parameter space is S = {S C {1,...,p} : |S| = s}, and
the observation x € R” has likelihood f(x|S) indexed by the support set S.

By the optimality of the Bayes classifier (see, e.g.,[Domingos and Pazzani| [1997),
a set estimator that maximizes the probability of support recovery is one such that

S € argmax f(x|S)7(S).
SeS

Since we know from (5.3) that 7(-) is uniform, the problem in our context reduces
to showing that f(x|S*) = f (x|S ), where f(x|S) is the conditional distribution of
data given the unordered support S,

FEISY = DL FEIP)RPIS) = (Z ﬂﬁ(x(P(z))))ﬂfo(x(k))

Peo(S) Peo(S) i k¢S

where o(S) is the set of all permutations of the indices in the support set S.

Suppose that S is not an oracle thresholding estimator, then there must be indices
Jj € S and Jj ¢ S such that x(j) < x(j’). We exchange the classifications of x(j)
and x(j’), and form a new estimate S = (S \{j}) U{j’}. Comparing the likelihoods
under S and S ’, we have
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_ = 1 N
f@IS) - falSy =< 30 [ [Ra@ofGG) [ ok~

Pea(S) i=1 k&Sl )
1 N
-= 2 [re@onfai) [ few
! Peo () i=1 keSTULj)

1 S

=;(Zai(fxx(j))fo(x(j’))—ﬁ(x(j’))fo(xu»)) [] foxo,
C\i=l kgSuij)
(5.6)

where the last equality follows by first summing over all permutations fixing P(i) = j
and P’(i) = j’, and setting a; = ZPE‘T@\{”) [Tir2i fir(x(P(@"))). Notice that the a;’s
are non-negative.

Since x(j) < x(j"), and since each of { fo, f;} is an MLR family, we have

fitx()) — filx(")
Jo(x(7))  fox(j"))

Using Relation (5.6), we conclude that f (x|§) <f (x|§ ”). Continuing this way,
we can successively improve the likelihood of every estimator until we arrive at
an oracle thresholding estimator, proving the desired optimality. Note that with the
same argument, we obtain that any two oracle thresholding estimators have the same
likelihood. O

<0 = fix(GNfo(x(j)) = fi(x()) fo(x(j)) < 0.

We emphasize that under the MLR conditions in Theorem 5.1} the oracle thresh-
olding procedures are in fact finite-sample optimal in the above Bayesian context.
Further, our setup allows for different alternative distributions, and relaxes the as-
sumptions of Butucea et al.| (2018)) when studying distributional generalizations,
where the alternatives are assumed to be identically distributed.

It remains to understand when the key MLR property holds. We elaborate on this
question next. Returning to the more concrete signal-plus-noise model (1.1), it turns
out that the error tail behavior is what determines the optimality of data thresholding
procedures. In this setting, log-concavity of the error densities is equivalent to the
MLR property (Lemmal5.1). This, in turn, yields the finite-sample optimality of data
thresholding procedures (Theorem [5.1).

Lemma 5.1. Let 6 be the magnitude of the non-zero signals in the signal-plus-noise
model (1.1) with positive error density fo, and let fs(x) = fo(x — 8). The family
{fs, 0 € R} has the MLR property if and only if the error density fy is log-concave.

Proof. Suppose MLR holds, we will show that f(¢) = exp{¢(¢)} for some concave
function ¢. By the assumption of MLR, for any x; < x3, setting 6o = 0, and
01 = (x2 —x1)/2 > 0, we have

fo(x2) ¢((X1 +x2)

N _ o faa)
S50 (x2) 2

-8 foo(x1)

) —$(x2) = p(x1) — (M)

2
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This implies that the log-density ¢(¢) is midpoint-concave, i.e., for all x; and x;, we
have,
(x1 + x2)
o<

For Lebesgue measurable functions, midpoint concavity is equivalent to concavity
by the Sierpinki Theorem (see, e.g., Sec 1.3 of |Donoghuel |2014)). This proves the
‘only-if” part.

For the ‘if” part, when ¢(¢) = log (fo(¢)) is log-concave, then for any dp < 91,
and any x <y, we have

g fé](y) —log fﬁ](x)
f50(y) f50(-x)

where the last inequality is a simple consequence of concavity (see Lemma [5.2]
below). This proves the ‘if” part. O

) 2 %¢(X1) + %¢(X2)~ (5.7)

lo

=¢(y=01)—p(y—60) —¢(x—61) +¢(x—do) 2 0, (5.8)

Lemma 5.2. Let ¢ be any concave function on R. For any x <y € R, and 6 > 0 we
have

P(x) + ¢y +6) < ¢(y) + $(x +6).
Proof. Pick A = 6/(y — x + 9), by concavity of f we have
Ap(x) + (1 = Dy +6) < p(Ax + (1 = D)(y +9)) = (y), (5.9
and
(1=-Dpx)+ A9y +0) < d((1 = Dx+ A(y +9)) = ¢p(x +9). (5.10)
Summing up and and we arrive at the conclusion as desired. O
Theorem [5.1]and Lemma [5.1]yield immediately the following.

Corollary 5.1. Consider the additive error model (1.1), where the €(i)’s are inde-
pendent with common distribution F. Let the signal u have s positive entries with
magnitudes 0 < 61 < ... < 8, located on {1, . . ., p} as prescribed in .

If F has a positive, log-concave density f, then the support estimator

S* = 1i : x(i) = xpq)
is finite-sample optimal in terms of Bayes risk in the sense of (5.3).

Proof. The independence and the fact that the observations have densities implies
the absence of ties among the order statistics {x[;;}, with probability one. Thus, the

oracle thresholding procedure is a.s. unique and given by S* = {i : x(i) > x[4}.
The result then follows from Theorem[3.1land Lemma3. 1] O

Remark 5.1. Theorem[5.1]and Corollary [5.1|show that under MLR (or equivalently,
log-concavity of the errors in additive models), the oracle thresholding procedures
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are finite-sample optimal even in the case where the signals have different (positive)
sizes. This fascinating property perhaps explains the success of the thresholding
estimators.

The assumption of log-concavity of the densities is compatible with the AGG
model when v > 1, as demonstrated in the next example.

Example 5.1. The generalized Gaussian density f(x) oc exp{—|x|"/v} is log-concave
for all v > 1. Therefore in the additive error model (I.I), according to Corollary 5.1}
the oracle thresholding procedure is Bayes optimal in the sense of (5.3).

5.3 Bayes optimality of likelihood ratio thresholding

When the MLR condition in Theorem is violated, the oracle thresholding proce-
dures can in fact be sub-optimal (see Example[5.2]and Section below).

In this section, we demonstrate that thresholding the likelihood ratio rather than
signal values yields the finite-sample Bayes optimal procedures. We consider a
special but sufficiently general case of signal models with equal densities.

Namely, let the observations x(i), i = 1,...,p have s signals as prescribed in
(5.2) with common “signal” density f,, and let the remaining (p — s) locations have
common “error’”’ density fy. Define the likelihood ratios

L) = fa(x(D)/ fox(@),
and let Ljjy > Ly > ... > Lyp be the order statistics of the L(i)’s.

Definition 5.3 (Oracle likelihood ratio thresholding). Recall that {ai,---,ay)
denotes the vector of a;’s arranged in a non-increasing order. Any estimator
S =1{i, - ,is} such that

(L(@i1),- -+, L)) = (Lpgs -+ 5 Lisps
will be referred to as an oracle likelihood thresholding estimator of the support S.

Theorem 5.2. Any oracle likelihood ratio thresholding procedure §LRT is finite-
sample optimal in terms of Bayes risk. That is,

Sirr € argmin E,P[S # S]. (5.11)
SeS

for all s and p, where the infimum on S is taken over all support estimators of size s.

Proof. The proof is analogous to that of Theorem We need to show that §LRT €
argmaxg.s f(x|S)n(S). Since the distribution 7 of the support § is uniform (recall
(5.3)), it is equivalent to prove that
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J (xISLrr) = max f(x[S),
SeS

where f(x|S) is the conditional distribution of the data given the unordered support
S’
F(x18) = Z FEAP T PIS) = [ | faxGD | | folx(i)- (5.12)

Jjes Jj&s

Suppose S € S is not an oracle likelihood thresholding estimator. Then from the
definition of the likelihood ratio thresholding procedure, there must be indices j € S
and j’ ¢ S such that L(j) < L(j'). If we exchange the labels of L(j) and L(j’),
that is, we form a new estimate S’ = (S \ {j}) U{j’}, comparing the log-likelihoods
under S and S ’. we have

log f(x1S)~log f(x|S") = log fa(x(j))+og fo(x(j")~log fua(x(j))~log fo(x(j)).

By the definition of L(j)’s, and the order relations, we obtain
log £ (x|S) - log f(x|S") = log L(j) - log L(j") > 0

This shows that S cannot be Bayes optimal unless it is a likelihood thresholding
estimator. Note that with the same argument for every two likelihood thresholding
estimators S’ and S” we have f(x|S") = f (xIS”) proving the desired optimality.
O

The characterization of optimal likelihood ratio thresholding procedures in The-
orem[5.2|may not always yield practical estimators, as the density of the alternatives,
and the number of signals s are typically unknown. Still, some insights can be
gained by virtue of Theorem[5.2] In particular, when MLR fails (for example, when
the errors in model do not have log-concave densities), data thresholding is
sub-optimal.

Example 5.2 (Sub-optimality of data thresholding). Let the errors have iid gen-
eralized Gaussian density with v = 1/2, i.e., log fo(x) o« —x'/2. Let dimen-
sion p = 2, sparsity s = 1 with uniform prior, and signal size 6 = 1. That
is, P[u = (0,)T] = P[u = (1,0)T] = 1/2. If the observations take on values
x = (x1, x2)T = (1,2)T, we see from a comparison of the likelihoods (and hence,
the posteriors),

f(XI{l})
% ey

that even though x; < x,, the set {1} is a better estimate of support than {2}, i.e.,
P[S = {1} | x] > P[S = {2} | x].

=207 420 - D7 - 20 - 20 - D' =4-2V2 >0,

This simple example shows that, in the case when the errors have super-
exponential tails, the optimal procedures are in general nor data thresholding. A
slightly more general conclusion can be found in Corollary [5.2]
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5.4 Sub-optimality of data thresholding procedures

We provide a slightly more general result on the sub-optimality of data thresholding
procedures.

Corollary 5.2. Consider the additive error model (1.1). Let the errors € be indepen-
dent with common distribution F. Let each of the s signals be located on {1, .. ., p}
uniformly at random with equal magnitude 0 < 6 < co. Assume the errors €(i)’s are
iid with density f that is log-convex on [K, +0), for some K > 0.

If Sopt is the Bayes optimal (i.e., the oracle likelihood thresholding estimator),
then, whenever j € g},,,, for some x(j) > K + 8, we must necessarily have j’ € :ST,,p,
forall j" such that K + 6 < x(j') < x(j).

Specifically, if there are m observations exceeding K + J, with m> s, then the
top m — s observations will not be included in the optimal estimator Sop. This shows
that, in the case when the errors have super-exponential tails, the optimal procedures
are in general not data thresholding.

Proof (Corollary[5.2). Since the density of the alternatives f,(¢) = f(t — 6) is log-
convex on [K + 6, ), by Relation (5.8) in the proof of Lemma|5.1]and appealing to
log-convexity (rather than log-concavity), the likelihood ratio

_ Jax())
O

is decreasing in x(j) on [K + 8, o). The claim follows from Theorem[5.2] O

L(j)

Remark 5.2. As we have seen, the thresholding estimators are no longer optimal in
the additive model with error-densities heavier than exponential. Thanks to Theorem
the oracle likelihood thresholding procedures are promising alternatives that can
lead us to practical support estimators.

In the case where the signals have different sizes, however, the argument in the
proof of Theorem[5.2|breaks downs since the signal densities need to be identical for
Relation to hold. In such cases, the characterization of the optimal procedure
is an open problem.

5.5 Minimax optimality in exact support recovery

We establish in this section minimax versions of our results from Chapter[d] Specif-
ically, if we restrict ourselves to the class of thresholding procedures 7~ (defined in
(2.20)), then Bonferroni’s procedure is minimax optimal, for any fixed dependence
structure in the URS class. This is formalized in Corollary [5.3] below.We refer to
this result as point-wise minimax, to emphasize the fact that this optimality holds for
every fixed URS array.
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Meanwhile, if we search over all procedures, but expand the model space to in-
clude all dependence structures, then a different minimax optimality statement holds
for Bonferroni’s procedure. This result, formally stated in Section[5.5.2] is a conse-
quence of our characterization of the finite-sample Bayes optimality of thresholding
procedures in Section

5.5.1 Point-wise minimax optimality for thresholding procedures

Theorems [4.T]and [.2]can be cast in the form of an asymptotic minimax statement.

Corollary 5.3 (Point-wise minimax). Let SBof pe the sequence of Bonferroni’s
procedure described in Theorem Let also the errors have common AGG(v)
distribution F with parameter v > 0, and ©},(B,r) be as defined in @.7). If r >
JE(B), then we have

limsup sup P(Sp" #5,) =0, (5.13)
P ue®f (Br)

for arbitrary dependence structure of the error array & = {€,(i)}p. Let T be the
class of thresholding procedures 2.20). If r < fg(B), then we have

liminf _inf  sup P(S, #S,) =1, (5.14)
P78, €T ped (Br)

for any error dependence structure such that & € U(F) and (-&) € U(F).

Proof. The first conclusion is a restatement of Theorem 4.1

For the second statement (5.14), since r < fg(B), we can pick a sequence
W € ©5(B,r) such that [, | = L£(p)p'~# |, with signals having the same signal size
u@i) = (2rlog p)l/" foralli € S, where r < r < fg(f). For this particular choice
of u* we have u* € ©,(B,7) (recall (#.22)), where r < 7 < fg(f3), and according

to Theorem we obtain lim,_, infg P[§p # Sp] = 1, for all dependence

SpeT
structures in the URS class. 0O

Remark 5.3. Theorem is a stronger result than the traditional minimax claim in
Relation (5.14). Indeed, involves an infimum (over the class ©,) while (5.14)
has a supremum (over the class @;;).

On the other hand, Corollary [5.3]is more informative than many minimax-type
statements, since it applies “point-wise” to any fixed error dependence structure in
the URS class.

Remark 5.4. Corollary [5.3]echoes Remark [4.3} for a very large class of dependence
structures, we cannot improve upon Bonferroni’s procedure in exact support recovery
problems (asymptotically), unless we look beyond thresholding procedures.
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5.5.2 Minimax optimality over all procedures

Consider the asymptotic Bayes risk as defined in (5.4). The statement for the neces-
sary condition of support recovery in Theorem |4.2| with the help of Corollary
can be strengthened to include all procedures (in the Bayesian context), regardless
of whether they are thresholding or not.

Theorem 5.3. Consider the additive model where the €,(i)’s are independent
and identically distributed with log-concave densities in the AGG class. Let the
signals be as prescribed in Corollary If the signal sizes fall below the strong
classification boundary [@.3), i.e. T < fg (), then we have

liminf inf E,P[S,, # S,] = 1, (5.15)
p—ooo SP

where the infimum on S, is taken over all procedures.

Proof. When the errors are independent with log-concave density, the oracle thresh-
olding procedure S}, by Corollary minimizes the Bayes risk (5.4) among all
procedures. That is,

lim inf inf E<P[S, # S,] > liminf EP[S], # S,].
]’)—)DO

]’)—)OO Sp
Since §;‘, belongs to the class of all thresholding procedures, we have

liminf E-P[S; # S,] > liminf inf E.P[S, # S,]
pm=ee po® 5 eT

> liminf inf infP[S, # S,] = 1,

P 5 cq Sp

when 7 < fg(3), where the last line follows from Theorem4.2| O

Theorem [5.3] allows us to state another minimax conclusion — one in which we
search over all procedures, by allowing the supremum in the minimax statement to
be taken over the dependence structures.

Corollary 5.4. Let D(F) be the collection of error arrays with common marginal F
as defined in (4.20) where F is an AGG(v) distribution. Let also Sg””f be Bonferroni’s
procedure as described in Theorem Ifr > fe(B), then we have

limsup sup PSP # 5,) = 0. (5.16)
P uedy (B.r)
EeD(F)

Further, when r < fg(B), and F has a positive log-concave density f, we have

liminfinf sup P(S, #S,) = 1, (5.17)

P7® Sy ued; B.r)
EeD(F)
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where the infimum on §p is taken over all procedures.

Proof. Relation (5.16) is a re-statement of Remark .1}
For any distribution 7 (with a slight abuse of notation) over the parameter space
0, X D(F), we have

liminfinf sup P(:S';, #Sp) 2 liminfiprnP(§p # Sp), (5.18)
P=® S, uedl (B.r) p=e g,
EeD(F)

since the supremum is bounded from below by expectations. In particular, define 7
to be the uniform distribution over the configurations ®,, X I(f), where

@, ={ueR?: [S,| = L&(p)p' ], @) =0foralli ¢S, and

1/v

u(@) = (vrlogp)'”” foralli € S, where r < r < fg(B)},

and

I(f) ={& = (e, (i))p : €, (i) iid with density f(x) oc exp{—|x["/v}}.

Since the density f of F is log-concave, the distribution of the signal configu-
rations satisfies the conditions in Theorem Thus, the desired conclusion (5.17)

follows from Theorem[5.3]and (5.18). O

Remark 5.5. Since the class AGG(v), v > 1 contains distributions with log-concave
densities (Example [5.1), the minimax statement continues to hold if the
supremum is taken over the entire class F' € AGG(v), v > 1. We opted for a
more informative formulation which emphasizes the log-concavity condition on the
density of F.

Remark 5.6. Corollary [5.4] is no stronger than Corollary [5.3] In Corollary [5.3] we
search over only the class of thresholding procedures, but offer a tight, point-wise
lower bound on the asymptotic risk over the class of URS dependence structures.
On the other hand, Corollary[5.4]provides a uniform lower bound for the asymptotic
risk over all dependence structures, which may not be tight except in the case of
independent errors.

5.6 Optimality and sub-optimality: A discussion

We conclude with a brief summary on the optimality and sub-optimality of the
thresholding procedures in the problem of exact support estimation. For clarity, we
focus on the model with independent errors.

Theorem [5.3]and Corollary[5.4]provide a nearly complete picture of the difficulty
in the exact support recovery problem, in the regime when the thresholding esti-
mators are optimal. Specifically, in such cases the signal classification boundary is
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universal. On the other hand, Theorem and indeed, Exampledemonstrate that
thresholding procedures are sub-optimal for AGG(v) models with v < 1. Therefore,
the optimality of thresholding procedures (specifically, Bonferroni’s procedure) only
applies to AGG(v) models with v > 1.

If we restrict the space of methods to only thresholding procedures, then the
results in Section[5.5.1]state that the phase transition phenomenon — the 0-1 law in
the sense of Corollary [5.3]— is universal in all error models with rapidly varying
tails. This includes AGG(v) models for all v > 0. In contrast, models with heavy
(regularly varying) tailed errors do not exhibit this phenomenon (form more details,
see Theorem|[B.3). We summarize the properties of thresholding procedures in Table

51

Table 5.1 Properties of thresholding procedures under different error distributions when the errors
are independent. Properties of the error distributions are listed in brackets.

Thresholding procedure Bayes optimality Phase transition
(Error distributions) (Log-concave density) (Rapidly-varying tails)
AGG(y),v > 1 Yes (Yes) Yes (Yes)
AGG(r),0<v <1 No (No) Yes (Yes)

Power laws No (No) No (No)




Chapter 6
Uniform Relative Stability for Gaussian Arrays

The notion of uniform relative stability (URS) in Definition 1] is the key to the
necessary conditions for exact support recovery established in Theorem [4.2] In this
chapter, we provide a complete characterization of the class of URS Gaussian arrays
in terms of a simple condition on their covariance structure. The condition is as
follows.

Definition 6.1 (Uniformly decreasing dependence (UDD)). Consider a triangular

P p= 1,2,...} with unit

array of jointly Gaussian distributed errors & = {(ep(i))i:1 )

variances,
e, ~N(O,Z,), p=12....

The array & is said to be uniform decreasingly dependent (UDD) if for every ¢ > 0
there exists a finite N(§) < oo, such that for everyi € {1,..., p}, and p € N, we have

[{ketl,....p}: Z,(. k) > 6} | < N() forall 6 > 0. (6.1)

That is, for every coordinate i, the number of elements which are more than ¢-
correlated with €, (i) does not exceed N (6).

Note that the bound in holds uniformly in i and p, and only depends on 6.
Also observe that on the left-hand side of (6.1), we merely count in each row of %,
the number of exceedances of covariances (not their absolute values!) over level 8.

Remark 6.1. Without loss of generality, we may require that N(J) be a monotone
non-increasing function of ¢, for we can take

N(6) = sup [tk : £, (i, k) > 8}

p-t

s

which is non-increasing in ¢. Definition therefore states that the array is UDD
when N(§) < oo forall 6 > 0.

Observe that the UDD condition does not depend on the order of the coordinates
in the error vector €, = (€ (i))ip: 1 Often times, however, the errors are thought

73
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of coming from a stochastic process indexed by time or space. To illustrate the
generality of the UDD condition, we formulate next a simple sufficient condition
(UDDY) that is easier to check in a time-series context.

Definition 6.2 (UDD’). For €, ~ N(0,X,) with unit variances, an array & =
(e,, (i ))f=1 is said to satisfy the UDD’ condition if there exist:
(i) permutations [, of {1, ..., p}, forall p € N, and
(ii) a non-negative sequence (r,), ; converging to zero r, — 0, as n — oo,
such that
sup |Zp (i/,j/) | < Tli=j|- (6.2)
peN

where i’ = [,,(i), j' = 1,(j), foralli, j € {1,..., p}.

Remark 6.2. Without loss of generality, we may also require that r,, be non-increasing
in n, for we can replace r,, with the non-increasing sequence r;, = sup,,,s,, 'm-

Proposition 6.1. UDD’ implies UDD.

Proof. Since r,, — 0, for any 6 > 0, there exists an integer M = M (5) < oo such
that r, < &, for all n > M. Thus, by (6.2), for every fixed j’ € {1,...,p}, we can
have |Cov(e, (k"), €,(j"))| > 6, only if k" belongs to the set:

K ellp): j-M<k=0"k)<j+M},

where j = ll‘,l(j’). That is, there are at most 2M + 1 < oo indices k’ € {1,.. ., p},
whose covariances with €(j’) may exceed d. Since this holds uniformly in j’ €
{1,...,p}, Condition UDD follows with N(§) =2M + 1. O

We now state the main result of this chapter. It states that a Gaussian array is URS
if and only if it is UDD. The URS condition essentially requires that the dependencies
decay in a uniform fashion, the rate at which dependence decay does not matter.

Theorem 6.1. Let & be a Gaussian triangular array with standard normal marginals.
The array & has uniformly relatively stable (URS) maxima if and only if it is uniformly
decreasing dependent (UDD).

Specifically, for stationary Gaussian arrays, we have the following corollary.

Corollary 6.1. Let & = {€, (i) = Z(i)} for a stationary Gaussian time series Z =
{Z(i)}. Then & is URS if and only if the autocovariance function Cov(Z(k), Z(0)) —
0, as k — oo.

Corollary[6.T]follows by Theorem[6.T]and the observation that UDD is equivalent
to vanishing autocovariance of Z. A slightly weaker form of the “if” part was
established in Theorem 3 of |Berman|(1964).

Returning again to the study of support recovery problems, Theorem [6.1]and the
necessary condition for exact support recovery in Theorem [.2] yield the following
result.
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Corollary 6.2. For UDD Gaussian errors, the result in Theorem{.2| holds.

One may ask, whether the UDD (equivalently, URS) condition can be relaxed
further for the phase-transition result in Theorem to hold. As a counterpart to
Remark [4.5] we demonstrate next that the dependence conditions in Theorem [4.2]
are nearly optimal. Specifically, we show that if the URS dependence condition is
violated, then it may be possible to recover the support of weaker signals, falling
below the boundary. The main idea is to use the equivalence of URS and UDD
to construct a Gaussian error array, whose correlations do not decay in a uniform
fashion (UDD fails). As we will see, in such a case one can do substantially better
in terms of support recovery. This shows that the URS condition is nearly optimal in
the Gaussian setting. Numerical simulations illustrating this example can be found
in Section [4.6] below.

Example 6.1 (On the tightness of the URS condition for exact support recovery).
Suppose & = (Ep (i))f=1 is Gaussian, and is comprised of |p'] blocks, each of
size at least I_pﬁ ]. Let the elements within each block have correlation 1, and let the
elements from different blocks be independent. If » > 4(1 — ), then the procedure

S={i:x()>+2(0-pB)logp)

yields exact support recovery, i.e., P[§ = S] — 1, as p — oo. This requirement on
the signal size is strictly weaker than that of the strong classification boundary, since

41-B) <A ++T=pB)%onBe(0,1).

Proof (Example -Letr, = 2(1 - B) logpandobservethat§= {j:x(j) >1,}
Analogous to (@.11) in the proof of Theorem we have

P[EgS]:l—PL

egl)(;x(j) > t;] =1-P [%g{ge(j) > t;]

>1-P i) >t
> [-efrffl.f €(j) > 1,

J p}

ZI—P[ max E(j)>t,*,]
Jjell...lp'=F 1}

1-p
where (E)}Lf | bs are independent Gaussian errors; in the last inequality we used the

assumption that there are at most | p' ] independently distributed Gaussian errors
in (ep (j))j;l .By ExampleH(with Lp'# ] taking the role of p), we know that the

-1/2
FWER goes to 0 at a rate of (2 log Lp'# J) / . Therefore, the probability of no false
inclusion converges to 1.
On the other hand, since the signal sizes are no smaller than (vrlogp)!/” =

+/2rlog p (for v = 2), similar to (4.13), we obtain
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P[S2s]=p min e(j) > V2= B)logp - ,/2510gp]
L€

=P max (—€(j)) < +2logp (\/:— M)]

[ max;jes(—e(j)) V- Vi-8
uis| \/1 -p

where in the last line we used the quantiles (2.33). Since the minimum signal size
is bounded below by r > 4(1 — ), the right-hand-side of the inequality in
converges to a constant strictly larger than 1. While the left-hand-side, by Slepian’s
lemma (recall Theorem @ and Relation , is stochastically smaller than a r.v.
going to 1. Namely, we have

1+ 0(1))] , (6.3)

1 d 1 P
— max(—€(j)) < — maxe'(j) — 1, (6.4)
Uu|s| Jjes Uu|s| Jjes
where (e*)L’:7 ;7[3]’5 are independent Gaussian errors. Therefore the probability in

J
(6.3) must also converge to 1. 0O

Before proceeding to the proof of Theorem [6.1] we will briefly discuss the rela-
tionships between UDD and other dependence conditions in the context of extreme
value theory. The main idea we would like to convey is that UDD (and equivalently
URS) is an exceptionally mild condition on the dependence of the array.

The Berman and UDD conditions. Suppose that the array of errors & comes
from a stationary Gaussian time series €(i), i € N, with auto-covariance r, =
Cov(e(i + p), €(i)). One is interested in the asymptotic behavior of the maxima
M, := max;- ., €(i).
In this setting, the Berman’s condition, introduced in |Berman| (1964), requires
that
rplogp — 0, asp — co. (6.5)

This condition entails that
d
ap(Mp, —bp) — Z, asp — oo, (6.6)

with the Gumbel limit distribution P[Z < x] = exp{—e™*}, x € R, where

1 -1
ap =+2logp, b, = V2logp - 3 (\/2 logp) (loglog(p) + log(4r)),

are the same centering and normalization sequences as in the case of iid €(i)’s.
Berman’s condition is one of the weakest dependence conditions in the literature for
which the convergence in holds. See, e.g., Theorem 4.4.8 in Embrechts et al.
(2013), where (6.3) is described as “very weak”.

Instances where the dependence in the time series is so strong that Berman’s
condition fails have also been studied. In such cases, one may continue to
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have but typically the sequences of normalizing and centering constants will
be different from the iid case, and the corresponding limit is usually no longer
Gumbel; see, for example, Theorems 6.5.1 and 6.6.4 in Leadbetter et al. (1983), and
McCormick and Mittal (1976)).

In our high dimensional support estimation context, the notion of relative stability
is sufficient and more natural than the finer notions of distributional convergence. If
one is merely interested in the asymptotic relative stability of the Gaussian maxima,
then Berman’s condition can be relaxed significantly (see also, Theorem 4.1 of
Berman| [1964). Observe that by Proposition[6.1] the Berman condition implies
UDD and hence relative stability (Theorem , ie.,

L, 51 as po oo 6.7)

bp
This concentration of maxima property can be readily deduced from (6.6), since
apb, ~ 2log(p) — oo as p — oo. Theorem shows that holds if the
much weaker uniform dependence condition UDD holds. Note that our condition is
coordinate free — neither monotonicity of the sequence 7, nor stationarity of the
underlying array is required. This makes it substantially broader than the time series
setting in the seminal work Berman| (1964).

The rest of this chapter is devoted to the proof of the main result, i.e., Theorem@
We first introduce a key lemma regarding the structure of an arbitrary correlation
matrix of high-dimensional random variables. The proof uses a surprising, yet elegant
application of Ramsey’s Theorem from the study of combinatorics. The ‘only if’
part of Theorem|[6.1] follows from this lemma, in Section

The proof of the ‘if” part is detailed in Section [6.3] The arguments there have
been recently extended to establish bounds on the rate of concentration of maxima
in [Kartsioukas et al. (2019); see also, Tanguy| (2015b) and the related notion of
super-concentration of (Chatterjee (2014).

6.1 Ramsey’s theory and the structure of correlation matrices

Given any integer k > 1, there is always an integer R(k, k) called the Ramsey
number:
k-1 (6.8)
such that the following property holds: every undirected graph with at least R(k, k)
vertices will contain either a clique of size k, or an independent set of k nodes. Recall
that a clique is a complete sub-graph where all pairs of nodes are connected, and an
independent set is a set of nodes where no two nodes are connected.

This result is a consequence of the celebrated work of Ramsey| (2009), which
gave birth to Ramsey Theory (see e.g.,[Conlon et al., 2015)). The Ramsey Theorem
and the upper bound (established first in [Erdos and Szekeres, [1935)) are at the

k < R(k,k) < (2k _2)
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heart of the proof of the following result. A recent improvement on the upper bound
is given by Sah| (2020).

Proposition 6.2. Fixy € (0, 1) and let P = (p(i, j)) be an arbitrary correlation

nxXn
matrix. If
k:=llogy(n)/2] = [1/y1+1, (6.9)
then there is a set of k indices K = {ly,...,lx} C{1,...,n} such that
p(,j) = -y, foralli,j € K. (6.10)

Proof. By using and a refinement of the Stirling’s formula, we will show at the
end of the proof that for k£ < log,(n)/2, we have

R(k, k) < n, 6.11)

where R(k, k) is the Ramsey number.

Now, construct a graph with vertices {1, ..., n} such that there is an edge between
nodes i and j if and only if p(i, j) > —y. In view of and Ramsey’s theorem (see
e.g., Theorem 1 in Fox|(2009) or/Conlon et al.|(2015) for a recent survey on Ramsey
theory), there is a subset of k nodes K = {/y,...,I;}, which is either a complete
graph or an independent set. Recall that in a complete graph, every two nodes are
connected with an edge; while in independent sets, no two nodes are connected.

If K is a complete graph, then by our construction of the graph, Relation (6.10)
holds.

Now, suppose that K is a set of independent nodes. This means, again by the
construction of our graph, that

p(,j) < -y, foralli+jeK.

Let Z;, i € K be zero-mean random variables such that p(i, j) = E[Z; Z;]. Observe
that

Var(z z,-) = Z Var(Z;) + Z Cov(Zi, Zj) < k — k(k — 1)y, 6.12)
ieK ieK i#]
i,jeK
since Var(Z;) = 1 and p(i, j) < —y fori # j. By ourassumption, k > ([1/y] + 1), or
equivalently, (k—1) > 1/v, the variance in (6.12) is negative. This is a contradiction
showing that there are no independent sets K with cardinality k.
To complete the proof, it remains to show that Relation holds. In view of the
upper bound on the Ramsey numbers (6.8), it is enough to show that k < log,(y/n)

implies
2k -2
< n.
(i0) =

This follows from a refinement of the Stirling formula, due to Robbins|(1955):



6.1 Ramsey’s theory and the structure of correlation matrices 79
1 1
V2ram™H et < m! < N2am™ e e

Indeed, letting k = k — 1, and applying the above upper and lower bounds to the
terms (2k)! and k!, respectively, we obtain:

2k -2\ (k) 2% 1 2
(k )E(~k) S—_yexp{—~— — }<22k
k-1 kD2 ik 24k 12k +1

where the last two inequalities follow by simply dropping positive factors less than
1. Since 2k < log,(n), the above bound implies Relation (6.11) and the proof is
complete. 0O

Using Proposition we establish the key lemma used in the proof of Theorem
6.1

Lemma 6.1. Letc € (0,1), and P = (p(i, j)) (n+1)x(n+1) D€ a correlation matrix such
that

p(l,j)>c forallj=1,...,n+1. (6.13)
Ifn > 22[2/"2“4, then there is a set of indices K = {l,...,Ix} C{2,....,n+ 1} of
cardinality k = |K| = |log, Vnl, such that
6‘2
p@,j) > > foralli,j € K. (6.14)

That is, all entries of the k X k sub-correlation matrix Px := (p(i, j)); jex are larger
than ¢/2.

Proof (Lemma . Let Zy,...,Z,+1 be random variables with covariance matrix
P. Denote p; = p(1, j) and define

(7 —pz) ifer
Rjz{\/@(z" o). o<t (6.15)

R’ if pj =1,

where R* is an arbitrary zero-mean, unit-variance random variable. It is easy to see
that Var(R;) = 1, and

Cov (Zi, Zj) = Cov (pizl +4/1 - p?Ri, piZ1+4/1- p?Rj)
=pipj++/1 - p? 1- pf Cov (Rl-,Rj)

> ¢ + min {COV (Ri, Rj) ,0} .

Therefore, Relation (6.14) would hold if we can find a set of indices K =
{l1,.... I} such that Cov (R;, R;) > —c*/2 for all i, j € K, where k = |K| =

n+l
Llog, vn]. This, however, follows from Proposition applied to (Rj)j; with
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y = ¢?/2, provided that
k = |log, Vn] = [2/c*1 + 1.

The last inequality indeed follows form the assumption that n > 22/2/¢*1+4

6.2 URS implies UDD (Proof of the ‘only if’ part of Theorem 6.1)

In view of Remark UDD is equivalent to the requirement that N(6) := 1 +
sup,, N, () < oo forall 6 € (0, 1), where

Np(8) := max |(i:i#j, Zp(j.i) > 6. (6.16)

Jell,...p}
Therefore, if & is not UDD, then there must exist a constant ¢ € (0, 1) for which
N(c) is infinite, i.e., there is a subsequence p — oo such that N5(c) — co. Without

loss of generality, we may assume that p = p.
Let j, (c) be the maximizers of (6.16), and let

Sp(e) == (i€ {l,...,p} : Zp(ip(e)i) > c). 6.17)

Observe that |S,, (c)| = N,(c) + 1 — o0, as p — oo (note j,(c) € S,(c)).
Applying Lemma to the set of random variables indexed by S, (c), we con-
clude, for N (c) > 2212/ Cz]+4, there must be a further subset

Kp(c) c Sp(c), (6.18)

of cardinality

kp(c) := |K,,(c)\ > log, AN, (), (6.19)

such that all pairwise correlations of the random variables indexed by K (c) are
greater than ¢?/2. Since the sequence Ny (c) — oo, by (6.19), we have kp(c) — o0
as p — oo,

Therefore, we have identified a sequence of subsets K, (c) € {1,..., p} with the
following two properties:

I kp(c) = |Kp(c)| = . as p — o, and
2. Foralli,j € K,(c), we have

2,3, j) > /2. (6.20)

Without loss of generality, we may assume K, (c) = {1,...,k,(c)} € {1,...,p},
upon re-labeling of the coordinates.

Now consider a Gaussian sequence €* = {€*(j), j = 1,2,...}, independent of &,
defined as follows:
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() =2Z(c/V2) + Z(H)y1 -2 j=12...,

where Z and Z(j),j = 1,2, ... are independent standard normal random variables.
Hence,

Var(e*(j)) = 1= Var(ep, (j)), (6.21)
and )
Cov(e* (i), e"(j)) = % < Cov(ep (i), €p (), (6.22)

forall p, and all i # j, i, j € K,(c). Thus we have, as p — oo,

- /2 1 - 2 2 2
max €(j) = V2, N-en Z(G) S41-5, (6.23)
Uk, (c) JeKp () Uk, (c) Uk, (c) JeKp(e) 2

where the convergence in probability follows from Proposition 2.2 part[2]
Relations (6.21) and (6.22), by Slepian’s Lemma (recall Theorem[2.T), also imply,

d
max €"(j) = max €,(j). (6.24)
Uk, (c) J€Kp(c) Uk, (c) J€Kp (c) P

Therefore, by (6.24) and (6.23), for all /1 — ¢2/2 < § < 1, we have,

P

max €,(j) <d|—1 asp— oco.
Ui, (c) i€Kp(e) ¥

This contradicts the definition of URS (with the particular choice of S, := K},(c)),
and the proof of the ‘only if* part of Theorem[6.1]is complete.

6.3 UDD implies URS (Proof of the ‘if’ part of Theorem 6.1)

Recall that our objective is to show (4.21). We will do so in two stages; namely, we
will prove that for all § > 0, we have

Ms,,
P[— >1+6| =0, (6.25)
us,|
and
Ms,
P[— <1-6| =0, (6.26)
us,|

for any sequence of subsets S, such that |[S,,| — co. Although the first step was
already shown in Proposition[2.2] regardless of the dependence structure, we provide
in this section a more refined result. Specifically, the following result states that for
the AGG model, the constant ¢ in Proposition can be replaced by a vanishing
sequence ¢, — 0.
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Lemma 6.2 (Upper tails of AGG maxima). Let & be an array with marginal
distribution F € AGG(v), v > 0. If we pick

u
cp = L8P (6.27)
Up

where u, = F (1 — 1/p), then we have c,, > 0, ¢, — 0, and

M,
P|[—~-(0+cp)>0|—0. (6.28)
Up
The proof can be found in Section [6.3.Tbelow.

Since Lemmal6.2]holds regardless of the dependence structure, the same conclu-
sions hold if one replaces M), by Ms, = max;es, €(j) and p by g = q(p) = |Sp,
where S, is any sequence of sets such that g = |S,| — co. This entails (6.25).

On the other hand, the proof of uses a more elaborate argument based on
the Sudakov-Fernique bound. We proceed by first bounding the probability by an
expectation. For all 6 > 0, we have

M M
P[ S < 1—5] :P[—( S —(1+cq)) > 6+ ¢
Uqg Uqg
M
sp[( > —(1+cq)) > 6+ ¢,
Ug _
el(Mse e (6.29)
< - c , .
0 +cy g ]

where (x)- := max{—ux, 0} and the last line follows from the Markov inequality. The

next result shows that the upper bound in (6.29) vanishes.

Lemma 6.3. Let & be a Gaussian UDD array and S, C {1, ..., p} be an arbitrary
sequence of sets such that q = q(p) = |Sp| — oco. Then, for Ms, = maxjes, €,(j)
and ¢4 as in (6.27), we have

Ms,
E - (1+cy) -0, asp — oo, (6.30)
Ug B
The proof of the lemma is given in Section below.

Going back to the proof of Theorem we observe that Relations (6.29) and
(6.30) imply (6.26), which completes the proof of the ‘if” part of Theorem[6.1} O

Remark 6.3. Only the Sudakov-Fernique minorization argument used in the proof of
Lemmal6.3] relies on the Gaussian assumption. We expect the techniques and results
here to be useful in extending Theorem [6.1]to more general class of distributions,
say, the AGG model.
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6.3.1 Bounding the upper tails of AGG maxima

Proof (Lemmal6.2). Recall by (2.33) that

Ug ~ (vlogq)l/", q — oo,

so that

_ Uplogp 1= (10gp+loglogp

1/v
cp = (1+0o(1))-1 >0 asp — 0. (6.31)
logp

Up

By the union bound, we have

< iP [ep(j) > 1+cp| =pF (Upiogp) (6.32)

P
— 1 1
:pF(F*(l— ))5 =0
plogp logp
where the last inequality follows from the fact that F' (F (u)) > u for all u € [0, 1].
O

In addition to Lemma [6.2] which says the upper tail vanishes in probability, we
will also prepare a result which states that the upper tail also vanishes in expectation.

Lemma 6.4. Let M, and cp, be as in Lemma and denote

£ 1=
P+ epuy

Then there exist pg,ty > 0, and an absolute constant C > 0 such that

P&, > t] Sexp{-Cr"}, forall p>po, t> 1. (6.33)

In particular, the set of random variables {(fp)+ , P € N} is uniformly integrable.

Proof (Lemma . Recalling that (1 + ¢,)up, = up 104, and by applying the union
bound as in (6.32), we have

logP [f,, > t] <logp+1logF (uplog,,t)

1 v
< logp -~ (uprogpt) (1-0). (6.34)

fort > tp(6) > 0, where 6 € (0, 1) is an arbitrarily small number fixed in advance.
This follows from the assumption that F € AGG(v) and Definition [2.6] of the AGG
distribution. Using in (6.34) the explicit expressions for the quantiles in (2.33), we
obtain



84 6 Uniform Relative Stability for Gaussian Arrays

logP [£, > t] <logp—(1+0(1)) (1 - 6)" logp—1"loglogp (1+0(1)) (1 - 6).
greater than 1 for large ¢ greater than C for large p

(6.35)
For large ¢, we have (1 + o(1)) (1 — §)t” > 1, so that the sum of the first two terms
on the right-hand side of is negative. Also, for p larger than some constant
po(6), we have loglogp (1 + o(1)) (1 — 8) > C for some constant C that does not
depend on p. Therefore holds for t > t3(6) and p > po(9), and the proof is
complete. 0O

Corollary 6.3. The upper tails of AGG maxima vanish in expectation, i.e.,

(-] |
El{—-0+c¢p) -0 as p— oo, (6.36)
Up +

where (a), := max{a, 0}.

Proof (Corollary[6.3). Since ¢, > 0 is a sequence converging to 0, we have ¢, < 1
for p > po. Hence for any ¢ > 0, we have

e st

Up
<P[(&-1), >1/2] <P[&p >12]. (637

ByLemma {(fp)+}isu.i.,thereforebyRelation (16.37), {(Mp/up -1+ cp))+, pE
N} is u.i. as well. Since by Lemma (Mp/up —(1+ cp)) — 0 in probability,

+

Relation ([6.36) follows from the established uniform integrability (see, e.g., Theorem
6.6.1 inResnick, 2014). O

6.3.2 Bounding the lower tails of Gaussian maxima

The main goal of this section is to establish the following result.

Proposition 6.3. For every UDD Gaussian array &, and any sequence of subsets
Sp € {1,...,p} such that q = q(p) = |Sp| — oo, we have

Mg
liminfE[ P} > 1, (6.38)

p—eo Uy
where Mg = maxes €(j).

We will first show that Lemma [6.3] which is the key to the proof of the ‘if” part
of Theorem [6.1] follows immediately from this proposition.

Proof (Lemmal6.3). We start with the identity



6.3 UDD implies URS (Proof of the ‘if* part of Theorem|6.1) 85

Mg Ms
=E[( p—(1+cq))]—E[( ”—(1+cq))].
Ug " Ug -

By re-arranging terms and taking limsup/liminf, we obtain

Sp

E

-1 +cy)

Uqg

Mg
OslimsupE[( L —(1+cq)) ]
p—o Ug _

. Ms, o Ms,
<limsupE | — - (1 +¢4) —liminfE | — - (1 + ¢4) (6.39)
p—e Ug w1 e Ug
. Ms,
=—liminfE | — - (1 +¢4)|, (6.40)

where the last equality follows from the fact that the lim-sup in (6.39) vanishes by
Corollary On the other hand, since ¢, — 0, we have

Ms,

>0,

liminf E [

P

- (1 +¢y)

M
— liminf E [ S
p—eo Ug

Ug

where the last inequality follows from Proposition[6.3] This shows that the right-hand
side of (6.40) is non-positive and hence (6.30) holds. O

The following interesting fact about the relationship between the upper quantiles
and the expectation of iid maxima will be needed for the proof of Proposition

Lemma 6.5. Let (Xi)f.’:1 be p iid random variables with distribution F such that
E[(X;)_] exists, i.e.,
E[max{-X;, 0}] < co.

Let M, = max;-1,.._, X;. Assume that F' has a density f, which is eventually de-
creasing. More precisely, we suppose there exists a Cy such that 0 < F(Cp) < 1,
and f(x1) = f(x2) whenever Cy < x1 < xp. Under these assumptions, we have,

liminf P> 1,
Po® Upi

where upy; = FT(1 = 1/(p+1)).

Proof. The idea comes from an argument in the monograph of Boucheron et al.
(2013)). Write
X; = F(U)

where U; are iid uniform random variables on (0, 1). Denote M,l,] as the maximum
of the U;’s, we have EM,, = E [F“(Mg)], and by conditioning, we obtain
EM, =E[F™(MY) | MY 2 F(Co)|P[MY > F(Co)| +
+E[F(MY) | MY < F(Co)| P [MY < F(CD)]. (6.41)
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Focus on the first term in the summation. Since f is decreasing beyond Cy, F is
concave on (Cp, ), and F* is convex on (F(Cp), 1). By Jensen’s inequality, we
have

E[Fo (M) | MY 2 F(Co)| = F~ (BIMY | MY > F(Co)l).

Using the fact that M,ﬁf is the maximum of iid Uniform(0, 1) random variables, with
a direct calculation one can show that

- +1
F(_(E[M5|M52F(Co)])=F(_((l 1 )(1 F(Co)? ))

o p+1)\ 1=F(Cyr
and hence
o " _ 1 1 — F(Cp)P™!
B|FC M) | My 2 F(Co)] 2 F ((1‘p+1)( 1 F(Co)P ))
. 1
. F (l‘ﬁ):”””' (642)

Now, focus on the second term in (6.41). Since P[M] < m| MY < F(Cy)] =
(m/F(Cy))P < m/F(Cy) form < F(Cp), we have

(MY | MY < F(Co)) = (U1 | U1 < F(CY),

where and the latter is the uniform distribution on (0, F(Cp)). Therefore, for the
second term of the sum in (6.41), by the monotonicity of F<~, we obtain

E[FT(MY) | MY < F(Co)| = B[F~(U)) | Uy < F(Cp)]
=E [X1 | X1 < C()] . (643)

Finally, since P [MY < F(Cp)| = F(Co)? = 1 =P [MY > F(Cy)]. by (6:42) and
(16.43), we have

M E|X)| X C
P (1-F(Cy)?) + M
Up+1 Up+1

F(Cp)P.

The conclusion follows since the right-hand-side of the last inequality converges to
1. O

We are now ready to prove Proposition [6.3] This is where the UDD dependence
assumption is used.

Proof (Proposition . Recall that & = {€, (i), i = 1,---, p, p € N} is a Gaussian
array with standardized marginals. Define the canonical (pseudo) metric on S, C
{ 1» RS p}’

di. j) = B [(e() - €())?].
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It can be easily checked that the canonical metric takes values between 0 and 2. For
an arbitrary 6 € (0, 1), take y = v2(1 - 9), and let N be a y-packing of S,,. That is,
let N be a subset of S, such that for any i, j € N, i # j, we have d(i, j) > v, i.e.,

d(i.j) =2 (1= 2,6 ) 2 v = y2(1 - 5), (6.44)

or equivalently, X,(i, j) < 6. We claim that we can find a y-packing N' whose
number of elements is at least

IN| > g/N(9). (6.45)

Indeed, NV can be constructed iteratively as follows:

1: Set 51(7]) =8, and N := {j}, where j; € Sz(vl) is an arbitrary element. Set k := 1.
2: Set SI()k“) = Sl(,k) \ B, (jk), where

B,(ji) =i €8, : d(i, jx) <y =+2(1-06)).

3: If S,(,k) # 0, pick an arbitrary jr41 € S,(,k), set N := N U {jks1},and k:=k + 1,
go to step 2; otherwise, stop.

By the definition of UDD (see Definition [6.1), there are at most N (&) coordinates
whose covariance with €(j) exceed ¢. Therefore at each iteration, |B'y (jk)| < N(9),
and hence
k+1 k .
[SED| > [s9] - B, Gir)| = g - kN (S).

The construction can continue for at least ¢/N(9) iterations, and we have |N| >
Lg/N(6)] as desired.
Now we define on this y-packing N an independent Gaussian process (17(j)) jen»

X
V2
where Z(j)’s are iid standard normal random variables. Observe that by the definition

of y-packing in (6.44), the increments of the new process are smaller than those of
the original process in the following sense,

nG)=-=2(j) JjEN,

E () -n())*] =¥* < d*(, j) = B [(e()) — ()]

foralli # j,i, j € N. Applying the Sudakov-Fernique inequality (see Theorem [2.2)
t0 (11()) jen and (€(j)) - we have

E [523}3{“7(]')] <E [?5\)/( e(j)] <E |:§_I€1§X e(j)] . (6.46)

r

Since the (17(j)) je  are independent Gaussians, Lemmayields the lower bound,
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max;ep 17(;)
UiN|

> 2 —V1—s. (6.47)

liminf E
| 7

P

Using (6.45) and the expressions (2.33) for the quantiles of AGG models (with v = 2
here), we have

UN| (logq —log N(9)

1/2
) (I+o0(1)) -1, (6.48)
Uy log g

since N (6) does not depend on g = g(p) — oo.
By combining (6.46), (6.47) and (6.48), we conclude that

max;es, €(j) max; j
lim inf E [Lj > liminf E [M] by (6:46)
p—o uq p— uq
> liminf B [M] by (6.48)
p— M\NI
> Ve, by (647)

Since § > 0 is arbitrary, (6.38) follows as desired. O

6.4 Numerical illustrations of exact support recovery under
dependence

The characterization of URS with the UDD condition allows us to simulate Gaussian
errors and illustrate the effect of dependence on the phase transition behavior in finite
dimensions. We shall compare the performance of the Bonferroni’s procedure, which
is agnostic to both sparsity and signal size, with the oracle procedure which picks
the top-s observations.

The first set of experiments explores short-range dependent errors from an auto-
regressive (AR) models.

* AR(1) Gaussian errors with parameter p = —0.5, p = 0.5, and p = 0.9, where

the autocovariance functions decay exponentially, px = pX.

We again apply both the sparsity- and signal-size agnostic Bonferroni’s procedure,
ie,S= {i : x(i) > y/21log p}, as well as the oracle procedure St = {i:x@) > xq},
s = ||, to all settings. Results of the numerical experiments for the AR models are
shown in Figure 6.1

As was commented in the main text, for dependent errors the oracle procedures
is able to recover support of signals with higher probability than the Bonferroni
procedures in finite dimensions; compare left and right columns of Figure[6.1] Short
range dependent observations, however, there is not a pronounced difference. The
results of the experiments are very similar to that of the independent Gaussian case.



6.4 Numerical illustrations of exact support recovery under dependence

4 - AR(),p=05

0.8
06
0.4
i 02
0.0

4
1.0
3 0.8
0.6
2
0.4
1 - AR(1),p=09 0.2
0.0

O I 1
0.0 0.2 0.4 0.6 0.8 1.0

AR(1),

p=-05
oracle procedure

T
0.2

AR(1), p
oracle procedure __.--=*

T
0.4

=05

0.6

T
0.2

AR(1),

T
0.4

p=09
oracle procedure __.--F

0.6

0.0

T
0.2

T
0.4

0.6

0.8

0.6

0.4

0.2

0.0

0.4

0.2

0.0

0.8

0.6

0.4

0.2

0.0

89

Fig. 6.1 The empirical probability of exact support recovery from numerical experiments, as
a function of sparsity level 8 and signal sizes r. Darker colors indicate higher probability of
exact support recovery. Three AR(1) models with autocorrelation functions (-0.5)k (upper), 0.5k
(middle), and 0.9% (lower) are simulated. The experiments were repeated 1000 times for each
sparsity-signal size combination. In finite dimensions (p = 10000), the Bonferroni procedures
(left) suffers small loss of power compared to the oracle procedures (right). A phase transition in
agreement with the predicted boundary can be seen in the AR models. The boundaries (solid,

dashed, and dash-dotted lines) are as in Fig[4.1]
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The second set of experiments explores exact support recovery in additive error
models in the cases of long-range dependent but UDD, as well as non-UDD errors.
In particular we simulate

* Fractional Gaussian noise (fGn) with Hurst parameter H = 0.75 and H = 0.9.
The autocovariance functions are

ok ~0.75k7%% and  pg ~ 1.44k702,

as k — oo. Both fGn models represent the regime of long-range dependence,
where covariances decay very slowly to zero, so that ' |px| = oo; see, e.g.,
(Tagqul 2003). Observe that every stationary Gaussian process with vanishing
autocovariance gives rise to an UDD array as concluded in Corollary [6.1]

* The non-UDD Gaussian errors described in Example

We will apply both the sparsity-and-signal-size-agnostic Bonferroni’s procedure,
ie,S=1{i: x(i) > +/21og p}, as well as the oracle procedure St = {i : x(@) > x41),
s = |S], to all settings. Results of the numerical experiments for the fGn and non-
UDD models are shown in Figure (6.2

Notice that the oracle procedure sets its thresholds more aggressively (at roughly
1/2 log s) than the Bonferroni procedure (at 4/2 log p). Although this difference van-
ishes as p — oo, in finite dimensions (p = 10 000) the advantage can be felt. Indeed,
in all our experiments the oracle procedure is able to recover support of signals with
higher probability than the Bonferroni procedures; compare left and right columns
of Figure Notice also that there is an increase in probability of recovery near
B = 0 for oracle procedures. This is an artifact in finite dimensions due to the fact
that s = [p' ] < p/2, and there are more signals than nulls. The oracle procedures
is able to adjust to this reversal by lowering its threshold accordingly.

For UDD errors, Theorem4.2]predicts that exact recovery of the support is impos-
sible when signal sizes are below the boundary (4.5), even with oracle procedures.
However, the rate of this convergence (i.e., P[S* = S] — 0 or 1) can be very slow
when the errors are heavily dependent, even though all AR and fGn models demon-
strate qualitatively the same behavior in line with the predicted boundary (4.5). In
finite dimensions (p = 10 000), as dependence in the errors increases (fGN(H=0.75)
to f{GN(H=0.9)), the oracle procedure becomes more powerful at recovering signal
support with high probability for weaker signals.

On the other hand, as demonstrated in Example[6.T] non-UDD errors yield quali-
tatively different behavior; exact support recovery is possible for signal sizes strictly
weaker than that in the UDD case. Lower-right panel of Figure [6.2] demonstrates in
this example that the signal support can be recovered as long as the signal sizes are
larger than 4(1 — B).
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Fig. 6.2 The empirical probability of exact support recovery from numerical experiments, as a
function of sparsity level 8 and signal sizes r. Darker colors indicate higher probability of exact
support recovery. Two fGn models with Hurst parameter H = 0.75 (upper), H = 0.9 (middle),
and the non-UDD errors in Example (lower) are simulated. The experiments were repeated
1000 times for each sparsity-signal size combination. In finite dimensions (p = 10000), the oracle
procedures (right) is able to recover support for weaker signals than the Bonferroni procedures
(left) when errors are heavily dependent, although they have the same phase transition limit. The
non-UDD errors demonstrate qualitatively different behavior, enabling support recovery for strictly
weaker signals. The boundaries (solid, dashed, and dash-dotted lines) are as in Fig In the
non-UDD example, dashed lines represent the limit attained by Bonferroni’s procedures. See text
for additional comments.






Chapter 7

Fundamental Statistical Limits in Genome-wide
Association Studies

The process of scientific discovery, as explained by Richard Feynman, usually starts
with guesses. The consequences of such guesses are then computed and compared
with experimental results. If the predictions disagree with the experiment then our
guesses are wrong. ‘“That is all there is to it” (Feynman|[2017).

In the previous chapters, we delved deep into the theoretical underpinnings of
the phase transition phenomena in high-dimensional multiple testing problems. The
results are interesting in their own right. However, we have not discovered any scien-
tific law in the spirit of Feynman, but merely worked out mathematical consequences
of our postulated models. In this chapter, our goal is to relate these predictions to
real experimental data from the field of genetics, where large-scale simultaneous hy-
potheses testing problems often arise. From such comparisons, we will demonstrate
that the phase transition laws are indeed reasonable predictions of some curious
phenomena in that field. The accuracy of our predictions will lend credibility to the
application of these “laws of large dimensions” in actual applications.

In our case, the experimental data used as the measuring stick come from genome-
wide association studies (GWAS), introduced in Section Recall that in GWAS,
a large number of marginal association tests are conducted simultaneously, resulting
in statistics that can be approximated by

x(@) ~ x2 (@), i=1,...,p, (7.1)

where )(?, (A(i)) is a chi-square distributed random variable with v > 0 degrees of
freedoni” and non-centrality parameter A(i).

We establish our theoretical predictions in two steps. In Section below, we
shall first establish the phase transitions of the model (7.I). In parallel to results
in Chapter (3| we show that several commonly used family-wise error rate-control
procedures — including Bonferroni’s procedure — are asymptotically optimal for
the exact, and exact-approximate support recovery problems (recall Definition [2.5)

! The parameter v here should not be confused with the shape parameter of the AGG(v) distributions,
which will not appear in this chapter.

93
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in idealized chi-square models with independent components. Analogously, the BH
procedure is asymptotically optimal for the approximate, and approximate-exact
support recovery problems. Under appropriate parametrization of the signal sizes
and sparsity, we establish the phase transitions of support recovery problems in the
chi-square model. Remarkably, the degree-of-freedom parameter does not affect the
asymptotic boundaries in any of the four support recovery problems.

In the second step, we translate the canonical signal size and sparsity parametriza-
tions into the vernacular of statistical geneticists in Section We do so by char-
acterizing the relationship between the signal size A and the marginal frequencies,
odds ratio, and sample sizes for association tests on 2-by-2 contingency tables. This
is important because these parameters are often estimated and reported in GWAS,
while we have never seen the elusive signal size parameter A reported. As a bonus, we
point out the implications of this relationship on statistically optimal study designs
for association studies in Section perhaps surprisingly, balanced designs with
equal number of cases and controls are often statistically inefficient.

Armed with the results on phase transitions in the chi-square model, and a trans-
lation from the language of high-dimenstional statistics to the patois of association
screening studies, we finally present in Section the consequences of the phase
transitions in GWAS, and compare against real experimental data to evaluate the
success of our predictions.

The phase transitions in the chi-square models are demonstrated with numerical
simulations in Section The proofs, which are closely resemble those of the
results in Chapter 3] are collected in Section [Al

7.1 Support recovery problems in chi-squared models

Similar to the analysis of additive error models in Chapter[3] we will work with trian-
gular arrays of chi-square models (7.1) indexed by p. We adopt the same parametriza-
tion for the sparsity of the non-centrality parameter vectors 4 = A,

IS, = [p' ], Be@1] (7.2)

where S, := {i : A(i) > 0} is the signal support set and § parametrizes the problem
sparsity. More general parameterizations of the support size are possible as in (4.3).
Here, however, we drop the slowly varying term £(-) for simplicity. The closer 8
is to 1, the sparser the support S,,; conversely, when S is close to 0, the support is
dense with many non-null signals.

We parametrize the range of the non-zero and perhaps unequal signals in the
chi-square model with

A=2rlogp < A(i) <A=2rlogp, forall i€ S, (7.3)

for some constants 0 < r <7 < +oc0.
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7.1.1 The exact support recovery problem

The first main result characterizes the phase transition phenomenon in the exact
support recovery problem under the chi-square model. It parallels Theorem 3.2]

Theorem 7.1. Consider the high-dimensional chi-squared model ({1.1) with signal
sparsity and size as described in (1.2) and (1.3). The function

fe® = (1+yT=B)’ (7.4)

characterizes the phase transition of exact support recovery problem. Namely, the
following two results hold.

@) If r > fe(B), then Bonferroni’s, Siddk’s, Holm’s, and Hochberg’s procedures
with slowly vanishing (see Definition nominal FWER levels all achieve asymp-
totically exact support recovery in the sense of ([2.23).

(ii) Conversely, if ¥ < fg(B), then for any thresholding procedure Ep, we have
P[S, = S,1 — 0. Therefore, in view of Lemma exact support recovery asymp-

totically fails for all thresholding procedures in the sense of ([2.26).

The procedures listed in Theorem|[7.1]were reviewed in Section[2.2] The proof of
the theorem can be found in Section[A.2]

It is evident that the exact support recovery boundary coincides with that in
parallel results for the Gaussian additive error models in Chapter[3] Implications
of these results will be discussed in Section [Z.1.5] below.

Remark 7.1. Theorem[7.T|predicts that the asymptotic boundaries are the same for all
values of the degrees of freedom parameter v. In simulations (Section [7.5), we find
this asymptotic prediction to be quite accurate for v < 3 even in moderate dimensions
(p = 100). For v > 3, the phase transitions take place somewhat above the boundary
g. The behavior is qualitatively similar for the other three phase transitions (see

Theorems and[7.4]below).

7.1.2 The exact-approximate support recovery problem

The next theorem describes the phase transition in the exact-approximate support
recovery problem. Recall also Theorem [3.4

Theorem 7.2. In the context of Theorem[7.1] the function

fea(B) =1 (7.5)

characterizes the phase transition of exact-approximate support recovery problem.
Namely, the following two results hold.



96 7 Fundamental Statistical Limits in Genome-wide Association Studies

@) Ifr > fea(B), then the procedures listed in Theoremwith slowly vanishing
nominal FWER levels achieve asymptotically exact-approximate support recovery

in the sense of ([2.25).

(ii) Conversely, if ¥ < fga(B), then for any thresholding procedure S, the
exact-approximate support recovery fails in the sense of ([2.26).

Theorem [7.2]is proved in Section[A.4]

7.1.3 The approximate support recovery problem

Our third asymptotic result characterizes the phase transition phenomenon in the
approximate support recovery problem in the chi-square model. It closely parallels
Theorem 3.3]for the additive errors model.

Theorem 7.3. Consider the high-dimensional chi-squared model (1.1) with signal
sparsity and size as described in (1.2) and (1.3). The function

faB)=p (7.6)

characterizes the phase transition of approximate support recovery problem. Specif-
ically the following two results hold.

@) If r > fa(B), then the BH procedure :S‘;, (defined in Section with slowly
vanishing (see Definition nominal FDR levels achieves asymptotically approxi-
mate support recovery in the sense of ([2.23).

(ii) Conversely, if r < fa(B), then approximate support recovery asymptotically
fails in the sense of ([2.26)) for all thresholding procedures.

Theorem[7.3]is proved in Section[A.4] below.

7.1.4 The approximate-exact support recovery problem

A counterpart of Theorem [3.5]also holds in the chi-square models.

Theorem 7.4. In the context of Theorem the function

faeB) = (VB +T=B)° (1.7)

characterizes the phase transition of approximate-exact support recovery problem.
Namely, the following two results hold.
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() If r > fag(pB), then the Benjamini-Hochberg procedure with slowly vanishing
nominal FDR levels achieves asymptotically approximate-exact support recovery in

the sense of (2.25).

(ii) Conversely, if ¥ < fag(B), then for any thresholding procedure S, the
approximate-exact support recovery fails in the sense of ([2.26).

Theorem [7.4]is proved in Section

Notice that all phase transitions boundaries are identical to those in the Gaussian
additive error model under one-sided alternative. We refer readers to Figure
[3.2]in Section [3.2]for a visualization of the results in Theorems [7.1] through[7.4]

All four phase transitions results in Theorems through [7.4]focus only on the
idealized models where the statistics are independent. Support recovery prob-
lems under dependent observations remain to be explored. Recall in Chapter (4| we
showed that the boundary for the exact support recovery problem in the additive error
model continues to hold even under severe dependence and general distribu-
tional assumptions. We conjecture that the concentration of maxima phenomenon,
which is at the heart of the results in Chapter [d] will play a role and all of the above
phase-transition results will continue to hold, under broad dependence conditions
in the chi-square models. As an example, in the GWAS application, dependence
among the genetic markers at different locations (known as linkage disequilibrium)
decay as a function of their physical distances on the genome (Bush and Moore|
2012), resulting in locally dependent test statistics. It would be of great interest to
extend the current theory to cover important dependence structures that arise in such
applications.

7.1.5 Comparison of one- versus two-sided alternatives in additive
error models

As alluded to in Chapter in the introduction, we draw explicit comparisons
between the one-sided and two-sided alternatives in Gaussian additive error models
(1)

The exact support recovery problem in the dependent Gaussian additive error
model was studied in Chapter [3] with parametrization of sparsity identical to
that in (7.2), whereas the range of the non-zero (and perhaps unequal) mean shifts
(i) was parametrized as

A= [2rlogp < u@i) <A = \J2rlogp, forall i€ S,

for some constants 0 < r < ¥ < +oco. Under this one-sided alternative, a phase
transition in the r-f plane was described, where the boundary was found to be
identical to (7.4) in Theorem [7.1]for the chi-square models (7.1).
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As discussed in Section support recovery problems in the chi-square model
with v = 1 correspond to the support recovery problems in the additive model under
two-sided alternatives. This implies that the asymptotic signal size requirements are
identical between the two-sided alternative and its one-sided counterpart, in order to
achieve exact support recovery. As we shall see in numerical experiments (in Section
[7.5|below), the difference is not very pronounced even in moderate dimensions, and
vanishes as p — o0, in accordance with Theorem|7.1

Comparisons can also be drawn in the approximate, approximate-exact, and exact
approximate support recovery problems between the two types of alternatives.

Specifically, the approximate support recovery problem in the Gaussian addi-
tive error model under one-sided alternatives exhibits a phase transition phe-
nomenon characterized by a boundary that coincides with in Theorem
Similar to the exact support recovery problem, this indicates vanishing difference
in the difficulties of the two types alternatives in approximate support recovery
problems.

Comparing Theorems [7.2] and [3.4] as well as Theorems [7.4] and we see that
the phase transition boundaries under the two types of alternatives are also identical
in the exact-approximate and approximate-exact support recovery problems.

To complete the comparisons, we point out that the phase transition boundaries
for the sparse signal detection problem in the two types of alternatives are both
identical to (3.4). This was analyzed in|Donoho and Jin (2004).

Therefore, all phase transition boundaries coincide with those in the additive
error models obtained in Chapter [3|under their respective parametrizations. This in-
dicates vanishing differences between the difficulties of the one-sided and two-sided
alternatives in the Gaussian additive error model (I.1). The additional uncertainty
in the two-sided alternatives does not call for larger signal sizes in these problems,
asymptotically.

7.2 Odds ratios and statistical power

We return to the application of association screenings for categorical variables, and
put the results in the previous section to use. In particular, we focus on the exact-
approximate support recovery problem, and demonstrate the consequences of its
phase transition (Theorem [7.2)) in genetic association studies.

In order to do so, we must first connect the concept of statistical signal size
A with some key quantities in association tests. While the term “signal size” likely
sounds foreign to most practitioners, it is intimately linked with the concept of “effect
sizes” — or odds ratios — in association studies, which are frequently estimated and
reported in GWAS catalogs. Effect sizes, on the other hand, may be alien to some
statisticians. In this section, we aim to bridge the two languages by characterizing the
relationship between “signal size” and “odds-ratio” parameterizations in the special,
but fairly common case of association tests on 2-by-2 contingency tables.
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Recall the general setup of genetic association testing in Section where one
wants to detect the association between genetic variations at a specific location and
the occurrence of a disease. An individual randomly drawn from the target population
will have two (random) characteristics: a phenotype indicating whether the individual
has the condition or is healthy (i.e., belonging to the Case group or the Control
group), and a genotype that encodes the genetic variation in question. Table in
the introduction summarizes the counts for all phenotype-genotype combinations for
the individuals in a given study sampled from the population. These counts may be
assumed to follow a multinomial distribution, with probabilities given in Table
below.

Consider a 2-by-2 multinomial distribution with marginal probabilities of pheno-
types (¢1, ¢2) and genotypes (61, 62). The probability table (as opposed to the table
of multinomial counts in the introduction) is as follows.

Genotype
Probabilities ~ Variant 1 Variant 2 Total by phenotype
Cases Hit Hi2 ¢1
Controls H21 M2 (053
Total by genotype 0, 6, 1

Table 7.1 Probabilities of the multinomial distribution in a genetic association test. (Compare and
contrast with Table We have E[O;;] = np;j, i,j = 1,2, wheren = 3; ; O;j.)

The odds ratio (i.e., “effect size”) is defined as the ratio of the phenotype frequen-
cies between the two genotype variants,

Hil jH12 _ H11H22
! o piapar”

R:= (7.8)
The multinomial distribution is fully parametrized by the trio (81, ¢, R). Odds ratios
further away from 1 indicate greater contrasts between the probability of outcomes.
Independence between the genotypes and phenotypes would imply an odds ratio of
one, and hence pjix = ¢;0, forall j, k € {1,2}.

For a sequence of local alternatives u‘V, u®, ..., such that \/_(y(") éi0k)
converges to a constant table 6 = (6,¢), the chi-square test statistics converge in
distribution to the non-central chi-squared distribution with non-centrality parameter

2
=" 3"8%1(9;00).

j=1 k=1

See, e.g.,|Ferguson| (2017). Hence, for large samples from a fixed distribution (y;;),
the statistic is well approximated by a )(%(/l) distribution, where

2 2
— ;0
AZ”ZZ (lljk%;ﬁ: 5% . (7.9)

j=1 k=1
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Power calculations therefore only depend on the uj;’s through A = nw?, where we
define
w? = A/n (7.10)

to be the signal size per sample. Statistical power would be increasing in w? for fixed
sample sizes.

The next proposition states that the statistical signal size per sample can be
parametrized by the odds ratio and the marginals in the probability table.

Proposition 7.1. Consider a 2-by-2 multinomial distribution with marginal distri-
butions (¢1, ¢ =1—¢) and (61,6, = 1 — 91) Let signal size w2 be deﬁned as

in , and odds ratio R be defined as in (T8). If R = 1, we have w* = 0; if
R e (O, 1) U (1, +00), then we have

2
B+CR—\/(B+CR)2—4A(R— 1)2) , (7.11)

2@——4—{
T AR -1

where A = ¢101¢292, B = (]5191 + (f)292, and C = (f)]@z + ¢291.

Proof. We parametrize the 2-by-2 multinomial distribution with the parameter o,

M1l = @101 +06, pi2=0¢16—-0, u =¢201 -6, uxn=¢0,+6. (7.12)

By relabelling of categories, we may assume 0 < 61,¢; < 1/2 without loss of
generality. Note that 6 must lie within the range [0min, Omax], Where

Omin := max{—¢101, =262, $162 — 1, $20; — 1} = =161,
and
Omax = min{l — ¢101, 1 — $202, 162, $201} = min{¢1 6>, $261},

in order for y;; > 0 for all i, j € {1,2}. Under this parametrization, Relation (7.8)
then becomes

R = MuHn _ 31010202 + 5(h161 + $26,) + 52 _ A+ 6B+ 6? (7.13)
Uil $101¢202 — 6(P162 + $201) + 62 A—6C + 6% '

which is one-to-one and increasing in § on (Smin, Smax)- Equation (7.10) becomes

2 (,Uu ¢L‘9 )
=) g ZZ@ ¢ﬁMz 719

i=1 j=1

Solving for ¢ in (7.13), and plugging into the expression for signal size yields
Relation (7.11).

The other three cases (1/2 < 6,¢; < 1;0 < 6; < 1/2 < ¢; < 1; and
0 < ¢ < 1/2 <6, < 1) may be obtained similarly, or by appealing to the symmetry
of the problem. O
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To understand Proposition[7.T| we illustrate Relation for selected values of
marginals 6; and ¢; in Figure [7.I] Observe in the figure that an odds ratio further
away from one corresponds to stronger statistical signal per sample, ceteris paribus.
However, this “valley” pattern is in general not symmetric around 1, except for
balanced marginal distributions (¢; = 1/2 or 61 = 1/2). While the odds ratio R can
be arbitrarily close to 0 or diverge to +co for any marginal distribution, the signal

sizes w? are bounded from above by constants that depend only on the marginals.
signal size w?= A/n signal size w?= A/n
1.0 1.0
0.8 0.8
0.6 0.6
0.4 0.4
0.2 1,_1--'="1/5, 01 =1/2 0.2 i =1/10, ¢, = 1/3
”””” Br= 1710, 61 = 172 o '
0.0 ~ 0.0 '
T T T T T T I T T T T T T I
10° 10 102 10° 10® 10* 10° 10° 10 102 10° 10® 10* 10°
odds ratio odds ratio

Fig. 7.1 Signal sizes per sample w? as functions of odds ratios in 2-by-2 multinomial distributions
for selected genotype marginals in balanced (left) and unbalanced (right) designs; see Relation
(7.11) in Proposition For given marginal distributions, extreme odds ratios imply stronger
statistical signals at a given sample size. However, the signal sizes are bounded above by constants
that depend on the marginal distributions; see Relations and (7.16).

Corollary 7.1. The signal size as a function of the odds ratio w*(R) is decreasing
on (0, 1) and increasing on (1, 00), with limits

lim w*(R) = min{¢‘—9‘, ¢2—92}, (7.15)
RS0, 9202 104
and
. . #1602 ¢291}
lim w?(R) = min —, . 7.16
R—+oo ) {¢291 $162 (7.16)

1/2, and leave the other three cases an exercise. Take the first derivative of the
expression for w? in equation (7.14) with respect to ¢, it is evident that w?(8) is
decreasing on [dmin, 0), increasing on (0, Omax ], With limits

Proof. As in the proof of Proposition[7.1} we examine the case where 0 < 6}, ¢ <

0
lim w?(8) = m, and lim w?($) = min{
d—Omin ¢292 d—6max

$2601 $1602)
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Corollary immediately implies that balanced designs with roughly equal
number of cases and controls are not necessarily the most informative.

For example, in a study where a third of the recruited subjects carry the genetic
variant positively correlated with the trait (i.e., 6; = 1/3), an unbalanced design with
¢1 = 1/3 would maximize w? at large odds ratios. This unbalanced design is much
more efficient compared to, say, a balanced design with ¢; = 1/2. In the first case,
we have w? — 1 as R — oo; whereas in the second design, w? < 1/2 no matter how
large R is. This difference can also be read by comparing the dashed curve (6, = 1/3,
¢1 = 1/2) in the left panel of Figure[7.1] with the solid curve (6, = 1/3, ¢; = 1/3)
in the right panel of Figure

7.3 Optimal study designs and rare variants

For a study with a fixed budget, i.e., a fixed total number of subjects #n, the researcher
is free to choose the fraction of cases ¢; to be included in the study. A natural
question is how this budget should be allocated to maximize the statistical power of
discovery, or equivalently, the signal sizes A = nw?.

In principal, Relation can be optimized with respect to the fraction of cases
¢ in order to find optimal designs, if 6; is known and held constant. In practice,
this is not the case. While the fraction of cases can be controlled, the distributions
of genotypes in the study are often unknown prior to data collection, and can change
with the case-to-control ratio.

Fortunately, the conditional distributions of genotypes in the healthy control
groups are often estimated by existing studies, and are made available by consortia
such as the NHGRI-EBI GWAS catalog (MacArthur et al., 2016). We denote the
conditional frequency of the first genetic variant in the control group as (f, 1 — f),
where

f = par/¢2 = par /(1 = ¢1). (7.17)
The multinomial probability is fully parametrized by the new trio: (f, ¢1, R).
Genotype
Probabilities Variant 1 Variant 2 Total by phenotype
Cases leflljf }bzle(il_{} 1

Controls  f(1 —¢1) (1 - )1 —¢1) 1-¢

Proposition[7.Tmay also be re-stated in terms of the new parametrization.

Corollary 7.2. In the 2-by-2 multinomial distribution with marginals (¢1, ¢ = 1 —
¢1), and conditional distribution of the variants in the control group (f,1 — f),
Relation (1.11) holds with 6, = ¢1 fR/(fR+1—f)+ f(1 —¢)) and 6, = 1 — 6.

The choice of ¢ now has a practical solution.
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Corollary 7.3. In the context of Corollary the optimal design (¢}, ¢;) that
maximizes the signal size per sample w? is prescribed by

. fR+1-f . "
= d =1-¢;. 7.18
1 FR+1-f+VR and ¢, ¢ (7.18)
Proof. Using the parametrization in (7.12), we solve for § in to obtain
__WfR ([ $fR B
6_fR+1—f (fR+1—f+f(1 ¢1))¢1
_fA=Hed-¢DR-1)

FRA1-f (7.19)

Substituting (7.19) into the expression (7.14), after some simplification, yields

w2 = A=l —¢)(R-1)>
[¢1R+ (1 -¢1)D] [¢1 + (1 - ¢1)D]’

where D = fR+ 1 — f > 0. Therefore, the derivative of ({7.20) with respect to ¢; is

(7.20)

dw? fU=HR=1)? > 2 o2 2
— = (D” = R)¢p7 —2D"¢1 + D”| .
dg, [¢1R+(1—¢1)D]2[¢1+(1—¢1)D]2[ ' ]
(7.21)
Further, we obtain the second derivative with respect to ¢1,
d2 2
d:z = h(R. f) [(¢1 - 1)D* - $1R], (7.22)
1

where / is some function of (R, f) taking on strictly positive values.

Since [((bl -1)D? - ¢1R] < 0, the second derivative must be strictly
negative on [0, 1]. This implies that the first derivative is strictly decreasing
on [0, 1]. Since the first derivative (7.21) is strictly positive at ¢; = 0, and strictly
negative at ¢; = 1, it must have a unique zero between 0 and 1, and hence, the solution
to (D?* — R)(p% —2D?%¢; + D? = 0 in the interval of [0, 1] must be the maximizer of
(7.20) — when D? — R > 0, the smaller of the two roots maximizes (7.20), and when
D? — R < 0, it is the larger of the two. They share the same expression D/(D + VR),
which coincides with (7.18). Finally, when D* = R, the only root ¢} = 1/2, which
also coincides with (7.18), is the maximizer of (7.20). O

Of particular interest in the genetics literature are genetic variants with very low
allele frequencies in the control group (i.e., f = 0), known as rare variants. In such
cases, Equation (7.18) can be approximated using the Taylor expansion,

1 +(R—«/E)f

= O(f?). 7.23
T VR 1+\/§+(f) (7.23)

¢}
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To illustrate, for rare and adversarial factors (f ~ 0 and R > 1), the optimal ¢ is
less than 1/2. Therefore, for studies under a fixed budget, controls should constitute
the majority of the subjects, in order to maximize power. On the other hand, for rare
and protective factors (f ~ 0 and R < 1), the optimal ¢} is greater than 1/2, and
cases should be the majority.

7.4 Phase transitions in large-scale association screening studies

Returning to the problem of high-dimensional marginal screenings for categorical co-
variates, we explore the manifestation of the phase transition in the exact-approximate
support recovery problem in the genetic context.

Recall Theorem predicts that FWER and FNR can be simultaneously con-
trolled in large dimensions if and only if

A w2n

> 1. (7.24)

"= 2logp - 2logp
Therefore, if we were to apply FWER-controlling procedures at low nominal levels

(say, 5%), then the FNR would experience a phase transition in the following sense.
If the signal size is strong enough, i.e.,

2 QIOgP’
n

r>1 < w (7.25)
then the FNR can be close to 0; otherwise, FNR must be close to 1.

Using the parametric relationship described in Corollary (and Proposition
[7.1), the inequalities in implicitly define regions of (f, R) where associations
are discoverable with high power, for a given ¢;. Further, the boundary of such
discoverable regions sharpens as dimensionality diverges. We illustrate this phase
transition through a numerical example next.

Example 7.1. Consider association tests on 2 X 2 contingency tables at p locations
as introduced in Section [1.2] where the counts follow a multinomial distribution
parametrized by (f, R, ¢1) as in Section Assume that the phenotype marginals
are fixed at ¢; = ¢ = 1/2. Applying Bonferroni’s procedure with nominal FWER
at @ = 5% level, we can approximate the marginal power of association tests by

PLxT(A) > X7 0y (7.26)

where X% o/p is the upper (a/p)-quantile of a central chi-squared distribution with 1
degree of freedom. We calculate this marginal power as a function of the parameters
(f, R) in three scenarios:

e p=4,n=3x10*
e p=100,n=1x10
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odds ratio odds ratio
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Fig. 7.2 The OR-RAF diagram visualizing the marginal power of discovery in genetic association
studies, after applying Bonferroni’s procedure with nominal FWER at 5% level. Sample sizes are
marked in each panel, and the problem dimensions are, respectively, p = 4 (upper-left), p = 10?
(upper-right), and p = 10° (lower-left), so that n/ log p are roughly constant. Red curves mark the
boundaries (» = 1) of the phase transition for the exact-approximate support recovery problem;
dashed curves are the equi-signal (equi-power) curves. The phase transition in signal sizes A
translates into the phase transition in terms of (f, R), and sharpens as p — oo; see Example
In the lower-right panel, we visualize discovered associations (blue circles) in a recent GWA study
(Michailidou et al. (2017)); the estimated odds ratios and risk allele frequencies are subject to
survival bias and should not be taken at their face values; see Remark

e p=10%n=3x10°

and visualize the results as heatmaps?| (referred to as OR-RAF diagrams) in Figure
[7.2| These parameter values are chosen so that log(p)/n are roughly constant (around
4.6 x 107).

2 Since genetic variants can always be relabelled such that Variant 1 is positively associated with
Cases, we only produce part of the diagram where R > 1. Sample sizes marked in the figure are
adjusted by a factor of 1/2, to reflect the genetic context where a pair of alleles are measured for
every individual at every genomic location.
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We also overlay “equi-signal” curves, i.e., functions implicitly defined by the
equations r = ¢ for a range of ¢ (dashed curves), and highlight the predicted bound-
ary of phase transition for the exact-approximate support recovery problem r = 1
(red curves). The change in marginal power clearly sharpens around the predicted
boundary r = 1 as dimensionality diverges.

Remark 7.2. In an attempt to find empirical evidence of our theoretical predictions,
we chart the genetic variants associated with breast cancer, discovered in a 2017
study by Michailidou et al. (2017) in an OR-RAF diagram. The estimated risk allele
frequencies (f) and odds ratios (R) are taken from the NHGRI-EBI GWAS catalog
MacArthur et al.| (2016), and plotted against a power heatmap calculated according
to the reported sample sizes. See lower-right panel of Figure

It is tempting to believe, on careless inspection, that roughly a/l discovered as-
sociations fall inside the high power region of the diagram, therefore demonstrating
the phase transition in statistical power. Unfortunately, the estimates here are subject
to survival bias — the study in fact uses the same dataset for both support estimation
and parameter estimation, without adjusting the latter for the selection process. The
seemingly striking agreement between the power calculations and the estimated ef-
fects of reported associations should not be taken as evidence for the validity of our
theory. We conjecture, as the theory predicts, that accurate and unbiased parameter
estimates from an independent replication will still place the associations in the high
power region of the diagram.

Finally, we demonstrate with an example how results in Sections|[7.T]and[7.2)may
be used for planning prospective association studies.

Example 7.2. In a GWAS with p = 10% genomic marker locations, researchers wish
to locate genetic associations with the trait of interest. Specifically, they wish to
maximize power in the region where genetic variants have risk allele frequencies of
0.01 and odds ratios of 1.2. By Corollary the optimal design has a fraction of
cases ¢* = 0.478, yielding the statistical signal size per sample w? ~ 9.00 x 107
according to Corollary

If we wish to achieve exact-approximate support recovery in the sense of (2.23),
Theorem [7.2] predicts that the signal size parameter r has to be at least fga(8) = 1.
This signal size calls for a sample size of n = A1/w? = 2rlog(p)/w? ~ 307,011. In
a typical GWAS, a pair of alleles are sequenced for every marker location, bringing
the required number of subjects in the study to n/2 =~ 153, 509.

In comparison, a more accurate power calculation directly using predicts
that n/2 = 165,035 subjects are needed, under the set of parameters (p = 100,
f =0.01, R = 1.2) and FWER = 0.05, FNR = 0.5; this is 7% higher than our crude
asymptotic approximation. In general, we recommend using the more precise calcu-
lations over the back-of-the-envelope asymptotics for planning prospective studies
and performing systematic reviews; a user-friendly web application implementing
the more precise approximations is provided in |Gao et al. (2019). Nevertheless,
the theoretical results on phase transitions generate simple, accurate, and powerful
insights that cannot be easily derived from numerical calculations.



7.5 Numerical illustrations of the phase transitions in chi-square models 107

7.5 Numerical illustrations of the phase transitions in chi-square
models

We illustrate with simulations the phase transition phenomena in the chi-square
model, and compare numerically the required signal sizes in support recovery prob-
lems between the two types of alternatives in the additive error model.

7.5.1 Exact support recovery

The sparsity of the signal vectors in the experiments are parametrized as in (7.2).
Signal sizes are assumed equal with magnitude A(i) = 2r log p fori € S. We estimate
the support set S using Bonferroni’s procedure with nominal FWER level set at
1/(5log p). The nominal FWER levels vanishes slowly, in line with the assumptions
in Theorem Experiments were repeated 1000 times at each of the 400 sparsity-
signal-size combinations, for dimension p = 10*.

The empirical probabilities of exact support recovery under Bonferroni’s proce-
dure are shown in Figure The numerical results suggest good accuracy of the
predicted boundaries in high-dimensions (left panels of Figure [7.3).

We conduct further experiments to examine the optimality claims in Theorem
by comparing with the oracle procedure with thresholds ¢, = min;cg x(7). We
also examine the claims in Section [/.1.5] and compare the one-sided alternatives
in Gaussian additive models with the two-sided alternatives (or equivalently, the
chi-square model with v = 1). We apply Bonferroni’s procedure and the oracle
thresholding procedure in both settings.

The experiments were repeated 1000 times for a grid of signal size values ranging
from r = 0 to 6, and for dimensions 102, 10?, and 10°. Results of the experiments,
shown in Figure[7.4] suggest vanishing difference between difficulties of two-sided
vs one-sided alternatives in the additive error models, as well as vanishing difference
between the powers of Bonferroni’s procedures and the oracle procedures as p — oo.

7.5.2 Approximate, and approximate-exact support recovery

Similar experiments are conducted to examine the optimality claims in Theorem
and in Section We define an oracle thresholding procedure for approximate
support recovery, where the threshold is chosen to minimize the empirical risk. That
is,

IS0\ S| 1S\ S(1)|
’S — 2
fp( 5) € arg puin max{|S(r)], 1} " max([S| 1)

where S (t) = {i | x(i) > t}; in implementation, we only need to scan the values of
observations ¢ € {x(1),...,x(p)}. The nominal FDR level for the BH procedure is
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v=1
p = 10000

p = 10000

15— b1y 08 g3-

v=6
p = 10000

B

00 02 04 06 08 1.0 00 02 04 06 08 10 B 00 02 04 06 08 10

B

Fig. 7.3 The empirical risks of exact, approximate, and approximate-exact support recovery (left
to right) in the chi-squared model with Bonferroni’s procedure and the Benjamini-Hochberg
procedure. We display results as a heatmap for v = 1, 2, 3, 6 (first to last row) at dimension p = 10*
(left to right column), for a grid of sparsity levels 8 and signal sizes r. The experiments were repeated
1000 times for each sparsity-signal size combination; darker color indicates higher probability of
exact support recovery. Numerical results are in general agreement with the boundaries described
in Theorem [7.1} for large v’s, the phase transitions take place somewhat above the predicted
boundaries.
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Fig. 7.4 The empirical probability of exact support recovery of Bonferroni’s procedure (solid
curves) and the oracle procedure (dashed curves) in the chi-squared model with one degree of
freedom (marked ‘2”) in the additive Gaussian error model and under one-sided alternatives (marked
‘1’). We simulate at dimensions p = 102, 103, 10> (left to right) for a grid of signal sizes r and
sparsity level 8 = 0.6. The experiments were repeated 1000 times for each method-model-signal-
size combination. Numerical results show evidence of convergence to the 0-1 law as predicted by
Theorem|[7.1} regions where asymptotically exact support recovery can be achieved are shaded in
grey. The difference in power between Bonferroni’s procedure and the oracle procedure, as well as
in the two types of alternatives both decrease as dimensionality increases.

setat 1/(5log p), therefore slowly vanishing, in line with the assumptions in Theorem
all other parameters are identical to that in the experiments for exact support
recovery in Section [7.5.1} The results of the experiments are shown in Figure
and in the middle column of Figure

We also examine the boundary described in Theorem [7.2] Experimental settings
are identical to that in the experiments for approximate support recovery. We compare
the performance of the BH procedure with an oracle procedure with threshold

tp(x,8) € rlrgsn x(1),

and visualize the results of the experiments in the right column of Figure[7.3] Notice
that the BH procedure sets its threshold somewhat higher than the oracle, especially
for small ’s. The empirical risk of the oracle procedure (not shown here in the
interest of space) follows much more closely the predicted boundary (7.7).
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Fig. 7.5 The empirical risk of approximate support recovery of Benjamini-Hochberg’s procedure
(solid curves) and the oracle procedure (dashed curves) in the chi-squared model with one degree
of freedom (marked ‘2’) and in the additive Gaussian error model under one-sided alternatives
(marked ‘1’). We simulate at dimensions p = 102, 103, 10° (left to right) for a grid of signal
sizes r and sparsity level B = 0.6. The experiments were repeated 1000 times for each method-
model-signal-size combination. Numerical results show evidence of convergence to the 0-1 law
as predicted by Theorem [7.3} regions where asymptotically approximate support recovery can be
achieved are shaded in grey. The difference in risks between Benjamini-Hochberg’s procedure and
the oracle procedure, as well as in the two types of alternatives, both decrease as dimensionality

increases.
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Appendix A
Additional proofs

We review some properties of the chi-square distributions in Section [A.T] before
presenting the proofs of the main theorems on phase transitions in Sections [A.2]

|A.3} and[A.4)

A.1 Auxiliary facts of chi-square distributions

We shall recall, and establish, some auxiliary facts about chi-square distributions.
These facts will be used in the proofs of Theorem[7.1]and Theorem

Lemma A.1 (Rapid variation of chi-square distribution tails). The central chi-
square distribution with v degrees of freedom has rapidly varying tails. That is,

0, t>1
1, =1 , (A.1)
oo, 0<t<1

_ P[x2(0) > tx]
im ————— =
x>0 P[x2(0) > x]

where we overloaded the notation x2(0) to represent a random variable with the
chi-square distribution.

Proof (Lemma[A.T). When v = 1, the chi-square distribution reduces to a squared
Normal, and (A.T] follows from the rapid variation of the standard Normal distribu-
tion. For v > 2, we recall the following bound on tail probabilities (see, e.g., (Inglot,
2010)),

1
Eav(x) < Px2(0) > x] < E,(x), v=2 x>v-2

- x
(x—v+2)+nr

where &, (x) = exp {—%[(x —v—-(v—-2)log(x/v) +log v]}. Therefore, we have
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(x — v+ 27 E,(tx) B Xx2(0) > tx] - 2tx &, (tx)
2x E(x) T PLx20) > x] T (tx—v+2)yr E(x)°

where &, (tx)/E,(x) = exp{—%[(t—l)x—(v—Z) log t]} converges to 0 or co depending
on whetherr > 1 or 0 < ¢t < 1. The case where r = 1 is trivial. O

Lemma and Proposition [2.2]yield the following Corollary.

Corollary A.1. Maxima of independent observations from central chi-square dis-
tributions with v degrees of freedom are relatively stable. Specifically, let €, =
(Ep (i)>:):1 be independently and identically distributed (iid) )(?,(0) random vari-
ables. Then the triangular array & = {€p,, p € N} has relatively stable (RS) maxima

in the sense of ([2.38).

Lemma A.2 (Stochastic monotonicity). The non-central chi-square distribution is
stochastically monotone in its non-centrality parameter. Specifically, for two non-
central chi-square distributions both with v degrees of freedom, and non-centrality

d
parameters 11 < A, we have )(‘2,(/11) < ,\(12,(/12). That is,
Plx2(1)) <112 P[x2(Ay) <tl, forany t>0. (A.2)

where we overloaded the notation x%(2) to represent a random variable with the
chi-square distribution with non-centrality parameter A and degree-of-freedom pa-
rameter v.

Proof (LemmalA.2)). Recall that non-central chi-square distributions can be written
as sums of v — 1 standard normal random variables and a non-central normal random
variable with mean VA and variance 1,

d
X2 EZ2 4.+ 722+ (Z, + VD

Therefore, it suffices to show that P[(Z + ﬁ)z < t] is non-increasing in A for any
t > 0, where Z is a standard normal random variable. We rewrite this expression in
terms of standard normal probability function @,

PU(Z+ V)2 <1]1=P[-VA- Vi< Z < —VA+i]
= O(=VA+ Vi) - d(-VA - V0. (A3)

The derivative of the last expression (with respect to 1) is

1 1
—= (6(VA+ VD) - p(VA- VD)) = — (¢(VA+ V1) —¢(Vi = VD)), (A4
2vVa ( ) 2vVa ( )
where ¢ is the density of the standard normal distribution. Notice that we have used
the symmetry of ¢ around O in the last expression.
Since 0 < max{VA -7, Vi— «/ﬁ} <i+Vaiwhent > 0, by monotonicity of the
normal density on (0, o), we conclude that the derivative (A.4) is indeed negative.
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Therefore, (A.3) is decreasing in A, and (A.2) follows for ¢ > 0. For ¢ = 0, equality
holds in (A.2)) with both probabilities being 0. O

Finally, we derive asymptotic expressions for chi-square quantiles.

Lemma A.3 (Chi-square quantiles). Let F' be the central chi-square distributions
with v degrees of freedom, and let u(y) be the (1 — y)-th generalized quantile of F,
Le.,
u(y) = F=(1-y). (A.5)
Then
u(y) ~2log(1/y), asy — 0. (A.6)

Proof (Lemma[A.3). The case where v = 1 follows from the well-known formula
for Normal quantiles (see, e.g., Proposition 1.1 in|Gao and Stoev (2020))

FT(1=y) =@ (1 - y/2) ~2log (2/y) ~ y2log (1/y).

The case where v > 2 follows from the following estimates of high quantiles of
chi-square distributions (see, e.g., (Inglot, [2010)),

v+2log(1/y) —5/2 <u(y) < v+2log(l/y) +2+/vlog(l/y), forally <0.17,

where both the lower and upper bound are asymptotic to 2log(1/y). O

A.2 Proof of Theorem

Proof (Theorem|7.I). We first prove the sufficient condition. The Bonferroni proce-
dure sets the threshold at 7, = F (1 — a/p), which, by Lemma é3|, is asymptotic
to 2logp — 2loga. By the assumption on « in (3.17), for any § > 0, we have
p~% = o(a). Therefore, we have —log a < § log p for large p, and

2logp —2loga

1 < limsup

<146,
p—eo 2logp

for any ¢ > 0. Hence, ¢, ~ 2log p.
The condition r > fg(B) implies, after some algebraic manipulation, /7 —

/1 — B > 1. Therefore, we can pick ¢ > 1 such that

NE=V1=B>+g>1. (A7)

Setting the t* =1}, = 2¢ log p, we have 1), < 1, for large p.
On the one hand, FWER = 1 — ]P[:S‘;, C Sp1 vanishes under the Bonferroni

procedure with @ — 0. On the other hand, for large p, the probability of no missed
detection is bounded from below by
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P[Sp 2 Sp] = PImin x(i) > 1] > PIminx(i) > '] > 1 - PIPPLYZ(A) < 1],
L€ 2SS
(A.8)
where we have used the fact that signal sizes are bounded below by A, and the
stochastic monotonicity of chi-square distributions (Lemmal[A.2) in the last inequal-
ity. Writing
VA2 42+ (2 + \/§)2

where Z;’s are iid standard normal variables, we have

PLG() < 1 < BI(Zy + A < 1 = BlI1Z, +\JAl < V7]
<P [Zv < —\/;+ \/t_*]
=P [zv <+2logp (Vg - \/z)] . (A.9)

By our choice of g in (A.7), the last probability in (A.9) can be bounded from above
by

-\2(0-p)1
P[ZV<—M]~¢(W\/T;%[))

_ ! ~(1-p),

v2(1 = pB)logp

where the first line uses Mill’s ratio for Gaussian distributions (see Section [2.7/and
Relation (2.45)). This, combined with (A.8), completes the proof of the sufficient
condition for the Bonferroni’s procedure.

Under the assumption of independence, Siddk’s, Holm’s, and Hochberg’s pro-
cedures are strictly more powerful than Bonferroni’s procedure, while controlling
FWER at the nominal levels. Therefore, the risks of exact support recovery for these
procedures also vanishes. This completes the proof for the first part of Theorem|/.1

We now show the necessary condition. We first normalize the maxima by the
chi-square quantiles u, = F“ (1 — 1/p), where F is the distribution of a (central)
chi-square random variable,

(A.10)

—_ MC
PIS, = Sp] <P [Mse <1, < mg] sP[ cl <@],

up Up
where Mge = max;ese x(i) and ms = min;es x(i). By the relative stability of

chi-square random variables (Corollary , we know that Mgec/ujsec; — 1 in
probability. Further, using the expression for u,, (Lemma|A.3), we obtain

Up_pi-s 2log(p—p'P) logp+log(l-pP)
up 2logp B logp

1.

Therefore, the left-hand-side of the last probability in (A.10) converges to 1,
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= : 5. (A.11)
up up_pl—/j up

Meanwhile, forany i € S, by LemmalA.2Jand the fact that signal sizes are bounded
above by A, we have,

2
D) £ 2B & Z2v .+ 72+ (zv + \/i) .

Dividing through by u,,, and taking minimum over S, we obtain

2(A(3i)) d Z2@i) + ...+ Z2()  (Z,3) + VA)?
LI 1 CLOV S 10 v @) (20 Va) . (A12)
Up i€eS Up ieS Up Up
Letit = i; be the index minimizing the second term in (A.12)), i.e.,
_ Z,(i) + VA)?
it= arg min M = argmin f, (Z,(i)), (A.13)
ieS Up ieS
where f,(x) := (x + VA)2/(2log p). We shall first show that
IP’[fp(ZV(if)) <1l-6]—-1, (A.14)

for some small 6 > 0. On the one hand, we know (by solving a quadratic inequality)
that

fp(x)<1—6(=>\/Zfome(—(\/?+\/l—6),—(\/?—\/l—6)). (A.15)

On the other hand, we know (by the relative stability of iid Gaussians, recall Section

that

min;es Zy (i)
\2logp

Further, by the assumption on the signal sizes 7 < (1 + M)Z, we have,
—(VF+1) <-1<—yT-B<-(VF-1).
Therefore we can picking a small 6 > O such that
(V1) < —(VF+VT=06) < —T= B < ~(Vi—=V1=6) < ~(Vr—1). (A.17)
Combining (A.15)), (A.16), and (A.17), we obtain

— —4/1 = B in probability. (A.16)
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P [Igggfp(zv(i)) <1- (5] =P [fp(zv(ﬁ)) <1- 5]
>P [fp (min ) <1 -5] Y

and we arrive at (A.14). As a corollary, since u,, ~ 2log p, it follows that

P |mi

. AN2
'nM < 1—5} S (A.18)
ieS up

Finally, by independence between le(i) +...+ Zg_l(i) and (Z,%(i) + \/K)z, and
the fact that i is a function of only the latter, we have

22N+ .+ 22 (Y S Z2G) + ...+ 22 (i) forall i€S.
Therefore, Z2(i") + ... + Z2_,(i") = Op(1), and

Z2H + ...+ 22D

Up
Together, (A.18) and (A.19) imply that
Z2@i) + ...+ Z2 G j 2
{ 2(i) Vl()+(zv(z)+\/f)}<l_6}

— 0 in probability. (A.19)

P[@u—(s]zp

min
up ieS u,, u,,
Z2 @M+ ...+ 22 (T il 2
s p| A V*l()+(Z”(l)+\/X) <1-6|>1.
up up
(A.20)

In view of (A.10), (A.11), and (A.20), we conclude that exact recovery cannot succeed
with any positive probability. The proof of the necessary condition is complete. O

A.3 Proof of Theorem (7.3

We first show the necessary condition. That is, when 7 < 3, no thresholding proce-
dure is able to achieve approximate support recovery.

The proof follows the ideas in |Arias-Castro and Chen (2017)), and is very similar
to the proof of Theorem [3.3] One could in principle obtain the proofs in this section
by referencing arguments that have appeared in Chapter [3] We choose to present the
proof here in full for completeness.

Proof (Necessary condition in Theorem |7_3p Denote the distributions of y2(0),
/\(3 (A) and X% (A) as Fy, I, and F respectively.
Recall that thresholding procedures are of the form
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Sp = {ilx() > 1,0}

Denote S := {i | x(@) > tp(x)}, and §(u) :={i| x(@@) > u}. For any threshold u > ¢,

we must have S (u) € S. , and hence

S\SI _ IS\SI _ _IS\SI __ 1S@)\S]

FDP := > — = — > — .
S| ISUS IS\ SI+ISI  |S@)\ S| +1S]

(A21)

On the other hand, for any threshold # < ¢, we must have S (w) 2 S, , and hence
IS\S] _ IS\ S@w)
st IS]

Since either u > ¢, or u < t,, must take place, putting (A.21) and (A.22) together,
we have

NDP :=

(A.22)

Se\ S| IS\ @)
S\ SI+1s1 1S
for any u. Therefore it suffices to show that for a suitable choice of u, the RHS
of (A.23) converges to 1 in probability; the desired conclusion on FDR and FNR

follows by the dominated convergence theorem.
Let t* = 2g log p for some fixed g, we obtain an estimate of the tail probability

FDP + NDP >

(A.23)

—v/2 0o

-z xv/2—le—x/2dx
F(V/Z) 2qlog p

Fo(t*) = P[x2(0) > 1]
/2

N v/2-1 -
To2) 2 (2qlogp) p 9. (A.24)

where a,, ~ b, is taken to mean a, /b, — 1; this tail estimate was also obtained in

Donoho and Jin|(2004). Observe that |§ (#*)\ S| has distribution Binom(p —s, Fo(t*))
where s = [S], denote X = X, := [S5(") \ S|/IS[, and we have

(= )RR _

u:=E[X]= , and Var(X) = 5 u/s.
s

(p - $)Fo(t")
S

Therefore for any M > 0, we have, by Chebyshev’s inequality,

uls 1/ (us)

P[X <M]<P[IX-ul>u-M]< (i-M? =M

(A.25)

Now, from the expression of Fy(¢*) in (A.24), we obtain

1-v/2

—_ 2 )
M= (PB - DFy(t) ~ m (26] logp)V/z lpB_",
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Since ¥ < 8, we can pick g such that7 < g < 8. In turn, we have yu — o0, as p — oco.
Therefore the last expression in (A.25) converges to 0, and we conclude that X — oo
in probability, and hence

SaH\SI X
ISE)\S|+1S| X +1

— 1 in probability. (A.26)

On the other hand, we show that with the same choice of u = t*,

1S\ S|

H — 1 in probability. (A.27)

By the stochastic monotonicity of chi-square distributions (Lemma [A.2), the prob-
ability of missed detection for each signal is lower bounded by P[ )(,2,(/1,-) <t'] =

—~ d
Fz(t"). Therefore, |S'\ S(¢*)| > Binom(s, Fz(¢*)), and it suffices to show that Fz(t*)
converges to 1. This is indeed the case, since

Fa(t) =P[Z} + ...+ Z2 +24/2F log pZ, + 27 log p < 2qlog p]

>P[Z{ +...+Z2 < (¢ -7)logp, 24|27 log pZ, < (q - 7)log pl,

and both events in the last line have probability going to 1 as p — co. The necessary
condition is shown. O

We now turn to the sufficient condition. That is, when r > g, the Benjamini-
Hochberg procedure with slowly vanishing FDR levels achieves asymptotic approx-
imate support recovery. The structure for the proof of sufficient condition follows
that of Theorem 2 in|Arias-Castro and Chen (2017)).

Proof (Sufficient condition in Theorem[7.3). The FDR vanishes by our choice of &
and the FDR-controlling property of the BH procedure. It only remains to show that
FNR also vanishes.

To do so we compare the FNR under the alternative specified in Theorem
to one with all of the signal sizes equal to A. Let x(i) be vectors of independent
observations with p — s nulls having y2(0) distributions, and s signals having x2(A)
distributions. By Lemma|[3.2] it suffices to show that the FNR under the BH procedure
in this setting vanishes.

Let G denote the empirical survival function as in (3.36). Define the empirical
survival functions for the null part and signal part

—~ 1 —~ 1
W (1) = —— D 1{x() 2 1), Weigna () = = )" Lx(i) 1), (A28)
P~ 5 Sies

where s = |S|, so that

—~ — 5 ~ —~
G(@) = pT it () + signal(t)'

T |-
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Apply Lemma to the two summands in 5, we obtain 5(1‘) =G() + E(r).
where

Gt = L"Fu)+ 2F, ), (A.29)
p p

where F() and F_a are the survival functions of )(?, (0) and /\(‘2, (A) respectively, and

R(t) = Op (fp\/Foo)Fo(r) - ;fs\/F_a(nFa(r)), (A.30)
uniformly in 7.

Recall (see proof of Lemma [3.2) that the BH procedure is the thresholding
procedure with threshold set at 7 (defined in (3.37)). The NDP may also be re-

written as

IS\S| 1 . _
NDP= —— = — 1 =1-W4 R
S ES] {x(i) < 1) ignal (T)

so that it suffices to show that

Wsignal(T) -1 (A.31)

in probability. Applying Lemma|3.1|to Wsigna], we know that

Waignat (1) = Fa (1) + Op (fs\/F_a(r)Fm)) = Fa(7) + op(1).

So it suffices to show that F, (1) — 0 in probability. Now let #* = 2q log(p) for some
q such that § < g < r. We have

Fu() = FLG) < 1 < P[2\[AZ, <1 - A

Zo< @} =P [Zv < u\/Zlogp} 0. (A32)

=P
2,A 2 2r

Hence in order to show (A.31)), it suffices to show
Plr<t] - 1. (A.33)

By (A.29), the mean of the empirical process G evaluated at #* is
G = P2 Roy + SFL). (A34)
p p

The first term, using Relation (A.24), is asymptotic to p~9L(p), where L(p) is the
logarithmic term in p. The second term, since F_a(t*) — 1 by Relation , is
asymptotic to p™#. Therefore, G(t*) ~ p~9L(p) + p™® ~ p™, since pP~9L(p) — 0
where g > .

The fluctuation of the empirical process at ¢*, by Relation (A.30), is
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R(t) = O (gp\/Fou*)Fo(r*) - gfs VFa(t)Fy (r*))
= 0 (fp\/Fo(m) +op (pP).

By and the expression for &, the first term is Op (p‘(‘1+1)/2L(p)) where L(p)
is a poly-logarithmic term in p. Since § < min{g, 1}, we have 8 < (¢ + 1)/2, and
hence R(1*) = op(p™P). R

Putting the mean and the fluctuation of G(¢*) together, we obtain

G(") = G(t") + R(t") ~p G(t*) ~ p™P,
and therefore, together with (A.24)), we have
Ro")/G(t") = pPIL(p)(1 + 0z (1)),

which is eventually smaller than the FDR level « by the assumption (3.17) and the
fact that 8 < ¢. That is,

P[Fot)/G(t") < a] - 1.

By definition of 7 (recall (3.37)), this implies that T < #* with probability tending to
1, and (A.33) is shown. The proof for the sufficient condition is complete. O

A.4 Proof of Theorems and

As with the proof of Theorem[7.3] one could shorten the presentations in this section
by referencing arguments in Chapter 3]

Proof (Theorem|[7.2). We first show the sufficient condition. Similar to the proof of
Theorem[7.3] it suffices to show that

NDP = 1 — Weignal (1)) — 0, (A.35)

where ¢, is the threshold of Bonferroni’s procedure.

Since r > fga(B) = 1, we can pick g such that 1 < g < r. Let " = 2¢glog p, we
have 7, < 1,, for large p as in the proof of Theorem Therefore for large p, we
have _ _ .

Wsignal(tp) 2 Wsignal(t*) > Fa(t") + op(1),

where the last inequality follows from the stochastic monotonicity of the chi-square
family (LemmalA.2), and Lemma3.1] Indeed, F,(t*) — 0 by and our choice
of ¢ < r. The proof of the sufficient condition is complete.

Proof of the necessary condition follows a similar structure to that of Theorem
[7.3] That is, we show that FWER + FNR has liminf at least 1 by working with the
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lower bound

FWER(R) + FNR(R) > P [mg;c( x() > u] AE (A36)

S|

|S\'S‘(u>|}

which holds for any thresholding procedure R and for arbitrary u € R. By the
assumption that 7 < fga(B) = 1, we can pick g such that ¥ < ¢ < 1 and let
u = t* = 2qlogp. By relative stability of chi-squared random variables (Lemma
[A.T), we have

[max,»eso x(i) r* ] (A.37)

2logp 2logp

where the first fraction in (A.37) converges to 1, while the second convergesto g < 1.
On the other hand, by our choice of ¢ > 7, the second term in (A.36)) also converges
to 1 as in (A.27). This completes the proof of the necessary condition. O

Proof (Theorem[7.4). We first show the sufficient condition. Since FDR control is
guaranteed by the BH procedure, we only need to show that the FWNR also vanishes,
that is,

P [I}éi;lx(i) > T] -1, (A.38)

where 7 is the threshold for the BH procedure.

By the assumption that r > fag(B8) = (VB + /1 — B)*, we have \F — /1 - B >
/B, so we can pick g > 0, such that

VE=+1-8> g > B (A.39)
Let t* = 2¢g log p, we claim that
Plr<t]— 1. (A.40)

Indeed, by our choice of g > B, (A.40) follows in the same way that (A.33) did.
With this ¢*, we have

P

min x(i) > T] >P [minx(i) >t " >1]. (A.41)
ieS ieS

However, by our choice of 4/g < /f — +/1 — 3, the probability of the first event on

the right-hand side of (A.41) also goes to 1 according to and (A.9). Together
with (A.40), this proves (A.38)), and completes proof of the sufficient condition.
The necessary condition follows from the lower bound

1S(u) \ S|

FDR(R) + FWNR(R) 2 E | —————
|S(u) \ S| +1S]

AP [r[rg? x(i) < u] s (A.42)

which holds for any thresholding procedure R and for arbitrary u € R.

By the assumption that 7 < fag(8) = (VB + /1 — B)?, we can pick a constant
g > 0, such that
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Vi—-\J1=B < g <+/B. (A.43)

Let also u = t* = 2qglog p. By our choice of g < 3, we know from that the
first term on the right-hand-side of converges to 1. It remains to show that
the second term in also converges to 1.

For the second term in (A.42), dividing through by 2 log p, we obtain

L o _ s
P [rl_rgsnx(z) <t ] =P [ZIng < q] . (A.44)

Similar to (A.12), we have

d 22D +...+ 22 (G 7 (i A)2
ms 4 in 210 v ¢ () + V&) . (A.45)
2logp ~ ieS 2logp 2logp

Define if = i,T7 to be the index minimizing the second term in (A.45), i.e.,

i" 1= argmin f, (Z,(i)), (A.46)
ieS
where f,(x) := (x + VB)2/(21og p).

Since /g > Vi — /1= B and ¢ > 0, we have (/1;2 < 1. Also, since

—ﬁ+\/a>0 and \/__\/_ \/_+\/_
we can further pick a constant By € (0, 1] such that
Vi - Vr-+q < VB < Vi + Vr+q
N =

Let Zjjy < Zpy < ... < Zpy be the order statistics of {Z,(i)};es and define k =
Ls'=P0]. Applying Lemma(stated below), we obtain

(A.47)

Z, Z, V21
K _ k] o8S — —+/Bo(1 = B) in probability. (A.48)

V2logp  +2logs +2logp

Since we know (by solving a quadratic inequality) that

e (-(VF +va). -(VF = ). (A49)

frx)<qg =

X
\2logp

combining (A.47), (A.48), and (A.49), it follows that

P(fo (2,Gh) <q] 2P[fp (Zi) <q] - 1.
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Finally, using (A.19), we conclude that

ms
2logp

P |min x(i) < t*] = P[

i€eS

< q] > Pos(1) + £, (Z,GD) < q] = 1.

Therefore, the two terms on the right-hand-side of (A.42) both converge 1. This
completes the proof of the necessary condition. O

It only remains to justify (A.48).

Lemma A.4 (Relative stability of order statistics). Let Zj;) < ... < Zy) be the
order statistics of s iid standard Gaussian random variables. Let By € (0, 1] and
define k = | s'™], then we have

Zik)
\2log s

Proof (LemmalA.4). Using the Renyi representation for order statistics, we write

— —+/Bo in probability. (A.50)

Ziip = 7 (Upy), (A.51)

where Uj;) is the i (smallest) order statistic of s independent uniform random
variables over (0, 1). Since Up;; has a Beta(i, s + 1 — i) distribution, with mean and
standard deviation,

_ 1 k(s+1-k) _ 4By
E[Upq] = k 1) ~ s, d sd(Upy) = \ ~sTTT,
Wikl =k/(s+1) ~s and  sd(Up) 11 ) s

we obtain by Chebyshev’s inequality

Pls(-€) <Up<sP+e] -1,
where € is an arbitrary positive constant. This implies, by representation (A.51),
PO (s7(1-€) < Zyy <@ (s +e)] - 1. (A.52)

Using the expression for standard Gaussian quantiles (see, e.g., Proposition 1.1. in
Gao and Stoev (2020)), we know that

> (sP(1-e) ~ —\/2 log (s50/(1 — €))
= —/2(Bologs —log (1 — €)) ~ —/2Bo log s,

and similarly @< (s‘ﬁo(l + e)) ~ —+/2B0 log s. Since both ends of the interval in
(A.52) are asymptotic to —+/2 B¢ log s, the desired conclusion follows. O






Appendix B
Exact support recovery in non AGG models

B.1 Strong classification boundaries in other light-tailed error
models

The strong classification boundaries extend beyond the AGG models. As our analysis
in Chapter [d] suggests, all additive error models where the errors have URS maxima
exhibit this phase transition phenomenon under appropriate parametrization of the
sparsity and signal sizes. We derive explicit boundaries for two additional classes of
models under the general form of the additive noise models with heavier and
lighter tails than the AGG models, respectively.

We would like to point out that the sparsity and signal sizes can be re-parametrized
for the boundaries to have different shapes. For example in the case of Gaussian
errors, if we re-parametrize sparsity s with E =2- (1 +4/1 - ﬁ)z where E € (0, 1),
then the signal sparsity would have a slightly more complicated form:

Gl i

while the strong classification boundary would take on the simpler form:

fe(B) = fe(B) =2~ B. (B.1)

In the next two classes of models we will adopt parametrizations such that the
boundaries are of the form g in (B.1).

B.1.1 Additive error models with heavier-than-AGG tails

Distributions such as the log-normal have heavier tails than the AGG model, yet
the tails are nevertheless rapidly-varying. Therefore, Proposition [2.2] applies, and

131
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we expect to see phase-transition-type results when the additive errors have these
heavier-than-AGG tails.

Example B.1 (Heavier than AGG). Lety > 1, ¢ > 0, and suppose that
log F(x) = — (log x)” (c + M(x)), (B.2)

where limy_e M (x)log” x = 0. Then, Relation (2.39) holds under model (B.2).
Further, if the entries in the array are independent, the maxima are relatively stable.
The behavior of the quantiles u, in this model is as follows. As p — oo,

1 _
up ~ exp {(c_1 logp) /y} — c <logup)y +o0(1) = log(p) = —log F(up).

since u, diverges, and M (u,) is o((log” u,,)_l).

Following Example [B.T, assume that the errors in Model (L.I) have rapidly
varying right tails _
log F(x) = — (logx)” (¢ + M(x)), (B.3)

as x — oo, and left tails
log F(x) = — (log (=x))” (¢ + M(-x)), (B.4)

as x — —oo,

Theorem B.1. Suppose the marginals F follows (B.3) and (B.4). Let

k(B) = logp— ((logp)'/” +log (1 - B))’,

and let the signal u have
15,1 = |pe |

non-zero entries. Assume the magnitudes of non-zero signal entries are in the range
between _
A= exp{(logp)l/y}g and A= exp{(logp)””}?.

Ifr > fe(B) = 2 — B, then Bonferroni’s procedure 3‘;, (defined in (2.21)) with
appropriately calibrated FWER a — 0 achieves asymptotic perfect support recovery,
under arbitrary dependence of the errors. _

On the other hand, when the errors are uniformly relatively stable, if v < fg(B) =
2 — B, then no thresholding procedure can achieve asymptotic perfect support re-
covery with positive probability.

B.1.2 Additive error models with lighter-than-AGG tails

Similar to how Proposition [2.2] applies to models with heavier-than-AGG tails, it
also to error models with lighter tails than the AGG class.
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Example B.2 (Lighter than AGG). With v > 0, and L(x) a slowly varying function,
the class of distributions

log F(x) = —exp {x"L(x)}, (B.5)

is rapidly varying. The quantiles can be derived explicitly in a subclass of (B.5)
where L(x) — 1, or equivalently, when log | log F(x)| ~ x”,

1/v

up ~ (loglogp)'” e exp {u), (1 +0(1)} = log(p) = —log F(up).

Following Example [B.2, assume that errors in Model (I.I) has rapidly varying
right tails .
log F(x) = —exp {x"L(x)}, (B.6)

where L(x) is a slowly varying function, as x — oo, and left tails
log F(x) = —exp {—x"L(—x)}, (B.7)

as x — —oo.
The phase transition results in multiple testing problems under such tail assump-
tions is characterizes as follows.

Theorem B.2. Suppose marginals F follow (B.6) and (B.7). Let

k(B) = logp — (log(p)) ",

and let the signal u have
15,1 = [ |

non-zero entries. Assume the magnitudes of non-zero signal entries are in the range
between _
A =loglogp'"r and A =loglogp'"7.

Ifr > fe(B) = 2 — B, then Bonferroni’s procedure §p (defined in (2.21)) with
appropriately calibrated FWER a — 0 achieves asymptotic perfect support recovery,
under arbitrary dependence of the errors. _

On the other hand, when the errors are uniformly relatively stable, ifr < fg(B) =
2 — B, then no thresholding procedure can achieve asymptotic perfect support re-
covery with positive probability.

B.2 Thresholding procedures under heavy-tailed errors

We analyze the performance of thresholding estimators under heavy-tailed models
in this section, and illustrate its lack of phase transition. Suppose we have iid errors
with Pareto tails in Model (1.1), that is, €(i)’s have common marginal distribution '
where
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F(x)~x® and F(-x)~x9, (B.8)

as x — oo. Itis well-known (see, e.g., Theorem 1.6.2 of (Leadbetter et al.,|1983)) that
the maxima of iid Pareto random variables have Frechet-type limits. Specifically, we

have

max; €
maXicit,..p) €0 _ (B9)

Up
in distribution, where u, = F~(1 = 1/p) ~ p'/@ and Y is a standard a-Frechet
random variable, i.e.,

PlY <t]=exp{-t7}, t>0.
By symmetry in our assumptions, the same argument applies to the minima as well.

Theorem B.3. Ler errors in Model be as described in Relation (B.8). Let the
signal have s = |S| = fp non-zero entries, with magnitude A = rp"'®, where both
f€(0,1) and r € (0, +00) may depend on p, so that no generality is lost. _

Under these assumptions, the necessary condition for thresholding procedures S
to achieve exact support recovery ( ]P’[§ =S1—>1)is

liminf r = oo. (B.10)
p—)OO
Condition (B.10) is also sufficient for the oracle thresholding procedure to succeed
in the exact support recovery problem.
On the other hand, the necessary and sufficient condition for all thresholding
procedures to fail exact support recovery (P[S = S] — 0) is

limsupr = 0.

p—ooo

In other words, Theorem |B.3|states that there does not exist a non-trivial phase
transition for thresholding procedures when errors have (two-sided) a-Pareto tails.

Proof ( Theorem. Recall the oracle thresholding procedure St = {i:x() = x99},
and the set of all thresholding procedures, denoted S (see Definition[2.20). The prob-
ability of exact support recovery by any thresholding procedure S € S is bounded
above by that of S*, that is,

max P[S = §] = P[S* = §] = P| max x(i) < min x(7)]
Ses ieSc ieS

max;ese x({) _ minjes x(7)
—P <
= .
=P[MS“ <™ i) (B.11)
u u p
14 P

where Mge = maX;ese €(i) and mg = min;cs €(i). For any @ > 0, the following
elementary relations hold,
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0<L<(I-PHYr4 @ <U <o, forall f e (0,1),

where L = min {1, 2(1/2)]/"} and U = max {1, 2(1/2)”"}. Therefore we have,

M C M C
Umax{ S ,—@} <rp = (1-plYeSs _pulS 0 (B12)
Up Up Up Up
and
M C M C
Lmin{ S ,—@} <rp = (1= pYeS _pelS o (B13)
Up Up P Up

Putting together ( B.11), (B.12), and (B.13), we have

Mge —~ Mce
P[max{ S ,—@} <rp/U| <B[§"=$] < P[min{—s,—@} <rp/L].
up Up

Up up
(B.14)
We know from the weak convergence result (B.9) that for any € > 0 there is a
constant N such that for all p > N we have

P[max{AZic,—FZ—;} < rp/U] > P[max {Y(I),Y(z)} < rp/U] — €, (B.15)

where Y and Y® are independent a-Frechet random variables with scale coeffi-
cients (1 — £)!/@ and £/ respectively. That is,

PlY!D <t =exp{-(1 - f)/t*), and PY?® <i]=exp{—f/t?).

Since the distributional limit in (B.15) has a density (with respect to the Lebesgue
measure), we know that density is bounded above by a finite constant, say, K. For
the same choice of € as before, we can find a further constant N’ such that for all
p > max{N, N’} we have

liminfr, < €/K + 71,

so that the right hand side of (B.15) is bounded by

P[max {Y(l),Y(z)} < rp/U] —€ > P[max {Y(l),Y(z)} < m] —2e. (B.16)

By the arbitrariness in the choice of €, we conclude from (B.15) and (B.16) that

limian[max{&,—ﬁ} < rp/U] > P[max {Y(l), Y(z)}

liminf »
<—2F ]
up Up

U

B.17)
Combining Relations (B.14) and (B.17), we know that if liminfr, = co, we must
have
lim inf rp] .

liminf P [5* = S] > P[max {Y(l),Y(z)} < U
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Conversely, if lim inf P [§* = S] < 1, we must have liminfr, < oo.
Similarly, we can obtain the upper bound of exact support recovery probability
for the optimal thresholding procedure,

Msc’_@} < rp/L] < P[min {y(l)’Y(z)}

Up Up

lim su
limsupP[min{ < ﬁ]
L
(B.18)
The conclusions of the second part of Theorem [B.3 follow from (B.14) and (B.I8).

O

The probability of exact recovery can be approximated if the parameters r and f
converge. The next result follows from a small modification of the arguments in the
proof of Theorem [B.3!

Corollary B.1. Under the assumptions in Theorem|B.3} iflimr = r*, andlim f = f*,
for some constant r* > 0 and f* € [0, 1], then

nmpﬁ*=m=PU1—ﬁﬂmzﬁwﬁﬂmb<wj.

where Zy and Z; are independent standard a-Frechet random variables, i.e., P[Z; <
x] =exp{-x"%}, x> 0.

Remark B.1. Of course one might wonder if it would be meaningful to derive a
“phase transition” under a different parametrization of the signal sizes, say

A=ple. (B.19)

In this case, Theorem [B.3 suggests that a “phase transition” takes place at r = 1.
However, this non-multiplicative parametrization of the signal sizes would make
power analysis (like in Example dimension-dependent.

To illustrate, in the case of Gaussian errors with variance 1, if we were interested
in small signals of size 4/2r log p, where r < 1 is below the boundary (.5), then
we only need n > 2/r samples to guarantee discovery of their support. In the Pareto
case with parametrization @), however, if we were interested in small signals of
size p”/®, where r < 1, then the “boundary” says that we will need n > p?(1-")/@
samples, which is exponential in the dimension p and quickly diverges. Recall that
the “boundary” is really an asymptotic result in p. Such an approximation in finite
dimensions becomes invalid.
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