Adapting BERT for Continual Learning of a Sequence of
Aspect Sentiment Classification Tasks

Zixuan Ke!, Hu Xu? and Bing Liu!

!Department of Computer Science, University of Illinois at Chicago
2Facebook Al Research
'{zke4,liub}@uic.edu
huxu@fb.com

Abstract

This paper studies continual learning (CL) of
a sequence of aspect sentiment classification
(ASC) tasks. Although some CL techniques
have been proposed for document sentiment
classification, we are not aware of any CL
work on ASC. A CL system that incrementally
learns a sequence of ASC tasks should address
the following two issues: (1) transfer knowl-
edge learned from previous tasks to the new
task to help it learn a better model, and (2)
maintain the performance of the models for
previous tasks so that they are not forgotten.
This paper proposes a novel capsule network
based model called B-CL to address these is-
sues. B-CL markedly improves the ASC per-
formance on both the new task and the old
tasks via forward and backward knowledge
transfer. The effectiveness of B-CL is demon-
strated through extensive experiments. '

1 Introduction

Continual learning (CL) aims to incrementally
learn a sequence of tasks. Once a task is learned,
its training data is often discarded (Chen and Liu,
2018). This is in contrast to multi-task learning,
which assumes the training data of all tasks are
available simultaneously. The CL setting is im-
portant in many practical scenarios. For example,
a sentiment analysis company typically has many
clients and each client often wants to have their
private data deleted after use. In the personal as-
sistant or chatbot context, the user does not want
his/her chat data, which often contains sentiments
or emotions, uploaded to a central server. In such
applications, if we want to improve sentiment anal-
ysis accuracy for each user/client without breaching
confidentiality, CL is a suitable solution.

There are two main types of continual learning:
(1) Task Incremental Learning (TIL) and (2) Class
Incremental Learning (CIL). This work focuses

"https://github.com/ZixuanKe/PyContinual

Task ID ‘ Domain/Task

1 Vacuum Cleaner [CF]
2 Desktop [KT]

3 Tablet [KT]

4 (new task) | Laptop

‘ One Training Example(in that domain/task)

This vacuum cleaner sucks !!!

The keyboard is clicky .

The soft keyboard is hard to use.

The new keyboard sucks and is hard to click!

Table 1: Tasks 2 and 3 have shareable knowledge to
transfer (KT) to the new task, whereas Task 1 has spe-
cific knowledge that is expected to be isolated from
the new task to avoid catastrophic forgetting (CF) (al-
though they use the same word). Note that here we use
only one sentence to represent a task, but each task ac-
tually represents a domain with all its sentences.

on TIL, where each task is a separate aspect sen-
timent classification (ASC) task. An ASC task is
defined as follows (Liu, 2015): given an aspect
(e.g., picture quality in a camera review) and a sen-
tence containing the aspect in a particular domain
(e.g., camera), classify if the sentence expresses
a positive, negative, or neutral (no opinion) about
the aspect. TIL builds a model for each task and
all models are in one neural network. In testing,
the system knows which task each test instance
belongs to and uses only the model for the task to
classify the instance. In CIL, each task contains
one or more classes to be learned. Only one model
is built for all classes. In testing, a test case from
any class may be presented to the model to classify
without giving it any task information. This setting
is not applicable to ASC.

Our goal of this paper is to achieve the following
two objectives: (1) transfer the knowledge learned
from previous tasks to the new task to help learn
a better model for the new task without accessing
the training data from previous tasks (in contrast
to multi-task learning), and (2) maintain (or even
improve) the performance of the old models for pre-
vious tasks so that they are not forgotten. The focus
of the existing CL (TIL or CIL) research has been
on solving (2), catastrophic forgetting (CF) (Chen
and Liu, 2018; Ke et al., 2020a). CF means that
when a network learns a sequence of tasks, the
learning of each new task is likely to change the net-

4746

Proceedings of the 2021 Conference of the North American Chapter of the
Association for Computational Linguistics: Human Language Technologies, pages 4746—4755
June 6-11, 2021. ©2021 Association for Computational Linguistics

work parameters learned for previous tasks, which
degrades the model performance for the previous
tasks (McCloskey and Cohen, 1989). In our case,
(1) is also important as ASC tasks are similar, i.e.,
words and phrases used to express sentiments for
different products/tasks are similar. To achieve the
objectives, the system needs to identify the shared
knowledge that can be transferred to the new task to
help it learn better and the task specific knowledge
that needs to be protected to avoid forgetting of
previous models. Table 1 gives an example.

Fine-tuned BERT (Devlin et al., 2019) is one
of the most effective methods for ASC (Xu et al.,
2019; Sun et al., 2019). However, our experi-
ments show that it works very poorly for TIL.
The main reason is that the fine-tuned BERT on a
task/domain captures highly task specific informa-
tion which is difficult to transfer to a new task.

In this paper, we propose a novel model called
B-CL (BERT-based Continual Learning) for ASC
continual learning. The key novelty is a building
block, called Continual Learning Adapter (CLA)
inspired by the Adapter-BERT in (Houlsby et al.,
2019). CLA leverages capsules and dynamic rout-
ing (Sabour et al., 2017) to identify previous tasks
that are similar to the new task and exploit their
shared knowledge to help the new task learning
and uses task masks to protect task-specific knowl-
edge to avoid forgetting (CF). We conduct exten-
sive experiments over a wide range of baselines to
demonstrate the effectiveness of B-CL.

In summary, this paper makes two key contribu-
tions. (1) It proposes the problem of task incremen-
tal learning for ASC. (2) It proposes a new model
B-CL with a novel adapter CLA incorporated in a
pre-trained BERT to enable ASC continual learn-
ing. CLA employs capsules and dynamic routing
to explore and transfer relevant knowledge from
old tasks to the new task and uses task masks to
isolate task-specific knowledge to avoid CF. To our
knowledge, none of these has been done before.

2 Related Work

Continual learning (CL) has been studied exten-
sively (Chen and Liu, 2018; Parisi et al., 2019). To
our knowledge, no existing work has been done on
CL for a sequence of ASC tasks, although CL of
a sequence of document sentiment classification
tasks has been done.

Continual Learning. Existing work has mainly fo-
cused on dealing with catastrophic forgetting (CF).

Regularization-based methods, such as those
in (Kirkpatrick et al., 2016; Lee et al.; Seff et al.,
2017), add a regularization in the loss to consoli-
date previous knowledge when learning a new task.

Parameter isolation-based methods, such as
those in (Serra et al., 2018; Mallya and Lazebnik,
2018; Fernando et al., 2017), make different sub-
sets of the model parameters dedicated to different
tasks and identify and mask them out during the
training of the new task.

Gradient projection-based method, such as that
in (Zeng et al., 2019), ensures the gradient updates
occur only in the orthogonal direction to the input
of the old tasks and thus will not affect old tasks.

Replay-based methods, such as those in (Re-
buffi et al., 2017; Lopez-Paz and Ranzato, 2017;
Chaudhry et al., 2019), retain an exemplar set of
old task training data to help train the new task.
The methods in (Shin et al., 2017; Kamra et al.,
2017; Rostami et al., 2019; He and Jaeger, 2018)
build data generators for previous tasks so that in
learning the new task, they can use some generated
data for previous tasks to help avoid forgetting.

As these methods are mainly for avoiding CF, af-
ter learning a sequence of tasks, their final models
are typically worse than learning each task sepa-
rately. The proposed B-CL not only deals with CF,
but also performs knowledge transfer to improve
the performance of both the new and the old tasks.

Lifelong Learning (LL). LL is now regarded
the same as CL, but early LL mainly aimed at
improving the new task learning through forward
transfer without tackling CF (Silver et al., 2013;
Ruvolo and Eaton, 2013; Chen and Liu, 2018).

Several researchers have used LL for document-
level sentiment classification. Chen et al. (2015)
and Wang et al. (2019) proposed two Naive Bayes
(NB) approaches to help improve the new task
learning. A heuristic NB method was also used
in (Wang et al., 2019). Xia et al. (2017) presented
a LL approach based on voting of individual task
classifiers. All these works do not use neural net-
works, and are not concerned with the CF problem.

Shu et al. (2017) used LL for aspect extraction,
which is a different problem. Wang et al. (2018)
used LL for ASC, but improved only the new task
and did not deal with CF. Existing CL systems
SRK (Lv et al., 2019), KAN (Ke et al., 2020b) and
L2PG (Qin et al., 2020) are for document sentiment
classification, but not ASC. Ke et al. (2020a) also
performed transfer in the image domain.

4747

Recently, capsule networks (Hinton et al., 2011)
have been used in sentiment classification and text
classification (Chen and Qian, 2019; Zhao et al.,
2019). But they have not been used in CL.

3 Preliminary

This section introduces BERT, Adapter-BERT and
Capsule Network as they are used in our model.
BERT for ASC. Due to its superior perfor-
mance, this work uses BERT (Devlin et al., 2019)
and its transformer (Vaswani et al., 2017) architec-
ture as the base. We also adopt the ASC formula-
tion in (Xu et al., 2019), where the aspect term and
review sentence are concatenated via [SEP]. The
sentiment polarity is predicted on top of the [CLS]
token. Although BERT can achieve impressive per-
formance on a single ASC task, its architecture and
fine-tuning paradigm are not suitable for CL (see
Sec. 1). Experiments show that it performs very
poorly for CL (Sec. 5.4). We found that Adapter-
BERT (Houlsby et al., 2019) is a better fit for CL.
Adapter-BERT. Adapter-BERT basically in-
serts a 2-layer fully-connected network (adapter) in
each transformer layer of BERT (see Figure 1(A)).
During training for the end-task, only the adapters
and normalization layers are trained, no change
to any other BERT parameters, which is good for
CL because fine-tuning BERT itself causes serious
forgetting. Adapter-BERT achieves similar perfor-
mances to fine-tuned BERT (Houlsby et al., 2019).
We propose to exploit the adapter idea and the cap-
sule network to achieve effective CL for ASC tasks.
Capsule Network. Capsule network (CapsNet)
is a relatively new classification architecture (Hin-
ton et al., 2011; Sabour et al., 2017). Unlike CNN,
CapsNet replaces the scalar feature detectors with
vector capsules that can preserve additional infor-
mation such as position and thickness in images.
A typical CapsNet has two capsule layers. The
primary layer stores low-level feature maps and
the class layer produces the probability for clas-
sification with each capsule corresponding to one
class. It uses a dynamic routing algorithm to enable
each lower level capsule to send its output to the
similar (or “agreed”, computed by dot product)
higher level capsule. This is the key property that
we exploit to identify and group similar tasks and
their shared features or knowledge.
Note that the proposed B-CL does not adopt the
whole capsule network as we are only interested in
the capsule layers and dynamic routing instead of

Transformer Layer *, /’Adapter
i '

Conrvom)
I
Crere) |
I

Feed-forward | !
layers "

I

i
I

I
(Cromwer]
|

I

Feed-forward | !!
layer "

I

I

Multi-headed
Attention

Adapter-BERT

1 i
! LayerNorm | !!
1 i
H i
H

i
|

i

Task Specific 1
Module !
(TSM) !

I

I

i

Sharing
Module
(Ksm)

CLA

H
"

Feed-forward | |!
layers "

N
Layer Norm "

"

N

.
.
' 1
Feed-forward || '
yer |} mmp!
- :
' '
:
Feed-forward | |1 ;
layer

CLA

'
'

"

Feed-forward | 11
layer "

"

N

Multi-headed

Attention

Adapter B-CL CLA
(A) (B)

Figure 1: (A). Adapter-BERT (Houlsby et al., 2019)
and its adapters in a transformer (Vaswani et al., 2017)
layer. An adapter is a 2-layer fully connected network
with a skip-connection. It is added twice to each Trans-
former layer. Only the adapters (yellow boxes) and
layer norm (green boxes) layers are trainable. The other
modules (grey boxes) are frozen. (B). Proposed B-CL,
which replaces the adapter with CLA. CLA has two
sub-modules: knowledge sharing module (KSM) and
task specific module (TSM). Each of these modules has
a skip-connection.

the max-margin loss and the classifier.

4 Continual Learning Adapter (CLA)

Recall the proposed B-CL aims to achieve (1)
knowledge transfer between related old tasks and
the new task through knowledge sharing and (2) for-
getting avoidance through preventing task specific
knowledge of previous tasks from being overwrit-
ten by the new task learning. Inspired by Adapter-
BERT, we propose the continual learning adapters
(CLA) to replace the adapters in Adapter-BERT
to enable CL as in Figure 1(B) to achieve BERT
based continual learning for ASC.

The architecture of CLA is shown in Figure 2(A).
It contains two modules: (1) knowledge sharing
module (KSM) for identifying and exploiting share-
able knowledge from the similar previous tasks and
the new task, and (2) task specific module (TSM)
for learning task specific neurons and protecting
them from being updated by the new task.

CLA takes two inputs: (1) hidden states R
from the feed-forward layer inside a transformer
layer and (2) task ID ¢. The outputs are hidden
states with features good for the ¢-th task. KSM
leverages capsule layers (see below) and dynamic
routing to group similar tasks and the shareable
knowledge, whereas TSM takes advantage of task
mask (TM) to protect neurons for a particular task
and leave other neurons free. Those free neurons
are later used by TSM for a new task. Since TMs
are differentiable, the whole system B-CL can be

4748

trained end-to-end. We detail each module below.

4.1 Knowledge Sharing Module (KSM)

KSM groups similar tasks and shared knowledge
(features) among them to enable knowledge trans-
fer among similar tasks. This is achieved through
two capsule layers (task capsule layer and knowl-
edge sharing capsule layer) and the dynamic rout-
ing algorithm of the capsule network.

4.1.1 Task Capsule Layer (TCL)

Each capsule in TCL represents a task and TCL
prepares low-level features derived from each task
(Figure 2(A)). As such, a capsule is added to TCL
for every new task. This incremental growing is ef-
ficient and easy because these capsules are discrete
and do not share parameters. Also each capsule is
simply a 2-layer fully connected network with a
small number of parameters. Let h(t) € R%*de be
the input of CLA, where d; is the number of tokens
and d. the number of dimensions. Let the set of
tasks learned so far be 7,y (before learning the
new task) and | 7pyev|= n. In TCL, we have n + 1
different capsules representing all past n learned
tasks as well as the new task ¢. The capsule for the
t-th (7 < n +1)task is

P = fi(n0), (1)

where f;(-) = MLP;(-) denotes a 2-layer fully-
connected network.

4.1.2 Knowledge Sharing Capsule Layer
(KCL)

Each knowledge sharing capsule in KCL captures
those tasks (i.e., their task capsules {pgt) 1) with
similar features or shared knowledge. This is au-
tomatically achieved by the dynamic routing algo-
rithm. Recall dynamic routing encourages each
lower level capsule (task capsule in our case) to
send its output to the similar (or "agreed") higher
level capsule (knowledge sharing capsule in our
case).

Essentially, the similar task capsules (with many
shared features) are “clustered” together by higher
coefficients (which determine how much a task
capsule can go to the next layer) while dissimi-
lar tasks (with few shared features) are blocked
via low coefficients. Such clustering identifies the
shared features or knowledge from multiple task
capsules as well as helps backward transfer across
the similar tasks.

()

KCL first turns each task capsule p;” into a tem-
porary feature ugTz as:
) = Wynl”, @

where W;; € R%*d i the weight matrix, ds and
dy, are the dimensions of task capsule ¢ and knowl-
edge sharing capsule j. The number of knowledge
sharing capsules is a hyperparameter detailed in

the experiment section. The temporary features are
(t)

ij

to obtain the initial
(t)

IR

sg.t) = Z cg)u(t) 3)

summed up with weights ¢

knowledge sharing capsule s

i’

where cgj.) is a coupling coefficient summed up to
1 and we detail how to compute it later. Note that
the task capsule for each task in Eq. 1 is mapped
to the knowledge sharing capsule in Eq. 3 and cg
indicates how much or how informative the repre-
sentation of the ¢-th task is to the j-th knowledge
sharing capsule. As a result, a knowledge sharing
capsule can represent diverse sharable knowledge.
For those tasks with a very low cg), their represen-
tations are less considered in the j-th knowledge
sharing capsule. This makes sure only task cap-
sules for tasks that are salient or similar to the new
task are used and the others task capsules are ig-
nored (and thus protected) to learn more general
shareable knowledge. Recall that the ASC tasks
are similar and thus such learning of task sharing
features can be very important.

Note that in (l;ackpropagation, the dissimilar
t
J

tasks with low c;.” are updated with a low gradient

while the similar tasks with high cg) are updated

with a larger gradient. This encourages backward
transfer across similar tasks.

Dynamic Routing. The coupling coefficient in
Eq. 3 is essential for the quality of shareable knowl-
edge. This is computed by a “routing softmax":

i

(t) _ eXp(bg))

Y, (b))

where each b;; is the log prior probability show-
ing how salient or similar a task capsule i is to a
knowledge sharing capsule j. It is initialized to
0 indicating no salient connection between them
at the beginning. We apply the dynamic routing
algorithm in (Sabour et al., 2017) to update b;;:

“)

C

b b +al?,)

4749

OOOOO] Output features

Task Specific ',‘ m(t) X
Module (TSM) 1 (i) R
bl 00000
1
1
1
1
1
'
Knowledge ________________/A___.. I
Sharing , -
Module / Knowled
nowledge
KSM
() Sharing
Capsule Layer
(KCL)

-- (Task 1

|

|

i Before Training
iTask 0

100000 00000
i |00000 00000

After Training

00000 00000
00000 ©0000

.+

Task ID
Embedding

1
1
1
1
1
1
1
1
1
!
1
!
1
!
1
1
1
1
1
1
1
1
\

. Input features | OO 0OQ0O h(l)

(A) Overall Architecture of Continual Learning Adapter (CLA)

Task 00000 Q0000

Capsule fi (h(t))

Layer (TCL) (S0 000 - 00000
Fo(h9) Sa (™)

lookup and

[}
[}
[}
[}
I
I
my) = ﬂ(&('f")) |
I
I
I
I
I
I
I

00000 00000
00000 00000

L Input Task ID -+

; (B) Task Masks (TM) in TSM

Figure 2: (A) Architecture of CLA: the skip-connection is not shown for clarity. (B) illustration of task masking:
a (learnable) task mask is applied after the activation function to selectively activate a neuron (or feature). Some

notes about (B) are: the two rows of each task corresponds to k((]t) and kit) in TSM. In the cells before training,
those with O’s are the neurons to be protected (masked) and those cells without a number are free neurons (not
used). In the cells after training, those cells with 1’s show neurons that are important for the current task, which
are used as a mask for the future. Those cells with more than one color indicate that they are shared by more than
one task. Those 0 cells without a color are not used by any task.

where a;; is the agreement coefficient (see below).
Intuitively, this step tends to aggregate the similar
(or “agreed”) tasks on a knowledge sharing capsule
with a higher agreement coefficient a;; and thus a
higher logit bl(.;.) (Eq. 5) or coupling coefficient cg)
(Eq. 4). The agreement coefficient is computed as

ag) = uﬁz -vj(t), (6)
where Uj(-t) is a normalized representation by apply-

ing the non-linear “squash” function (Sabour et al.,
2017) to s\ (for the first task, s\ = u{/)):

jli
I 1P

J
) @)
1+ (1591159

®)

where the length of v; is normalized to [0,1] to
represent the active probability of a knowledge
sharing capsule j.

Finally, note that the dynamic routing procedure
(Eq. (3)—(7)) is repeated for r iterations.

o0 =

4.2 Task Specific Module (TSM)

Although knowledge sharing is important for ASC,
it is equally important to preserve task specific

knowledge for previous tasks to prevent forget-
ting (CF). To achieve this, we use task masks (Fig-
ure 2(B)). Specifically, we first detect the neurons
used by each old task, and then block off or mask
out all the used neurons when learning a new task.

The task specific module consists of differen-
tiable layers (CLA uses a 2-layer fully-connected
network). Each layer’s output is further applied
with a task mask to indicate which neurons should
be protected for that task to overcome CF and
forbids gradient updates for those neurons dur-
ing backpropagation for a new task. Those tasks
with overlapping masks indicate knowledge shar-
ing. Due to KSM, the features flowing in those
overlapping neurons enable the related old tasks to
also improve in learning the new task.

4.3 Task Masks

Given the knowledge sharing capsule sg-t), TSM
maps them into input kl(t) via a fully-connected
network, where [is the [-th layer in TSM. A task

mask (a “soft” binary mask) mgt) is trained for each
task ¢ at each layer [in TSM during training task ¢’s

4750

classifier, indicating the neurons that are important
for the task in the layer. Here we borrow the hard
attention idea in (Serra et al., 2018) and leverage
the task ID embedding to the train the task mask.

For a task ID ¢, its embedding el(t) consists of
differentiable deterministic parameters that can be
learned together with other parts of the network.
It is trained for each layer in TSM. To generate
the task mask ml(t) from egt), Sigmoid is used as a
pseudo-gate function and a positive scaling hyper-

(t) -

parameter s is applied to help training. The m, "’ is

computed as follows:

ml(t) = a(sel(t)). (8)

Note that the neurons in ml(t)

those in other ml(lpr“)s from previous tasks show-

ing some shared knowledge. Given the output of

may overlap with

each layer in TSM, k:l(t), we element-wise multiply

kl(t) ® ml(t). The masked output of the last layer
k) is fed to the next layer of the BERT with a skip-
connection (see Figure 1). After learning task ¢, the

final ml(t) is saved and added to the set {mgt)}.

4.4 Training

For each past task iprey € Tprev, its mask ml(l’”ev)

indicates which neurons are used by that task and
need to be protected. In learning task ¢, mY‘my) is

used to set the gradient gl(t) on all used neurons

of the layer [in TSM to 0. Before modifying the
gradient, we first accumulate all used neurons by
all previous tasks’ masks. Since ml(l‘"“) is binary,

we use max-pooling to achieve the accumulation:

ml(t"“‘) = MaxPool({ml(iprev) 1. 9)

(tac)

The term m, " is applied to the gradient:

g =g @ (1 —m{™). (10)

Those gradients corresponding to the 1 entries in
m!“) are set to 0 while the others remain un-
changed. In this way, neurons in an old task are
protected. Note that we expand (copy) the vector

ml(t“) to match the dimensions of gl(t).

Though the idea is intuitive, ¢.”

train. To make the learning of el(t) easier and more
stable, an annealing strategy is applied (Serra et al.,
2018). That is, s is annealed during training, in-
ducing a gradient flow and set s = syax during
testing. Eq. 8 approximates a unit step function as

the mask, with ml(t) — {0,1} when s — co. A

is not easy to

training epoch starts with all neurons being equally
active, which are progressively polarized within the
epoch. Specifically, s is annealed as follows:

1 1 (b—-1

+ (Smax — @)ﬁ>

S =

1D

Smax
where b is the batch index and B is the total number
of batches in an epoch.

Ilustration. In Figure 2(B), after learning the
first task (Task 0), we obtain its useful neurons
marked in orange with a 1 in each neuron, which
serves as a mask in learning future tasks. In learn-
ing task 1, those useful neurons for task O are
masked (with 0 in those orange neurons or cells on
the left). The process also learns the useful neurons
for task 1 marked in green with 1’s. When task 2
arrives, all important neurons for tasks 0 and 1 are
masked, i.e., its mask entries are set to 0 (orange
and green before training). After training task 2,
we see that task 2 and task 1 have a shared neu-
ron that is important to both of them. The shared
neuron is marked in both red and green.

S Experiments

We now evaluate B-CL by comparing it with
both non-continual learning and continual learning
baselines. We follow the standard CL evaluation
method in (Lange et al., 2019). We first present
B-CL a sequence of aspect sentiment classification
(ASC) tasks for it to learn. Once a task is learned,
its training data is discarded. After all tasks are
learned, we test all task models using their respec-
tive test data. In training each task, we use its
validation set to decide when to stop training.

5.1 Experiment Datasets

Since B-CL works in the CL setting, we employ
a set of 19 ASC datasets (reviews of 19 products)
to produce sequences of tasks. Each dataset rep-
resents a task. The datasets are from 4 sources:
(1) HL5SDomains (Hu and Liu, 2004) with reviews
of 5 products; (2) LiudDomains (Liu et al., 2015)
with reviews of 3 products; (3) Ding9Domains
(Ding et al., 2008) with reviews of 9 products; and
(4) SemEvall4 with reviews of 2 products - Se-
mEval 2014 Task 4 for laptop and restaurant. For
(1), (2) and (3), we split about 10% of the origi-
nal data as the validation data, another about 10%
of the original data as the testing data. For (4),
we use 150 examples from the training set for val-
idation. To be consistent with existing research

4751

Data source Task/domain Train Validation Test

Speaker 352 44 44
Liu3domain Router 245 31 31
Computer 283 35 36
Nokia6610 271 34 34
Nikon4300 162 20 21
HL5domain Creative 677 85 85
CanonG3 228 29 29
ApexAD 343 43 43
CanonD500 118 15 15
Canon100 175 22 22
Diaper 191 24 24
Hitachi 212 26 27
Ding9domain Ipod 153 19 20
Linksys 176 22 23
MicroMP3 484 61 61
Nokia6600 362 45 46
Norton 194 24 25
Rest. 3452 150 1120
SemEvall4 Laptop 2163 150 638

Table 2: Number of examples in each task or dataset.
More detailed data statistics are given in the Appendix.

(Tang et al., 2016), examples belonging to the con-
flict polarity (both positive and negative sentiments
are expressed about an aspect term) are not used.
Statistics of the 19 datasets are given in Table 2.

5.2 Compared Baselines

We use 18 baselines, including both non-continual
learning and continual learning methods.

Non-continual Learning (NL) Baselines: NL
setting builds a model for each task independently
using a separate network. It clearly has no knowl-
edge transfer or forgetting. We have 3 baselines
under NL, (1) BERT, (2) Adapter-BERT and (3)
W2V (word2vec embeddings). For BERT, we
use trainable BERT to perform ASC (see Sec. 3);
Adapter-BERT adapts the BERT as in (Houlsby
et al., 2019), where only the adapter blocks are
trainable; W2V uses embeddings trained on the
Amazon review data in (Xu et al., 2018) using Fast-
Text (Grave et al., 2018). We adopt the ASC classi-
fication network in (Xue and Li, 2018), which takes
both aspect term and review sentence as input.

Continual Learning (CL) Baselines. CL set-
ting includes 3 baselines without dealing with for-
getting (WDF) and 12 baselines from 6 state-of-the
art task incremental learning (TIL) methods deal-
ing with forgetting. WDF baselines greedily learn
a sequence of tasks incrementally without explic-
itly tackling forgetting or knowledge transfer. The
3 baselines under WDF are also (4) BERT, (5)
Adapter-BERT and (6) W2V.

The 6 state-of-the-art CL systems are: KAN,
SRK, HAT, UCL, EWC and OWM. KAN (Ke et al.,

2020b) and SRK (Lv et al., 2019) are TIL methods
for document sentiment classification. HAT, UCL,
EWC and OWM were originally designed for im-
age classification. We replace their original MLP
or CNN image classification network with CNN
for text classification (Kim, 2014). HAT (Serra
et al., 2018) is one of the best TIL methods with
almost no forgetting. UCL (Ahn et al., 2019) is a
latest TIL method. EWC (Kirkpatrick et al., 2016)
is a popular regularization-based class incremental
learning (CIL) method, which was adapted for TIL
by only training on the corresponding head of the
specific task ID during training and only consid-
ering the corresponding head’s prediction during
testing. OWM (Zeng et al., 2019) is a state-of-the-
art CIL method, which we also adapt to TIL.

From the 6 systems, we created 6 baselines us-
ing W2V embeddings with the aspect term added
before the sentence so that the CL. methods can
take both aspect and the review sentence, and 6
baselines using BERT (Frozen) (which replaces
W2V embeddings). Following the BERT formula-
tion in Sec. 3, it can naturally take both aspect and
review sentence. Adapter-BERT is not applicable
to them as their architecture cannot use an adapter.

5.3 Hyperparameters

Unless otherwise stated, for the task sharing mod-
ule, we employ 2 layers of fully connected network
with dimensions 768 in TCL. We also employ 3
knowledge sharing capsules. The dynamic routing
is repeated for 3 iterations. For the task-specific
module, We employ the embedding with 2000 di-
mensions as the final and hidden layer of the TSM.
The task ID embeddings have 2000 dimensions. A
fully connected layer with softmax output is used
as the classification heads in the last layer of the
BERT, together with the categorical cross-entropy
loss. We use 140 for sy« in Eq. 11, dropout of
0.5 between fully connected layers. The training of
BERT, Adapter-BERT and B-CL follow that of (Xu
et al., 2019). We adopt BERTgsEg (uncased). The
maximum length of the sum of sentence and aspect
is set to 128. We use Adam optimizer and set the
learning rate to 3e-5. For the SemEval datasets,
10 epochs are used and for all other datasets, 30
epochs are used based on results from validation
data. All runs use the batch size 32. For the CL
baselines, we train all models with the learning rate
of 0.05. We early-stop training when there is no im-
provement in the validation loss for 5 epochs. The

4752

Scenario Category Model Acc. MF1
Non-continual BERT NL 0.8584 0.7635
Learning Adapter-BERT NL 0.8596 0.7807
w2v NL 0.7701 0.5189
BERT WDF || 0.4960 0.4308
Adapter-BERT WDF || 0.5403 0.4481
w2v WDF || 0.8269 0.7356
KAN || 0.8549 0.7738
SRK || 0.8476 0.7852
BERT EWC || 0.8637 0.7452
(Frozen) UCL | 0.8389 0.7482
OWM | 0.8702 0.7931
Continual HAT 0.8674 0.7816
Learning KAN || 0.7206 0.4001
SRK || 0.7101 0.3963
EWC || 0.8416 0.7229
wav UCL | 0.8441 0.7599
OWM || 0.8270 0.7118
HAT || 0.8083 0.6363
B-CL (forward) 0.8809 0.7993
B-CL 0.8829 0.8140

Table 3: Accuracy (Acc.) and Macro-F1 (MF1) aver-
aged over 5 random sequences of 19 tasks.

batch size is set to 64. For all the CL baselines, we
use the code provided by their authors and adopt
their original parameters (for EWC, we adopt its
TIL variant implemented by (Serra et al., 2018)).

5.4 Results and Analysis

Since the order of the 19 tasks may have an impact
on the final results, we randomly choose and run 5
task sequences and average their results. We com-
pute both accuracy and Macro-F1 over 3 classes of
polarities, where Macro-F1 is the major metric as
the imbalanced classes introduce biases on accu-
racy. Table 3 gives the average results of 19 tasks
(or datasets) over the 5 random task sequences.

Overall Performance. Table 3 shows that B-CL
outperforms all baselines markedly. We discuss the
detailed observations below:

(1) For non-continual learning (NL) baselines,
BERT and Adapter-BERT perform similarly. W2V
is poorer, which is understandable.

(2) Comparing NL (non-continual learning) and
WDF (continual learning without dealing with for-
getting), we see WDF is much better than NL for
W2V. This indicates ASC tasks are similar and have
shared knowledge. Catastrophic forgetting (CF) is
not a major issue for W2V,

However, WDF is much worse than NL for
BERT (with fine-tuning) and Adapter-BERT (with
adapter-tuning). This is because BERT with fine-
tuning learns highly task specific knowledge (Mer-
chant et al., 2020). While this is desirable for NL,

Model Acc. MF1
B-CL (-KSM;-TSM) || 0.5403 0.4481
B-CL (-KSM) 0.8614 0.7852
B-CL (-TSM) 0.8312 0.7107
B-CL 0.8829 0.8140

Table 4: Ablation experiment results.

it is bad for WDF because task specific knowledge
is hard to share across tasks or transfer. Then WDF
causes serious forgetting (CF) for CL.

(3) Unlike BERT and Adapter-BERT, our B-
CL can do very well in both forgetting avoidance
and knowledge transfer (outperforming all base-
lines). For state-of-the-art CL baselines, EWC,
UCL, OWM and HAT, although they perform bet-
ter than WDF, they are all significantly poorer than
B-CL as they don’t have methods to encourage
knowledge transfer. KAN and SRK do knowledge
transfer but they are for document-level sentiment
classification. They are weak, even weaker than
other CL methods.

Effectiveness of Knowledge Transfer. We now
look at knowledge transfer of B-CL. For forward
transfer (B-CL(forward)) in Table 3), we use the
test accuracy and MF1 of each task when it was
first learned. For backward transfer (B-CL in Ta-
ble 3), we use the final result after all tasks are
learned. By comparing the results of NL with the
results of forward transfer, we can see whether
forward transfer is effective. By comparing the
forward transfer result with the backward transfer
result, we can see whether the backward transfer
can improve further. The average results of B-CL
forward (B-CL(forward)) and backward (B-CL)
are given in Table 3. It shows that forward trans-
fer of B-CL is highly effective (forward results
for other CL baselines are given in the Appendix
and we see B-CL’s forward result outperforms all
baselines’ forward results). For backward transfer,
B-CL slightly improves the performance.

Ablation Experiments. The results of ablation
experiments are in Table 4. “-KSM;-TSM” means
without knowledge sharing and task specific mod-
ules, simply deploying an Adapter-BERT. “-KSM”
means without the knowledge sharing module. “-
TSM” means without the task specific module. Ta-
ble 4 clearly shows that the full B-CL system al-
ways gives the best overall results, indicating every
component contributes to the model.

4753

6 Conclusion

This paper studies continual learning (CL) of a se-
quence of ASC tasks. It proposed a novel tech-
nique called B-CL that can be applied to pre-
trained BERT for CL. B-CL uses continual learning
adapters and capsule networks to effectively en-
courage knowledge transfer among tasks and also
to protect task-specific knowledge. Experiments
show that B-CL markedly improves the ASC per-
formance on both the new task and the old tasks
via forward and backward knowledge transfer.

Acknowledgments

This work was supported in part by two grants from
National Science Foundation: IIS-1910424 and
11S-1838770, a DARPA Contract HR001120C0023,
and a research gift from Northrop Grumman.

References

Hongjoon Ahn, Sungmin Cha, Donggyu Lee, and Tae-
sup Moon. 2019. Uncertainty-based continual learn-
ing with adaptive regularization. In NIPS.

Arslan Chaudhry, Marc’Aurelio Ranzato, Marcus
Rohrbach, and Mohamed Elhoseiny. 2019. Efficient
lifelong learning with A-GEM. In ICLR.

Zhiyuan Chen and Bing Liu. 2018. Lifelong machine
learning. Synthesis Lectures on Artificial Intelli-
gence and Machine Learning, 12(3):1-207.

Zhiyuan Chen, Nianzu Ma, and Bing Liu. 2015. Life-
long learning for sentiment classification. In ACL.

Zhuang Chen and Tieyun Qian. 2019. Transfer capsule
network for aspect level sentiment classification. In
ACL.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: pre-training of
deep bidirectional transformers for language under-
standing. In NAACL-HLT.

Xiaowen Ding, Bing Liu, and Philip S Yu. 2008. A
holistic lexicon-based approach to opinion mining.
In Proceedings of the 2008 international conference
on web search and data mining.

Chrisantha Fernando, Dylan Banarse, Charles Blundell,
Yori Zwols, David Ha, Andrei A. Rusu, Alexander
Pritzel, and Daan Wierstra. 2017. Pathnet: Evolu-
tion channels gradient descent in super neural net-
works. CoRR.

Edouard Grave, Piotr Bojanowski, Prakhar Gupta, Ar-
mand Joulin, and Tomas Mikolov. 2018. Learning
word vectors for 157 languages. In LREC.

Xu He and Herbert Jaeger. 2018. Overcoming catas-
trophic interference using conceptor-aided back-
propagation. In ICLR.

Geoffrey E Hinton, Alex Krizhevsky, and Sida D Wang.
2011. Transforming auto-encoders. In International
conference on artificial neural networks.

Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski,
Bruna Morrone, Quentin de Laroussilhe, Andrea
Gesmundo, Mona Attariyan, and Sylvain Gelly.
2019. Parameter-efficient transfer learning for NLP.
In ICML.

Minging Hu and Bing Liu. 2004. Mining and summa-
rizing customer reviews. In Proceedings of ACM
SIGKDD.

Nitin Kamra, Umang Gupta, and Yan Liu. 2017. Deep
generative dual memory network for continual learn-
ing. CoRR.

Zixuan Ke, Bing Liu, and Xingchang Huang. 2020a.
Continual learning of a mixed sequence of similar
and dissimilar tasks. In NeurIPS.

Zixuan Ke, Bing Liu, Hao Wang, and Lei Shu. 2020b.
Continual learning with knowledge transfer for sen-
timent classification. In ECML-PKDD.

Yoon Kim. 2014. Convolutional neural networks for
sentence classification. In EMNLP.

James Kirkpatrick, Razvan Pascanu, Neil C. Rabi-
nowitz, Joel Veness, Guillaume Desjardins, An-
drei A. Rusu, Kieran Milan, John Quan, Tiago Ra-
malho, Agnieszka Grabska-Barwinska, Demis Hass-
abis, Claudia Clopath, Dharshan Kumaran, and Raia
Hadsell. 2016. Overcoming catastrophic forgetting
in neural networks. CoRR.

Matthias De Lange, Rahaf Aljundi, Marc Masana, and
Tinne Tuytelaars. 2019. Continual learning: A com-
parative study on how to defy forgetting in classifi-
cation tasks. CoRR.

Sang-Woo Lee, Jin-Hwa Kim, Jaehyun Jun, Jung-Woo
Ha, and Byoung-Tak Zhang. Overcoming catas-
trophic forgetting by incremental moment matching.
In NIPS.

Bing Liu. 2015. Sentiment analysis: Mining opinions,
sentiments, and emotions. Cambridge University
Press.

Qian Liu, Zhigiang Gao, Bing Liu, and Yuanlin Zhang.
2015. Automated rule selection for aspect extraction
in opinion mining. In IJCAL

David Lopez-Paz and Marc’Aurelio Ranzato. 2017.
Gradient episodic memory for continual learning. In
NIPS.

Guangyi Lv, Shuai Wang, Bing Liu, Enhong Chen, and
Kun Zhang. 2019. Sentiment classification by lever-
aging the shared knowledge from a sequence of do-
mains. In DASFAA.

4754

Arun Mallya and Svetlana Lazebnik. 2018. Packnet:
Adding multiple tasks to a single network by itera-
tive pruning. In CVPR.

Michael McCloskey and Neal J Cohen. 1989. Catas-
trophic interference in connectionist networks: The
sequential learning problem. In Psychology of learn-
ing and motivation.

Amil Merchant, Elahe Rahimtoroghi, Ellie Pavlick,
and Ian Tenney. 2020. What happens to BERT em-
beddings during fine-tuning? CoRR.

German Ignacio Parisi, Ronald Kemker, Jose L. Part,
Christopher Kanan, and Stefan Wermter. 2019. Con-
tinual lifelong learning with neural networks: A re-
view. Neural Networks.

Qi Qin, Wenpeng Hu, and Bing Liu. 2020. Using the
past knowledge to improve sentiment classification.
In Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing: Findings,
pages 1124-1133.

Sylvestre-Alvise Rebuffi, Alexander Kolesnikov,
Georg Sperl, and Christoph H. Lampert. 2017. icarl:
Incremental classifier and representation learning.
In CVPR.

Mohammad Rostami, Soheil Kolouri, and Praveen K.
Pilly. 2019. Complementary learning for overcom-
ing catastrophic forgetting using experience replay.
In IJCAL

Paul Ruvolo and Eric Eaton. 2013. ELLA: an efficient
lifelong learning algorithm. In ICML, pages 507—
515.

Sara Sabour, Nicholas Frosst, and Geoffrey E Hinton.
2017. Dynamic routing between capsules. In NIPS.

Ari Seff, Alex Beatson, Daniel Suo, and Han Liu.
2017. Continual learning in generative adversarial
nets. CoRR, abs/1705.08395.

Joan Serra, Didac Suris, Marius Miron, and Alexandros
Karatzoglou. 2018. Overcoming catastrophic forget-
ting with hard attention to the task. In /ICML.

Hanul Shin, Jung Kwon Lee, Jachong Kim, and Jiwon
Kim. 2017. Continual learning with deep generative
replay. In NIPS.

Lei Shu, Hu Xu, and Bing Liu. 2017. Lifelong learning
CREF for supervised aspect extraction. In ACL.

Daniel L. Silver, Qiang Yang, and Lianghao Li. 2013.
Lifelong machine learning systems: Beyond learn-
ing algorithms. In Lifelong Machine Learning, Pa-
pers from the 2013 AAAI Spring Symposium, Palo
Alto, California, USA, March 25-27, 2013.

Chi Sun, Luyao Huang, and Xipeng Qiu. 2019. Uti-
lizing BERT for aspect-based sentiment analysis via
constructing auxiliary sentence. In NAACL.

Duyu Tang, Bing Qin, and Ting Liu. 2016. Aspect
level sentiment classification with deep memory net-
work. In EMNLP.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Lukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In NeurlPS.

Hao Wang, Bing Liu, Shuai Wang, Nianzu Ma, and
Yan Yang. 2019. Forward and backward knowledge
transfer for sentiment classification. In ACML.

Shuai Wang, Guangyi Lv, Sahisnu Mazumder, Geli Fei,
and Bing Liu. 2018. Lifelong learning memory net-
works for aspect sentiment classification. In IEEE
International Conference on Big Data.

Rui Xia, Jie Jiang, and Huihui He. 2017. Distantly su-
pervised lifelong learning for large-scale social me-
dia sentiment analysis. IEEE Trans. Affective Com-
puting, 8(4):480-491.

Hu Xu, Bing Liu, Lei Shu, and Philip S. Yu. 2019.
BERT post-training for review reading compre-
hension and aspect-based sentiment analysis. In
NAACL-HLT.

Hu Xu, Sihong Xie, Lei Shu, and Philip S. Yu. 2018.
Dual attention network for product compatibility
and function satisfiability analysis. In AAAL

Wei Xue and Tao Li. 2018. Aspect based sentiment
analysis with gated convolutional networks. In ACL.

Guanxiong Zeng, Yang Chen, Bo Cui, and Shan Yu.
2019. Continuous learning of context-dependent
processing in neural networks. Nature Machine In-
telligence.

Wei Zhao, Haiyun Peng, Steffen Eger, Erik Cambria,
and Min Yang. 2019. Towards scalable and reliable
capsule networks for challenging NLP applications.
In ACL.

4755

