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Effective stress governs the mechanical behavior of porous media. In this study, we use photoe-
lasticimetry to visualize the evolving effective stress field in fluid-filled granular media in processes
that couple fluid flow and mechanical deformation. We refer to this experimental method as photo-
poromechanics. We develop a fabrication process to produce millimeter-scale residual-stress-free
photoelastic spheres with high geometric accuracy. We use color, for the first time, to quantify the
forces acting on the particles over a wide range of forces, while using light intensity for a small range
of forces. We then provide a first application of photo-poromechanics to illustrate the evolution of
effective stress during 1-D consolidation: a process by which the stresses caused by a sudden load
are gradually transmitted through a fluid-filled granular pack as the fluid drains and excess pore
pressures dissipate. Our novel technique provides a powerful experimental model system to study
the grain-scale underpinning of coupled solid-fluid processes in granular media.

I. INTRODUCTION

When stress is applied to porous media, part of the
stress is transmitted through the pore fluid and part
of the stress is transmitted through the solid skeleton.
Effective stress—the fraction of the total stress that is
transmitted through the solid skeleton—controls the me-
chanical behavior of porous media, from land subsidence
due to groundwater pumping to the cohesion of sand in
sandcastles. Karl von Terzaghi, father of soil mechanics,
introduced this concept a century ago [1, 2]. In Terzaghi’s
conceptualization, effective stress is the calculated stress
that is “effective” in moving soil or causing displace-
ment. Unveiling effective stress recognizes the powerful
coupling among viscous, capillary, and frictional forces
within fluid-filled porous media, especially granular me-
dia with strongly-coupled fluids [3–7]. Porous media
physics has experienced profound advances since Terza-
ghi’s work. However, effective stress remains a physical
quantity that can only be calculated by subtracting pore
pressure from the normal component of the stress tensor,
or inferred from its “effect”, typically the solid skeleton
deformation. Particularly challenging is capturing the
evolution of effective stresses in path-dependent physi-
cal processes in porous media, such as friction, fractur-
ing, creeping, plastic deformation, and multiphase flows.
In this study, we use photoelasticimetry to visualize the
evolving effective stress field in fluid-filled granular media
in processes that couple fluid flow and mechanical defor-
mation. We hereby refer to this experimental method as
photo-poromechanics.

Photoelasticimetry has been used as an experimental
method to quantify the internal stresses within solid bod-
ies for several decades [8–13]. This method uses trans-
parent materials that are photoelastic: their degree of
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birefringence depends on the local anisotropic stresses
in the material. When viewed under a polariscope, the
stressed photoelastic material shows visual patterns of
fringes and colors, which is referred to as photoelastic re-
sponse. The photoelastic response is correlated with the
applied forces or the internal stresses through calibration
tests, and then used to visualize and even quantitatively
measure the stress field in various mechanical problems
[14–35].

This technique, however, has not yet been used to
study poromechanical problems because of two major
challenges: fabricating 3-D photoelastic particles and ob-
taining quantitative information on the forces acting on
these 3-D particles [13, 36–38]. Photoelasticimetry is typ-
ically implemented using cylindrical disks, which disallow
connectivity between the pore space, and therefore can-
not be used as an analog of permeable porous media.
For a proper analogy of a porous medium regarding the
pore geometry, connectivity and morphology [7], a pack
of 3-D particles, such as spheres, should be used. The
particles also have to be small enough that the viscous
forces and interfacial forces are sufficiently large to be rel-
evant in the evolution of the solid-fluid system. To date,
there has not been a method able to consistently fabricate
millimeter-scale residual-stress-free 3-D particles with ac-
ceptable size variations. In addition, 3-D particles are
lenses by themselves [13], so the distances between the
light source, the particle and the camera determine the
observed image. The photoelastic fringes observed on the
2-D disks [12, 13] are not observed on 3-D particles, so
new methods will be needed to obtain quantitative infor-
mation on the forces based on the photoelastic response
of the 3-D particles.

Here we address these two challenges, and establish
the methodology of photo-poromechanics. We design
the fabrication processes, similar to “squeeze casting”,
and produce millimeter-scale residual-stress-free spheres
with high geometric accuracy. We then study the pho-
toelastic response of these spheres under different applied
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forces. We use color, for the first time, to quantify the
forces acting on the particles over a wide range of forces,
while using light intensity for a small range of forces. We
then provide a first application of photo-poromechanics
to illustrate the evolution of effective stress during 1-D
consolidation: a process by which the stresses caused by
a sudden load are gradually transmitted through a fluid-
filled granular pack as the fluid drains and excess pore
pressures dissipate. Our novel technique provides a pow-
erful experimental model system to study the strong cou-
pling of solid and fluid in granular media.

II. FABRICATION OF PHOTOELASTIC
SPHERES

Our fabrication process differs from existing methods
[12, 13, 39–41], and is instead similar to “squeeze casting”
for metals [42], but for polymer resins in our case. It is
suitable for almost any castable photoelastic polymer.

The molds used for casting are shown in FIG. 1. The
two halves of the mold are identical, each containing ar-
rays of hemispherical pockets. These molds are made of
polyoxymethylene, also known as acetal plastic, for its
high stiffness, good machinability and low friction. The
mold surface is first machined flat, then milled with a
ball end mill to create the hemisphere cavities. With the
help of a CNC mill, the geometric tolerance of the mold
is controlled within ±1/1000′′ (± 25 µm). Alignment
pins are used to ensure the two parts mate and create
spherical cavities for the resin to fill in.

PR
O

D
U

C
ED

 B
Y 

A
N

 A
U

TO
D

ES
K

 S
TU

D
EN

T 
VE

R
SI

O
N

PRODUCED BY AN AUTODESK STUDENT VERSION

PR
O

D
U

C
ED

 B
Y A

N
 A

U
TO

D
ESK

 STU
D

EN
T VER

SIO
N

PRODUCED BY AN AUTODESK STUDENT VERSION(a) (b) (c) (d)

Dowel pins
5 cm

3.2 mm2 mm1 mm

FIG. 1. Molds for squeeze casting. (a) 3-D design of the mold.
The two halves mate and create spherical cavities for the resin
to fill in. (b), (c) and (d) 1 mm, 2 mm and 3.2 mm sphere
molds made of black acetal plastic. Four Dewel pins are used
for alignment of the two halves. The molds for the three sizes
of spheres have a diameter of 3.25 inch (8.26 cm). This size
is optimized to be big enough to produce a large number of
spheres per mold, and small enough to effectively squeeze out
the excess resin in the gap.

First, the two halves of the mold are sprayed with mold
release agent and assembled with Dowel pins keeping
them aligned and leaving a gap for the resin. The mold
is then placed in a semi-rigid plastic bag that closely fits

the assembled mold. Resin is mixed and poured into the
plastic bag, submerging the mold. The bag containing
resin and mold is then deaired in the vacuum chamber
for 10 minutes to eliminate trapped air bubbles in the
resin and mold. After the vacuum, the two parts of the
mold are pressed together (squeeze) and transferred from
the bag to a leveled surface. Heavy weights (>20 kg) are
applied to the mold to squeeze out the excess resin and
reduce the thickness of the thin film around the sphere
equator to a minimum. The resin cures in the mold with
the weights for the length of time specified by the manu-
facturer. Then, the alignment pins are removed, and the
molds are open to release the photoelastic spheres. Some
photoelastic spheres may still have a thin film around
their equators, but it tears off easily.

Photoelastic spheres with diameters of 1.0, 2.0 and
3.2 mm were manufactured using the molds shown in
FIGs. 1(b), (c) and (d), respectively. The two-part resin
VytaFlexTM 20 from Smooth-On, Inc was used for cast-
ing the beads. It produces soft polyurethane spheres with
an amber color. A photo of the spheres taken with a
polystyrene ruler is shown in FIG. 2(a). The same image
taken under the darkfield circular polariscope is shown in
FIG. 2(b). The color strips on the polystyrene ruler show
that it has residual stress. In contrast, the photoelastic
spheres are free of residual stress, and hardly visible in
FIG. 2(b). Some reflected light from the spheres’ curved
surfaces indicates where they are.

To analyze the size and shape of the spheres resulting
from the fabrication process, we take images of hundreds
of the spheres on a light panel with a ruler as a reference,
similar to FIG. 2(a). The images are binarized, filtered
and analyzed to study the particle size distribution and
circularity [43]. Although this image analysis is based on
2-D images of the 3-D spheres, the random orientations of
spheres in the 2-D images ensure the measured diameter
and circularity are representative of their actual values
in 3-D. For a binarized image of the sphere, assuming
there are Nap pixels representing it in the image and Npp
pixels representing its perimeter, the equivalent diameter
(Deq) and circularity (Cc) are defined as:

Deq =2Sc

√
Nap/π, (1a)

Cc =
4πNap
N2
pp

, (1b)

where Sc is the scale of the image with a unit of length
per pixel. The circularity is one of the often-used shape
factors to quantity how close to a circle a shape is [43]. A
circle, having the largest area for a given perimeter, has
a circularity of 1. Any other shape has circularity less
than 1. The diameter and circularity calculated in this
method are summarized in FIG. 2(c) for the three sizes
of spheres. The diameters of the spheres have a narrow
distribution, with a standard deviation less than 5% of
the mean. The circularities of the three sizes of spheres
are close to 1.
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FIG. 2. The resulting photoelastic spheres from the fabri-
cation process. (a) The three sizes of spheres under white
light. (b) The three sizes of spheres under a circular polar-
iscope. The polystyrene ruler, having residual stress, shows
color strips. However, the spheres, being residual-stress-free,
are hardly visible. (c) Size and circularity of the spheres. (d)
Macro images of the spheres showing their surface roughness.

Macro images of the spheres are shown in FIG. 2(d).
The photoelastic spheres all have lines around their equa-
tors. These result from the residual film between the two
molds of the squeeze casting. The surface roughness of
the spheres results from the machine marks on the mold,
which is at the scale of microns. On smaller spheres,
this surface roughness is relatively more pronounced than
that on larger spheres.

III. PHOTOELASTIC RESPONSE OF THE
SPHERES

Under stress, the photoelastic spheres do not exhibit
photoelastic fringes [37, 44], because the light refracts
through the angled surface near the contact points.
The well-established fringe inversion algorithm for vec-
tor measurements of forces based on fringes on 2-D disks
[10] cannot be used for spheres. Neither is it possible for
thousands of millimeter-scale spheres. As used by other
studies for 2-D disks [12, 13], we use light intensity for
scalar measurements of forces on spheres, which works for
a narrow range of forces. To extend the range of forces

measurable using the photoelastic spheres, we use color,
for the first time, to quantify the photoelastic response,
and determine the applied forces.

When a photoelastic sphere is subject to stress, it be-
comes birefringent and splits the light through the sphere
into two beams with different refractive indices n1 and
n2. After exiting the sphere, the two beams have a re-
tardation (γ), or the so-called path difference:

γ = τ(n2 − n1), (2)

where τ is the thickness of the material. These two beams
of light interfere at the left circular polarizer (FIG. 3)
and show intensity or color changes as a function of the
path difference. For monochromatic light, the result of
light interference is the periodic increase and decrease
of light intensity with increasing path difference. For
white light, the result of interference is the color change
as a function of the path difference, as shown with the
Michel-Levy birefringence chart [45]. With the increasing
force, the photoelastic sphere’s birefrengence increases
and leads to a larger path difference. The resulting color
can be found along the Michel-Levy chart, which also
indicates that the light intensity first increases and then
decreases. While the colors shown on the photoelastic
spheres should be similar to those on the Michel-Levy
chart, in practice they can be different due to the light
source, filters and the color of the material itself. We
designed a calibration setup to correlate the force on the
sphere and its photoelastic response, as shown in FIG. 3.
For this study, the 2 mm spheres are used.

This calibration setup is configured as a load-frame-
coupled darkfield circular polariscope (DFCP) (FIG.
3(a)). We use a white light LED panel as the light
source. Two sets of linear polarizers and quarter-wave
plates configure the darkfield circular polariscope. A
high-resolution (60 MP) color camera is used to take
the images of the photoelastic spheres. The computer-
controlled load frame moves the platen to the accuracy
of ±0.6 µm, and measures the vertical displacements and
forces. FIG. 3(b) shows a close-up of the platens with the
photoelastic spheres. A glass sleeve with a 2.1 mm aper-
ture is used to keep the spheres on the bottom platen.
The top and bottom platens are made of laser-cut 1.8 mm
acrylic sheets. We use two types of platens to simulate
the loading conditions of single spheres in a monolayer
of spheres under vertical load, as shown in FIGs. 3(c)
and (d). The sphere packs both have a hexagonal pack-
ing, but in different orientations relative to the vertical
load. We refer to the hexagonal packing in FIG. 3(c) as
vertical hexagonal packing (VHP), because there are ver-
tically aligned spheres. Similarly, we refer to the hexag-
onal packing in FIG. 3(d) as horizontal hexagonal pack-
ing (HHP), which has a 30◦ rotation from VHP because
of the rotational symmetry of the two packings. Since
the vertical load in VHP is transmitted mostly vertically
along the spheres, the sphere at the center is loaded by
the top and bottom spheres with horizontal contact lines
(red in FIG. 3(c)). Hence, the loading condition of a
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FIG. 3. Experimental setup to study the photoelastic re-
sponse of 2 mm spheres. (a) A load-frame-coupled dark field
polariscope. (b) A close-up of the 2 mm spheres between the
flat platens. (c) Spheres between two flat platens. (d) Spheres
between two 120◦ platens.

single sphere in VHP can be approximated by two flat
platens. In contrast, the vertical load is transmitted to
the sphere at the HHP center through the upper and
lower sphere pairs each with 30◦ contact lines relative
to the horizon. Therefore, the loading condition for the
sphere in HHP center can be approximated by two 120◦

platens.

The calibration tests are conducted by loading and
unloading several spheres in steps, while recording their
photoelastic responses. For each load step, the top platen
moves downward 0.05 mm and holds its position, while
the force and photo of the spheres are recorded. FIGs.
4(a) and (b) show the results of the calibration tests,
in which the photos of the spheres are aligned with the
force-displacement steps. The forces in FIGs. 4(a) and
(b) are the measured force averaged over the number of
spheres used in the test. Only the loading part is shown
for simplicity in FIG. 4. The loading-unloading cycle is
shown in the supplemental videos for the two tests [46].
During loading, the reaction forces on the spheres in-
crease, while the colors of the spheres change from black
to bright and orange. This color evolution of the spheres
under increasing load is similar to the interference colors
along the Michel-Levy chart shown in FIG. 4(c). How-
ever, because of the light source, filters and the color of
the material, the colors differ from the Michel-Levy chart

(a) (b)

(c) Michel-Levy Chart

FIG. 4. Photoelastic response of the spheres. The average
force on each sphere is plotted against the displacement of the
platen. The photos of the spheres are aligned with the force-
displacement steps. (a) Loading the spheres with flat platens.
(b) Loading the spheres with 120◦ platens. (c) Reconstructed
first 700 nm of the Michel-Levy chart. This color evolution of
the spheres under increasing load is similar to the interference
colors along the Michel-Levy chart. See supplemental videos
for the two calibration tests [46].

by having a green tint.

In this study, we use two methods to correlate the
sphere’s photoelastic response with the applied load. The
first method is to correlate the light intensity with the
force acting on the sphere. This is the simplest way to use
photoelastic material for force measurement [47]. FIG.
5(a) shows the light intensity of the spheres under the
two loading conditions. For small forces (0 ∼ 0.1 N), a
linear relation can be used to relate forces to the sphere
light intensities. However, the same light intensity indi-
cates a larger force in HHP than that in VHP. For larger
applied forces, the relation between the light intensity
and force becomes non-monotonic. Therefore, using the
light intensity to measure contact forces is only suitable
for a small range of forces (0 ∼ 0.1 N).

The second method is to use the color information to
cover a larger range of loads, since the evolution of color
with increasing force follows a unique path. This path
is presented using the CIELAB color space (FIG. 5(b)).
CIELAB was intended as a perceptually uniform space,
where a given numerical change in the L, a and b axis
corresponds to a similar perceived change in color [48].
As shown in FIG. 5(b), the sphere colors for both loading
conditions evolve as the loads increase, following almost
the same path in the CIELAB space. However, the same
color indicates a larger force in HHP than that in VHP.
Nevertheless, using the CIELAB color space, we provide
a one-to-one mapping between the color and force. To
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FIG. 5. Correlating the photoelastic response with the load.
(a) The light intensity of the spheres are plotted with the
forces for the two types of loading conditions. (b) The colors
of the spheres are plotted in the CIELAB color space with
the forces near them.

predict the force based on the color, the (L, a, b) coordi-
nates of this color can be used to find the closest point
on the curves shown in FIG. 5(b) for its corresponding
force.

The above discussion demonstrates two methods to
correlate the spheres’ photoelastic response with the ap-
plied load using the 2 mm VytaFlexTM 20 polyurethane
spheres. For these photoelastic spheres, light intensity
can be used to quantify a small range of forces (0 ∼ 0.1
N for VHP), while color can be used to quantify a large
range of forces (0 ∼ 0.22 N for VHP). However, the range
of forces measurable using these two methods is case-
specific, depending on the stiffness, size and birefrengence
property of the material. The bit-depth, noise ratio and
sensitivity of the camera sensor determine the precision
and sensitivity of these measurements. For example, if
a 12-bit monochrome sensor with a 2-bit typical noise is

used to map out the full range of light intensity change
in the calibration test on VHP, the theoretical precision
of this measurement is 0.1(N)/(2(12−2) − 1) ∼ 0.1mN.
Color sensors are often 24-bit, offering more bit-depth.
However, the theoretical precision of force measurement
using color is difficult to estimate because of the various
color filter arrays and interpolation algorithms used in
different cameras. Therefore, calibration tests, like the
ones presented in this section, should be done with the
light source, filters, photoelastic materials and cameras
used in the photo-poromechanics test for a case-specific
correlation.

Our study of the photoelastic response is intended, like
in the traditional use of photoelasticimetry [8, 12, 13],
for quasi-2-D monolayer experiments, where the polar-
ized light is transmitted perpendicularly through the 2-
D plane defining the monolayer of spheres. This ensures
that the observed light intensity- or color change at each
location is caused by one sphere only, and thus can be
associated to the force that is exerted on that sphere.
In addition, the calibration process is conducted at the
level of a single sphere with simulated loading conditions
and packing orientations, and thus may not be directly
applicable for a pack of spheres. The best practice is
to associate the light intensity or color with the known
forces in the experimental setup for the test of interest,
as done in the consolidation test discussed in Section IV.

IV. PHOTO-POROMECHANICS: AN EXAMPLE

With the two challenges of photo-poromechanics ad-
dressed in the previous two sections, we use the photoe-
lastic spheres to assemble a monolayer porous medium
and study a classic poromechanical problem: 1-D con-
solidation [1, 2]. While this is the paradigmatic example
of coupled flow and deformation in a porous medium,
and has served as the basis for the concept of effective
stress, the effective stress has heretofore remained elusive
to direct experimental quantification —something that
our photo-poromechanics technique allows us to resolve
for the first time.

A. Consolidation Tests

We designed a monolayer consolidation cell to conduct
the consolidation test (FIG. 6(b)). Two thick glass plates
are glued with a 2 mm thick U-shape spacer to form a
monolayer cell. The inner dimensions of the cell are 100
mm in the horizontal direction (L), 100 mm in the verti-
cal direction (H) and 2.1 mm as the aperture between the
two glass plates (T ) because of the thickness of the glue.
A hole is drilled at a distance of 2 mm from the inner bot-
tom of the cell to measure fluid pressure. A fluid reservoir
is installed on the top of the cell to provide a constant
fluid pressure boundary condition. A piston, made of a
1.8 mm acrylic plate is used to load the fluid-saturated
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photoelastic sphere pack. The piston has a dome head to
ensure vertical centric load on the piston. Slots are cut
into the piston to increase its permeability.

We converted the load frame to provide a constant ver-
tical load, as shown in FIG. 6(a). A stainless steel shaft
is used as the weight (W=508 g) to provide a constant
load to the consolidation piston. This weight provides
a vertical stress of σ0 = W/(TL) = 23 kPa. Two lin-
ear bearings are installed in a tubular fixture to limit
the shaft’s movement to vertical displacement only. We
use a linear variable differential transformer (LVDT) to
measure the vertical displacement of the piston, and a
pressure sensor to measure the pressure at the bottom of
the cell.

Each test starts with packing the photoelastic spheres
in the cell to a 20 mm height (H), and follows by satu-
rating the pack with silicone oil. The assembled consol-
idation cell is then deaired in the vacuum chamber for
10 min to remove the dissolved and trapped air in the
cell. After the vacuum, the consolidation cell is installed
in the fixture of the load frame. The shaft is first moved
very close to the piston through the linear bearings, then
released to load the piston, while the displacement, pore
pressure and video of the pack (see [46]) are recorded.
Five types of silicon oils with different viscosities (10k,
5k, 1k, 500 and 50 cSt) are used in the consolidation
tests.

The measured displacements and pore pressures for the
five tests are shown in FIGs. 6(b) and (c). Upon appli-
cation of the load, the pack starts to deform, while the
deformation rate depends on the viscosity of the pore
fluid —lower viscosity results in faster deformation. Be-
cause of the experimental variations in the pack height
(H) in every test, the final displacements are different.
Upon applying the load, the excess pore pressure imme-
diately builds up to a value approximately equal to the
applied stress (23 kPa), then dissipates faster for lower
viscosity pore fluid. The behavior of the fluid-saturated
photoelastic sphere pack shows the strong coupling be-
tween the solid and fluid. When the viscosity of the pore
fluid is low enough, the excess pore pressure dissipates so
fast that not much excess pore pressure can be measured,
and the pack deforms almost immediately (< 1 s).

B. 1-D Consolidation Model

The 1-D consolidation tests use a piston with a perme-
ability comparable to that of the pack of spheres, as mea-
sured in Appendix A and listed in Table I in Appendix
C. The presence of this piston causes an additional pres-
sure drop as the fluid that drains from the sphere pack
flows through it. The 1-D consolidation model account-
ing for the comparable piston permeability is derived in
Appendix B. The piston, having low permeability but
high stiffness, is modeled as a Robin boundary condi-
tion, as discussed in Appendix B. This model is different
from the classic 1-D consolidation model [2, 49], which

has a constant-pressure (Dirichlet) boundary condition.
The experimental parameters used in the model are

summarized in Table I in Appendix C. The 1-D volu-
metric modulus of the pack (M = 300 kPa) is measured
using the load frame, similar to the calibration tests done
in Section III. The permeability of the monolayer sphere
pack k can be estimated using the Kozeny-Carman equa-
tion as (0.03ds)

2 [50]. In the experiment, we choose the
value 3.0× 10−9 m2 to fit the experimental results. The
experimental parameters result in the permeability ratio
Cd = (kpH)/(kLp) of 1.02, which shows that the perme-
abilities of the pack and piston are indeed comparable.

The results of the three tests with the high fluid viscos-
ity are compared with the analytical solution in FIG. 7.
The time and measured pore pressure are converted to di-
mensionless form (Equation (B7)). The measured piston
displacement is converted to the degree of consolidation
(Equation (B14)). By converting the experimental mea-
surements to dimensionless quantities, the test results
show one consistent trend, which matches the predic-
tion of the 1-D consolidation model with Robin boundary
condition. Comparing with the classic 1-D consolidation
theory (Dirichlet boundary), the 1-D consolidation with
Robin boundary condition has a slower pore pressure dis-
sipation, as shown in FIG. 7.

The comparison between the experimental results and
the 1-D consolidation model shows that the pack of pho-
toelastic spheres exhibits strong coupling with the pore
fluid, and can be used to study poromechanical prob-
lems. The predictions from the model of 1-D consolida-
tion with Robin boundary condition agree well with the
experimental results. However, the model slightly under-
estimates the excess pore pressure (FIG. 7). This small
discrepancy is due to the model’s assumption of constant
pack height and piston length. As the pack is being com-
pressed, its permeability decreases, while the length of
the piston increases. Both of these factors contribute to
slowing down the excess pore pressure dissipation, but
they are not considered by the model.

C. Visualizing the Evolving Effective Stresses

The photoelastic spheres in this pack can be used to
directly observe the evolution of the forces in the solid
phase. We use the test with η = 5k cSt to study these
forces during consolidation. The degree of consolidation
(Equation (B14)) is plotted with the six corresponding
frames from the recorded video in FIGs. 8(a) and (b).
After the load is applied, it takes the pack about 10 sec-
onds to reach 95% of the consolidation. The load is trans-
ferred down to the pack in the form of force chains, which
are chain- or network-like structures composed of stressed
spheres.

To enhance the visual effect of these force chains, we
first convert the images in FIG. 8(b) to grayscale im-
ages, then zero the part that has lower light intensity
than the initial frame (not shown in FIG. 8). The result-
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FIG. 6. 1-D consolidation test. (a) Experimental setup for the 1-D consolidation setup. The pack of fluid saturated photoelastic
spheres are loaded suddenly with a constant weight, while the video, deformation and excess pore pressure are recorded. (b)
Detailed schematic of the consolidation cell. Two thick glass plates are glued with a 2 mm thick U-shape spacer to form a
monolayer cell. The excess pore pressure is measured at the bottom of the cell with a pressure sensor. The pore fluid is filled
to the middle of the reservoir to provide a constant-pressure boundary condition. A piston is made of a 1.8 mm acrylic plate
with slots cut out to increase its permeability in the cell. (c) Displacement of the piston. (d) Excess pore pressure measured
by the pressure sensor.
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FIG. 7. Experimental results compared with predictions of the 1-D consolidation models. (a) Degree of consolidation calculated
based on the piston displacement (Equation (B14)). (b) Dimensionless excess pore pressure. The experimental results of the
three tests show one consistent trend, which matches the prediction of the 1-D consolidation model with Robin boundary
condition.

ing grayscale image is rendered with a “hot” color profile
for high visual contrast, as shown in FIG. 8(c). As the
pore pressure dissipates from the top boundary, the stress
chains start to develop from the top boundary, then pro-
gresses downwards through the pack. Despite our best
effort to pack the sphere uniformly in the cell, the force
chains show that the packing in the center of the cell is
denser, thus the earlier emergence of force chains. Be-
cause of the narrow range of sphere diameters, the pack
crystalized into several patches, as the blue circles indi-

cated examples in FIG. 8(c)F. Based on the geometry of
the force chains, the orientation of the hexagonal packing
can be identified. The circled patch on the left is VHP,
while the circled patch on the right is HHP.

In a continuum framework of poromechanics, the
sphere pack is the load-bearing skeleton. The photoelas-
tic response of the spheres then reflects the stress in the
solid skeleton, which is the effective stress. The consoli-
dation test, with its known initial and final stress condi-
tions, can be used to correlate the photoelastic response
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FIG. 8. Photoleastic response of the pack as the excess pore pressure dissipates. (a) The normalized displacement curve for
the consolidation test with η = 5k cSt. (b) The six snapshots during the consolidation tests. (c) Enhanced images to study
the evolution of force chains. The force chains develop from the top boundary, then progresses downwards through the pack.
The pack crystallizes into several patches with different orientations, as circled in blue. See the supplemental video for the
consolidation test in real time [46].

with the effective stress. The images in FIG. 8(b) are
converted to grayscale with light intensity field, I(x, z, t).
Since the consolidation is a 1-D problem, we can use the
mean of the light intensity in the x direction, I(z, t). This
averaging also homogenizes the patches of spheres that
has different orientations of packing. The initial light
intensity (I(z, 0)) corresponds to the initial vertical ef-
fective stress (σ′zz(z, 0) = 0), while the final light inten-
sity (I(z,∞)) corresponds to the final vertical effective
stress (σ′zz(z,∞) = σ0). In the consolidation tests, the
applied load (508 g) averaged over the number of spheres
in the horizontal direction (100 mm/2 mm=50) did not
exceed the linear monotonic range (0 ∼ 0.1 N) (FIG.
5(a)). Therefore a linear relation can be used to correlate
the light intensity and effective stress: I(z, t) ∝ σ′zz(z, t).
The light intensity I(z, t) can be non-dimensionalized as:

ID(z, t) =
I(z, t)− I(z, 0)

I(z,∞)− I(z, 0)
. (3)

If the vertical effective stress is also normalized by the
applied stress, σD = σ′/σ0, the two normalized quantities
then have the relation:

ID(z, t) = σD(z, t). (4)

Equation (4) shows that the normalized light intensity
of the sphere pack is equal to the normalized vertical
effective stress in the pack. Through this correlation,
photoelasticimetry can now be used to measure effective
stress in a porous medium.
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FIG. 9. Evolution of the vertical effective stress. Solid curves
represent the measurement based on photo-poromechanics.
The dashed curves represent the predictions made by the 1-D
consolidation model with Robin boundary condition.
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FIG. 9 shows the normalized vertical effective stress
measured using photo-poromechanics and predicted by
the 1-D consolidation model with Robin boundary condi-
tion. The solid lines are the experimental measurements
using photo-poromechanics (ID) for the corresponding
six frames in FIG. 8(b), as indicated using real time
t. The normalized effective stresses (σD) predicted us-
ing the 1-D consolidation model with Robin boundary
condition are also plotted in FIG. 9, as indicated using
dimensionless time TD. Both results capture the trend
that the effective stress is higher near the upper boundary
(Z = 1) and lower near the bottom boundary (Z = 0).
The two also show that the effective stresses increase as
the pore pressure dissipates with time. Because of the
additional pressure drop caused by the piston, the ex-
cess pore pressure on the upper boundary is not zero. It
decreases as the excess pore pressure dissipates. This is
reflected by the increase of effective stresses, as indicated
by the experimental and modeling results.

There are some discrepancies between the two results
as indicated by the curves B, C and D in FIG. 9(c). The
model predicts higher effective stresses than the exper-
imentally measured effective stress. This is due to the
model’s underestimated pore pressures shown in FIG.
7(b). As the pack is being compressed, its permeabil-
ity decreases, while the length of the piston increases.
These two factors both slow the excess pore pressure dis-
sipation; effects which are not accounted for in the model.
This underestimated pore pressure results in the overes-
timated effective stresses comparing to the experimental
results.

V. CONCLUSIONS

In summary, we have developed a new experimental
methodology, which we call photo-poromechanics. In so
doing, we overcome the two challenges of applying pho-
toelasticimetry to fluid-coupled granular media: fabri-
cating 3-D photoelastic particles and obtaining quantita-
tive information on the forces applied on these particles.
On one hand, our “squeeze casting” process produces
millimeter-scale residual-stress-free photoelastic spheres
with high geometric accuracy. On the other, we employ
a calibration technique to determine interparticle forces
which, for the first time, uses stress-dependent particle
color; this calibration technique is applicable over a wider
range of forces than the more classical calibration based
on light intensity.

These advances enable new experimental investiga-
tions of the coupling between fluid flow and solid mechan-
ics in granular media. In particular, we can now directly
observe the evolution of effective stress—the fraction of
applied stress in a porous medium that is transmitted
through the solid skeleton via interparticle forces. While
effective stress is a fundamental quantity that controls de-
formation and failure of porous media, it had heretofore
remained inaccessible to direct measurement in a gran-

ular pack. We demonstrate the ability to quantify the
evolution of effective stress with a variant of the classical
1-D consolidation, in which a load is applied suddenly to
a fluid-filled granular pack, causing delayed deformation
as the fluid seeps out of the porous medium. We show
that compaction of the granular pack is concomitant with
the emergence of particle-particle force networks, which
originate at the top boundary (where the pore fluid seeps
out) and propagate downwards through the pack as the
pore pressure gradually dissipates.

Beyond its intrinsic interest for direct visualization of
effective stress in granular matter filled with single-phase
fluids, our technique provides more generally a method-
ology to study the grain-scale underpinning of coupled
fluid-solid processes in granular media [51, 52], includ-
ing capillary cohesion [53], desiccation cracks [54, 55],
capillary fracturing [6, 56], gas venting [57–59], frictional
flows [4], flow-induced aggregate deformation [60–62] and
fluid-injection induced fault slip [63–65].

The isotropic geometry of our photoelastic spheres also
makes it possible to apply photo-poromechanics in 3-
D granular systems. Imaging techniques, such as index
matching, fluorescence, confocal microscopy and tomog-
raphy, can be combined with photo-poromechanics to
visualize the 3-D effective stress field in coupled fluid-
granular systems. By providing a wealth of microscopic
observables in 3-D, including contact forces, length and
orientation of force chains, particle coordination number
and stick-slip behavior, this promising experimental tech-
nique could revolutionize our understanding of granular
systems, which has, for decades, been derived from 2-D
experimental investigations.
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Appendix A: Permeability of the Piston

The permeability of the piston is determined by mea-
suring its terminal velocity (vpt) in the cell filled with the
viscous silicon oil. The piston falling in the cell causes
the fluid to leave the bottom of the cell with a rate:

Qf = vptAp, (A1)

where Ap is the cross section area of the piston. The
pressure applied to the fluid at the bottom of the piston
is the weight of the piston plus the LVDT rod that sits
on the piston over the area of fluid:
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Pp =
Wpg

LT
(A2)

Assuming that the piston has a section of length Lp
in the cell, the overall pressure gradient of the fluid can
be calculated as Pp/Lp. Although the piston has slots to
increase permeability, here we assign its overall perme-
ability as kp. Then Darcy’s law produces the relation:

Qf = LT
kp
η

Pp
Lp
. (A3)

Therefore, the overall permeability of the piston can
be calculated as:

kp = ηvpt
LpAp
Wpg

. (A4)

The length Lp increases as the piston falls. Since the
length Lp is much greater than its travel distance during
the tests, Lp is assumed to be constant. For the five types
of silicone oils used in the test, the four with the highest
viscosity produce a steady state piston terminal velocity
measurement. With these velocity-viscosity pairs, the
overall permeability of the piston is: 1.2 × 10−8 mm2.

Appendix B: One-Dimensional Consolidation with
Robin Boundary Condition

Section IV B shows that the permeability of the piston
needs to be accounted for when modeling the consolida-
tion of the fluid saturated photoelastic speres. Because
of this relatively low permeability, the boundary condi-
tion for the photoelastic spheres is no longer a constant
pressure boundary, like the classic case. Instead, the pis-
ton causes extra pressure drop that is proportional to the
flow rate through the piston. This is a Robin boundary
condition and needs to be analytically modeled.

The governing equation for 1-D consolidation is derived
based on mass conservation of the incompressible pore
fluid:

∂εv
∂t

= −k
η

∂2P

∂z2
=

1

mv

∂σ′zz
∂t

, (B1)

where εv is the volumetric strain, k is the permeability
of the sphere pack; η is the viscosity of the fluid; mv is the
1-D volumetric modulus of the sphere pack; and σ′zz is the
vertical effective stress. Since the sphere pack is confined
in the two horizontal directions, the 1-D volumetric mod-
ulus equals to the 1-D confined drained modulus. In the
context of discussion, compression is positive. According
to Terzaghi [2], the effective stress and pore pressure has
the relation: σ′zz + P = σ0. Therefore, Equation (B1)
can be written for the excess pore pressure P. This 1-D

consolidation problem is essentially a diffusion problem
for the excess pore pressure.

∂P

∂t
= cv

∂2P

∂z2
, (B2)

where cv is the consolidation coefficient,

cv =
k

η
mv . (B3)

The consolidation coefficient (cv) reflect the rate of the
excess pore pressure diffusion process. The process is
faster with higher permeability pack, lower viscosity fluid
and stiffer pack. For the piston however, the modulus is
in the order of GPa, thus the consolidation process in the
piston can be treated as immediate. FIG. 10 shows the
analogous problem in geomechanics, where two layers of
geomaterials with comparable permeability but different
moduli are under the total stress σ0. The layer with low
modulus will go through the consolidation process while
the layer with high modulus will just experience Darcy
flow [49]. The excess pore pressure is shown in FIG.
10(b).

kp

k

P

z

0

Lp

H

σ0

P1

(a) (b)

FIG. 10. Analog of the 1-D consolidation problem with mul-
tiple layers of comparable permeability but different stiffness

The piston and pack interface satisfies pressure conti-
nuity. We denote this excess pore pressure as P1. The
flux through the piston (q) can be modeled using the
Darcy’s law:

q =
kp
η

P1

LP
(B4)

where Lp is the length of the piston; kp is the perme-
ability of the piston. This flux also equals to the flux
from the pack:

q = −k
η

∂P

∂z
|z=H (B5)

By taking the continuity of the flux, the boundary con-
dition of the top of the pack becomes:
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(
∂P

∂z
+

kp
kLp

P

)
|z=H = 0 (B6)

By taking the dimensionless form of the variables:

Θ =
P

σ0
; Z =

z

H
; TD =

tcv
H2

; Cd =
kpH

kLp
; (B7)

the governing equation for excess pore pressure P =
P (t, z) becomes:

∂Θ

∂TD
=
∂2Θ

∂Z2
, (B8a)

I.C. : Θ|TD=0 = 1; (B8b)

B.C. :
∂Θ

∂Z
|Z=0 = 0; (B8c)(
∂Θ

∂Z
+ Cd ·Θ

)
|z=1 = 0. (B8d)

We refer to the constant Cd as the permeability ra-
tio, comparing the permeability and diffusion distance of
the two layers. Here is how the Robin boundary con-
dition converges to other boundary conditions when Cd
approaches 0 and ∞:

Cd


→ 0, No flow boundary;

∼ 1, Comparable permeability;

→∞, Constant pressure boundary.

(B9)

Equation (B8) can be solved using separation of vari-
ables:

Θ(T, Z) = Σn=∞n=1 Cncos(λnZ)e−λ
2
nTD ; (B10a)

Cn =

∫ 1

0
cos(λnZ)dz∫ 1

0
cos2(λnZ)dz

=
4sin(λn)

2λn + sin(2λn)
; (B10b)

λn = Root

(
cot(λn) =

1

Cd
λn

)
(λn > 0). (B10c)

With the solution for the excess pore pressure, the ver-
tical strain can be expressed as:

ε(t, z) =
σ0 − P
mv

. (B11)

Taking the similar dimensionless form, the vertical
strain becomes:

ε(t, z) =
σ0
mv

(1−Θ). (B12)

Integrating the vertical strain yields the vertical dis-
placement ∆H:

∆H(t) =

∫ H

0

ε(t, z)dz = H
σ0
mv

∫ 1

0

(1−Θ)dZ (B13)

The integral
∫ 1

0
(1 − Θ)dZ shows the overall dissipa-

tion of the excess pore pressure. It is also referred to as
the degree of consolidation where 0 indicates the initial
state; and 1 indicates the complete dissipation of pore
pressure. When the degree of consolidation is 1, the fi-
nal deformation ∆HT is Hσ0/mv. Equation (B13) also
shows that the degree of consolidation can be measured
experimentally by measuring the deformation of the pack
∆H:

∫ 1

0

(1−Θ)dZ =
∆H

H

mv

σ0
=

∆H

∆HT
. (B14)

Appendix C: Experimental Parameters

TABLE I. Experimental parameters

Symbol Value Unit
ds 2.0 mm
H 20.0 mm
hp 2.5 mm
T 2.1 mm
L 100.0 mm
k 3.0 × 10−9 m2

kp 1.2 × 10−8 m2

Lp 9.4 mm
M 300 kPa
W 508 g
Wp 23.8 g
Ap 1.8 × 10−4 m2

η 10k, 5k, 1k, 500, 50 cSt

[1] K. Terzaghi, Erdbaumechanik auf Bodenphysikalischer
Grundlage (F. Deuticke, 1925).

[2] K. Terzaghi, Theoretical Soil Mechanics (John Wiley &

Sons, Ltd, 1943) Chap. 13, pp. 265–296.
[3] A. Jain and R. Juanes, Preferential mode of gas invasion

in sediments: Grain-scale mechanistic model of coupled



12

multiphase fluid flow and sediment mechanics, J. Geo-
phys. Res. Solid Earth 114, B08101 (2009).

[4] B. Sandnes, E. Flekkøy, H. Knudsen, K. Måløy, and
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